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A B S T R A C T

We present a comprehensive, customizable workflow for inferring prokaryotic phenotypic traits from marker
gene sequences and modelling the relationships between these traits and environmental factors, thus overcoming
the limited ecological interpretability of marker gene sequencing data. We created the trait sequence database
ampliconTraits, constructed by cross-mapping species from a phenotypic trait database to the SILVA sequence
database and formatted to enable seamless classification of environmental sequences using the SINAPS algo-
rithm. The R package MicEnvMod enables modelling of trait – environment relationships, combining the
strengths of different model types and integrating an approach to evaluate the models’ predictive performance in
a single framework. Traits could be accurately predicted even for sequences with low sequence identity (80 %)
with the reference sequences, indicating that our approach is suitable to classify a wide range of environmental
sequences. Validating our approach in a large trans-continental soil dataset, we showed that trait distributions
were robust to classification settings such as the bootstrap cutoff for classification and the number of discrete
intervals for continuous traits. Using functions from MicEnvMod, we revealed precipitation seasonality and land
cover as the most important predictors of genome size. We found Pearson correlation coefficients between
observed and predicted values up to 0.70 using repeated split sampling cross validation, corroborating the
predictive ability of our models beyond the training data. Predicting genome size across the Iberian Peninsula,
we found the largest genomes in the northern part. Potential limitations of our trait inference approach include
dependence on the phylogenetic conservation of traits and limited database coverage of environmental pro-
karyotes. Overall, our approach enables robust inference of ecologically interpretable traits combined with
environmental modelling allowing to harness traits as bioindicators of soil ecosystem functioning.

1. Introduction

Microorganisms play a pivotal role in soil ecosystem functioning and
the number of studies addressing microbial communities and their links
with soil processes has increased rapidly during the last years. However,
it has proven difficult to identify interpretable microbial indicators of
soil function. For instance, when using a taxonomy-based marker gene
approach, limited ecological information is available for the mostly
uncultivated microbial taxa in soil (Donhauser et al., 2020), hampering

their use as bioindicators. Metagenome sequencing has been used as an
alternative approach, allowing identification of functional genes asso-
ciated with a certain environment or future climatic conditions. Meta-
genomic analyses typically involve millions of functional genes.
Therefore, in many studies, only a small fraction of the most strongly
changing genes is presented or genes are aggregated in broad categories
according to databases that are not organized according to ecological
functions. Thus, a key interest in microbial ecology is to infer traits from
sequencing data that can be linked to soil processes such as carbon (C)
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and nutrient cycling, relevant for example to understand soil feedback to
climate change or soil fertility. For instance, microbial C-cycling models
postulate mechanisms based on traits (Allison and Goulden, 2017; Kai-
ser et al., 2014), but it remains challenging to validate such mechanisms
empirically.

An advantage of marker gene-based analyses of microbial commu-
nities is the recovery of rare species, while metagenomic analyses only
cover the most abundant species. Moreover, marker gene-based analyses
are less costly and require less computational knowledge. Conversely,
metagenomics involves complex and time-consuming bioinformatics
such as assembly and binning, and annotations are often based on a
single best hit without accounting for similarly well matching alterna-
tives (Huson et al., 2011). Thus, inferring traits from marker gene
sequencing is an attractive alternative to investigate microbial links to
C-cycling. Several approaches have been developed to infer microbial
function from marker genes. PICRUSt (Douglas et al., 2020; Langille
et al., 2013) places environmental sequences in a phylogenetic tree of
16S rRNA sequences of taxa with sequenced genomes and computes a
functional gene profile using extended ancestral state reconstruction.
Tax4Fun (Aßhauer et al., 2015) uses a taxonomic profile of the pro-
karyotes in KEGG (Kanehisa et al., 2016) and estimates the functional
gene profile of environmental marker gene sequences using a pre-
computed matrix of taxonomy - gene content associations. For eukary-
otic microorganisms, tools like FUNGuild (Nguyen et al., 2016) and
NINJA (Sieriebriennikov et al., 2014) enable trait classifications by
matching the taxonomic classification of an environmental sequence at
the species or genus level with a trait database. Cébron et al. (2021)
suggested an approach to infer traits for environmental sequences based
on their taxonomic classification, averaging trait values if there are
multiple values within the assigned taxonomic group. These methods
have several shortcomings, however. PICRUSt and Tax4Fun, like met-
agenomes, come with a large number of functional genes that do not
translate directly into ecologically meaningful traits. FUNGuild and
NINJA are not available for prokaryotes and trait annotations depend on
taxonomic annotations. Similarly, the approach by Cébron et al. (2021)
depends on taxonomy and does not allow to estimate confidence of trait
annotations. Thus, a trait inference workflow that allows for direct
classification of prokaryotic traits and that supports confidence esti-
mates is currently lacking.

Recently, efforts have been made to create databases with systematic
annotation of microbial traits based on descriptions of isolates (Barberán
et al., 2017; Cébron et al., 2021; Madin et al., 2020) as well as on text

mining and genomic data (Brbić et al., 2016) offering valuable resources
for the development of trait-inference workflows for uncultured, envi-
ronmental taxa. Edgar (2017) developed the SINAPS algorithm to clas-
sify traits from a sequence database with trait annotations. SINAPS uses
the algorithm of the taxonomy classifier SINTAX (Edgar, 2018), which is
based on shared words between query and reference sequences. SINAPS
was tested for energy metabolism, Gram stain, presence of a flagellum,
V4 primer mismatches, and 16S rRNA gene copy number (Edgar, 2017).
Compared to taxonomy-based trait classification, SINAPS has the
advantage of using a bootstrap procedure to estimate traits classification
confidence. Thus, SINAPS constitutes a promising trait inference tool,
but a comprehensive trait-sequence reference database is currently
lacking.

To elucidate the role of microorganisms in soil processes, it is crucial
to investigate the distribution of microbial traits through space and time
to create a mechanistic understanding of the range of conditions under
which microorganisms can thrive, enabling predictions for future envi-
ronmental conditions. Spatial modelling is well established for macro-
organisms (Guisan and Zimmermann, 2000), but less commonly used for
microorganisms. Thus, comprehensive frameworks to build and cross-
validate models, combining the strengths of multiple model types
have been implemented in R packages (Di Cola et al., 2017; Thuiller
et al., 2009), but are based on present-absence data and are therefore not
directly applicable to continuous measures such as community-weighted
trait means (CWM).

To address these gaps, here, we present a complete and flexible
workflow to model the spatial distribution of prokaryotic traits inferred
from amplicon sequence data in a single framework. We leveraged a
phenotypic trait-database (Madin et al., 2020) combined with sequences
from the SILVA small subunit (SSU) rRNA database (Quast et al., 2013)
to create the trait sequence database ampliconTraits. ampliconTraits al-
lows for seamless integration with SINAPS to classify environmental
marker gene sequences for multiple phenotypic traits. The R package
MicEnvMod provides functionality to combine the strengths of different
model types, to examine variable importance and responses to specific
predictors and to cross-validate model performance. We cross-validated
trait classifications with ampliconTraits and SINAPS and evaluated their
robustness with data from a large trans-continental study. Using func-
tions from MicEnvMod, we modelled CWMs of genome size as an
example trait with a combination of random forest (RF) models and
generalized linear models (GLM) and evaluated model performance by
repeated split sampling. To demonstrate extrapolation to areas beyond

Table 1
Number of Species and sequences in the reference database for each trait, interval numbers for continuous traits and categories for categorical traits.

Cell diameter
(lower)
[μm]

Cell diameter
(upper)
[μm]

Cell length
(lower)
[μm]

Cell length
(upper)
[μm]

Doubling time
[h]

Genome
size
[bp]

pHopt Topt
[◦C]

16S rRNA gene copy
number

Species 5645 3044 5223 3091 879 8554 3893 6389 2389
Sequences 33,069 18,731 30,886 18,925 14,994 59,416 16,498 46,754 33,216
Interval
numbers

5, 10, 20, 30 5, 10, 20, 30 5, 10, 20, 30 5, 10, 20, 30 5, 10, 20, 30, 40,
50

5, 10, 20 5, 10,
20

10, 20 5, 10, exact gene copy
numbers

Cell shape Gram stain Oxygen preference Motility Salinity preference Temperature preference Sporulation

Species 6801 9834 9531 6518 515 2533 5832
Sequences 53,852 67,051 62,806 47,134 13,631 33,160 46,490

Categories

coccus; bacillus;
coccobacillus; spiral
filament; vibrio;
pleomorphic; irregular;
disc;
star; fusiform; spindle;
branced; square

negative;
positive

microaerophilic;
anaerobic; aerobic;
facultative; obligate
aerobic; obligate anaerobic

gliding;
flagella; yes;
axial
filament

moderate-halophilic;
extreme-halophilic; non-
halophilic; halophilic;
stenohaline; halotolerant;
euryhaline

thermophilic; mesophilic;
psychrophilic; extreme
thermophilic; facultative
psychrophilic;
psychrotolerant;
thermotolerant

no; yes
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the study sites, we predicted genome sizes for the Iberian Peninsula.

2. Methods

2.1. Classification of traits from amplicon sequences

To create ampliconTraits trait sequence databases, we used a
phenotypic trait database (Madin et al., 2020) combined with the SILVA
sequence database (Quast et al., 2013). All code for database creation
and classification of environmental sequences along with detailed
documentation is available on GitHub (https://github.com/jdonhaus
er/ampliconTraits). First, we created an amplicon specific version of
SILVA SSURef v138 for the V3-V4 region of the 16S rRNA gene
(341–806) using RESCRIPt (Ii et al., 2021). We then used traits aggre-
gated at the species level provided as condensed_species_NCBI.csv
(Madin, 2021) and obtained 16S rRNA gene sequences for each species
by cross mapping the NCBI taxid to the SILVA database using the file
taxmap_embl-ebi_ena_ssu_ref_138.txt obtained from the SILVA home-
page (https://www.arb-silva.de/fileadmin/silva_databases/release_1
38/Exports/taxonomy/taxmap_embl-ebi_ena_ssu_ref_138.txt.gz).
13,426 out of 14,893 species in the trait database could be mapped using
the NCBI taxid. Of the remaining 1467 species, an additional 495 species
could be cross mapped using the species name. In these cases, the taxid
in SILVA corresponded to a strain of the species in the trait database and
therefore did not match. We implemented the majority of traits present
in the phenotypic trait database (Madin et al., 2020). A few traits were
omitted due to anticipated methodological issues, because a similar,
better represented trait was present or because it was deemed less
ecologically relevant. In principle any trait linked with an NCBI taxid or
a species name could be implemented in ampliconTraits. For instance, the
number of coding genes is highly correlated to genome size but had
much lower coverage and was therefore not included. Carbon substrates
and pathways were omitted because they were represented as a list of
terms rather than a single term and because we expected shallow
phylogenetic conservation in many cases (Martiny et al., 2012, 2015).
Not all species had annotations for all traits (Table 1).

We used SINAPS (Edgar, 2017) to classify environmental amplicon
sequence variants (ASVs) against the sequence reference database for
each trait using the -sinaps command in usearch v11.0.667 (Edgar,
2010). SINAPS works similar to a taxonomy classifier comparing shared
k-mers between query and reference sequences and uses bootstrapping
for confidence estimates. To classify continuous traits, we binned them
into discrete intervals using the function cut in R specifying the number
of breaks, which divide the whole range of values into n intervals of
equal size. We tested different numbers of equal size intervals between 5
and 50, counting only bins that contained values. That is if for a given
number of breaks, some intervals were empty, we increased the number
of breaks until we obtained the desired number of intervals where each
interval contained at least one value.

Then, we created a reference database for each categorical trait and
each trait-interval combination for continuous traits. We subset the
sequence database to the sequences for which a trait was annotated
using seqkit (Shen et al., 2016) and then added the trait and its value to
the fasta header in the format trait = value as required by SINAPS.
Moreover, we determined the sequence identity between each query and
the closest reference sequence using the usearch_global command (Edgar,
2010) as an additional measure for the quality of the classification. We
used the following traits and interval numbers (terms in parentheses
indicate the name of the trait in the downloaded table): cell diameter
(lower) (d1_lo; 5, 10, 20 and 30 intervals), cell diameter (upper) (d1_up;
5, 10, 20 and 30 intervals), cell length (lower) (d2_lo; 5, 10, 20, 30 in-
tervals), cell length (upper) (d2_up; 5, 10, 20, 30 intervals), doubling
time (doubling_h; 5, 10, 20, 30, 40, 50 intervals), genome size (5, 10, 20
intervals), pHopt (optimum_pH; 5, 10, 20 intervals), Topt (optimum_tmp;
10, 20 intervals), 16S rRNA gene copy number (rRNA16S_genes; 5, 10
intervals, exact number), oxygen preference (metabolism), motility,

salinity preference (salinity_range) and sporulation.

2.2. Dataset used to model traits

We used 16S rRNA gene amplicon sequencing data and metadata
from a comprehensive soil dataset including 80 sites across Greenland,
Europe and South Africa (Fig. S1) to evaluate the performance of our
workflow. For evaluation of trait classifications, the full dataset of was
used, for modelling trait – environment relationships, 10 sites from
Greenland that were sampled to represent small-scale microclimatic
heterogeneity were removed. The sites encompassed mean annual
temperatures (MAT) from − 18.1 ◦C to 22.4 ◦C, mean annual precipita-
tion (MAP) from 45 to 1635 mm, soil organic matter (SOM) contents
from 0.34 to 59 % and pH from 2.6 to 8.1 (Fig. S1). A detailed
description of the sampling procedure, DNA isolation, PCR, amplicon
sequencing, inference of ASVs and measurement of soil physico-
chemical properties is available in the supplementary information.
Briefly, we sequenced the V3-V4 region of the prokaryotic16S rRNA
gene using the primers 341F and 801R (Frey et al., 2016) and paired-end
Illumina Miseq technology and we used DADA2 (Callahan et al., 2016)
implemented in qiime2 (Bolyen et al., 2019) to denoise raw sequences
and infer ASVs. Measured environmental variables in the dataset include
pH, SOM, total organic C (TOC), total C (TC) and N (TN), soil C:N, total
litter, litter C, litter N, litter C:N, soil texture (sand, silt, clay), water
activity (aw) and in situ soil temperature at the time of sampling. In
addition, we extracted further bioclimatic variables from the worldclim
database (Fick and Hijmans, 2017): BIO1 (MAT), BIO5 (maximum
temperature warmest month), BIO7 (temperature, annual range;
maximum temperature of warmest month minus minimum temperature
of coldest month), BIO12 (MAP), BIO15 (precipitation seasonality; ratio
of the standard deviation of the monthly total precipitation to the mean
monthly total precipitation). The aridity index was extracted from the
global aridity and PET database (Zomer et al., 2008). Moreover, we
extracted land cover classification according the International
Geosphere-Biosphere Programme classification using the MODIS prod-
uct MCD12Q1_LC1 (Friedl et al., 2010) for the year 2020 and revised it
manually according to photos of the study sites. Finally, we extracted the
soil water holding capacity (WHC) from the ISRIC-WISE30sec data set
(Batjes, 2016). Missing values in the metadata were imputed based on
principal components using the estim_ncpPCA and imputePCA function
from the package missMDA (Josse and Husson, 2016). All plots and
statistical analyses were produced in R version 4.1.3 (R Core Team,
2022). Raw sequences were deposited in the NCBI Sequence Read
Archive under the accession number PRJNA1073882.

2.3. Cross validation of trait inference

We assessed the predictive accuracy for each trait as a function of the
sequence identity between query and reference sequence (Edgar, 2018).
This cross validation approach allows to evaluate accuracy in a range of
scenarios where a closely related reference sequence is not available due
to limited size and/or phylogenetic coverage of the reference database.
A markdown specifying the details of this cross validation is available in
the supplementary information. Using the usearch command dis-
tmx_split_identity, we split the database in a test and a training set where
for each sequence in the test set the most similar sequence in the training
set has a maximum sequence identity of x % (Edgar, 2018; described in
more detail at https://www.drive5.com/usearch/manual/cvi.html).
This involves creating a distance matrix of sequence identity based on
pairwise alignments of all sequences in the database. Based on the dis-
tance matrix, sequences are split into complementary sets of sequences
where the most similar sequences in the second set share a maximum of
x % sequence identity with all sequences in the first set. Then the se-
quences in one of these sets can be used as test set and classified against
the second set. We did this for sequence identity thresholds of 97, 95, 90,
85 and 80 %. Subsequently, we classified the sequences in the test set
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and determined predictive accuracy by comparing the predictions to the
true values. For continuous traits, we calculated the deviation from true
values based on the mean of the intervals, while for categorical values,
we calculated the percentage of correct predictions as a metric.

We then classified environmental ASVs and tested how the classifi-
cation of traits was affected by the choice of the number of intervals and
the bootstrap cutoff to consider an ASV as classified. A markdown for all
analyses with environmental ASVs is provided in the supplementary
information. We evaluated the distribution of bootstrap values as well as
sequence identities with the reference database across the dataset. To
this end, we calculated CWMs as an index of community level trait
distribution, as commonly used in macroecology (Daou et al., 2021;
Garnier et al., 2004). We compared CWMs for different numbers of in-
tervals as well as for different bootstrap cutoffs creating a correlation
matrix with Pearson correlation coefficients using the function ecospat.
cor.plot in the ecospat package (Broennimann et al., 2023). For down-
stream analyses, we considered trait predictions with a bootstrap value
>70 and a sequence identity of >80 % with the top hit as classified.

2.4. Modelling traits with environmental predictors using MicEnvMod

To model genome size with environmental predictors (see supple-
mentary information for code), we created a set of ecologically relevant
climatic, edaphic and vegetation-related properties based on measured
and database-extracted data. From the full set of predictor variables, we
then removed collinear variables with a variance inflation factor > 10
using the function vifstep from the usdm package (Naimi et al., 2014)
resulting in a set of 16 variables. We used RFmodels, calculated with the

function randomForest from the package randomForest (Liaw andWiener,
2022) with 1000 trees. Moreover, we used stepwise generalized linear
models (GLM) with the Akaike information criterion (AIC) as stopping
criterion and selection in both directions using the function stepAIC
from the package MASS (Venables and Ripley, 2002). For the response
variable (CWM of genome size, calculated as abundance weighted
average), we used the average of five biological replicates. For the GLM,
we assessed the distribution of the response variable using the function
fitdist from the package fitdistrplus (Delignette-Muller and Dutang, 2015)
based on the AIC and diagnostic plots.

We then evaluated the importance of each predictor variable based
on the increase in mean squared error (MSE) when permuting the var-
iable of interest. For RF, variable importance is implemented in the
randomForest package. For the GLM, we created the function VarImp.glm
to obtain an analogous output. To evaluate the direction and magnitude
of the response to each predictor variable, we calculated response plots
where all predictor variables except the variable of interest are fixed to
their mean (continuous variables) or the first level (categorical vari-
ables; Elith et al., 2005). To this end, we created the functions respMono
and respBi that take as input a model, a table of predictor variables as
well as graphical settings for the plots. The function respBi creates
bivariate response plots for all combinations of two predictor variables
as heatmaps.

To evaluate model accuracy, we created the function crossVal to
perform a repeated split sampling procedure (Thuiller et al., 2009,
2023), which we applied with default settings. The data is split into a
training and a test set at a user-defined ratio (by default 70 to 30 % of the
values), the model is trained on the training set and model predictions

Fig. 1. Overview of the workflow. ampliconTraits trait sequence databases were created by linking species from a phenotypic trait database with the SILVA database.
Continuous traits were binned into discrete intervals to obtain categories for classification. Environmental sequences can be classified with SINAPS enabling
investigation of abundance distributions of the levels of each trait. The R package MicEnvMod provides functions to model CWMs obtained from trait distributions.
CWMs can be assessed with two types of models (random forest and stepwise GLMs) allowing to identify the most important environmental predictors and to evaluate
the trait responses to specific predictors. Individual models and weighted ensemble models can be cross validated by repeated split sampling. Validated models can
then be used to predict traits for regions beyond the study sites using georeferenced databases of predictor variables. ASV = amplicon sequence variant.
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for the test set are compared with the true values. Available metrics of
accuracy are correlations between observed and predicted values as well
as MSEs. The procedure is repeated multiple times (default 200) and
averaged. If the model contains categorical variables, the test set cannot
contain levels that are not present in the training set. In that case, for
each round, the random subsampling of the data is repeated until all
levels in the test set are also present in the training set.

A problem with stepwise model selection is that different combina-
tions of variables can result in similar model fit, making the selection of
variables arbitrary (Harrell, 2015). Therefore, with the function cross-
Val.step, we also implemented a split sampling procedure where the
stepwise selection is conducted in each round of split sampling allowing
to assess the dependence of variable selection on the dataset being used.
The fraction of cross validation runs where the variable appears in the
model is used as an indicator of the variables’ robustness across different
datasets.

Implemented via the function crossVal.ensemble, we evaluated the
performance of a combination of RF and stepwise GLM predictions,
weighted by the mean Pearson correlation coefficient between observed
and predicted values from the individual cross validation runs in a
repeated split sampling procedure as for the individual models.

For the RF model, the number of predictors (16) was relatively high
for the number of data points (70 sites). Therefore, in addition to the
model with all predictors, we created a model with only the most
important predictors where we chose the number of predictors based on
the number of variables in the GLM after stepwise selection. This model
performed better than the model with all variables, therefore the
ensemble model and predictions were calculated only with the RF model
with reduced number of predictors.

To predict genome size to new regions, we repeated the modelling
procedure including only variables that can be obtained from databases.
These variables included TOC, soil C:N ratio, pH, silt and clay content,
MAP, BIO5, BIO7, BIO15, WHC and land cover. To demonstrate the
process, we predicted genome size for the Iberian Peninsula, which was
chosen because it contained a high number of data points. We calculated
predictions for the RF model with reduced number of variables, the
stepwise GLM, an ensemble model between the two as well as the
standard deviation between the two models. Raster layers were cropped
to the desired extent, aligned and/or reprojected to the same resolution
and projection using the functions resample and projectRaster from the
raster package (Hijmans, 2022). In particular, land cover from the
MODIS product MCD12Q1_LC1 was reprojected from sinusoidal to
World Geodetic System 1984 (WGS84) projection.

3. Results

3.1. Description of the workflow

We created a workflow to model the spatial distribution of pro-
karyotic traits inferred from amplicon sequence data (see Fig. 1 for an
overview). The first part of the workflow (ampliconTraits) enables trait
classification of environmental sequences. ampliconTraits includes pre-
formatted trait sequence databases for the amplicon 341F – 806R of
the V3 – V4 region of the 16S rRNA gene enabling classification with
SINAPS (Edgar, 2017, 2018). Currently supported traits are cell diam-
eter and length, doubling time, pH optimum, temperature optimum, 16S
rRNA gene copy numbers, genome size, oxygen preference, salinity
preference, gram stain, sporulation, cell shape and motility (Table 1).

Fig. 2. Cross validation by identity (accuracy of trait prediction as a function of sequence identity with the top hit in the reference database). A Frequency dis-
tribution of accuracy for different numbers of intervals for continuous traits. B Fraction of correct predictions for categorical traits. White numbers indicate the
number of comparisons. pHopt = optimum pH, Topt = optimum temperature.
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Continuous traits were binned into discrete intervals to enable classifi-
cation and we implemented 2–5 versions of the database with different
interval numbers for each continuous trait. Table 1 shows the number of
species and sequences available for each trait. We provide detailed
documentation on the construction of ampliconTraits (https://github.
com/jdonhauser/ampliconTraits), enabling users to create customized
databases, for instance for a different amplicon or with customized trait
annotations. The second part of the workflow is the R package
MicEnvMod (https://github.com/jdonhauser/MicEnvMod). MicEnvMod
provides functions to model relationships between a continuous mea-
sure of community-level traits and environmental predictors, combining
the strengths of multiple model types. Currently, MicEnvMod supports
RF models and stepwise GLMs.MicEnvMod functions allow to assess the
importance of predictor variables as well as the response of a dependent
variable to a specific predictor variable. Moreover, models can be cross
validated by repeated split sampling and stability of variable selection
by stepwise GLMs can be examined. Validated models can be used to
predict CWMs under different environmental conditions such as under

future climate change or different areas. The package includes example
data and code for all functions.

3.2. Cross validation of trait predictions from ampliconTraits

First, we assessed the performance of trait classifications with
ampliconTraits. We cross validated trait predictions as a function of
similarity with the reference database by splitting the trait reference
databases in a test and a training set at different cutoffs for sequence
identity with the most similar reference sequence (Edgar, 2018). This
approach enables evaluating accuracy under a range of realistic sce-
narios with limited similarity between environmental sequences and
reference sequences and thus takes into account the size and phyloge-
netic coverage of the database. For continuous traits, we also compared
different interval numbers. For all continuous traits, the accuracy (pre-
dicted value minus true value) was similar for all interval numbers and
decreased with decreasing sequence identity between query and refer-
ence sequence (Fig. 2A). Nonetheless, even at 80 % sequence identity,

Fig. 3. A Bootstrap value across all ASVs in the dataset for all traits B Sequence identity between environmental sequences and the top hit in the reference database
for all ASVs in the dataset (left) and average per sample (right) C Fraction of unclassified sequences for each trait. ASVs with a bootstrap value >70 and sequence
identity with the top hit >80 % were considered classified. For continuous traits different numbers of intervals are shown.
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the greatest fraction of predictions was in the correct interval for all
trait-interval combinations. For categorical traits (oxygen preference,
motility, salinity preference and sporulation), the number of correct
predictions decreased with decreasing sequence identity with the
strongest decrease for salinity preference, where 52 % of the predictions
were correct at 80 % sequence identity (Fig. 2B). Collectively, trait
classification was highly accurate for both continuous and categorical
traits, demonstrating the suitability of the approach for environmental
sequences.

3.3. Validation of trait classifications with real-world data

Next, we examined the performance of ampliconTraits classifications
on environmental amplicon sequences, using a large trans-continental

soil dataset with 80 sites. The dataset contained 4,479,657 high qual-
ity 16S rRNA gene amplicon sequences (11,227± 3445 per sample) that
formed 24,173 ASVs (149 ± 46 per sample). We used this dataset to
evaluate how the choice of classification settings such as the bootstrap
cutoff to consider a sequence classified and the number of intervals for
continuous traits affects downstream results. For all traits, bootstrap
values decreased with increasing number of intervals and variability
across the ASVs in the dataset increased (Fig. 3A). For all traits, the ASVs
showed a large range of sequence identity with the top hit in the
reference database, with a median between 85 and 90 % for most traits
(Fig. 3B).

Next, we examined how closely the query sequences were related to
the database sequences, as this would impact the classification success.
For doubling time and salinity preference, which were the traits with the

Fig. 4. A Correlation matrices for the abundance weighted average for different numbers of intervals for each continuous trait where ASVs with a bootstrap value
>70 and > 80 % sequence identity with the top hit were considered as classified. B Correlation matrices for the abundance weighted average for different bootstrap
cutoffs to consider and ASV as classified.
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smallest reference databases, sequence identities with the top hit were
lower compared to the other traits, suggesting that these traits were
more difficult to classify. Average sequence identity with the top hit per
sample varied considerably across the dataset, spanning a range of ~10
% for all traits (Fig. 3B), indicating that representation of environmental
sequences by the reference database depends on the sample type. We
then tested how bootstrap values (i.e. robustness of the classifications)
depended on sequence identity and if there was a threshold of sequence
identities below which classifications became more unreliable. As ex-
pected, we found increasing bootstrap values with increasing sequence
identity between query and reference sequences for all traits except for
cell length and width as well as doubling time with 5 and 10 intervals
where bootstrap values were close to 100 even for very dissimilar se-
quences (Fig. S2A). Bootstrap values displayed, however, a considerable
variation at similar sequence identities (Fig. S2A, B). For most traits, the
relationship between bootstrap values and sequence identities showed a
plateau with high bootstrap values for sequence identities >85 %
(Fig. S2B).

We then evaluated classification success for all traits and intervals
where we considered ASVs with a bootstrap support >70 classified,
which is in the range of cutoffs commonly used for taxonomic classifi-
cations (Bokulich et al., 2018). To consider that a classification may be
unambiguous (i.e. has a high bootstrap value) because the correct
alternative is not present in the database, we also used the sequence
identity between query and reference as an indicator for the quality of
the classification and considered ASVs with a sequence identity >80 %

as classified. The fraction of unclassified sequences varied strongly
across traits and samples and increased with increasing numbers of in-
tervals for continuous traits (Fig. 3C). Our findings indicate a trade-off
between the number of intervals (i.e. resolution of the classification)
and the number of classified sequences. That is a lower number of in-
tervals results in a higher fraction of classified ASVs, but with coarser
resolution.

To address the impact on downstream analyses, we next examined
how the number of intervals for continuous traits affected trait distri-
butions among the microbial community across samples. To this end, we
calculated CWMs as an index of ecosystem function, which we then
compared for different numbers of intervals (Fig. 4A). For doubling
time, cell diameter and cell length, 5 and 10 intervals resulted in a
skewed distribution of CWMs across samples, with most values in the
lowest interval, indicating insufficient resolution. For these three traits,
CWMs for 5 and 10 intervals showed low correlation with those for
higher number of intervals. For all traits, with higher numbers of in-
tervals, CWMs were highly correlated. For genome size, optimum pH,
optimum temperature and 16S rRNA gene copy numbers, also CWMs for
10 intervals were strongly correlated with those for higher number of
intervals and for genome size and 16S rRNA gene copy numbers also
CWMs for 5 intervals. Our findings indicate that the number of intervals
does not affect the outcome of downstream analyses provided that it is
high enough to allow for sufficient resolution. Given the large variation
of bootstrap values and fractions of unclassified sequences across sam-
ples, the range of intervals where CWMs are robust to the choice of

Fig. 5. Variable importance and response plots for a random forest model with the most important variables and a stepwise GLM. A For all non-colinear predictors. B
For predictors available in databases. For the RF model, results from the model with the most important predictors are shown. The small panels indicate how the
response variable (genome size, y-axis) responds to a particular predictor (x-axis). For all response plots for the same model, the y-axis has the same scale. For the
GLM, the black fraction of the rectangles on the right indicates the fraction of cross validation runs with stepwise selection in which the variable appeared in the
model. This indicates how stable the model is across different subsets of the data. MSE =mean squared error, aw = water activity, MAP =mean annual precipitation,
BIO5 = maximum temperature warmest month, BIO15 = precipitation seasonality, WHC = water holding capacity, SOM = soil organic matter, TOC = total
organic carbon.
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interval number may however depend on the dataset.
We then tested if the choice of the bootstrap value for considering an

ASV as classified affected CWMs comparing cutoffs of 50, 60 and 70
while we kept the number of intervals constant. For genome size, Topt
and 16S rRNA gene copy numbers, CWMs were highly correlated across
different bootstrap cutoffs (r > 0.97; Fig. 4). For cell diameter (upper)
and pHopt, some smaller differences were found comparing bootstrap
cutoffs of 50 and 70 (r = 0.9 and 0.92, respectively). For the remaining
traits (cell diameter (lower), cell length (lower), cell length (upper) and
doubling time), CWMs for different bootstrap values were still clearly
correlated, but showed visible differences, particularly when comparing
bootstrap cutoffs of 50 and 70 (r between 0.67 and 0.83). We also
compared CWMs for each bootstrap cutoff with and without the addi-
tional criteria of sequence identity>80 %, which were highly correlated
(all r= 1.00, except for doubling time where the smallest r was 0.97). As
it is unclear if less stringent annotations (i.e. with lower bootstrap
values) or a larger fraction of unclassified sequences cause more un-
certainty in the downstream analyses, we kept the bootstrap cutoff of 70
and the sequence identity cutoff of 80 % for all further analyses.

3.4. Modelling genome size with environmental predictors with
MicEnvMod

The second part of our workflow is to identify environmental pre-
dictors of community-level microbial traits. We used genome size as an
example to demonstrate environmental modelling with MicEnvMod
because this trait has widely been used in the ecological literature (e.g.
Hessen et al., 2010; Lear et al., 2017; Liu et al., 2023; Sabath et al.,
2013). Predictors included ecologically relevant climatic variables,
vegetation properties and soil physicochemical parameters obtained
from databases or measured from the same soil samples that were used
for DNA isolation. MicEnvMod leverages the strengths of combining
different model types (currently RF and stepwise GLMs). After removing
colinear variables, the following predictors were retained: in situ soil
temperature at the time of sampling, aw, total litter, litter total C, litter C:
N, soil C:N, pH, silt content, clay content, MAP, BIO5, BIO7, BIO15,
WHC, SOM and land cover.

First, we identified key predictors of genome size. RF analysis
revealed BIO15, SOM, land cover, aw and pH as the most important
predictors, with relatively small differences in importance between
these variables (Fig. 5). In the stepwise GLM, land cover was by far the
most important predictor, followed by BIO15, litter, soil C:N, silt content
and WHC. These variables appeared in the model in most cross valida-
tion runs when the stepwise selection was performed during the cross
validation, indicating that the variables were robust across different
subsets of the data. Both models predicted decreasing genome sizes with
increasing precipitation seasonality and with decreasing litter content.
Barren soils harbored the smallest genomes while different types of
forests harbored the largest genomes, although with different order
between the two model types. Subsequently, we evaluated the models’
performance to predict new data. Cross validation by repeated split
sampling resulted in an average Pearson correlation coefficient between
observed and predicted values of 0.59 ± 0.12 for the RF model with all
variables and 0.70± 0.10 for the GLM (Table 2). An RF model with only
the most important variables (same number of variables as in the step-
wise GLM) performed better than the one with all non-colinear vari-
ables. A weighted ensemble of the RF model with the most important
variables and the GLM performed equally well as the GLM alone
(Table 2). Collectively, we show that both RFs and GLMs performed well

Table 2
Cross validation by repeated split sampling. Pearson correlation coefficients
between observed and predicted genome size (mean ± standard deviation of
200 split sampling runs). Ensemble indicates a combined model including the
stepwise GLM and the random forest model with the most important variables
with predictions weighted by the cross validation results for the individual
models.

Random forest
(all non-
colinear
variables)

Random forest
(most important
variables)

Stepwise
GLM

Ensemble

All predictors 0.59 ± 0.12 0.66 ± 0.12 0.70 ±

0.10
0.70 ±

0.10
Predictors
available in
databases

0.56 ± 0.12 0.57 ± 0.12
0.66 ±

0.11
0.67 ±

0.10

Fig. 6. Predictions of soil prokaryotic genome size for the Iberian Peninsula for the RF model, the stepwise GLM and a weighted ensemble between the two (top row)
as well as the deviation between the two model types (bottom row). White areas correspond to land cover classes that were not present in the dataset used to build the
models and therefore could not be predicted.
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in predicting and genome sizes and that performance of the random
forest model can be further improved by reducing the number of pre-
dictor variables and thus reducing overfitting.

Besides revealing the drivers of microbial traits such as genome size,
we aimed to predict traits in regions beyond the study area. Therefore,
we repeated the modelling procedure described above with environ-
mental variables available in databases. After exclusion of colinear
variables, these variables were: soil C:N, TOC, pH, silt content, clay
content, MAP, BIO5, BIO7, BIO15, WHC and land cover. Like for the
models with all variables, BIO15 and land cover were the most impor-
tant variables for both the RF model and the stepwise GLM. Cross vali-
dation showed slightly lower correlation between observed and
predicted values compared to the models with all variables (Table 2). A
weighted ensemble between the RF model with the most important
variables and the GLM performed marginally better than each of the
models individually. To demonstrate extrapolation of model results to
new regions and environmental conditions, we predicted genome size
for the Iberian Peninsula based on the RFmodel with the most important
variables, the GLM and the ensemble model. Both models predicted the
largest genomes in the north, which is the region with the lowest pre-
cipitation seasonality (Fig. 6). The RF model generally tended to predict
smaller genomes than the GLM and predicted the smallest genomes at
the east coast, which is also the region with largest discrepancy between
the models. Predictions by the RF model for this region are likely driven
by pH for which it predicts a hump shaped relationship with small ge-
nomes at high pH values and which is not present in the GLM.
Conversely, the GLM predicted the smallest genomes in the southwest,
which is the region with the highest precipitation seasonality. Collec-
tively, we demonstrate how the combination of multiple models can
strengthen predictions and inform of predictive uncertainties.

4. Discussion

With ampliconTraits, we present a marker gene trait sequence data-
base that enables users to infer ecologically relevant information from
marker genes for multiple prokaryotic phenotypic traits. We showed
that using ampliconTraits with SINAPS (Edgar, 2017) enables accurate
predictions for amplicon sequences with similarity to reference se-
quences as low as 80 %, which roughly corresponds to order level (Yarza
et al., 2014). This confirms that our approach is reliable to infer traits for
environmental DNA or cDNA sequences where often no closely related
reference sequence is available and indicates that the traits assessed here
are deeply conserved in the phylogeny of prokaryotes. Previous studies
indicated that the phylogenetic conservation of traits depends on their
complexity, i.e. the number of genes involved and thus the number of
mutations required to change the value of the trait, with more complex
traits being more deeply conserved in the phylogeny (Martiny et al.,
2012, 2015). However, we found a gradual decrease in accuracy with
decreasing sequence identity. For continuous or ordinal traits, this
suggests that the value of the trait changed gradually throughout evo-
lution as genetic alterations accumulated. For discrete traits where no
gradual transition across values of the trait is possible, phylogenetic
conservation may vary across different groups and thus change gradu-
ally on average.

We validated trait inference of environmental sequences with
ampliconTraits with a large dataset based on 16S rRNA gene amplicon
sequences and showed that CWMs are robust to settings such as the
number of intervals for continuous traits and the bootstrap cutoff where
an ASV is considered classified. We were able to classify 40–60 % of the
sequences on average, despite the still relatively small databases and the
high dissimilarity between environmental sequences and reference
sequence for a large fraction of the dataset. We found a large range of
bootstrap values and sequence identities with the top hit and conse-
quently a large range in classification success both within and across
samples. These findings indicate that representation of the prokaryotic
community by the reference database strongly depends on the type of

sample. A further limitation is currently the relatively small size of the
trait databases, which comprise ~500–10,000 species per trait
compared to taxonomic databases like the SILVA SSU database, which
contains ~35,000 prokaryotic species. However, trait classifications will
significantly improve as reference databases grow. Particularly classi-
fications for the traits doubling time and salinity preference with <1000
species will benefit from more comprehensive databases.

An important advantage of our method compared to existing ap-
proaches is that robustness of the classification is evaluated by boot-
strapping, that it allows for cross validation of trait inferences, and that
it does not depend on the representation of phylogenetic relationships
by taxonomy. For instance, a previous amplicon-based trait inference
approach annotated environmental DNA sequences by cross-mapping
the taxonomic affiliation of the sequences to the taxa in the trait data-
base (Cébron et al., 2021). If there were multiple values for a taxonomic
group assigned to an environmental sequence, the authors averaged trait
values across all taxa. Opposed to this taxonomy-based averaging
approach, our approach avoids classifying sequences beyond the level of
phylogenetic conservation of the trait.

Another study using amplicon-based trait inference that was limited
to few traits however (genome size, 16S rRNA gene copy numbers, ox-
ygen requirement and motility; Gravuer and Eskelinen, 2017) employed
phylogenetically independent contrasts ancestral state reconstruction
(Garland Jr. and Ives, 2000; Kembel et al., 2012). This approach mea-
sures uncertainty of the trait estimation based on the length of the
connecting branches in the phylogenetic tree and allows to assess ac-
curacy by leave-one out cross-validation. An advantage of ancestral state
reconstruction is that it directly estimates trait values for continuous
traits without the necessity to bin them into discrete intervals. In
contrast, an advantage of the word-based classification approach used
here is that it does not depend on phylogenetic trees and associated
evolution models. Moreover, opposed to the leave-one-out cross-vali-
dation implemented for ancestral state reconstruction, the cross-
validation approach used here considers the similarity between query
and reference sequences.

Metagenomics constitute an alternative approach to infer soil mi-
crobial traits. An advantage of ampliconTraits compared to meta-
genomics is the large number of taxa recovered. For instance, our
dataset contained >20,000 ASVs, while the number of MAGs from soil
metagenomes typically range from 30 to 500, depending on sequencing
depth, diversity of the sample and quality cutoffs (Kroeger et al., 2018;
Sipes et al., 2021; Wu et al., 2022, 2023). In the case of genome size,
which is one of the most widely studied microbial traits, most previous
studies were based on complete genomes or metagenomes (Chuckran
et al., 2021, 2022; Rodríguez-Gijón et al., 2022; Sabath et al., 2013),
sometimes combining several thousand of genomes from multiple re-
sources but with limited metadata (Chuckran et al., 2021; Rodríguez-
Gijón et al., 2022). With ampliconTraits and SINAPS, we were able to
classify 10,171 ASVs and were able to draw on comprehensive metadata
to identify environmental drivers of genome size in downstream ana-
lyses. An advantage of the metagenome-based approach is, however,
that it does not depend on primers causing biases in the representation of
taxa. Further, it does not depend on the phylogenetic conservation of the
traits while the amplicon-based approach requires reference sequences
that are more similar than the level of phylogenetic conservation.
Nonetheless, both approaches depend on reference databases and a
significant fraction of metagenomics sequences can currently not be
classified (Choi et al., 2017; Donhauser et al., 2021).

Classification of multiple traits with ampliconTraits further allows for
identification of trade-offs among traits by evaluating trait co-
occurrences within taxa. Trade-offs are a key concept in ecology
explaining species co-occurrence (Kneitel and Chase, 2004) and are
linked to ecosystem C-cycling (Malik et al., 2019). For instance, a trade-
off between fast growth and efficient growth has been linked to micro-
bial incorporation of C versus release to the atmosphere (Roller et al.,
2016). Thus, ampliconTraits has the potential to link microbial
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community dynamics with ecosystem C-cycling. Alternatively, trait
trade-offs can be inferred from MAGs (Karaoz and Brodie, 2022) based
on the presence of many functional genes. This results in complex
datasets and may be complicated by incomplete MAGs. Conversely, the
amplicon-based approach directly provides trait values.

To link microbial community dynamics to ecosystem functioning it is
pivotal to understand adaptation of microorganisms to specific envi-
ronmental conditions, mediated by their traits. MicEnvMod provides
functionality to identify key predictors of microbial traits, to examine
specific trait-predictor relationships and to evaluate model performance.
Demonstrating the application of MicEnvMod for prokaryotic genome
size, we revealed precipitation seasonality and land cover as the most
important drivers. Soils with high precipitation seasonality, which are
likely exposed to prolonged periods of drought each year, as well as
barren soils harbored the smallest genomes. These findings are in
accordance with previous studies that associated small genomes with
aridity, low net primary production, nutrient poor conditions and de-
serts (Chuckran et al., 2022; Gravuer and Eskelinen, 2017; Liu et al.,
2023; Simonsen, 2022). Small genomes may serve to reduce the ener-
getic cost in nutrient-poor and physiologically challenging environ-
ments and enable fast replication with the onset of favorable conditions
such as precipitation after a long drought. In line with this notion,
Sabath et al. (2013) found streamlined genomes and low replication
times in thermophilic prokaryotes.

(Liu et al., 2023) used joint species distribution models (JSDM) as an
alternative modelling approach to assess genome size – environment
relationships. JSDMs predict species occurrences or abundances based
on environmental parameters and test if species niches across environ-
mental gradients (represented by the regression coefficients from these
models) are explained by species-specific traits (Ovaskainen et al., 2017;
Tikhonov et al., 2020). A strength of JSDMs compared to our method is
that they can account for phylogenetic dependencies that may affect
species distributions rather than environmental selection on traits.
However, because each taxon is modelled individually, JSDMs for mi-
crobial communities involve a very large number of models representing
taxa with little a priori knowledge about their environmental niche. In
the study by Liu et al. (2023), this approach was feasible because they
aggregated ASVs at the genus level excluding unclassified taxa resulting
in 143 genera and because they used presence-absence data. To apply
this approach in our study at the ASV level based on abundances, we
would need to model 10,171 ASVs. Under these circumstances, it be-
comes complicated to implement a suitable distribution for sequencing-
derived count data (Love et al., 2014), to choose environmental pre-
dictors, to compare alternative models with different sets of predictors
or different model types, and to cross-validate models. Therefore, due to
the complexity of microbial communities, we chose to model CWMs as
an aggregated index of species traits, allowing to extend the framework
easily to other model types and to perform cross-validation of individual
and ensemble models.
MicEnvMod currently supports two different types of models and

implements cross validation of weighted ensemble models based on
metrics suitable for continuous data. Different model types capture
different properties of the data and ensemble models can therefore
outperform individual models (Araújo and New, 2007). For instance,
GLMs are restricted to linear relationships between predictor and
response variables (or other defined polynomials), while RF models can
fit any kind of relationship. This is exemplified by the relationship be-
tween genome size and pH in our dataset where RF analysis revealed a
hump shaped curve with an abrupt drop at high values while pH was not
among predictors in the stepwise GLM. In the future, further model types
such as generalized additive models, which allow a more flexible rela-
tionship between response and predictor variables than GLMs, as well as
further machine learning algorithms will be added to MicEnvMod. To
comprehensively evaluate soil ecosystem functioning, it is important to
create comprehensive data resources of microbial indicators such as the
traits in ampliconTraits through a large range of climatic conditions in

space and time. Using georeferenced databases of climatic and soil
physico-chemical properties, models validated with MicEnvMod can be
used to predict prokaryotic traits through space and assess differences
between predictions from different models, as demonstrated for genome
size across the Iberian Peninsula. RF models and GLMs agreed on the
relationship between genome size and the most important predictor
precipitation seasonality as well as on smaller genomes in barren
compared to vegetated soils and consistently predicted the largest ge-
nomes in the northeast. A caveat for building models with variables
derived from databases is that the predictors may come with consider-
able uncertainty themselves. Due to limited spatial resolution and/or
heterogeneity of the terrain, the value of a grid cell may poorly capture
the properties at the specific sampling location. This is particularly the
case for soil properties, while climate is expected to be more constant
across space. It is important to note that predictions from the two model
types varied considerably in some regions due to different imple-
mentation of predictors as outlined above for pH. This highlights the
importance of considering multiple models to substantiate predictions
and estimate uncertainty and suggests that combination of further
model classes beyond RFs and GLMs may be needed to explore uncer-
tainty across different models and space. Beyond different types of
models, the principle of ensemble modelling can be extended to aver-
aging models trained with different initial conditions such as subsets of
the data used the cross validation (Araújo and New, 2007; Thuiller et al.,
2017). Functionality to make ensemble predictions from all models
within a cross validation run will be included in future versions of
MicEnvMod.

In conclusion, we describe a novel and robust approach to infer
prokaryotic traits from 16S rRNA gene amplicon data, to identify envi-
ronmental predictors of trait distributions, and to predict community
level traits to new conditions. ampliconTraits significantly contributes to
overcoming the limited ecological interpretability of sequencing-based
investigations of microbial communities by integrating a comprehen-
sive trait sequence database with a state-of-the-art classification algo-
rithm. Currently, a key limitation of ampliconTraits is the size of the trait
databases. Thus, future work should invest into measuring traits in a
larger number of isolates with a particular focus on understudied envi-
ronments like soil. Further phenotypic traits such as carbon use effi-
ciency would be highly relevant for ecosystem C-cycling and could be
implemented into ampliconTraits. In addition, eukaryotic microorgan-
isms, particularly fungi, play an important role in soil processes. Thus,
an analogous approach would be desirable. Although the ampliconTraits
database is formatted for use with SINAPS it can be used with other
algorithms in principle and thus provides a resource for further devel-
opment of trait inference tools. ampliconTraits and MicEnvMod may be
harnessed for instance to inform and validate trait-based biogeochem-
ical models that represent the effect of microbial community dynamics
on soil C-cycling processes. Thus, by improving such models, our
workflow may contribute to quantifying CO2 emissions from soil and
thus feedback to climate change, which is currently neglected in earth
system climate models. Trait inference with ampliconTraits and envi-
ronmental modelling with MicEnvMod further allow to study microbial
niche adaptation. Beyond soil C cycling, strategies that enable micro-
organisms to colonize a habitat play a role in a large range of environ-
ments and processes, such as interactions with host organisms ranging
from plants to humans. Thus, our trait-inference workflow has the po-
tential to contribute to answering a broad spectrum of research ques-
tions in microbial ecology and biogeochemistry.
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Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved
data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://
doi.org/10.1093/nar/gks1219.

R Core Team, 2022. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Rodríguez-Gijón, A., Nuy, J.K., Mehrshad, M., Buck, M., Schulz, F., Woyke, T., Garcia, S.
L., 2022. A genomic perspective across Earth’s microbiomes reveals that genome size
in Archaea and Bacteria is linked to ecosystem type and trophic strategy. Front.
Microbiol. 12.

Roller, B.R.K., Stoddard, S.F., Schmidt, T.M., 2016. Exploiting rRNA operon copy number
to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160. https://
doi.org/10.1038/nmicrobiol.2016.160. https://www.nature.com/articles/n
microbiol2016160#supplementary-information.

Sabath, N., Ferrada, E., Barve, A., Wagner, A., 2013. Growth temperature and genome
size in Bacteria are negatively correlated, suggesting genomic streamlining during
thermal adaptation. Genome Biol. Evol. 5, 966–977. https://doi.org/10.1093/gbe/
evt050.

Shen, W., Le, S., Li, Y., Hu, F., 2016. SeqKit: a cross-platform and ultrafast toolkit for
FASTA/Q file manipulation. PLoS One 11, e0163962. https://doi.org/10.1371/
journal.pone.0163962.

Sieriebriennikov, B., Ferris, H., Goede, R.G.M.D., 2014. European journal of soil biology
short communication NINJA : an automated calculation system for nematode-based
biological monitoring. Eur. J. Soil Biol. 61, 90–93. https://doi.org/10.1016/j.
ejsobi.2014.02.004.

Simonsen, A.K., 2022. Environmental stress leads to genome streamlining in a widely
distributed species of soil bacteria. ISME J. 16, 423–434. https://doi.org/10.1038/
s41396-021-01082-x.

Sipes, K., Almatari, A., Eddie, A., Williams, D., Spirina, E., Rivkina, E., Liang, R.,
Onstott, T.C., Vishnivetskaya, T.A., Lloyd, K.G., 2021. Eight metagenome-assembled
genomes provide evidence for microbial adaptation in 20,000- to 1,000,000-year-old
siberian permafrost. Appl. Environ. Microbiol. 87 https://doi.org/10.1128/
AEM.00972-21 e00972–21.

Thuiller, W., Lafourcade, B., Engler, R., Araújo, M.B., 2009. BIOMOD - a platform for
ensemble forecasting of species distributions. Ecography 32, 369–373. https://doi.
org/10.1111/j.1600-0587.2008.05742.x.

Thuiller, W., Guisan, A., Zimmermann, N.E., 2017. Habitat suitability and distribution
models: 14 ensemble modeling and model averaging. In: Habitat Suitability and
Distribution Models with Applications in R, Ecology. Biodiversity and Conservation.
Cambridge University Press, Cambridge, pp. 224–236.

Thuiller, W., Georges, D., Gueguen, M., Engler, R., Breiner, F., Lafourcade, B., Patin, R.,
2023. biomod2: ensemble platform for species distribution modeling. 2023. R
package version 4.2–4. https://CRAN.R-project.org/package=biomod2.

Tikhonov, G., Opedal, Ø.H., Abrego, N., Lehikoinen, A., de Jonge, M.M.J., Oksanen, J.,
Ovaskainen, O., 2020. Joint species distribution modelling with the r-package Hmsc.
Methods Ecol. Evol. 11, 442–447. https://doi.org/10.1111/2041-210X.13345.

Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics with S. Springer, New
York.

Wu, X., Cui, Z., Peng, J., Zhang, F., Liesack, W., 2022. Genome-resolved metagenomics
identifies the particular genetic traits of phosphate-solubilizing bacteria in
agricultural soil. ISME Commun. 2, 1–4. https://doi.org/10.1038/s43705-022-
00100-z.

Wu, X., Bei, S., Zhou, X., Luo, Y., He, Z., Song, C., Yuan, H., Pivato, B., Liesack, W.,
Peng, J., 2023. Metagenomic insights into genetic factors driving bacterial niche
differentiation between bulk and rhizosphere soils. Sci. Total Environ. 891, 164221
https://doi.org/10.1016/j.scitotenv.2023.164221.
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