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Abstract 
Single-stranded (ss) DNA viruses are ubiquitous and constitute some of the most diverse entities on Earth. Most studies have 
focused on ssDNA viruses from terrestrial environments resulting in a significant deficit in benthic ecosystems including aphotic 
zones of the South Indian Ocean (SIO). Here, we assess the diversity and phylogeny of ssDNA in deep waters of the SIO using a 
combination of established viral taxonomy tools and a Hidden Markov Model based approach. Replication initiator protein-associated 
(Rep) phylogenetic reconstruction and sequence similarity networks were used to show that the SIO hosts divergent and as yet unknown 
circular Rep-encoding ssDNA viruses. Several sequences appear to represent entirely novel families, expanding the repertoire of known 
ssDNA viruses. Results suggest that a small proportion of these viruses may be circular genetic elements, which may strongly influence 
the diversity of both eukaryotes and prokaryotes in the SIO. Taken together, our data show that the SIO harbours a diverse assortment of 
previously unknown ssDNA viruses. Due to their potential to infect a variety of hosts, these viruses may be crucial for marine nutrient 
recycling through their influence of the biological carbon pump. 

Keywords: biogeochemical cycling, CRESS-DNA, single stranded DNA viruses, Rep and Capsid proteins, South Indian Ocean, viral 
diversity 

Introduction 
Disentangling the phylogenetically diverse assemblages of bacte-
ria, fungi, phytoplankton, and viruses and their contributions to 
ecosystem services in the global ocean remains a major endeav-
our. There is strong evidence that these assemblages influence 
the biological carbon pump in marine environments [1, 2]. Among 
these assemblages, viruses are the most numerically abundant 
[3], and recent evidence has demonstrated their profound influ-
ence on prokaryotic lifestyles in the oceans [4–8]. These studies 
have shown that viruses play key roles in determining ecologi-
cal patterns in marine ecosystems and mediating nutrient recy-
cling through the transfer of genes between both eukaryotic and 
prokaryotic hosts [9–11]. Through lysogeny, viruses enhance the 
release of organic matter, promoting the recycling of nutrients 
such as dissolved organic carbon, through the microbial loop [12]. 
While there are increased insights regarding viral contributions, 
most studies have focused on limited geographic locations. As 
a result, comparatively less is known regarding the phylogeny 
and function of single- and double-stranded DNA viruses in large 
regions of the global ocean. 

An accumulating body of research suggests that viruses 
are central drivers of metabolic processes through auxiliary 

metabolic genes (AMGs) [13–15]. Previous studies have also 
shown that double stranded DNA (dsDNA) viruses mediate key 
metabolic processes, known to modulate microbial metabolic 
pathways during infection [16–19]. Most studies on viral diversity 
and functional contributions have been derived from studies 
conducted mostly in euphotic oceanic zones [11, 20–23]. This 
has resulted in a substantial knowledge gap regarding the evolu-
tionary structure and function of viruses in benthic ecosystems. 
Current studies on benthic ecosystems have, however, provided 
several insights regarding the diverse dsDNA prokaryotic viruses 
and their encoded AMGs [24–28], and less on assemblages and 
potential functional contributions of ssDNA viruses. 

More recently, uncharacterized groups of ssDNA viruses associ-
ated with vertebrates from terrestrial environments have become 
the subject of extensive research [29–34]. Although these studies 
have provided substantial insights regarding the diversity and 
versatility of ssDNA, the results have led to an overrepresentation 
of virus sequences from several habitats including terrestrial 
ecosystems and mammal derived samples [35–37]. Several studies 
have noted the lower proportion of studies on ssDNA viruses in 
marine ecosystems [36, 38, 39]. Given the importance of viruses 
as mediators of the biological carbon pump, the lack of studies 
on ssDNA viruses may limit our understanding regarding their
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functional contributions. The diversity and functional contribu-
tions of ssDNA in the oceans may substantially contribute to 
marine nutrient recycling and the biological carbon pump. 

Previous studies on viral communities in benthic zones 
have demonstrated that ssDNA viruses constitute dominant 
constituents of these environments [40, 41]. However, to the best 
of our knowledge, the evolutionary relationships, diversity, and 
distribution of ssDNA viruses in the SIO remains unexplored. 
We predict that the distinct environmental conditions and water 
masses in the SIO may select for phylogenetically diverse ssDNA 
viruses. Here, we explore the diversity and phylogeny of ssDNA 
from benthic zones of the SIO. In addition to using conventional 
approaches to search for putative viral contigs, we applied a 
hidden Markov model (HMM) workflow to expand the current 
repertoire of ssDNA viruses. 

Materials and methods 
Sample collection and molecular ecological 
analyses 
Seawater samples were collected aboard the RV SA Agulhas II 
from the Crossroads transect in the South Indian and Southern 
Oceans as detailed previously [42, 43]. As part of the cruise, 39 
samples (13 × 3) were collected across a 1000 km transect. At 
each site, three samples were collected from the deepest depth 
(Supplementary Table S1). A Sea-Bird SBE-911plus V2 CTD System 
(Sea-Bird Electronics, Inc., Bellevue, Washington, USA) was used 
to collect samples ∼10 m above the seafloor. Depending on the 
conditions, the CTD was retrieved within 5 hours. Once on deck, 
5 L of seawater was retrieved from each of the three Niskin bottles 
and subjected to a two-step filtration process to allow for the 
collection of particle-associated viruses (hereinafter referred to as 
viruses), potential symbionts including candidate phyla radiation, 
and free-living microbial biomass. Following filtration, all samples 
were immediately stored at −25◦C until processing. 

DNA was extracted from membrane filters using a phenol– 
chloroform method [44] with extractions performed in duplicate, 
with minor modifications. Specifically, the pH of the extraction 
buffer was adjusted from 8 to 9.5 to compensate for low DNA 
concentration. Using sterile forceps, both 0.45 and 0.2 μm mem-
brane filters were cut in half and used as the samples in the 
protocol, and as a result the number of glass beads used in the 
protocol was lowered from 0.4–0.5 to 0.25 ml (0.10–0.11 mm diam-
eter). Samples with the highest DNA concentration (n = 6)  were  
sent for sequencing at the Molecular Research DNA (MR DNA) 
sequencing facility (Shallowater, TX, USA). These six samples 
are pseudo replicates from same sampling sites as indicated in 
SupplementaryTable S1 (CR11, CR12 for CR1; CR21, CR22 for CR9; 
and CR31, CR32 for CR10). Due to generally low DNA yields, whole 
metagenome amplification was performed using REPLI-g Midi 
kit (Qiagen, Hilden, Germany). Libraries were prepared using the 
Nextera DNA Sample preparation kit (Illumina, Inc., San Diego, 
CA) with a small insert size (<1 kbp). The final libraries were then 
pooled and sequenced as paired end reads for 300 cycles, using the 
Illumina HiSeq 2500 system (Illumina, Inc. San Diego, CA, USA). 

Bioinformatics analysis 
Shotgun metagenome analysis and processing 
Raw metagenomic reads were inspected for quality, and the pres-
ence of sequencing adapters, using FastQC (www.bioinformatics. 
babraham.ac.uk/projects/fastqc). Following this, the reads were 
processed using BBsplit version 38.00 to remove PhiX174 
(CP004084.1) using default settings. The resultant PhiX174 free 

reads were further trimmed using Trimmomatic version 0.36 [45]. 
The total sequencing coverage was estimated using Nonpareil 
version 3.301 [46] (Supplementary Fig. S1). We assembled the 
metagenomes using metaSPAdes version 3.14.1 as detailed 
previously [47] following default parameters. All contigs <1000 bp 
were removed and the remaining sequences were used for 
downstream analyses. 

Bacterial taxonomic classification and functional 
annotation 
To estimate the distribution and taxonomy of the taxa recovered 
from the metagenomes, contigs were aligned against a non-
redundant (NR) protein database from the National Center 
for Biotechnology Information (NCBI) database [48]. We used 
DIAMOND BLASTx version 2.02.2 with the default settings [49]. 
The outputs were analysed using MEGAN version 6.20.19 [50] to  
estimate taxonomic distributions and determine overrepresented 
taxa across all metagenomes. Contigs for the top five most 
represented taxa were extracted and analysed using Kofamscan 
version 1.3.0 to determine their metabolic potential with the 
default settings [51]. 

Viral prediction and quality processing 
To assess the distribution and classification, two approaches 
(detailed below) were used to predict viruses. For the first 
approach, we used standard viral prediction pipelines, whereas 
the second relied on the use of a HMM based approach [52]. 

Approach 1: All six assembled metagenomes were used to 
search for putative viral contigs using a combination of Virsorter 
version 2.2.3 [53] and VirFinder version 1.1 [54]. Contigs with 
sizes ≥1 kb, predicted using both Virsorter2 version 3 SOP (dx.doi. 
org/10.17504/protocols.io.bwm5pc86), as well as those predicted 
to have P-value <.01 by VirFinder, were retained and merged for 
downstream analyses. These merged contigs were clustered into 
viral operational taxonomic units (vOTUs) using CD-HIT version 
4.8.1 [55], based on 95% sequence identity >80% of the shortest 
contig. The resultant vOTUs contig were processed using CheckV 
version 0.70 [56] to estimate overall quality and completeness 
(Supplementary Tables S2 and S3). Putative viral contigs, that were 
designated as complete, high, medium, and low were retained. 
These contigs were post-processed using the geNomad pipeline 
version 1.6.1 [57] with the default parameters. Contigs that were 
classified as affiliated with the class Caudoviricetes and order 
Petitvirales were assessed for the presence of auxiliary metabolic 
genes using VIBRANT version 1.2.1 [58], with the default spec-
ifications. The lifecycles associated with these putative viruses 
were determined using BACPHLIP [59] with the default settings. 
Lytic/virulent phages were identified with a minimum lifecycle 
prediction score of ≥0.8. Following this, we inspected a set of 
putative ssDNA-specific viruses. Contigs (≥1 kb) predicted as 
ssDNA viruses by Virsorter version 2.2.3 were retained. These 
contigs were further clustered into viral OTUs using CD-HIT 
version 4.8.1 and further estimated for quality and completeness 
as detailed earlier. We retained contigs designated as complete, 
high, medium, and low quality. These putative virus predictions 
were validated using BLASTp [60] with e-value 1e-05, against the 
NR protein database from the NCBI (accessed January 2023) [61]. 

Approach 2: To generate HMM-based profiles, we retrieved 
all Cressdnaviricota and Phixviricota protein sequences from Gen-
Bank [61], (https://github.com/SAmicrobiomes/ssDNA). To reduce 
redundancy, these sequences were clustered at 95% amino acid 
identity >90% of the shortest sequence, using CD-HIT version
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4.8.1 [55]. The resultant sequences were compared, using all-
vs-all BLASTp with e-value 1e-5. The output sequences were 
further clustered, using Markov cluster (MCL) algorithm [62] with  
the inflation parameter set to 1.5. Clusters with proteins ≥10 
annotated replication initiator (Rep) and major capsid (VP1) were 
aligned using MAFFT version 7.487 [63] with the —auto parameter. 
The alignments were used to create HMM profiles, using HMMER 
version 3.3.2 [52]. The profiles were searched against protein 
sequences, which were predicted using the -p meta function in 
Prodigal [64], from all metagenomes using HMMSCAN version 3.0 
[65]. Metagenomic sequences, that shared similarity with con-
served Cressdnaviricota replication initiator (Rep) and Phixviricota 
major capsid (VP1) proteins, with HMMSCAN scores ≥50 were 
retrieved for downstream analysis. Viral contigs, predicted to har-
bour Rep and VP1 proteins, were validated using BLASTp [60] with  
e-value 1e-05 against a non-redundant (NR) database acquired 
from the NCBI as well as HHpred [66] against the Protein Data 
Bank (PDB) and Protein Family Database (Pfam) database. 

Phylogenetic analysis of single stranded DNA 
viruses 
Complete Rep and VP1 protein sequences, from both our 
metagenomes and GenBank viral datasets, were used to recon-
struct phylogenies based on conserved amino acid sequences. Rep 
proteins, predicted from our metagenomes, were compared with 
those from ssDNA viruses and plasmid sequences from previous 
studies [67]. These protein sequences were aligned using MAFFT-
linsi and trimmed using Trimal with gap threshold 0.15 [68]. 
Phylogenetic trees were computed using FastTree with options
-spr 4 -mlacc 2 -slownni -lg [69]. 

Results and discussion 
Diverse putative hosts dominated by prokaryotes 
Viruses are crucial for the biological carbon pump and regulate 
microbial community structure and abundance, determining the 
genetic diversity and evolution of their hosts [70–74]. In turn, there 
is some evidence that marine viruses co-exist with potential hosts, 
which include phylogenetically diverse eukaryotes and prokary-
otes [22, 71, 75–77]. For instance, previous studies have shown that 
eukaryotic hosts include copepods [78] and protists [79]. However, 
the diversity of potential hosts in understudied environments 
such as the SIO remains unknown. 

Our dataset provides an overview of the taxonomy of bacterial, 
archaeal, and eukaryotic hosts in benthic zones of the SIO. The 
data suggest that bacteria and archaea may be the dominant 
hosts, compared with eukaryotes which constituted a minor frac-
tion of our sequences (Fig. 1A). This finding is consistent with 
previous studies, which have demonstrated that prokaryotes far 
outnumber eukaryotes in all ecosystems [4, 80–83]. Taxonomic 
classifications suggests that three bacterial (Proteobacteria, Candi-
datus Marinimicrobia, and  Bacteroidota) and one archaeal (Thaumar-
chaeota) phyla were the most overrepresented in the benthic SIO 
(Fig. 1B). Other studies on the diversity and distribution of marine 
microbiota in aphotic zones have reported similar findings [84– 
86]. Some of these taxa constitute ecologically rare taxa, which 
may represent active free-living bathypelagic microbiota [87] and  
may disproportionately contribute to the sequestration of key 
nutrients. 

Although sequences affiliated with Eukaryota were present 
at comparatively low abundances, several taxa including 
Chlorophyta, Streptophyta, Foraminifera, Ascomycota, and 
members of the ecologically diverse SAR supergroup were 

found (Supplementary Fig. S2). These taxa may have originated 
from deep-sea floor unicellular and multicellular species. We 
argue that some of these species may host eukaryotic ssDNA 
viruses found in our dataset. Our results are consistent with 
previous studies, which reported generally low abundances of 
eukaryotes in other benthic environments such as the Black 
Sea [88]. Based on their relatively high abundances, we predict 
that prokaryotes may be the primary hosts of marine viruses, 
which ultimately mediate important functional processes in the 
SIO. 

Widespread functional capacity in diverse 
prokaryotic hosts 
To reduce the knowledge deficit regarding contributions to 
ecosystem services, we determined functional capacity and 
putative ecological contributions of bacteria and archaea in the 
SIO. Metabolic analysis revealed a suite of complete pathways 
linked to carbon degradation, nitrogen, methanogenesis, and 
sulphur recycling (Fig. 2A). In addition to providing the first such 
data for this region, the results are consistent with recent findings 
showing that deep oceans possess remarkably diverse capacity 
for functional processes [89–92]. Linking these functional genes 
to microorganisms suggests that some taxa may exclusively drive 
specific metabolic processes. For instance, Proteobacteria appear 
to be the only taxa with metabolic capacity for methanogenesis, 
suggesting that they may contribute to oxidizing methane 
in the deep environments [93, 94]. This result suggests that 
these numerically dominant taxa may mediate key ecosystem 
processes in the SIO. Results from functional analysis suggests 
that some metabolic roles may be driven by a consortia rather 
than one numerically abundant microorganism. For instance, 
genes for sulphur metabolism were found in sequences affiliated 
with Candidatus Marinimicrobia, Proteobacteria, and Thaumar-
chaeota. Among these, ammonia oxidizing Thaumarchaeota 
appear to be the only taxa, with a complete pathway for 
dissimilatory sulphate reduction and sulphide oxidation. This 
result suggests that these Thaumarchaeota may play especially 
important roles in sulphur recycling [95, 96]. This observation also 
suggests that, in addition to other groups associated with marine 
and terrestrial environments (i.e. Euryarchaeota, Crenarchaeota, 
and Aigarchaeota) [97], Thaumarchaeota may augment the 
metabolic contributions of candidate sulphate-reducing archaea. 
Collectively, the detection of these genes provides some indication 
of the metabolic capacity in aphotic SIO waters, which may 
influence important ecological processes. 

Evidence of extensive viral diversity and 
functional potential in the deep South Indian 
Ocean 
Despite the importance of the SIO in modulating global climate 
and heat uptake in the ocean [1, 42, 98], we lack taxonomic 
insights regarding the functional roles of viruses. Using two of the 
most widely used pipelines [54, 99], we explored viral communi-
ties in deep SIO waters. Viral predictions were combined, checked 
for quality and completeness, and clustered into 3076 putative 
viral OTUs. In total, 1427 (46.4%) of these vOTUs were classi-
fied into known prokaryotic viral taxa. These viruses included 
members of the class Caudoviricetes (991), which included families 
Straboviridae (n = 3), Kyanoviridae (n = 2), Autographiviridae (n = 1), and 
Herelleviridae (n = 1). In addition, several sequences were affiliated 
with taxa from the order Petitvirales (436), including members of 
the Microviridae (n = 406) family.
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Figure 1. (A) A map showing the six sampling locations in the South Indian Ocean. The map also includes an overview of microbial diversity (pie 
charts) at each sampling location. (B) Bar plots showing the relative abundances o bacterial and archaeal classes, at each sampling site. 

Only a small fraction of the total vOTUs appear to harbour 
AMGs. From 62 vOTUs, we identified 78 AMGs ( Supplementary 
Table S4). These AMGs were mostly associated with functional 
traits related to the synthesis of amino acids, carbohydrates, 
secondary metabolites as well as terpenoides/polyketides 
metabolic pathways (Supplementary Table S5). Several of 
these AMGs related to amino acid metabolism included 2OG-
Fe(II) oxygenases (arginine and proline metabolism). Previous 
studies suggest that these AMGs may modulate host nitrogen 
metabolism, stress response, and DNA repair mechanisms [100– 
102]. Some of the genes linked to these AMGs are involved in 
the metabolism of cysteine and methionine, linked to carbon, 
nitrogen, and sulphur utilization, and the reprogramming of 
cells to anabolic states [103].  The presence of viral  AMGs,  
previously implicated in sulphur metabolisms (i.e. dcm, cysH, 
and metK) [104], correlates with the most complete pathways 
in our datasets. These pathways were linked to the four most 
overrepresented phyla in our metagenomes. Genetic evidence 
suggests that viruses may contribute substantially to bacterial 
metabolic reprogramming in deep SIO waters [105]. Determining 
the lifecycles of Caudoviricetes found in the SIO suggests that 
these viruses may favour lytic (n = 948) over lysogenic (n = 14) 
cycles. This is consistent with previous reports of high prokaryotic 
mortality due to viral lysis in the dark ocean [106]. The study by 
Lara et al. [106] further suggests that a preference for viral lytic 
cycles may result in the production of dissolved organic carbon, 
supporting respiration in the dark ocean [107]. To estimate the 
diversity of our Caudoviricetes, we clustered all 991 representative 
contigs against viral RefSeq database (release 219) using 95% ANI 
across 85% of the sequence using a method detailed previously 
[56]. However, none of our contigs clustered with any of the viruses 
from the reference dataset, suggesting that the deep SIO hosts 
potentially novel dsDNA viruses. 

To explore the diversity of eukaryotic DNA viruses in our 
dataset, a set of putative viral contigs highlighted as ssDNA 
by Virsorter 2.2.3 were retained [53]. These were clustered into 
7627 viral OTUs. Of these, 6018 vOTUs were validly assigned 

and predicted to be complete (24), high (1559), medium (2146), 
and low (2289) quality. Sequence similarity searches, using these 
assigned contigs, were used to estimate the diversity of ssDNA 
viruses. A total of 3440 contigs, with blast descriptions containing 
the terms circo, CRESS, circular genetic, circular virus/DNA, and 
which either possessed or lacked replication initiator proteins, 
were classified as rep-encoding ssDNA viruses. Among these, 150 
contigs were classified as Microviridae, in addition to 810 other 
contigs associated with dsDNA phages. These numbers suggest 
a high proportion of false positive predictions (Supplementary 
Table S6). 

Uncharacterized circular Rep-encoding ssDNA 
sequences dominate deep South Indian Ocean 
waters 
Due to inherent methodological differences, current in silico 
approaches may yield contrasting results regarding viral divisions. 
While previous studies have revealed a diverse array of viruses 
[25, 108], sequence classification using standard approaches leads 
to false positive predictions of prokaryotic ssDNA viruses [109, 
110]. A consequence of these false positive annotations may be 
the assignment of dsDNA viral contigs as ssDNA. To avoid this 
common issue, we used a Hidden Markov Model (HMM) based 
pipeline described previously [52] to investigate the diversity of 
Microviruses and Circular Rep-Encoding ssDNA (CRESS) viruses, 
in the SIO (Fig. 2B). Using this approach, we established HMM 
profiles for conserved Rep and VP1 proteins from Cressdnaviricota 
and Phixviricota viral sequences retrieved from GenBank [111]. 
Based on these profiles, HMM searches across all metagenomes, 
revealed 3260 and 344 putative Rep and VP1 complete protein 
sequences, respectively. To reduce redundancy, these sequences 
were subsequently clustered (at ≥95% amino acid identity, over 
85% of the shortest sequence), resulting in 2307 (Rep) and 209 
(VP1) representative protein sequences. The validation of these 
hallmark sequences, against a non-viral specific database such 
as NR, suggests that 2303 and 209 of Rep and VP1 sequences 
shared sequence similarities with both rep-encoding viruses and
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Figure 2. (A) Heatmap showing the metabolic potential of the four most overrepresented taxa, at each site. The plot shows the (B) overview of the 
methodological workflow followed in this study including sample processing and hidden Markov model (HMM) construction and data analysis. 

Microviridae, respectively. The remaining four Rep sequences, 
without hits against NR database, were further validated using 
HHpred against PDB and pfam databases ( Tables S7 and S8). 

To reduce the knowledge deficit regarding these viruses, we 
estimated the diversity and phylogeny of CRESS sequences from 
the SIO. Phylogenetic analysis was used to compare 2307 Rep 
sequences with the 709 reported by Kazlauskas et al. [67] (Fig. 3). 
Our maximum likelihood reconstructions suggest that sequences 

from the SIO may represent unclassified CRESS. These sequences 
were predominantly assigned with categorical Groups 1–5 as 
well as Circoviridae, which are known to infect a wide range of 
hosts including mammals and diatoms [112–114]. Consistent 
with previous studies [41, 115], these viruses were highly 
abundant in our samples. It is possible that these viruses may 
interact with phylogenetically diverse eukaryotic hosts. These 
hosts may include members of the division Chlorophyta and
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Figure 3. An unrooted maximum likelihood phylogenetic tree showing the diversity of Rep protein sequences. The black squares represent Rep 
proteins, from the South Indian Ocean, and CRESS DNA viruses. The other groups shown include rep proteins retrieved from a previous study by 
Kazlauskas et al. [67]. 

Streptophyta, Foraminifera, Ascomycota and the prevalent SAR 
supergroup (Supplementary Fig. S2). Our phylogenetic analysis 
revealed distinct unclassified clades, including C1 which appears 
to be comprised exclusively by viruses from the SIO (Fig. 3). These 
distinct clades expand the known diversity of marine viruses. In 
addition, sequences from the SIO include clades representating 
several as yet unidentified rep-encoding CRESS viruses. The data 
strongly suggests that these viruses may have a broader host 
range preference than previously thought. In addition, the may 
the environmental conditions in these deep SIO waters may select 
for distinct CRESS viruses adapted to these harsh conditions. 
The analyses further revealed that one sequence clustered with 
PCRESS8 and three grouped with Genomoviruses which are 
known plasmids and fungal pathogens, respectively [116, 117]. 

To explore the diversity of ssDNA viruses 2307 (Rep) and 
209 (VP1) non-redundant proteins, recovered in this study, were 
compared with GenBank Rep and VP1 protein sequences. These 

sequences were used to generate family-level clusters of sequence 
similarity networks (SSNs), as described previously by Kraberger 
et al. [118]. These SSNs included 87.1% Rep (2010) and 98.5% VP1 
(206) of ssDNA protein sequences from the SIO dataset. Consistent 
with the phylogenetic analysis, SSN generated by comparisons of 
Cressdnaviricota Rep proteins showed that at least 89% (1792 
of 2010) of the Rep sequences from our dataset, clustered with 
Circoviruses and unclassified CRESS viruses (Fig. 4). The SSNs 
also suggests that several sequences from our data represent 
distinct clusters, which were not similar to those deposited on 
GenBank. These divergent clusters (C2 and C3) overlapped with 
the distinct CRESS like viral C1 clade in the phylogenetic tree. In 
addition to confirming some overlap between the two methods, 
this result highlights the high diversity of ssDNA viruses in deep 
SIO waters (Fig. 4). 

Contrary to CRESS signatures, HMM searches suggest that the 
numbers of Phixviricota-like VP1 protein sequences in the SIO

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae065#supplementary-data
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Figure 4. An unrooted maximum likelihood phylogenetic tree (A) and a sequence similarity network of rep protein sequences indicating some of the 
potentially novel CRESS viral families (B) from our South Indian Ocean data, annotated as C1 to C3. 

may be low. Additionally, Phixviricota VP1-based SSN indicated 
that prokaryotic viral sequences from the SIO may be similar with 
known Microviruses (Supplementary Fig. S3). This result is some-
what surprising and is in contrast to previous studies, which have 
reported that Microviruses from benthic marine environments 
were highly abundant and diverse, compared with other viruses 
from the same family [119]. Based on our findings, we propose 
two possibilities. The first is that benthic Microviruses from the 
SIO may be less divergent due to the ecological selective pressures. 
Alternatively, the underrepresentation of these viruses in our data 
may be due to technical challenges. For instance, amplification 
biases during library preparation have been previously shown to 
obscure viral abundances in several studies [120, 121]. However, 
based on the remarkably low number of studies on the SIO, and 
the limited datasets, it is reasonable to conclude that these viruses 
may represent highly diverse and novel lineages. Validation of 
metagenomic assemblies supports this assertion and revealed 
that 2590 contigs from our dataset may be associated with circular 
genetic elements, which were previously described by Tisza et al. 
(2020) [34]. SSNs indicated that 12 and 4 clusters (of the total 
161, with cluster sizes ≥ 5) were constituted by ssDNA viral 
Rep and Capsid associated proteins, respectively (Supplementary 
Fig. S4). This result suggest that the diversity of ssDNA viruses 
in the SIO may be as similar to levels previously reported in the 
North Atlantic Ocean [122] and other polar aquatic environments 
[123]. 

Taken together, the diverse ssDNA viruses identified in this 
study suggests that the relationships between virus and host 
populations may be dynamic or substantially driven by physico-
chemical properties in the deep SIO [33]. However, the functional 
potential of eukaryotic viruses in the environment remains under-
explored. Our results showing high abundances of Cressdnaviri-
cota suggests that these viruses contribute significantly to the 
biological carbon pump in the SIO. Alternately, based on the 
phylogenetic evidence from our study it is reasonable to predict 
that viruses may have profound effects on ecological processes 

across the water column, from the surface to the deepest depths. 
These effects may include recycling dissolved inorganic carbon in 
aphotic zones. However, studies deploying a marine snow catcher 
are required to confirm the role played by viruses in suspended 
and sinking particulate matter in the SIO. Given the importance 
of the SIO in global climate and nutrient circulation, these studies 
may shed light on the influence of these viruses on nutrient 
recycling of carbon and nitrogen. 
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