
Information Sciences 686 (2025) 121363

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Training feedforward neural networks with Bayesian 

hyper-heuristics ✩

A.N. Schreuder a,∗, A.S. Bosman a, A.P. Engelbrecht b,c, C.W. Cleghorn d

a University of Pretoria, Pretoria, Gauteng, South Africa
b Stellenbosch University, Stellenbosch, Western Cape, South Africa
c Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mishref, Kuwait
d University of the Witwatersrand, Johannesburg, Gauteng, South Africa

A R T I C L E I N F O A B S T R A C T

Keywords:

Hyper-heuristics
Meta-learning
Feedforward neural networks
Supervised learning
Bayesian statistics

The process of training feedforward neural networks (FFNNs) can benefit from an automated process 
where the best heuristic to train the network is sought out automatically by means of a high-
level probabilistic-based heuristic. This research introduces a novel population-based Bayesian 
hyper-heuristic (BHH) that is used to train feedforward neural networks (FFNNs). The performance 
of the BHH is compared to that of ten popular low-level heuristics, each with different search 
behaviours. The chosen heuristic pool consists of classic gradient-based heuristics as well as meta-

heuristics (MHs). The empirical process is executed on fourteen datasets consisting of classification 
and regression problems with varying characteristics. The BHH is shown to be able to train FFNNs 
well and provide an automated method for finding the best heuristic to train the FFNNs at various 
stages of the training process.

1. Introduction

A popular field of focus for studying artificial neural networks (ANNs) is the process by which these models are trained. ANNs are 
trained by optimisation algorithms known as heuristics. Many different heuristics have been developed and used to train ANNs [1]. 
Each heuristic has different search behaviours, characteristics, strengths and weaknesses. It is necessary to find the best heuristic to 
train ANNs in order to yield optimal results. This process is often non-trivial and time-consuming. Selection of the best heuristic to 
train ANNs is often problem specific [2].

A recent suggestion related to the field of meta-learning is to dynamically select and/or adjust the heuristic used throughout 
the training process. This approach focuses on the hybridisation of learning paradigms. One such form of hybridisation of learning 
paradigms is that of hybridisation of different heuristics as they are applied to some optimisation problem [3]. These methods are 
referred to as hyper-heuristics (HHs) and focus on finding the best heuristic in heuristic space to solve a specific problem.

In the general context of optimisation, many different types of HHs have been implemented and applied to many different problems 
[3]. However, research on the application of HHs in the context of ANN training is scarce. Nel [4] provides some of the first research 
in this field, applying a HH to feedforward neural network (FFNN) training.
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This research takes a particular interest in developing a population-based, selection HH that makes use of probability theory and 
Bayesian statistical concepts to guide the heuristic selection process. This paper presents a novel Bayesian hyper-heuristic (BHH), a 
new high-level heuristic that utilises a statistical approach, referred to as Bayesian analysis, which combines prior information with 
new evidence to the parameters of a heuristic selection probability distribution.

The general concept of the BHH is summarised as follows: the BHH implements a high-level heuristic selection mechanism that 
learns to select the best heuristic from a pool of low-level heuristics. These low-level heuristics are applied to a population of entities, 
each implementing a candidate solution to a FFNN. The intent of the BHH is to optimise both the underlying FFNN and the FFNN 
training process. The BHH does so by learning the probability that a given heuristic will perform well at a given stage in the FFNN 
training process. These probabilities are then used as heuristic selection probabilities in the next step of the training process.

The update of selection probabilities is guided by Bayesian analysis, where prior probabilities are updated with new evidence 
to form posterior probabilities. The performance of each heuristic-entity combination is logged, which captures the efficacy of each 
heuristic applied to their respective entity, at different stages of the training process. The logged performance data acts as new evidence 
for the Bayesian analysis process. The BHH also incorporates a novel proxied heuristic update step, where various components of 
the update step for low-level heuristics are sourced from other heuristics in the pool of heuristics, when the direct application of a 
heuristic is not feasible/possible.

The selection mechanism implemented by the BHH is different from the multialgorithm, genetically adaptive multiobjective (AMAL-
GAM) and bi-objective hyperheuristic training algorithm (BOHTA) methods used by Nel [4], as well as the hyper-heuristic Bayesian 
optimisation algorithm (HHBOA) proposed by Oliva and Martins [5]. The key differences include that the BHH does not follow an evo-
lutionary approach to the selected low-level heuristics. As such the population does not generate offspring, but rather reuses entities 
in the population. Furthermore, the BHH implements a discrete credit assignment mechanism, not making use of pareto fronts as in 
the AMALGAM and BOHTA methods.

Although this research takes a particular interest in training FFNNs, the BHH is not limited to these types of models and can 
generally be applied to any ANN as long as the ANN can be trained by all of the low-level heuristics. Experimentation with other 
ANN architectures besides FFNNs is left for future research.

The remainder of this article is structured as follows: Section 2 provides background information on ANNs. Section 3 provides 
details on various types of heuristics that have been used to train FFNNs. Section 4 presents background information on HHs and 
meta-learning. Section 5 presents background information on probability theory. Section 6 presents the developed BHH. Section 7
presents a detailed description of the empirical process and the setup of each experiment. Section 8 provides and discusses the results 
of the empirical study. Section 9 summarises the research that is done along with a brief overview of the findings.

2. Artificial neural networks

This research focuses on a particular type of ANN, referred to as feedforward neural networks (FFNNs). FFNNs were the first and 
simplest type of ANNs developed [6] and implement an architecture consisting of input, hidden and output layers by arranging 
them in sequential order. Furthermore, FFNNs implement fully connected topologies, where each artificial neuron (AN) in one layer 
is connected to all the ANs in the next, without any cycles. In FFNNs, information moves forward, in one direction, from the input 
nodes, through the hidden nodes and finally to the output nodes.

Training is the process whereby the weights of the FFNN are systematically changed with the aim of improving the performance of 
the FFNN. Finding the optimal weights that produce the best performance on a given task is an optimisation problem. The optimisation 
algorithm used to find the optimal weights is referred to as a heuristic. Heuristics search for possible solutions in the solution-space 
and make use of information from the search space to guide to process.

During the training process, the FFNN is exposed to data while trying to produce some target outcome. The degree to which the 
produced outcome differs from the target outcome is referred to as loss. Since training of FFNNs is an optimisation problem, the goal 
of the training process is to minimise the loss. The loss is calculated using an error function.

3. Heuristics

A heuristic refers to an algorithmic search technique that serves as a guide to a search process where good solutions to an 
optimisation problem are being sought out. Many different techniques have been used to train FFNNs [7]. At the time of writing, the 
majority of work that is published on the training of FFNNs involves the use of gradient-based techniques [4].

Gradient-based heuristics are optimisation techniques that make use of derivatives obtained from evaluating the ANN error func-
tion. In the context of supervised learning, loss functions produce a scalar value that represents the error between the output of the 
ANN and the desired output. When using gradient descent (GD) to train ANNs, the gradients of the loss function is used to adjust the 
weights of the ANN in order to minimise the error [8].

There are many variants of gradient-based heuristics. However, they all fundamentally apply the same generic GD framework that 
propagates the error signal backwards through the ANN. This algorithm is known as backpropagation (BP).

The simplest type of GD algorithm is referred to as stochastic gradient descent (SGD), which implements a gradient-based weight 
update step for each training pattern. In the context of this research, the implementation of SGD refers to the mini-batch training 
implementation of GD, where a small batch of training patterns are fed to the FFNN at once and the error function is aggregated 
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Alternative variants have been proposed that lead to better control over the convergence characteristics of SGD. This research 
focuses on a number of these variants that include momentum (Momentum) [9], Nesterov accelerated gradients (NAG) [10], adaptive 
gradients (Adagrad) [11], Adadelta [12], root mean squared error propagation (RMSProp) [13] and adaptive moment estimation (Adam) 
[7].

Gradient-based heuristics are sensitive to the problem that they are applied to, with hyper-parameter selection often dominating 
the research focus [14]. Blum and Roli [15] mention that since the 1980s, a new kind of approximate algorithm has emerged which 
tries to combine basic heuristic methods in higher level frameworks aimed at efficiently and effectively exploring a search space. 
These methods are referred to as MHs.

The biggest difference between MHs and gradient-based heuristics is that MHs make use of meta-information obtained as a result 
of evaluating the FFNN during training and is not limited to information about the search space [15]. This also means that MHs do not 
necessarily require the error function to be differentiable. Blum and Roli [15] provide advantages of MHs that include the following: 
they are easy to implement, they are problem independent and do not require problem-specific knowledge, and they are generally 
designed to find global optima, while gradient-based approaches can get stuck in local optima more often. Similar to gradient-based 
heuristics, a number of different meta-heuristics have been used to successfully train FFNNs [1,16]. This research takes a particular 
interest in population-based MHs that have been used to train FFNNs. These include particle swarm optimisation (PSO) [17], differential 
evolution (DE) [18], and genetic algorithms (GAs) [19].

4. Hyper-heuristics

Burke et al. [20] define HHs as search methods or learning mechanism for selecting or generating heuristics to solve computational 
search problems. Burke et al. [21] mention that a HH is a high-level heuristic approach that, given a particular problem instance and 
a number of low-level heuristics, can select and apply an appropriate low-level heuristic at each decision point. HHs implement a 
form of meta-learning that is concerned with the selection of the best heuristic from a pool of heuristics to solve a given problem. It 
can be said that HHs are concerned with finding the best heuristic in heuristic space, while the underlying low-level heuristics find 
solutions in the feasible search/solution space.

Burke et al. [20] propose a classification scheme used to classify HHs. According to the proposed classification scheme, HHs are 
classified in two categories. These include the source of feedback used during learning and the nature of the heuristic search space. For 
the category that involves the source of feedback, HHs can be classified as either no learning, online learning or offline learning. For the 
category that involves the nature of the heuristic search space, HHs can be classified as either heuristic selection or heuristic generation. 
Further distinction is made between construction of heuristics and perturbation of heuristics.

In the general context of optimisation, many different types of HHs have been implemented and applied to many different problems. 
Some notable examples include [20,22,23]. Research on the application of HHs in the context of FFNN training is still scarce. Nel [4]
provides some of the first research in this field, applying BOHTA, a novel adaptation of an evolutionary-based HH, known as the 
AMALGAM HH [24], to FFNN training. Furthermore, Oliva and Martins [5] provide HHBOA, the first use of Bayesian optimisation in 
a HH context. The method proposed by Oliva and Martins [5] uses a Bayesian selection operator to evolve combinations of low-level 
heuristics while looking for good problem solutions to a benchmark of optimisation functions, but does not apply a HH to the training 
of FFNNs.

This research takes a particular interest in a population-based, selection approach for HHs, with the particular intent of training 
FFNNs. In the context of population-based HHs, an entity pool exists that represents a pool of candidate solutions to the given problem. 
Each entity in the entity pool is assigned its own low-level heuristic from the heuristic pool. The selection of the best heuristic to 
apply to a candidate solution is based on the performance of the heuristic relative to that particular candidate solution at a particular 
point in the search process. Selection methods often make use of probabilistic approaches.

5. Probability

Bayesian statistics describe the probability of an event in terms of some belief, based on previous knowledge of the event and the 
conditions under which the event happened [25]. Bayes’ theorem expresses how a degree of belief, expressed as a probability, should 
rationally change to account for the availability of related evidence.

One of the many applications of Bayes’ theorem is to do statistical inference. Like FFNNs, Bayesian models need to be trained, a 
process known as Bayesian analysis. Bayesian analysis is the process by which prior beliefs are updated as a result of observing new 
data/evidence.

Bayesian analysis utilises the concept of conjugate priors. Wackerly et al. [26] state that conjugate priors are prior probability 
distributions that result in posterior distributions that are of the same functional form as the prior, but with different parameter 
values. The conjugate prior to a Bernoulli probability distribution is the Beta probability distribution and the conjugate prior to a 
categorical and multinomial probability distribution is the Dirichlet probability distribution [26].

6. Bayesian hyper-heuristics

This section presents the novel BHH and is structured as follows: Section 6.1 presents an overview of the BHH, Sections 6.2 - 6.7
provide details on the most important components of the BHH, Section 6.8 describes the optimisation step implemented by the BHH 
3

and Section 6.9 discusses the hyper-parameters used by the BHH.
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6.1. Overview

According to the classification scheme for HHs by Burke et al. [20], the BHH is a population-based, meta-hyper-heuristic that 
utilises selection and perturbation of low-level heuristics in an online learning fashion.

The BHH implements a high-level heuristic selection mechanism that learns to select the best heuristic from a pool of low-level 
heuristics. These low-level heuristics are applied to a population of entities, each implementing a candidate solution to a FFNN. The 
intent of the BHH is to optimise both the underlying FFNN and the FFNN training process. The BHH does so by learning the probability 
that a given heuristic will perform well at a given stage in the FFNN training process. These probabilities are then used as heuristic 
selection probabilities in the next step of the training process.

The update of selection probabilities is guided by Bayesian analysis, where prior probabilities are updated with new evidence 
to form posterior probabilities. The performance of each heuristic-entity combination is logged, which captures the efficacy of each 
heuristic applied to their respective entity, at different stages of the training process. The logged performance data acts as new evidence 
for the Bayesian analysis process. The BHH also incorporates a novel proxied heuristic update step, where various components of 
the update step for low-level heuristics are sourced from other heuristics in the pool of heuristics, when the direct application of a 
heuristic is not feasible/possible.

Fig. 1 provides an illustration of the high-level architecture of the BHH. Algorithm 1 provides the high level pseudo-code imple-
mentation of the BHH. Discussions follow on the most important components of the BHH.

Algorithm 1 The pseudo-code for the implementation of the Bayesian hyper-heuristic (BHH).
step ← 0
select initial heuristics
initialise population and entities
evaluate entities’ initial position
update population state
while stopping condition not met do

for all entities in entity pool do

if selected heuristic is gradient-based then

get gradients
end if

apply low-level heuristic and proxy operations
update population state
log performance metrics to performance log
if step < burn-in window size then

select heuristic
else

if step % reanalysis interval = 0 then

apply Bayesian analysis
end if

if step % reselection interval = 0 then

select heuristic
end if

if step < replay window size then

prune performance log
end if

end if

end for

step ← step + 1
end while

6.2. Heuristic pool

Generally speaking, the heuristic pool is a collection of low-level heuristics under consideration by the BHH. The heuristic pool 
contains the set of low-level heuristics that, together with their performance information, make up the heuristic space. Importantly, 
the heuristic pool must consist of a diverse set of low-level heuristics with varying capabilities. This research takes an interest in 
including both gradient-based heuristics as well as MHs in the heuristic pool. This approach is referred to as a multi-method approach.

6.3. Proxies

Heuristics often maintain a set of parameters that are used to control the behaviour of the heuristic. These parameters are refered 
to as heuristic state. The concept of proxies arises from the sparsity of state as maintained by different heuristics. Since heuristics 
maintain (possibly) different states, there is an uncertainty of state transition when switching between heuristics. A solution to state 
indifference is to proxy heuristic state update operations. State is then maintained in two parts: primary and proxied state. Primary 
state refers to the state that is originally maintained by a heuristic. Proxied state refers to the state that is not directly maintained by 
the heuristic, but can be updated by outsourcing the required state update operation to another heuristic. The BHH thus incorporates 
4

a mapping of proxied state update operations as given in the example in Table 1.
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Fig. 1. An illustration of the architecture and high level components of the Bayesian hyper-heuristic (BHH).
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Table 1

An example of a mapping of proxied state 
update operation maintained by the BHH.

State Parameter

1 2 3

Heuristic

A n/a B n/a
B n/a n/a A
C n/a B A

From the example given in Table 1, when heuristic A is selected, it will outsource state update operations from heuristic B for state 
parameter 2. Heuristic B will outsource from heuristic A for state parameter 3. Finally, heuristic C will outsource from heuristic A 
and B for state parameters 2 and 3 respectively. In this way, all heuristics maintain all the state parameters.

6.4. Entity pool

The entity pool refers to a collection or population of entities that each represent a candidate solution to the underlying FFNN 
being trained. The BHH selects from the heuristic pool a low-level heuristic to be applied to an individual entity. The outcome of this 
selection process is a mapping table that tracks which heuristic has been selected for which entity. These heuristic-entity combinations 
are applied to the underlying FFNN. The BHH tracks the performance of each of these combinations throughout the training process 
in a performance log.

Entities represent candidate solutions to the model’s trainable parameters (weights) and other heuristic-specific state parameters. 
These state parameters are referred to as local state. Entities are treated as physical particles in a hyper-dimensional search environ-
ment. Entities model concepts from physics. For example, the candidate solution is represented as the entity’s position. The velocity 
and acceleration is then analogous to the gradient and momentum of the entity respectfully [27]. Examples of entity state parameters, 
as derived from various low-level heuristics, include entity position, velocity, gradient, position delta, first and second moments of 
the gradient, the loss, personal best positions, losses, and so on. The entity state parameters are updated by the associated heuristic.

The population state refers to a collection of parameters that are shared between the entities in the population. Population state 
is also referred to as global state and represents the population’s memory. The population state generally contains state parameters 
that are of importance to multiple heuristics, and usually tracks the state of the population and not the state of individual heuristics. 
Some examples of population state that can arise from different heuristics include the population of entities themselves, the global 
best entity found so far, the overall best loss achieved thus far, and so on.

6.5. Performance log

Heuristic selection probability is calculated based on heuristic-entity performance over time. Evidence of heuristic-entity perfor-
mance is thus required for the BHH to learn. Historical heuristic-entity performance outcomes are stored in a performance log. The 
performance log tracks information such as the current step, selected heuristic, associated entity, the loss achieved and so on. Since 
the performance log can become very big, only a sliding window of the performance history is maintained at each step in the learning 
process. The sliding window is also referred to as a replay window/buffer.

6.6. Credit assignment strategy

The credit assignment strategy is a mechanism that assigns a discrete credit indicator to heuristics that perform well, based on 
their performance metrics such as loss. The credit assignment strategy implements a component of the “move acceptance” process as 
proposed by Özcan et al. [28] and addresses the credit assignment problem as discussed by Burke et al. [20]. A good credit assignment 
strategy will correctly allocate credit to the appropriate heuristic-entity combination. This research implements the following credit 
assignment strategies to choose from: ibest (iteration best), pbest (personal best), gbest (global best), rbest (replay window best), and 
symmetric, where credit is assigned to all entity-heuristic combinations, regardless of their performance.

6.7. Selection mechanism

The BHH implements a probabilistic predictive model based on the fundamentals of the Naïve Bayes algorithm. The BHH thus 
distinguishes between the following events: 𝑯 , the event of observing heuristics, 𝑬, the event of observing entities, and 𝑪 , the event 
of observing credit assignments that indicate that the credit assignment performance criteria are met. By Bayes’ theorem, the selection 
mechanism implemented by the BHH is given as

𝑃 (𝑯 |𝑬,𝑪 ;𝜽,𝝓,𝝍) ∝ 𝑃 (𝑬|𝑯 ;𝝓)𝑃 (𝑪|𝑯 ;𝝍)𝑃 (𝑯 |𝜽) (1)

The predictive model thus models the proportional probability of the event (selection of) heuristic 𝑯 , given allocation to entity 𝑬
and credit requirement 𝑪 , parameterised by sampled 𝜽 ∼𝐷𝑖𝑟(𝜶; 𝐾), 𝝓 ∼𝐷𝑖𝑟(𝜷; 𝐾)𝐽 and 𝝍 ∼𝐵𝑒𝑡𝑎(𝛾1, 𝛾0). In the aforementioned, 𝐾
6

is the heuristic pool size and 𝐽 is the entity pool size. The parameters 𝜶, 𝜷 , 𝛾1 and 𝛾0 are referred to as concentration parameters. The 
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Table 2

The BHH baseline configuration as it is used in the empirical study.

heuristic pool population burn in credit reselection replay reanalysis normalise discounted rewards

all 5 0 ibest 10 10 10 false false

concentration parameters are used to parameterise the prior probability distributions. Appendix A provides mathematical derivations 
of the predictive model.

6.8. Optimisation step

The intent of the BHH is to gather evidence that can be used to update prior beliefs about which heuristics perform well during 
training. These beliefs are represented by the concentration parameters 𝜶, 𝜷 , 𝛾1 and 𝛾0. A change in prior beliefs is represented by a 
change in these concentration parameters. Specifically, it can be said that the optimisation process implemented by the BHH updates 
pseudo counts of events that are observed in the performance logs. These pseudo counts track the occurrence of a heuristic, an entity, 
and resulting performance of these two elements. Through the credit assignment strategy, these pseudo counts are biased towards 
entity-heuristic combinations that meet performance requirements and yield credit allocations.

Generally, there are two different techniques that are used to train Naïve Bayes classifiers. The frequentist approach implements 
maximum likelihood estimation (MLE) and the Bayesian approach implements maximum a posteriori estimation (MAP).

6.8.1. Maximum a posteriori estimation

MAP is an approach to optimise the values for 𝜃̂𝑘, 𝜙̂𝑗,𝑘 and 𝜓̂𝑘 by optimising the parameters of their probability distributions. This 
process is referred to as Bayesian analysis. Bayesian analysis makes use of the posterior probability distribution. The concentration 
update operations yielded by MAP, are given as follows:

𝛼𝑘(𝑡+ 1) =𝑁𝑘 + 𝛼𝑘(𝑡) (2)

𝛽𝑗,𝑘(𝑡+ 1) =𝑁𝑗,𝑘 + 𝛽𝑗,𝑘(𝑡) (3)

𝛾1,𝑘(𝑡+ 1) =𝑁1,𝑘 + 𝛾1,𝑘(𝑡) (4)

𝛾2,𝑘(𝑡+ 1) =𝑁0,𝑘 + 𝛾2,𝑘(𝑡) (5)

where 𝑁𝑘 is a summary variable denoting the count of occurrences of heuristic 𝑘, 𝑁𝑗 is a summary variable denoting the count of 
occurrences of entity 𝑗, 𝑁𝑗,𝑘 is a summary variable denoting the count of occurrences of heuristic 𝑘 for entity 𝑗, 𝑁1,𝑘 and 𝑁0,𝑘 are 
summary variables denoting the count of occurrences where heuristic 𝑘 meets performance requirements and where heuristic 𝑘 does 
not not meet performance requirements.

It can be said that the BHH implements a Gaussian process [29]. Since the reselection of heuristics happens at regular intervals, 
the outcome of a selection in one iteration may influence the outcome of another in the next iteration, making the implementation 
of the BHH a hidden Markov model (HMM) [30].

6.9. Hyper-parameters

The following hyper-parameters are implemented by the BHH: the heuristic pool configures the type of heuristics included in the 
heuristic pool, the population size specifies the number of entities in the entity pool, the credit assignment strategy specifies which credit 
assignment strategy to use, the reselection interval determines the frequency of heuristic reselection, the replay window size determines 
the maximum size of the performance log, the reanalysis interval determines the frequency at which Bayesian analysis is applied, the 
burn in window size determines the size of an initial window where experience is simply gathered without reanalysis, and finally, the 
discounted rewards and normalisation flags toggle scaling modifiers on values assigned by the credit assignment strategies, backwards 
in the performance log.

7. Methodology

This section provides the details of the implementation of the empirical process. At a high level the experimental procedure consist 
of a comparison between the BHH and standalone low-level heuristics. A number of datasets, models and heuristics are specified. 
Throughout the empirical process, a BHH baseline configuration is used.

7.1. BHH baseline

The BHH baseline is a name given to a specific configuration of the BHH which has been found to provide a reasonable baseline 
performance. The baseline configuration is used as the cornerstone configuration from which all other heuristics and their configu-
rations are evaluated. The BHH baseline configuration is given in Table 2. In Table 2, the heuristic pool configuration, all, refers to 
7
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Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

Table 3

Low-level heuristics and their hyper-parameter configurations.

heuristic configuration value citation

sgd learning rate 0.1 (0.01) [10]
momentum learning rate 0.1 (0.01) [10]

momentum 0.9
nag learning rate 0.1 (0.01) [10]

momentum 0.9
adagrad learning rate 0.1 (0.01) [11]

epsilon 1E-07
rmsprop learning rate 0.1 (0.01) [13]

rho 0.95
epsilon 1E-07

adadelta learning rate 1.0 (0.95) [12]
rho 0.95
epsilon 1E-07

adam learning rate 0.1 (0.01) [7]
beta1 0.9
beta2 0.999
epsilon 1E-07

pso population size 10 [32]
learning rate 1.0 (0.9)
inertia weight (w) 0.729844
cognitive control (c1) 1.49618
social control (c2) 1.49618
velocity clip min -1.0
velocity clip max 1.0

de population size 10 [33]
selection strategy best
xo strategy exp
recombination probability 0.9 (0.1)
beta 2.0 (0.1)

ga population size 10 [34]
selection strategy rand
xo strategy bin
mutation rate 0.2 (0.05)

A population size of 5 is chosen as it empirically and consistently provides good results. The population size has a lower bound of 
4, which is the highest, minimum number of entities required by any low-level heuristic used in this research. Furthermore, ablation 
studies [31] have shown that a smaller population size is generally better, since the Bayesian analysis process implemented by the 
BHH has less, but more concentrated performance information from which it has to learn.

7.2. BHH vs. low-level heuristics

For the standalone heuristics experimental group, a number of low-level heuristics are used along with their specified hyper-
parameters. Each of these standalone low-level heuristics is compared to that of the BHH baseline configuration, across all datasets. 
The intent of the standalone heuristics experimental group is to determine if the BHH baseline configuration can generalise to multiple 
problems in comparison to individual low-level heuristics.

Additional to the BHH baseline configuration, two more BHH configurations are included. These include BHH configurations 
where the heuristic pool only makes use of gradient-based heuristics, and a configuration where the heuristic pool only makes use 
of MHs. The intent behind the inclusion of these configurations is to determine the effectiveness of multi-method approaches in the 
heuristic pool applied to training FFNNs.

7.3. Heuristics

Table 3 contains a list of all the standalone, low-level heuristics that are used as well as their hyper-parameter configurations. 
In some cases, parameters are changed dynamically throughout the training process using a decay schedule. Note from Table 3 that 
values that are configured to make use of a decay schedule are presented with the initial value first and the decay rate in brackets 
next to it.

The mapping of proxied heuristic state update operations implemented by the BHH in the empirical process is given in Fig. 2. 
In Fig. 2, cells containing x indicate that the associated heuristic implements that particular state parameter explicitly, and cells 
8

containing o indicate that the state parameter is implicitly implemented as part of the BHH algorithm.
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Fig. 2. Mapping of proxied heuristic state update operations as implemented by the BHH.

Table 4

Classification datasets.

dataset output types attributes classes instances batch steps citation

iris multivariate real 4 3 150 16 10 [36]
car multivariate categorical 6 4 1728 128 14 [37]
abalone multivariate categorical, integer, real 8 28 4177 256 17 [38]
wine quality multivariate real 12 11 4898 256 20 [39]
mushroom multivariate categorical 22 2 8214 512 17 [40]
bank multivariate real 17 2 45211 512 89 [41]
diabetic multivariate integer 55 3 100000 1024 98 [42]

Table 5

Regression datasets.

dataset output types attributes instances batch steps citation

fish toxicity multivariate real 7 908 64 15 [43]
housing univariate real 13 506 32 16 [44]
forest fires multivariate real 13 517 32 17 [45]
student performance multivariate integer 33 649 32 21 [46]
parkinsons multivariate integer, real 26 5875 256 23 [47]
air quality multivariate, time series real 15 9358 256 37 [48]
bike univariate integer, real 16 17389 256 68 [49]

7.4. Datasets

In the context of training FFNNs, the underlying models are trained across a number of datasets. All the datasets used in the 
empirical process originate from the UCI Machine Learning Repository [35]. Datasets are grouped by problem type and include seven 
classification and seven regression datasets. The details around the datasets used can be found in Tables 4 and 5. Each dataset is split 
into a training set comprising 80% of the data, and a test set comprising 20% of the data.

A number of classification datasets contain an unbalanced representation of classes. This work does not apply mechanisms to cater 
9

for class balancing, in order to eliminate as many variables and factors in the empirical process as possible.
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Table 6

Model configurations.

dataset inputs hidden output biases parameters topology l1 activation l2 activation

fish toxicity 6 3 1 yes 25 dense LReLU (𝛼 = 0.3) sigmoid
iris 4 5 3 yes 43 dense LReLU (𝛼 = 0.3) softmax
air quality 12 8 1 yes 113 dense LReLU (𝛼 = 0.3) sigmoid
housing 13 8 1 yes 121 dense LReLU (𝛼 = 0.3) sigmoid
wine quality 13 10 7 yes 217 dense LReLU (𝛼 = 0.3) softmax
parkinsons 21 10 1 yes 231 dense LReLU (𝛼 = 0.3) sigmoid
car 21 10 4 yes 264 dense LReLU (𝛼 = 0.3) softmax
forest fires 43 16 1 yes 721 dense LReLU (𝛼 = 0.3) sigmoid
abalone 10 36 28 yes 1432 dense LReLU (𝛼 = 0.3) softmax
bank 51 32 1 yes 1697 dense LReLU (𝛼 = 0.3) softmax
bike 61 32 1 yes 2017 dense LReLU (𝛼 = 0.3) sigmoid
student performance 99 32 1 yes 3233 dense LReLU (𝛼 = 0.3) sigmoid
adult 108 64 1 yes 7041 dense LReLU (𝛼 = 0.3) softmax
mushroom 117 64 1 yes 7617 dense LReLU (𝛼 = 0.3) softmax
diabetic 2369 32 3 yes 75939 dense LReLU (𝛼 = 0.3) softmax

7.5. Models

All models trained in the empirical process follow implementations of shallow FFNNs with only one hidden layer. The number 
of hidden units used were determined empirically. Weights are initialised by means of Glorot uniform sampling. The models and their 
configuration, as it is used for each dataset, are given in Table 6.

7.6. Performance measures

Binary cross entropy (BinXE) is used for classification problems with two classes and sparse categorical cross entropy (SparseCatXE) is 
used for classification problems with more than two classes. For the classification problems, accuracy is also measured. For regression 
problems, the mean squared error (MSE) is used as a performance metric. After training has completed, the average rank, based on test 
loss, for all configurations, is calculated at each mini-batch step.

7.7. Statistical analysis

Each experiment and configuration is trained for a maximum of 30 epochs and is repeated over 30 independent runs, for each of 
the datasets. No early-stopping mechanism is used. Statistical analysis is executed on the results from the test datasets. An average 
rank is calculated across all 30 runs, for both experimental groups and configurations, at each step, for every epoch of training.

The Shapiro-Wilk test for normality (𝛼 = 0.001) is used to determine if the results are normally distributed. The Levene’s test for 
equality of variance (𝛼 = 0.001) is used. For experiments with three or more configurations, the ANOVA statistical test (𝛼 = 0.001) is 
used. The Kruskal-Wallis ranked non-parametric test for statistical significance (𝛼 = 0.001) is used for cases where data is not normally 
distributed. Finally, a post-hoc Tukey honest significant difference test (𝛼 = 0.001) is used from which significant ranking is retrieved. 
Descriptive and critical difference plots are then retrieved from these results to provide visual aid.

7.8. Implementation

All implementations are done from first principles in Python 3.9 using Tensorflow 2.7 and Tensorflow Probability 0.15.0. The 
source code and data for this research is provided and made public at https://github .com /arneschreuder /masters.

8. Results

This section provides the results of the empirical process that has been conducted. Detailed discussions follow on the outcomes of 
each experiment.

8.1. Overview

This section provides a brief discussion on the general outcome of the empirical process as a whole and identifies some key aspects 
to be kept in mind when interpreting the results of the experiments.

Firstly, the BHH applies a form of online learning. As such, the BHH applies the learning mechanism during training in a single 
run of the training process. The training process is not repeated iteratively as is the case with some HHs.

Most of the training progress is observed to occur within the first five epochs. As a result, the BHH should apply most learning at the 
early stages of the training process. After five epochs, the training of most of the underlying FFNNs converges and little performance 
gain is observed after that point. Since this empirical process does not apply early stopping of the training process, the BHH will 
10

continue to explore the heuristic space beyond the five epoch mark.

https://github.com/arneschreuder/masters
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Table 7

Empirical results showing normalised average rank and statistics for the top six low-level heuristics and three heuristic pool variants of the BHH baseline 
configuration, across multiple datasets, for all independent runs and epochs.

BHH vs. Low-Level Heuristics - Average Rank (Part A)

dataset adagrad adam rmsprop bhh_gd nag bhh_all

abalone 2,2215 (±1,591) 2,3989 (±1,887) 4,6172 (±2,65) 4,7032 (±2,108) 4,2731 (±1,542) 5,9376 (±2,399)
air_quality 3,6409 (±2,259) 5,4312 (±2,62) 3,4452 (±2,57) 5,0817 (±2,762) 3,8194 (±2,229) 6,686 (±3,061)
bank 2,5495 (±1,598) 2,0796 (±1,587) 3,4645 (±2,209) 4,8828 (±1,702) 4,2871 (±1,732) 6,2419 (±2,157)
bike 1,7204 (±1,384) 3,6925 (±4,004) 6,2624 (±4,58) 3,8441 (±1,398) 6,4516 (±1,02) 4,2151 (±1,361)
car 4,7634 (±0,938) 1,6226 (±1,405) 2,3269 (±1,409) 3,3473 (±1,35) 6,0785 (±0,799) 3,5624 (±1,315)
diabetic 2,7796 (±1,659) 7,1484 (±2,227) 6,7376 (±2,577) 5,2269 (±2,186) 1,8118 (±1,413) 9,3968 (±3,022)
fish_toxicity 4,2645 (±2,614) 3,6022 (±2,445) 3,5946 (±2,329) 5,4118 (±2,665) 5,8914 (±2,629) 5,829 (±2,856)
forest_fires 5,1559 (±2,922) 4,2688 (±2,984) 5,0355 (±3,143) 4,6935 (±2,759) 5,6882 (±2,215) 5,4839 (±3,107)
housing 3,4484 (±2,025) 3,3344 (±1,819) 3,6946 (±2,166) 4,4742 (±2,312) 4,6839 (±2,658) 4,3763 (±2,438)
iris 6,3946 (±1,6) 3,5839 (±2,511) 2,6968 (±1,912) 4,7473 (±2,275) 3,5548 (±2,125) 5,2204 (±3,041)
mushroom 4,4656 (±1,053) 2,1344 (±1,883) 2,4656 (±1,359) 3,4484 (±1,602) 6,3323 (±0,891) 3,6688 (±2,469)
parkinsons 2,4677 (±1,497) 2,2333 (±1,742) 3,5656 (±2,492) 4,572 (±1,934) 7,5355 (±1,44) 4,3839 (±1,861)
student_performance 2,5634 (±1,912) 11,3978 (±2,178) 12,4312 (±1,34) 5,6624 (±3,57) 3,1935 (±2,12) 5,8634 (±3,159)
wine_quality 3,2806 (±1,931) 2,1118 (±1,666) 3,6301 (±1,731) 4,7882 (±2,105) 4,1505 (±1,916) 5,1925 (±1,951)

avg rank 3,5512 (±2,25) 3,9314 (±3,423) 4,5691 (±3,517) 4,6346 (±2,364) 4,8394 (±2,384) 5,4327 (±2,9)

normalised avg rank 1 2 3 4 5 6

The BHH does not implement a type of move-acceptance strategy where the application of a heuristic to an entity is only accepted 
if it leads to a better solution. In some cases, the BHH then selects heuristics that yield sub-optimal results, but is shown to mostly 
return to optimal solutions over a number of steps.

Given the stochastic nature of the heuristic selection mechanism, sufficient samples of the performance of each heuristics-entity 
combination in the performance log are required for the BHH to learn. This requirement is further strengthened by the Bayesian 
nature of the probabilistic model implemented by the BHH. The probabilistic model implements probability distributions of heuristic 
selection probabilities and as such, insufficient samples in the performance log could render a form of random search.

By default, the BHH baseline configuration has a reanalysis interval of 10, and a replay window size of 10, which is a small 
window to learn from. Despite the small reanalysis interval and the small replay window size, it should be observed that the BHH 
exploits small performance biases and finds small performance gains throughout.

8.2. BHH vs. low-level heuristics

Tables 7 and 8 provide the empirical results in ranked format. The performance rank is calculated as the average rank produced 
by each heuristic, across all datasets, for all independent runs and all epochs. The average rank across all epochs produces a view on 
the performance of the heuristics as it relates to the entire training process. Finally, a normalised average rank is provided for the 
overall performance of all heuristics at the bottom of the table. The normalised average rank is calculated as a discrete normalisation 
of the average rank achieved across all datasets, for all independent runs and epochs.

Tables 7 and 8 show that the bhh_gd configuration produced the best results of the BHH variants and managed to perform well, 
producing generally good results across all datasets. The bhh_gd configuration managed to produce results that are comparable to the 
top three heuristics for each dataset, while the bhh_all and bhh_mh produced average results compared to all the heuristics.

The normalised average ranks provided in Tables 7 and 8 show that the bhh_gd configuration ranked fourth, while the bhh_al and 
bhh_mh configurations ranked sixth and eighth amongst all thirteen heuristic implementations respectively. These results show that 
the BHH generally performs well, but is not able to outperform the best heuristic for each dataset.

Tables 9 and 10 provide the empirical results in accuracy format for the classification datasets. The accuracy is measured at the 
maximum epoch (30).

Fig. 3 provides an illustration of the overall critical difference plots that illustrate the statistically significant differences in ranked 
performance for each heuristic as it relates to all datasets, across all independent runs and epochs. Although the outcomes of the 
bhh_al and bhh_mh configurations seem to produce average performance results, it should be noted that the performance difference 
between all heuristics is very small. Furthermore, the best configuration of the BHH, namely the bhh_gd configuration, is statistically 
outperformed overall by only Adagrad and Adam, yielding statistically comparable results to RMSProp and NAG. It should be noted 
that the standalone low-level heuristics already produce good results in general across all datasets. In this particular case, producing 
better performance outcomes can be hard to achieve. However, as mentioned previously, the BHH provides a generalisation capability 
across all datasets that is advantageous to the BHH.

Another observation that can be made is that the gradient-based heuristics generally performed much better than the MHs on all 
datasets. State of the art methods for training FFNNs, such as Adam, utilise gradient-based approaches that have been proven to work 
well on many occasions [7]. Exploration of the heuristic space leads the BHH to consider other heuristics during the training process, 
which could possibly result in worse performances at times. A suggestion to improve on these results is to include a move-acceptance 
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strategy where heuristic progressions are discarded if they fail to produce better results.
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Table 8

Empirical results showing normalised average rank and statistics for the bottom seven low-level heuristics and three heuristic pool variants of the BHH baseline 
configuration, across multiple datasets, for all independent runs and epochs.

BHH vs. Low-Level Heuristics - Average Rank (Part B)

dataset adadelta bhh_mh ga pso sgd momentum de

abalone 5,3129 (±1,478) 8,1882 (±1,195) 11,1108 (±1,102) 11,2559 (±1,826) 8,628 (±1,019) 9,8151 (±1,16) 12,5376 (±1,329)
air_quality 5,2441 (±3,162) 6,357 (±2,303) 7,8204 (±2,265) 9,9151 (±2,288) 10,6613 (±1,606) 11,7559 (±1,473) 11,1419 (±2,236)
bank 5,672 (±1,241) 9,7495 (±1,048) 10,9817 (±1,216) 11,8376 (±1,464) 8,2774 (±1,03) 8,4774 (±1,068) 12,4989 (±1,224)
bike 5,3602 (±1,155) 7,4108 (±1,008) 9,2269 (±1,183) 9,3086 (±1,761) 10,3355 (±1,419) 10,7086 (±1,423) 12,4634 (±1,465)
car 7,7344 (±1,746) 8,8505 (±1,413) 10,7763 (±1,471) 8,3613 (±1,622) 10,2452 (±1,447) 10,9226 (±1,349) 12,4086 (±1,492)
diabetic 2,6753 (±1,629) 8,557 (±1,17) 11,2011 (±1,413) 10,7022 (±1,067) 5,9215 (±1,542) 6,3355 (±1,612) 12,5065 (±1,242)
fish_toxicity 7,914 (±3,429) 6,3849 (±2,944) 6,7043 (±2,82) 7,5731 (±2,982) 11,5785 (±1,459) 12,2301 (±1,382) 10,0215 (±2,358)
forest_fires 6,5161 (±3,082) 5,4591 (±2,668) 7,3667 (±2,37) 6,4796 (±3,354) 10,8129 (±1,207) 11,7065 (±1,325) 12,3333 (±1,923)
housing 7,5903 (±2,748) 7,5441 (±1,736) 7,8839 (±2,099) 9,9409 (±2,317) 11,4075 (±1,528) 11,2731 (±1,506) 11,3484 (±2,096)
iris 11,3527 (±1,779) 6,6075 (±2,555) 8,2473 (±1,765) 8,2731 (±4,384) 10,3796 (±1,294) 11,0548 (±1,409) 8,8871 (±3,251)
mushroom 6,5538 (±1,071) 9,0452 (±1,093) 11,5731 (±1,193) 7,872 (±0,92) 9,7527 (±1,083) 10,9785 (±1,108) 12,7097 (±1,478)
parkinsons 6,472 (±2,423) 8,3161 (±1,644) 7,7968 (±1,719) 8,4892 (±1,901) 11,7516 (±1,155) 12,5419 (±1,351) 10,8742 (±1,317)
student_performance 3,4194 (±2,006) 6,9333 (±2,44) 7,1032 (±1,989) 11,0624 (±1,067) 6,6366 (±2,023) 6,7011 (±2,242) 8,0323 (±1,935)
wine_quality 6,0011 (±2,404) 9,5935 (±1,494) 10,3387 (±1,62) 11,1602 (±1,773) 8,6344 (±1,18) 9,5269 (±1,341) 12,5903 (±1,352)

avg rank 6,2727 (±3,004) 7,7855 (±2,271) 9,1522 (±2,48) 9,4451 (±2,75) 9,6445 (±2,214) 10,2877 (±2,346) 11,4538 (±2,354)

normalised avg rank 7 8 9 10 11 12 13

Table 9

Empirical results showing average accuracy at the max epoch (30) along with statistics for the top six low-level heuristics and three heuristic 
pool variants of the BHH baseline configuration, across multiple datasets, for all independent runs and epochs.

BHH vs. Low-Level Heuristics - Average accuracy at 30 epochs (Part A)

dataset adagrad adam rmsprop bhh_gd nag bhh_all

abalone 27.66% (+-0.014) 27.17% (+-0.013) 27.74% (+-0.016) 26.17% (+-0.014) 27.14% (+-0.014) 25.52% (+-0.021)
bank 90.15% (+-0.003) 90.33% (+-0.003) 90.25% (+-0.003) 89.88% (+-0.003) 89.94% (+-0.003) 89.84% (+-0.003)
car 92.24% (+-0.013) 96.64% (+-0.011) 96.13% (+-0.018) 93.13% (+-0.013) 89.39% (+-0.019) 93.59% (+-0.017)
diabetic 58.14% (+-0.004) 57.23% (+-0.004) 57.85% (+-0.004) 57.76% (+-0.006) 58.53% (+-0.003) 55.42% (+-0.024)
iris 92% (+-0.046) 94.89% (+-0.042) 96.33% (+-0.035) 92.44% (+-0.077) 96.44% (+-0.037) 93.11% (+-0.056)
mushroom 99.97% (+-0) 99.98% (+-0.001) 100% (+-0) 99.98% (+-0) 99.84% (+-0.001) 99.96% (+-0.001)
wine_quality 55.06% (+-0.014) 55.62% (+-0.013) 54.86% (+-0.011) 53.35% (+-0.017) 54.64% (+-0.015) 53.57% (+-0.015)

Table 10

Empirical results showing average accuracy at the max epoch (30) along with statistics for the bottom seven low-level heuristics and three heuristic pool variants of 
the BHH baseline configuration, across multiple datasets, for all independent runs and epochs.

BHH vs. Low-Level Heuristics - Average accuracy at 30 epochs (Part B)

dataset adadelta bhh_mh ga pso sgd momentum de

abalone 26.76% (+-0.013) 23.32% (+-0.018) 20.52% (+-0.019) 18.31% (+-0.029) 24.42% (+-0.017) 24.29% (+-0.015) 11.81% (+-0.044)
bank 89.85% (+-0.003) 89.44% (+-0.004) 88.79% (+-0.004) 88.56% (+-0.006) 88.86% (+-0.004) 89.01% (+-0.003) 88.3% (+-0.004)
car 88.25% (+-0.018) 80.74% (+-0.034) 71.52% (+-0.022) 81.16% (+-0.035) 69.78% (+-0.027) 70.86% (+-0.019) 69.98% (+-0.034)
diabetic 58.36% (+-0.003) 56.53% (+-0.006) 53.82% (+-0.003) 54.22% (+-0.011) 57.45% (+-0.004) 57.43% (+-0.002) 51.21% (+-0.059)
iris 83.22% (+-0.063) 92.56% (+-0.062) 88.67% (+-0.091) 93.67% (+-0.042) 80.56% (+-0.098) 80.89% (+-0.084) 84.89% (+-0.099)
mushroom 99.95% (+-0.001) 97.77% (+-0.007) 76.78% (+-0.112) 98.67% (+-0.009) 91.08% (+-0.008) 89.11% (+-0.01) 52.58% (+-0.028)
wine_quality 54.66% (+-0.012) 51.52% (+-0.014) 49.26% (+-0.017) 48.21% (+-0.038) 52.14% (+-0.014) 51.38% (+-0.014) 42.1% (+-0.042)

Section 6.9 presented the BHH hyper-parameters. A number of ablation studies were done in the interest of finding good hyper-
parameters for the baseline BHH [31]. A summary of these ablation studies on different hyper-parameter configurations is given in 
Table 11 along with a brief conclusion of the outcomes.

A general finding in the ablations studies revealed the inter-dependencies between the hyper-parameters. For example, there is an 
inter-dependency between the reselection, replay, and reanalysis hyper-parameters. This can be seen in the ablation studies that focused
on the normalise and discounted rewards hyper-parameters. The default replay window size (10) hyper-parameter, results in a scenario 
where the logged performance data is too little for the normalise and discounted rewards hyper-parameters to make a statistically 
significant impact.

Furthermore, the ablation studies on the replay and reanalysis hyper-parameters, which resulted in problem dependent outcomes, 
illustrates that a dynamic, online-learning approach is required, since some problems benefit from maintaining many records in the 
12

performance log, while others do not.
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Fig. 3. Critical difference plots for the average ranks of all low-level heuristics compared to three heuristic pool variants of the baseline BHH, across all datasets, runs 
and epochs.

Table 11

BHH variants and their configuration. The heuristic pool configuration gd refers to the heuris-
tic pool configuration where only gradient-based heuristics are included, and mh refers to the 
heuristic pool configuration where only MHs are included.

hyper-parameter considered conclusion

heuristic pool all, gd, mh gd performed best
population 5, 10, 15, 20, 25 smaller is better
credit ibest, pbest, rbest, gbest, symmetric problem dependent
reselection 1, 5, 10, 15, 20 larger is better
replay 1, 5, 10, 15, 20 problem dependent
reanalysis 1, 5, 10, 15, 20 problem dependent
burn in 0, 5, 10, 15, 20 lower is better
normalise false, true no significant difference
discounted rewards false, true no significant difference

9. Conclusion

The research done in this study stems from the difficult and tedious process of selecting the best heuristic for training FFNNs. The 
research presented in this article identified the possibility of using a different approach, referred to as HHs, to automate the heuristic 
selection process.

This research set out to develop a novel high-level heuristic that utilises probability theory in an online learning setting to drive 
the automatic heuristic selection process.

For the experimental group that compares the BHH baseline with a number of low-level heuristics, it was found that the bhh_gd

configuration, which contains only gradient-based heuristics in the heuristic pool, performed the best out of the BHH variants, 
achieving an overall rank of fourth amongst thirteen heuristics that were implemented and executed on fourteen datasets. The bhh_gd

configuration produced performance results close to that of the best low-level heuristics and was statistically outperformed only by 
the top two low-level heuristics. The bhh_all configuration, which contains only gradient-based heuristics and MHs in the heuristic 
pool, achieved an overall rank of sixth, and the bhh_mh configuration, which contains only MHs in the heuristic pool, achieved an 
overall rank of eighth.

Although the bhh_gd configuration produced performance results comparable to the best low-level heuristics, the bhh_all and bhh_mh

configurations produced average results. It was found that, in general, gradient-based heuristics produced the best results, as such, it 
13

is understandable that the bhh_gd yielded the best performance outcomes between the different BHH variants that were implemented. 
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Although the BHH variants were not able to produce better results than the top low-level heuristics, the BHH variants still effectively 
trained the underlying FFNNs and produced good training outcomes overall. It was shown that the bhh_gd configuration produced 
the lowest variance in rank between datasets out of all of the heuristics implemented, giving the BHH the ability to generalise well 
to other problems.

Finally, it was shown that the BHH provides a mechanism whereby prior expert knowledge can be injected, before training 
starts. Future research can exploit this knowledge and provide a significant bias towards heuristics that are known to perform well on 
particular problem types. Future research can also investigate the scalability and effectiveness of the BHH on other model architectures 
such as deep neural networks (DNNs). Furthermore, the selection mechanism of the BHH can be extended to not just select heuristics 
from a heuristic pool, but also different model architectures from a model architecture pool.
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Appendix A. Naïve Bayes

This section aims to dissect the probabilistic model that is presented in Equation (1). The BHH implements a form of Naïve 
Bayes classifier, and thus independence between events can be assumed. The following derived probability mass functions (PMFs) are 
provided as fundamental building blocks to show the mechanism by which the BHH learns.

The independence between events for class label 𝑯 , simply yields the PMF of the Multinomial distribution as presented below:
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(A.1)

where 𝑁𝑘 is a summary variable such that 𝑁𝑘 =
∑𝐼

𝑖=𝑖 11(ℎ𝑖,𝑘), denoting the count of occurrences of the event ℎ𝑖 taking on class 𝑘 in 
𝐼 independent, identical runs.

The independence between events 𝑬, given class label 𝑯 , is denoted by the likelihood of 𝑬, conditional to the occurrence of 
heuristic 𝑘 and model parameter 𝝓 as follows:

𝑃 (𝑬|𝑯 ;𝝓) ∝
𝐼∏
𝑖=1

𝐽∏
𝑗=1

𝐾∏
𝑘=1

𝑃 (𝑒𝑖,𝑗,𝑘|ℎ𝑖,𝑘;𝜙𝑗,𝑘)
∝

𝐼∏
𝑖=1

𝐽∏
𝑗=1

𝐾∏
𝑘=1

𝜙
11(𝑒𝑖,𝑗,𝑘)11(ℎ𝑖,𝑘)
𝑗,𝑘

∝
𝐽∏
𝑗=1

𝐾∏
𝑘=1

𝜙

∑𝐼
𝑖

[
11(𝑒𝑖,𝑗,𝑘)11(ℎ𝑖,𝑘)

]
𝑗,𝑘

∝
𝐽∏ 𝐾∏

𝜙
𝑁𝑗,𝑘

(A.2)
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where 𝑁𝑗,𝑘 is a summary variable such that 𝑁𝑗,𝑘 =
∑𝐼

𝑖=𝑖 11(𝑒𝑖,𝑗,𝑘)11(ℎ𝑖,𝑘), denoting the count of occurrences of the events 𝑒𝑖 taking 
on class 𝑗 and ℎ𝑖 taking on class 𝑘, i.e. the count of occurrences of both entity 𝑗 and heuristic 𝑘 occurring together in 𝐼 independent, 
identical runs.

Finally, the independence between events for the performance criteria 𝑪 , given class label 𝑯 , is denoted by the likelihood of 𝑪 , 
conditional to the occurrence of heuristic 𝑘 and model parameter 𝝍 as given below:

𝑃 (𝑪|𝑯 ;𝝍) ∝
𝐼∏
𝑖=1

𝐾∏
𝑘=1

𝑃 (𝑐𝑖,𝑘|ℎ𝑖,𝑘;𝜓𝑘)
∝

𝐼∏
𝑖=1

𝐾∏
𝑘=1

𝜓
11(𝑐𝑖,𝑘)11(ℎ𝑖,𝑘)
𝑘

(1 −𝜓𝑘)10(𝑐𝑖,𝑘)11(ℎ𝑖,𝑘)

∝
𝐾∏
𝑘=1

𝜓

∑𝐼
𝑖=1 11(𝑐𝑖,𝑘)11(ℎ𝑖,𝑘)

𝑘
(1 −𝜓𝑘)

∑𝐼
𝑖=1 10(𝑐𝑖,𝑘)11(ℎ𝑖,𝑘)

∝
𝐾∏
𝑘=1

𝜓
𝑁1,𝑘
𝑘

(1 −𝜓𝑘)𝑁0,𝑘

∝
𝐾∏
𝑘=1

𝜓
𝑁1,𝑘
𝑘

(1 −𝜓𝑘)(𝑁𝑘−𝑁1,𝑘)

(A.3)

where 𝑁𝑘 is the same summary variable as described for Equation (A.1). 𝑁1,𝑘 is a summary variable such that 𝑁1,𝑘 =∑𝐼

𝑖=1 11(𝑐𝑖,𝑘)11(ℎ𝑖,𝑘), denoting the count of occurrences of the events 𝑐𝑖 taking on a success (i.e. 𝑐𝑖 = 1) and ℎ𝑖 taking on class 𝑘, 
i.e. the count of occurrences of both succeeding in the performance criteria and heuristic 𝑘 occurring together in 𝐼 independent, 
identical runs. Similarly, 𝑁0,𝑘 =𝑁𝑘 −𝑁1,𝑘 denotes the count of occurrences of the events 𝑐𝑖 taking on a failure (i.e. 𝑐𝑖 = 0) and ℎ𝑖
taking on class 𝑘.

Equations (A.1), (A.2) and (A.3) can be substituted into the proportional evaluation of the predictive model as given in Equa-
tion (1), resulting in

𝑃 (𝑯 |𝑬,𝑪 ;𝜽,𝝓,𝝍) ∝ 𝑃 (𝑬|𝑯 ;𝝓)𝑃 (𝑪|𝑯 ;𝝍)𝑃 (𝑯 |𝜽)
∝

[
𝐽∏
𝑗=1

𝐾∏
𝑘=1

𝜙
𝑁𝑗,𝑘

𝑗,𝑘

][
𝐾∏
𝑘=1

𝜓
𝑁1,𝑘
𝑘

(1 −𝜓𝑘)(𝑁𝑘−𝑁1,𝑘)

][
𝐾∏
𝑘=1

𝜃
𝑁𝑘
𝑘

]
(A.4)

Consider the practical implementation of the predictive model as shown in Equation (A.4). Computationally, the equation pre-
sented in Equation (A.4) will underflow on a real computer if the resulting probabilities are very small.

A.1. Numerical stability

When Equation (A.4) is evaluated, the numerical stability is shown to underflow if the resulting probabilities from its parts are 
very small. Multiplication of multiple fractional parameters leads to an even smaller fractional number. Probabilities might be very 
low at some points during training. A solution to the aforementioned problem is to apply the log-sum-exp trick. The transformation 
of Equation (A.4) using the log-sum-exp trick is given as

𝐿𝑆𝐸(𝑃 (ℎ𝑘|𝑒𝑗 , 𝑐1;𝜽,𝝓,𝝍)) = ln(exp(𝜙𝑗,𝑘) + exp(𝜓𝑘) + exp(𝜃𝑘)) (A.5)
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