
Information Sciences 686 (2025) 121363

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Training feedforward neural networks with Bayesian

hyper-heuristics ✩

A.N. Schreuder a,∗, A.S. Bosman a, A.P. Engelbrecht b,c, C.W. Cleghorn d

a University of Pretoria, Pretoria, Gauteng, South Africa
b Stellenbosch University, Stellenbosch, Western Cape, South Africa
c Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mishref, Kuwait
d University of the Witwatersrand, Johannesburg, Gauteng, South Africa

A R T I C L E I N F O A B S T R A C T

Keywords:

Hyper-heuristics
Meta-learning
Feedforward neural networks
Supervised learning
Bayesian statistics

The process of training feedforward neural networks (FFNNs) can benefit from an automated process
where the best heuristic to train the network is sought out automatically by means of a high-
level probabilistic-based heuristic. This research introduces a novel population-based Bayesian
hyper-heuristic (BHH) that is used to train feedforward neural networks (FFNNs). The performance
of the BHH is compared to that of ten popular low-level heuristics, each with different search
behaviours. The chosen heuristic pool consists of classic gradient-based heuristics as well as meta-

heuristics (MHs). The empirical process is executed on fourteen datasets consisting of classification
and regression problems with varying characteristics. The BHH is shown to be able to train FFNNs
well and provide an automated method for finding the best heuristic to train the FFNNs at various
stages of the training process.

1. Introduction

A popular field of focus for studying artificial neural networks (ANNs) is the process by which these models are trained. ANNs are
trained by optimisation algorithms known as heuristics. Many different heuristics have been developed and used to train ANNs [1].
Each heuristic has different search behaviours, characteristics, strengths and weaknesses. It is necessary to find the best heuristic to
train ANNs in order to yield optimal results. This process is often non-trivial and time-consuming. Selection of the best heuristic to
train ANNs is often problem specific [2].

A recent suggestion related to the field of meta-learning is to dynamically select and/or adjust the heuristic used throughout
the training process. This approach focuses on the hybridisation of learning paradigms. One such form of hybridisation of learning
paradigms is that of hybridisation of different heuristics as they are applied to some optimisation problem [3]. These methods are
referred to as hyper-heuristics (HHs) and focus on finding the best heuristic in heuristic space to solve a specific problem.

In the general context of optimisation, many different types of HHs have been implemented and applied to many different problems
[3]. However, research on the application of HHs in the context of ANN training is scarce. Nel [4] provides some of the first research
in this field, applying a HH to feedforward neural network (FFNN) training.

✩ It is recommended that the article be viewed/printed in colour.

* Corresponding author.

E-mail addresses: an.schreuder@up.ac.za (A.N. Schreuder), annar@cs.up.ac.za (A.S. Bosman), engel@sun.ac.za (A.P. Engelbrecht),
Available online 21 August 2024
0020-0255/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

christopher.cleghorn@wits.ac.za (C.W. Cleghorn).

https://doi.org/10.1016/j.ins.2024.121363
Received 9 February 2023; Received in revised form 15 August 2024; Accepted 15 August 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ins
mailto:an.schreuder@up.ac.za
mailto:annar@cs.up.ac.za
mailto:engel@sun.ac.za
mailto:christopher.cleghorn@wits.ac.za
https://doi.org/10.1016/j.ins.2024.121363
https://doi.org/10.1016/j.ins.2024.121363
http://creativecommons.org/licenses/by/4.0/

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

This research takes a particular interest in developing a population-based, selection HH that makes use of probability theory and
Bayesian statistical concepts to guide the heuristic selection process. This paper presents a novel Bayesian hyper-heuristic (BHH), a
new high-level heuristic that utilises a statistical approach, referred to as Bayesian analysis, which combines prior information with
new evidence to the parameters of a heuristic selection probability distribution.

The general concept of the BHH is summarised as follows: the BHH implements a high-level heuristic selection mechanism that
learns to select the best heuristic from a pool of low-level heuristics. These low-level heuristics are applied to a population of entities,
each implementing a candidate solution to a FFNN. The intent of the BHH is to optimise both the underlying FFNN and the FFNN
training process. The BHH does so by learning the probability that a given heuristic will perform well at a given stage in the FFNN
training process. These probabilities are then used as heuristic selection probabilities in the next step of the training process.

The update of selection probabilities is guided by Bayesian analysis, where prior probabilities are updated with new evidence
to form posterior probabilities. The performance of each heuristic-entity combination is logged, which captures the efficacy of each
heuristic applied to their respective entity, at different stages of the training process. The logged performance data acts as new evidence
for the Bayesian analysis process. The BHH also incorporates a novel proxied heuristic update step, where various components of
the update step for low-level heuristics are sourced from other heuristics in the pool of heuristics, when the direct application of a
heuristic is not feasible/possible.

The selection mechanism implemented by the BHH is different from the multialgorithm, genetically adaptive multiobjective (AMAL-
GAM) and bi-objective hyperheuristic training algorithm (BOHTA) methods used by Nel [4], as well as the hyper-heuristic Bayesian
optimisation algorithm (HHBOA) proposed by Oliva and Martins [5]. The key differences include that the BHH does not follow an evo-
lutionary approach to the selected low-level heuristics. As such the population does not generate offspring, but rather reuses entities
in the population. Furthermore, the BHH implements a discrete credit assignment mechanism, not making use of pareto fronts as in
the AMALGAM and BOHTA methods.

Although this research takes a particular interest in training FFNNs, the BHH is not limited to these types of models and can
generally be applied to any ANN as long as the ANN can be trained by all of the low-level heuristics. Experimentation with other
ANN architectures besides FFNNs is left for future research.

The remainder of this article is structured as follows: Section 2 provides background information on ANNs. Section 3 provides
details on various types of heuristics that have been used to train FFNNs. Section 4 presents background information on HHs and
meta-learning. Section 5 presents background information on probability theory. Section 6 presents the developed BHH. Section 7
presents a detailed description of the empirical process and the setup of each experiment. Section 8 provides and discusses the results
of the empirical study. Section 9 summarises the research that is done along with a brief overview of the findings.

2. Artificial neural networks

This research focuses on a particular type of ANN, referred to as feedforward neural networks (FFNNs). FFNNs were the first and
simplest type of ANNs developed [6] and implement an architecture consisting of input, hidden and output layers by arranging
them in sequential order. Furthermore, FFNNs implement fully connected topologies, where each artificial neuron (AN) in one layer
is connected to all the ANs in the next, without any cycles. In FFNNs, information moves forward, in one direction, from the input
nodes, through the hidden nodes and finally to the output nodes.

Training is the process whereby the weights of the FFNN are systematically changed with the aim of improving the performance of
the FFNN. Finding the optimal weights that produce the best performance on a given task is an optimisation problem. The optimisation
algorithm used to find the optimal weights is referred to as a heuristic. Heuristics search for possible solutions in the solution-space
and make use of information from the search space to guide to process.

During the training process, the FFNN is exposed to data while trying to produce some target outcome. The degree to which the
produced outcome differs from the target outcome is referred to as loss. Since training of FFNNs is an optimisation problem, the goal
of the training process is to minimise the loss. The loss is calculated using an error function.

3. Heuristics

A heuristic refers to an algorithmic search technique that serves as a guide to a search process where good solutions to an
optimisation problem are being sought out. Many different techniques have been used to train FFNNs [7]. At the time of writing, the
majority of work that is published on the training of FFNNs involves the use of gradient-based techniques [4].

Gradient-based heuristics are optimisation techniques that make use of derivatives obtained from evaluating the ANN error func-
tion. In the context of supervised learning, loss functions produce a scalar value that represents the error between the output of the
ANN and the desired output. When using gradient descent (GD) to train ANNs, the gradients of the loss function is used to adjust the
weights of the ANN in order to minimise the error [8].

There are many variants of gradient-based heuristics. However, they all fundamentally apply the same generic GD framework that
propagates the error signal backwards through the ANN. This algorithm is known as backpropagation (BP).

The simplest type of GD algorithm is referred to as stochastic gradient descent (SGD), which implements a gradient-based weight
update step for each training pattern. In the context of this research, the implementation of SGD refers to the mini-batch training
implementation of GD, where a small batch of training patterns are fed to the FFNN at once and the error function is aggregated
2

across all training patterns.

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

Alternative variants have been proposed that lead to better control over the convergence characteristics of SGD. This research
focuses on a number of these variants that include momentum (Momentum) [9], Nesterov accelerated gradients (NAG) [10], adaptive
gradients (Adagrad) [11], Adadelta [12], root mean squared error propagation (RMSProp) [13] and adaptive moment estimation (Adam)
[7].

Gradient-based heuristics are sensitive to the problem that they are applied to, with hyper-parameter selection often dominating
the research focus [14]. Blum and Roli [15] mention that since the 1980s, a new kind of approximate algorithm has emerged which
tries to combine basic heuristic methods in higher level frameworks aimed at efficiently and effectively exploring a search space.
These methods are referred to as MHs.

The biggest difference between MHs and gradient-based heuristics is that MHs make use of meta-information obtained as a result
of evaluating the FFNN during training and is not limited to information about the search space [15]. This also means that MHs do not
necessarily require the error function to be differentiable. Blum and Roli [15] provide advantages of MHs that include the following:
they are easy to implement, they are problem independent and do not require problem-specific knowledge, and they are generally
designed to find global optima, while gradient-based approaches can get stuck in local optima more often. Similar to gradient-based
heuristics, a number of different meta-heuristics have been used to successfully train FFNNs [1,16]. This research takes a particular
interest in population-based MHs that have been used to train FFNNs. These include particle swarm optimisation (PSO) [17], differential
evolution (DE) [18], and genetic algorithms (GAs) [19].

4. Hyper-heuristics

Burke et al. [20] define HHs as search methods or learning mechanism for selecting or generating heuristics to solve computational
search problems. Burke et al. [21] mention that a HH is a high-level heuristic approach that, given a particular problem instance and
a number of low-level heuristics, can select and apply an appropriate low-level heuristic at each decision point. HHs implement a
form of meta-learning that is concerned with the selection of the best heuristic from a pool of heuristics to solve a given problem. It
can be said that HHs are concerned with finding the best heuristic in heuristic space, while the underlying low-level heuristics find
solutions in the feasible search/solution space.

Burke et al. [20] propose a classification scheme used to classify HHs. According to the proposed classification scheme, HHs are
classified in two categories. These include the source of feedback used during learning and the nature of the heuristic search space. For
the category that involves the source of feedback, HHs can be classified as either no learning, online learning or offline learning. For the
category that involves the nature of the heuristic search space, HHs can be classified as either heuristic selection or heuristic generation.
Further distinction is made between construction of heuristics and perturbation of heuristics.

In the general context of optimisation, many different types of HHs have been implemented and applied to many different problems.
Some notable examples include [20,22,23]. Research on the application of HHs in the context of FFNN training is still scarce. Nel [4]
provides some of the first research in this field, applying BOHTA, a novel adaptation of an evolutionary-based HH, known as the
AMALGAM HH [24], to FFNN training. Furthermore, Oliva and Martins [5] provide HHBOA, the first use of Bayesian optimisation in
a HH context. The method proposed by Oliva and Martins [5] uses a Bayesian selection operator to evolve combinations of low-level
heuristics while looking for good problem solutions to a benchmark of optimisation functions, but does not apply a HH to the training
of FFNNs.

This research takes a particular interest in a population-based, selection approach for HHs, with the particular intent of training
FFNNs. In the context of population-based HHs, an entity pool exists that represents a pool of candidate solutions to the given problem.
Each entity in the entity pool is assigned its own low-level heuristic from the heuristic pool. The selection of the best heuristic to
apply to a candidate solution is based on the performance of the heuristic relative to that particular candidate solution at a particular
point in the search process. Selection methods often make use of probabilistic approaches.

5. Probability

Bayesian statistics describe the probability of an event in terms of some belief, based on previous knowledge of the event and the
conditions under which the event happened [25]. Bayes’ theorem expresses how a degree of belief, expressed as a probability, should
rationally change to account for the availability of related evidence.

One of the many applications of Bayes’ theorem is to do statistical inference. Like FFNNs, Bayesian models need to be trained, a
process known as Bayesian analysis. Bayesian analysis is the process by which prior beliefs are updated as a result of observing new
data/evidence.

Bayesian analysis utilises the concept of conjugate priors. Wackerly et al. [26] state that conjugate priors are prior probability
distributions that result in posterior distributions that are of the same functional form as the prior, but with different parameter
values. The conjugate prior to a Bernoulli probability distribution is the Beta probability distribution and the conjugate prior to a
categorical and multinomial probability distribution is the Dirichlet probability distribution [26].

6. Bayesian hyper-heuristics

This section presents the novel BHH and is structured as follows: Section 6.1 presents an overview of the BHH, Sections 6.2 - 6.7
provide details on the most important components of the BHH, Section 6.8 describes the optimisation step implemented by the BHH
3

and Section 6.9 discusses the hyper-parameters used by the BHH.

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

6.1. Overview

According to the classification scheme for HHs by Burke et al. [20], the BHH is a population-based, meta-hyper-heuristic that
utilises selection and perturbation of low-level heuristics in an online learning fashion.

The BHH implements a high-level heuristic selection mechanism that learns to select the best heuristic from a pool of low-level
heuristics. These low-level heuristics are applied to a population of entities, each implementing a candidate solution to a FFNN. The
intent of the BHH is to optimise both the underlying FFNN and the FFNN training process. The BHH does so by learning the probability
that a given heuristic will perform well at a given stage in the FFNN training process. These probabilities are then used as heuristic
selection probabilities in the next step of the training process.

The update of selection probabilities is guided by Bayesian analysis, where prior probabilities are updated with new evidence
to form posterior probabilities. The performance of each heuristic-entity combination is logged, which captures the efficacy of each
heuristic applied to their respective entity, at different stages of the training process. The logged performance data acts as new evidence
for the Bayesian analysis process. The BHH also incorporates a novel proxied heuristic update step, where various components of
the update step for low-level heuristics are sourced from other heuristics in the pool of heuristics, when the direct application of a
heuristic is not feasible/possible.

Fig. 1 provides an illustration of the high-level architecture of the BHH. Algorithm 1 provides the high level pseudo-code imple-
mentation of the BHH. Discussions follow on the most important components of the BHH.

Algorithm 1 The pseudo-code for the implementation of the Bayesian hyper-heuristic (BHH).
step ← 0
select initial heuristics
initialise population and entities
evaluate entities’ initial position
update population state
while stopping condition not met do

for all entities in entity pool do

if selected heuristic is gradient-based then

get gradients
end if

apply low-level heuristic and proxy operations
update population state
log performance metrics to performance log
if step < burn-in window size then

select heuristic
else

if step % reanalysis interval = 0 then

apply Bayesian analysis
end if

if step % reselection interval = 0 then

select heuristic
end if

if step < replay window size then

prune performance log
end if

end if

end for

step ← step + 1
end while

6.2. Heuristic pool

Generally speaking, the heuristic pool is a collection of low-level heuristics under consideration by the BHH. The heuristic pool
contains the set of low-level heuristics that, together with their performance information, make up the heuristic space. Importantly,
the heuristic pool must consist of a diverse set of low-level heuristics with varying capabilities. This research takes an interest in
including both gradient-based heuristics as well as MHs in the heuristic pool. This approach is referred to as a multi-method approach.

6.3. Proxies

Heuristics often maintain a set of parameters that are used to control the behaviour of the heuristic. These parameters are refered
to as heuristic state. The concept of proxies arises from the sparsity of state as maintained by different heuristics. Since heuristics
maintain (possibly) different states, there is an uncertainty of state transition when switching between heuristics. A solution to state
indifference is to proxy heuristic state update operations. State is then maintained in two parts: primary and proxied state. Primary
state refers to the state that is originally maintained by a heuristic. Proxied state refers to the state that is not directly maintained by
the heuristic, but can be updated by outsourcing the required state update operation to another heuristic. The BHH thus incorporates
4

a mapping of proxied state update operations as given in the example in Table 1.

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.
Fig. 1. An illustration of the architecture and high level components of the Bayesian hyper-heuristic (BHH).
5

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

Table 1

An example of a mapping of proxied state
update operation maintained by the BHH.

State Parameter

1 2 3

Heuristic

A n/a B n/a
B n/a n/a A
C n/a B A

From the example given in Table 1, when heuristic A is selected, it will outsource state update operations from heuristic B for state
parameter 2. Heuristic B will outsource from heuristic A for state parameter 3. Finally, heuristic C will outsource from heuristic A
and B for state parameters 2 and 3 respectively. In this way, all heuristics maintain all the state parameters.

6.4. Entity pool

The entity pool refers to a collection or population of entities that each represent a candidate solution to the underlying FFNN
being trained. The BHH selects from the heuristic pool a low-level heuristic to be applied to an individual entity. The outcome of this
selection process is a mapping table that tracks which heuristic has been selected for which entity. These heuristic-entity combinations
are applied to the underlying FFNN. The BHH tracks the performance of each of these combinations throughout the training process
in a performance log.

Entities represent candidate solutions to the model’s trainable parameters (weights) and other heuristic-specific state parameters.
These state parameters are referred to as local state. Entities are treated as physical particles in a hyper-dimensional search environ-
ment. Entities model concepts from physics. For example, the candidate solution is represented as the entity’s position. The velocity
and acceleration is then analogous to the gradient and momentum of the entity respectfully [27]. Examples of entity state parameters,
as derived from various low-level heuristics, include entity position, velocity, gradient, position delta, first and second moments of
the gradient, the loss, personal best positions, losses, and so on. The entity state parameters are updated by the associated heuristic.

The population state refers to a collection of parameters that are shared between the entities in the population. Population state
is also referred to as global state and represents the population’s memory. The population state generally contains state parameters
that are of importance to multiple heuristics, and usually tracks the state of the population and not the state of individual heuristics.
Some examples of population state that can arise from different heuristics include the population of entities themselves, the global
best entity found so far, the overall best loss achieved thus far, and so on.

6.5. Performance log

Heuristic selection probability is calculated based on heuristic-entity performance over time. Evidence of heuristic-entity perfor-
mance is thus required for the BHH to learn. Historical heuristic-entity performance outcomes are stored in a performance log. The
performance log tracks information such as the current step, selected heuristic, associated entity, the loss achieved and so on. Since
the performance log can become very big, only a sliding window of the performance history is maintained at each step in the learning
process. The sliding window is also referred to as a replay window/buffer.

6.6. Credit assignment strategy

The credit assignment strategy is a mechanism that assigns a discrete credit indicator to heuristics that perform well, based on
their performance metrics such as loss. The credit assignment strategy implements a component of the “move acceptance” process as
proposed by Özcan et al. [28] and addresses the credit assignment problem as discussed by Burke et al. [20]. A good credit assignment
strategy will correctly allocate credit to the appropriate heuristic-entity combination. This research implements the following credit
assignment strategies to choose from: ibest (iteration best), pbest (personal best), gbest (global best), rbest (replay window best), and
symmetric, where credit is assigned to all entity-heuristic combinations, regardless of their performance.

6.7. Selection mechanism

The BHH implements a probabilistic predictive model based on the fundamentals of the Naïve Bayes algorithm. The BHH thus
distinguishes between the following events: 𝑯 , the event of observing heuristics, 𝑬, the event of observing entities, and 𝑪 , the event
of observing credit assignments that indicate that the credit assignment performance criteria are met. By Bayes’ theorem, the selection
mechanism implemented by the BHH is given as

𝑃 (𝑯 |𝑬,𝑪 ;𝜽,𝝓,𝝍) ∝ 𝑃 (𝑬|𝑯 ;𝝓)𝑃 (𝑪|𝑯 ;𝝍)𝑃 (𝑯 |𝜽) (1)

The predictive model thus models the proportional probability of the event (selection of) heuristic 𝑯 , given allocation to entity 𝑬
and credit requirement 𝑪 , parameterised by sampled 𝜽 ∼𝐷𝑖𝑟(𝜶; 𝐾), 𝝓 ∼𝐷𝑖𝑟(𝜷; 𝐾)𝐽 and 𝝍 ∼𝐵𝑒𝑡𝑎(𝛾1, 𝛾0). In the aforementioned, 𝐾
6

is the heuristic pool size and 𝐽 is the entity pool size. The parameters 𝜶, 𝜷 , 𝛾1 and 𝛾0 are referred to as concentration parameters. The

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

Table 2

The BHH baseline configuration as it is used in the empirical study.

heuristic pool population burn in credit reselection replay reanalysis normalise discounted rewards

all 5 0 ibest 10 10 10 false false

concentration parameters are used to parameterise the prior probability distributions. Appendix A provides mathematical derivations
of the predictive model.

6.8. Optimisation step

The intent of the BHH is to gather evidence that can be used to update prior beliefs about which heuristics perform well during
training. These beliefs are represented by the concentration parameters 𝜶, 𝜷 , 𝛾1 and 𝛾0. A change in prior beliefs is represented by a
change in these concentration parameters. Specifically, it can be said that the optimisation process implemented by the BHH updates
pseudo counts of events that are observed in the performance logs. These pseudo counts track the occurrence of a heuristic, an entity,
and resulting performance of these two elements. Through the credit assignment strategy, these pseudo counts are biased towards
entity-heuristic combinations that meet performance requirements and yield credit allocations.

Generally, there are two different techniques that are used to train Naïve Bayes classifiers. The frequentist approach implements
maximum likelihood estimation (MLE) and the Bayesian approach implements maximum a posteriori estimation (MAP).

6.8.1. Maximum a posteriori estimation

MAP is an approach to optimise the values for �̂�𝑘, �̂�𝑗,𝑘 and �̂�𝑘 by optimising the parameters of their probability distributions. This
process is referred to as Bayesian analysis. Bayesian analysis makes use of the posterior probability distribution. The concentration
update operations yielded by MAP, are given as follows:

𝛼𝑘(𝑡+ 1) =𝑁𝑘 + 𝛼𝑘(𝑡) (2)

𝛽𝑗,𝑘(𝑡+ 1) =𝑁𝑗,𝑘 + 𝛽𝑗,𝑘(𝑡) (3)

𝛾1,𝑘(𝑡+ 1) =𝑁1,𝑘 + 𝛾1,𝑘(𝑡) (4)

𝛾2,𝑘(𝑡+ 1) =𝑁0,𝑘 + 𝛾2,𝑘(𝑡) (5)

where 𝑁𝑘 is a summary variable denoting the count of occurrences of heuristic 𝑘, 𝑁𝑗 is a summary variable denoting the count of
occurrences of entity 𝑗, 𝑁𝑗,𝑘 is a summary variable denoting the count of occurrences of heuristic 𝑘 for entity 𝑗, 𝑁1,𝑘 and 𝑁0,𝑘 are
summary variables denoting the count of occurrences where heuristic 𝑘 meets performance requirements and where heuristic 𝑘 does
not not meet performance requirements.

It can be said that the BHH implements a Gaussian process [29]. Since the reselection of heuristics happens at regular intervals,
the outcome of a selection in one iteration may influence the outcome of another in the next iteration, making the implementation
of the BHH a hidden Markov model (HMM) [30].

6.9. Hyper-parameters

The following hyper-parameters are implemented by the BHH: the heuristic pool configures the type of heuristics included in the
heuristic pool, the population size specifies the number of entities in the entity pool, the credit assignment strategy specifies which credit
assignment strategy to use, the reselection interval determines the frequency of heuristic reselection, the replay window size determines
the maximum size of the performance log, the reanalysis interval determines the frequency at which Bayesian analysis is applied, the
burn in window size determines the size of an initial window where experience is simply gathered without reanalysis, and finally, the
discounted rewards and normalisation flags toggle scaling modifiers on values assigned by the credit assignment strategies, backwards
in the performance log.

7. Methodology

This section provides the details of the implementation of the empirical process. At a high level the experimental procedure consist
of a comparison between the BHH and standalone low-level heuristics. A number of datasets, models and heuristics are specified.
Throughout the empirical process, a BHH baseline configuration is used.

7.1. BHH baseline

The BHH baseline is a name given to a specific configuration of the BHH which has been found to provide a reasonable baseline
performance. The baseline configuration is used as the cornerstone configuration from which all other heuristics and their configu-
rations are evaluated. The BHH baseline configuration is given in Table 2. In Table 2, the heuristic pool configuration, all, refers to
7

a configuration where the heuristic pool contains all the low-level heuristics, including all gradient-based heuristics and MHs.

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

Table 3

Low-level heuristics and their hyper-parameter configurations.

heuristic configuration value citation

sgd learning rate 0.1 (0.01) [10]
momentum learning rate 0.1 (0.01) [10]

momentum 0.9
nag learning rate 0.1 (0.01) [10]

momentum 0.9
adagrad learning rate 0.1 (0.01) [11]

epsilon 1E-07
rmsprop learning rate 0.1 (0.01) [13]

rho 0.95
epsilon 1E-07

adadelta learning rate 1.0 (0.95) [12]
rho 0.95
epsilon 1E-07

adam learning rate 0.1 (0.01) [7]
beta1 0.9
beta2 0.999
epsilon 1E-07

pso population size 10 [32]
learning rate 1.0 (0.9)
inertia weight (w) 0.729844
cognitive control (c1) 1.49618
social control (c2) 1.49618
velocity clip min -1.0
velocity clip max 1.0

de population size 10 [33]
selection strategy best
xo strategy exp
recombination probability 0.9 (0.1)
beta 2.0 (0.1)

ga population size 10 [34]
selection strategy rand
xo strategy bin
mutation rate 0.2 (0.05)

A population size of 5 is chosen as it empirically and consistently provides good results. The population size has a lower bound of
4, which is the highest, minimum number of entities required by any low-level heuristic used in this research. Furthermore, ablation
studies [31] have shown that a smaller population size is generally better, since the Bayesian analysis process implemented by the
BHH has less, but more concentrated performance information from which it has to learn.

7.2. BHH vs. low-level heuristics

For the standalone heuristics experimental group, a number of low-level heuristics are used along with their specified hyper-
parameters. Each of these standalone low-level heuristics is compared to that of the BHH baseline configuration, across all datasets.
The intent of the standalone heuristics experimental group is to determine if the BHH baseline configuration can generalise to multiple
problems in comparison to individual low-level heuristics.

Additional to the BHH baseline configuration, two more BHH configurations are included. These include BHH configurations
where the heuristic pool only makes use of gradient-based heuristics, and a configuration where the heuristic pool only makes use
of MHs. The intent behind the inclusion of these configurations is to determine the effectiveness of multi-method approaches in the
heuristic pool applied to training FFNNs.

7.3. Heuristics

Table 3 contains a list of all the standalone, low-level heuristics that are used as well as their hyper-parameter configurations.
In some cases, parameters are changed dynamically throughout the training process using a decay schedule. Note from Table 3 that
values that are configured to make use of a decay schedule are presented with the initial value first and the decay rate in brackets
next to it.

The mapping of proxied heuristic state update operations implemented by the BHH in the empirical process is given in Fig. 2.
In Fig. 2, cells containing x indicate that the associated heuristic implements that particular state parameter explicitly, and cells
8

containing o indicate that the state parameter is implicitly implemented as part of the BHH algorithm.

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

Fig. 2. Mapping of proxied heuristic state update operations as implemented by the BHH.

Table 4

Classification datasets.

dataset output types attributes classes instances batch steps citation

iris multivariate real 4 3 150 16 10 [36]
car multivariate categorical 6 4 1728 128 14 [37]
abalone multivariate categorical, integer, real 8 28 4177 256 17 [38]
wine quality multivariate real 12 11 4898 256 20 [39]
mushroom multivariate categorical 22 2 8214 512 17 [40]
bank multivariate real 17 2 45211 512 89 [41]
diabetic multivariate integer 55 3 100000 1024 98 [42]

Table 5

Regression datasets.

dataset output types attributes instances batch steps citation

fish toxicity multivariate real 7 908 64 15 [43]
housing univariate real 13 506 32 16 [44]
forest fires multivariate real 13 517 32 17 [45]
student performance multivariate integer 33 649 32 21 [46]
parkinsons multivariate integer, real 26 5875 256 23 [47]
air quality multivariate, time series real 15 9358 256 37 [48]
bike univariate integer, real 16 17389 256 68 [49]

7.4. Datasets

In the context of training FFNNs, the underlying models are trained across a number of datasets. All the datasets used in the
empirical process originate from the UCI Machine Learning Repository [35]. Datasets are grouped by problem type and include seven
classification and seven regression datasets. The details around the datasets used can be found in Tables 4 and 5. Each dataset is split
into a training set comprising 80% of the data, and a test set comprising 20% of the data.

A number of classification datasets contain an unbalanced representation of classes. This work does not apply mechanisms to cater
9

for class balancing, in order to eliminate as many variables and factors in the empirical process as possible.

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

Table 6

Model configurations.

dataset inputs hidden output biases parameters topology l1 activation l2 activation

fish toxicity 6 3 1 yes 25 dense LReLU (𝛼 = 0.3) sigmoid
iris 4 5 3 yes 43 dense LReLU (𝛼 = 0.3) softmax
air quality 12 8 1 yes 113 dense LReLU (𝛼 = 0.3) sigmoid
housing 13 8 1 yes 121 dense LReLU (𝛼 = 0.3) sigmoid
wine quality 13 10 7 yes 217 dense LReLU (𝛼 = 0.3) softmax
parkinsons 21 10 1 yes 231 dense LReLU (𝛼 = 0.3) sigmoid
car 21 10 4 yes 264 dense LReLU (𝛼 = 0.3) softmax
forest fires 43 16 1 yes 721 dense LReLU (𝛼 = 0.3) sigmoid
abalone 10 36 28 yes 1432 dense LReLU (𝛼 = 0.3) softmax
bank 51 32 1 yes 1697 dense LReLU (𝛼 = 0.3) softmax
bike 61 32 1 yes 2017 dense LReLU (𝛼 = 0.3) sigmoid
student performance 99 32 1 yes 3233 dense LReLU (𝛼 = 0.3) sigmoid
adult 108 64 1 yes 7041 dense LReLU (𝛼 = 0.3) softmax
mushroom 117 64 1 yes 7617 dense LReLU (𝛼 = 0.3) softmax
diabetic 2369 32 3 yes 75939 dense LReLU (𝛼 = 0.3) softmax

7.5. Models

All models trained in the empirical process follow implementations of shallow FFNNs with only one hidden layer. The number
of hidden units used were determined empirically. Weights are initialised by means of Glorot uniform sampling. The models and their
configuration, as it is used for each dataset, are given in Table 6.

7.6. Performance measures

Binary cross entropy (BinXE) is used for classification problems with two classes and sparse categorical cross entropy (SparseCatXE) is
used for classification problems with more than two classes. For the classification problems, accuracy is also measured. For regression
problems, the mean squared error (MSE) is used as a performance metric. After training has completed, the average rank, based on test
loss, for all configurations, is calculated at each mini-batch step.

7.7. Statistical analysis

Each experiment and configuration is trained for a maximum of 30 epochs and is repeated over 30 independent runs, for each of
the datasets. No early-stopping mechanism is used. Statistical analysis is executed on the results from the test datasets. An average
rank is calculated across all 30 runs, for both experimental groups and configurations, at each step, for every epoch of training.

The Shapiro-Wilk test for normality (𝛼 = 0.001) is used to determine if the results are normally distributed. The Levene’s test for
equality of variance (𝛼 = 0.001) is used. For experiments with three or more configurations, the ANOVA statistical test (𝛼 = 0.001) is
used. The Kruskal-Wallis ranked non-parametric test for statistical significance (𝛼 = 0.001) is used for cases where data is not normally
distributed. Finally, a post-hoc Tukey honest significant difference test (𝛼 = 0.001) is used from which significant ranking is retrieved.
Descriptive and critical difference plots are then retrieved from these results to provide visual aid.

7.8. Implementation

All implementations are done from first principles in Python 3.9 using Tensorflow 2.7 and Tensorflow Probability 0.15.0. The
source code and data for this research is provided and made public at https://github .com /arneschreuder /masters.

8. Results

This section provides the results of the empirical process that has been conducted. Detailed discussions follow on the outcomes of
each experiment.

8.1. Overview

This section provides a brief discussion on the general outcome of the empirical process as a whole and identifies some key aspects
to be kept in mind when interpreting the results of the experiments.

Firstly, the BHH applies a form of online learning. As such, the BHH applies the learning mechanism during training in a single
run of the training process. The training process is not repeated iteratively as is the case with some HHs.

Most of the training progress is observed to occur within the first five epochs. As a result, the BHH should apply most learning at the
early stages of the training process. After five epochs, the training of most of the underlying FFNNs converges and little performance
gain is observed after that point. Since this empirical process does not apply early stopping of the training process, the BHH will
10

continue to explore the heuristic space beyond the five epoch mark.

https://github.com/arneschreuder/masters

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

Table 7

Empirical results showing normalised average rank and statistics for the top six low-level heuristics and three heuristic pool variants of the BHH baseline
configuration, across multiple datasets, for all independent runs and epochs.

BHH vs. Low-Level Heuristics - Average Rank (Part A)

dataset adagrad adam rmsprop bhh_gd nag bhh_all

abalone 2,2215 (±1,591) 2,3989 (±1,887) 4,6172 (±2,65) 4,7032 (±2,108) 4,2731 (±1,542) 5,9376 (±2,399)
air_quality 3,6409 (±2,259) 5,4312 (±2,62) 3,4452 (±2,57) 5,0817 (±2,762) 3,8194 (±2,229) 6,686 (±3,061)
bank 2,5495 (±1,598) 2,0796 (±1,587) 3,4645 (±2,209) 4,8828 (±1,702) 4,2871 (±1,732) 6,2419 (±2,157)
bike 1,7204 (±1,384) 3,6925 (±4,004) 6,2624 (±4,58) 3,8441 (±1,398) 6,4516 (±1,02) 4,2151 (±1,361)
car 4,7634 (±0,938) 1,6226 (±1,405) 2,3269 (±1,409) 3,3473 (±1,35) 6,0785 (±0,799) 3,5624 (±1,315)
diabetic 2,7796 (±1,659) 7,1484 (±2,227) 6,7376 (±2,577) 5,2269 (±2,186) 1,8118 (±1,413) 9,3968 (±3,022)
fish_toxicity 4,2645 (±2,614) 3,6022 (±2,445) 3,5946 (±2,329) 5,4118 (±2,665) 5,8914 (±2,629) 5,829 (±2,856)
forest_fires 5,1559 (±2,922) 4,2688 (±2,984) 5,0355 (±3,143) 4,6935 (±2,759) 5,6882 (±2,215) 5,4839 (±3,107)
housing 3,4484 (±2,025) 3,3344 (±1,819) 3,6946 (±2,166) 4,4742 (±2,312) 4,6839 (±2,658) 4,3763 (±2,438)
iris 6,3946 (±1,6) 3,5839 (±2,511) 2,6968 (±1,912) 4,7473 (±2,275) 3,5548 (±2,125) 5,2204 (±3,041)
mushroom 4,4656 (±1,053) 2,1344 (±1,883) 2,4656 (±1,359) 3,4484 (±1,602) 6,3323 (±0,891) 3,6688 (±2,469)
parkinsons 2,4677 (±1,497) 2,2333 (±1,742) 3,5656 (±2,492) 4,572 (±1,934) 7,5355 (±1,44) 4,3839 (±1,861)
student_performance 2,5634 (±1,912) 11,3978 (±2,178) 12,4312 (±1,34) 5,6624 (±3,57) 3,1935 (±2,12) 5,8634 (±3,159)
wine_quality 3,2806 (±1,931) 2,1118 (±1,666) 3,6301 (±1,731) 4,7882 (±2,105) 4,1505 (±1,916) 5,1925 (±1,951)

avg rank 3,5512 (±2,25) 3,9314 (±3,423) 4,5691 (±3,517) 4,6346 (±2,364) 4,8394 (±2,384) 5,4327 (±2,9)

normalised avg rank 1 2 3 4 5 6

The BHH does not implement a type of move-acceptance strategy where the application of a heuristic to an entity is only accepted
if it leads to a better solution. In some cases, the BHH then selects heuristics that yield sub-optimal results, but is shown to mostly
return to optimal solutions over a number of steps.

Given the stochastic nature of the heuristic selection mechanism, sufficient samples of the performance of each heuristics-entity
combination in the performance log are required for the BHH to learn. This requirement is further strengthened by the Bayesian
nature of the probabilistic model implemented by the BHH. The probabilistic model implements probability distributions of heuristic
selection probabilities and as such, insufficient samples in the performance log could render a form of random search.

By default, the BHH baseline configuration has a reanalysis interval of 10, and a replay window size of 10, which is a small
window to learn from. Despite the small reanalysis interval and the small replay window size, it should be observed that the BHH
exploits small performance biases and finds small performance gains throughout.

8.2. BHH vs. low-level heuristics

Tables 7 and 8 provide the empirical results in ranked format. The performance rank is calculated as the average rank produced
by each heuristic, across all datasets, for all independent runs and all epochs. The average rank across all epochs produces a view on
the performance of the heuristics as it relates to the entire training process. Finally, a normalised average rank is provided for the
overall performance of all heuristics at the bottom of the table. The normalised average rank is calculated as a discrete normalisation
of the average rank achieved across all datasets, for all independent runs and epochs.

Tables 7 and 8 show that the bhh_gd configuration produced the best results of the BHH variants and managed to perform well,
producing generally good results across all datasets. The bhh_gd configuration managed to produce results that are comparable to the
top three heuristics for each dataset, while the bhh_all and bhh_mh produced average results compared to all the heuristics.

The normalised average ranks provided in Tables 7 and 8 show that the bhh_gd configuration ranked fourth, while the bhh_al and
bhh_mh configurations ranked sixth and eighth amongst all thirteen heuristic implementations respectively. These results show that
the BHH generally performs well, but is not able to outperform the best heuristic for each dataset.

Tables 9 and 10 provide the empirical results in accuracy format for the classification datasets. The accuracy is measured at the
maximum epoch (30).

Fig. 3 provides an illustration of the overall critical difference plots that illustrate the statistically significant differences in ranked
performance for each heuristic as it relates to all datasets, across all independent runs and epochs. Although the outcomes of the
bhh_al and bhh_mh configurations seem to produce average performance results, it should be noted that the performance difference
between all heuristics is very small. Furthermore, the best configuration of the BHH, namely the bhh_gd configuration, is statistically
outperformed overall by only Adagrad and Adam, yielding statistically comparable results to RMSProp and NAG. It should be noted
that the standalone low-level heuristics already produce good results in general across all datasets. In this particular case, producing
better performance outcomes can be hard to achieve. However, as mentioned previously, the BHH provides a generalisation capability
across all datasets that is advantageous to the BHH.

Another observation that can be made is that the gradient-based heuristics generally performed much better than the MHs on all
datasets. State of the art methods for training FFNNs, such as Adam, utilise gradient-based approaches that have been proven to work
well on many occasions [7]. Exploration of the heuristic space leads the BHH to consider other heuristics during the training process,
which could possibly result in worse performances at times. A suggestion to improve on these results is to include a move-acceptance
11

strategy where heuristic progressions are discarded if they fail to produce better results.

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

Table 8

Empirical results showing normalised average rank and statistics for the bottom seven low-level heuristics and three heuristic pool variants of the BHH baseline
configuration, across multiple datasets, for all independent runs and epochs.

BHH vs. Low-Level Heuristics - Average Rank (Part B)

dataset adadelta bhh_mh ga pso sgd momentum de

abalone 5,3129 (±1,478) 8,1882 (±1,195) 11,1108 (±1,102) 11,2559 (±1,826) 8,628 (±1,019) 9,8151 (±1,16) 12,5376 (±1,329)
air_quality 5,2441 (±3,162) 6,357 (±2,303) 7,8204 (±2,265) 9,9151 (±2,288) 10,6613 (±1,606) 11,7559 (±1,473) 11,1419 (±2,236)
bank 5,672 (±1,241) 9,7495 (±1,048) 10,9817 (±1,216) 11,8376 (±1,464) 8,2774 (±1,03) 8,4774 (±1,068) 12,4989 (±1,224)
bike 5,3602 (±1,155) 7,4108 (±1,008) 9,2269 (±1,183) 9,3086 (±1,761) 10,3355 (±1,419) 10,7086 (±1,423) 12,4634 (±1,465)
car 7,7344 (±1,746) 8,8505 (±1,413) 10,7763 (±1,471) 8,3613 (±1,622) 10,2452 (±1,447) 10,9226 (±1,349) 12,4086 (±1,492)
diabetic 2,6753 (±1,629) 8,557 (±1,17) 11,2011 (±1,413) 10,7022 (±1,067) 5,9215 (±1,542) 6,3355 (±1,612) 12,5065 (±1,242)
fish_toxicity 7,914 (±3,429) 6,3849 (±2,944) 6,7043 (±2,82) 7,5731 (±2,982) 11,5785 (±1,459) 12,2301 (±1,382) 10,0215 (±2,358)
forest_fires 6,5161 (±3,082) 5,4591 (±2,668) 7,3667 (±2,37) 6,4796 (±3,354) 10,8129 (±1,207) 11,7065 (±1,325) 12,3333 (±1,923)
housing 7,5903 (±2,748) 7,5441 (±1,736) 7,8839 (±2,099) 9,9409 (±2,317) 11,4075 (±1,528) 11,2731 (±1,506) 11,3484 (±2,096)
iris 11,3527 (±1,779) 6,6075 (±2,555) 8,2473 (±1,765) 8,2731 (±4,384) 10,3796 (±1,294) 11,0548 (±1,409) 8,8871 (±3,251)
mushroom 6,5538 (±1,071) 9,0452 (±1,093) 11,5731 (±1,193) 7,872 (±0,92) 9,7527 (±1,083) 10,9785 (±1,108) 12,7097 (±1,478)
parkinsons 6,472 (±2,423) 8,3161 (±1,644) 7,7968 (±1,719) 8,4892 (±1,901) 11,7516 (±1,155) 12,5419 (±1,351) 10,8742 (±1,317)
student_performance 3,4194 (±2,006) 6,9333 (±2,44) 7,1032 (±1,989) 11,0624 (±1,067) 6,6366 (±2,023) 6,7011 (±2,242) 8,0323 (±1,935)
wine_quality 6,0011 (±2,404) 9,5935 (±1,494) 10,3387 (±1,62) 11,1602 (±1,773) 8,6344 (±1,18) 9,5269 (±1,341) 12,5903 (±1,352)

avg rank 6,2727 (±3,004) 7,7855 (±2,271) 9,1522 (±2,48) 9,4451 (±2,75) 9,6445 (±2,214) 10,2877 (±2,346) 11,4538 (±2,354)

normalised avg rank 7 8 9 10 11 12 13

Table 9

Empirical results showing average accuracy at the max epoch (30) along with statistics for the top six low-level heuristics and three heuristic
pool variants of the BHH baseline configuration, across multiple datasets, for all independent runs and epochs.

BHH vs. Low-Level Heuristics - Average accuracy at 30 epochs (Part A)

dataset adagrad adam rmsprop bhh_gd nag bhh_all

abalone 27.66% (+-0.014) 27.17% (+-0.013) 27.74% (+-0.016) 26.17% (+-0.014) 27.14% (+-0.014) 25.52% (+-0.021)
bank 90.15% (+-0.003) 90.33% (+-0.003) 90.25% (+-0.003) 89.88% (+-0.003) 89.94% (+-0.003) 89.84% (+-0.003)
car 92.24% (+-0.013) 96.64% (+-0.011) 96.13% (+-0.018) 93.13% (+-0.013) 89.39% (+-0.019) 93.59% (+-0.017)
diabetic 58.14% (+-0.004) 57.23% (+-0.004) 57.85% (+-0.004) 57.76% (+-0.006) 58.53% (+-0.003) 55.42% (+-0.024)
iris 92% (+-0.046) 94.89% (+-0.042) 96.33% (+-0.035) 92.44% (+-0.077) 96.44% (+-0.037) 93.11% (+-0.056)
mushroom 99.97% (+-0) 99.98% (+-0.001) 100% (+-0) 99.98% (+-0) 99.84% (+-0.001) 99.96% (+-0.001)
wine_quality 55.06% (+-0.014) 55.62% (+-0.013) 54.86% (+-0.011) 53.35% (+-0.017) 54.64% (+-0.015) 53.57% (+-0.015)

Table 10

Empirical results showing average accuracy at the max epoch (30) along with statistics for the bottom seven low-level heuristics and three heuristic pool variants of
the BHH baseline configuration, across multiple datasets, for all independent runs and epochs.

BHH vs. Low-Level Heuristics - Average accuracy at 30 epochs (Part B)

dataset adadelta bhh_mh ga pso sgd momentum de

abalone 26.76% (+-0.013) 23.32% (+-0.018) 20.52% (+-0.019) 18.31% (+-0.029) 24.42% (+-0.017) 24.29% (+-0.015) 11.81% (+-0.044)
bank 89.85% (+-0.003) 89.44% (+-0.004) 88.79% (+-0.004) 88.56% (+-0.006) 88.86% (+-0.004) 89.01% (+-0.003) 88.3% (+-0.004)
car 88.25% (+-0.018) 80.74% (+-0.034) 71.52% (+-0.022) 81.16% (+-0.035) 69.78% (+-0.027) 70.86% (+-0.019) 69.98% (+-0.034)
diabetic 58.36% (+-0.003) 56.53% (+-0.006) 53.82% (+-0.003) 54.22% (+-0.011) 57.45% (+-0.004) 57.43% (+-0.002) 51.21% (+-0.059)
iris 83.22% (+-0.063) 92.56% (+-0.062) 88.67% (+-0.091) 93.67% (+-0.042) 80.56% (+-0.098) 80.89% (+-0.084) 84.89% (+-0.099)
mushroom 99.95% (+-0.001) 97.77% (+-0.007) 76.78% (+-0.112) 98.67% (+-0.009) 91.08% (+-0.008) 89.11% (+-0.01) 52.58% (+-0.028)
wine_quality 54.66% (+-0.012) 51.52% (+-0.014) 49.26% (+-0.017) 48.21% (+-0.038) 52.14% (+-0.014) 51.38% (+-0.014) 42.1% (+-0.042)

Section 6.9 presented the BHH hyper-parameters. A number of ablation studies were done in the interest of finding good hyper-
parameters for the baseline BHH [31]. A summary of these ablation studies on different hyper-parameter configurations is given in
Table 11 along with a brief conclusion of the outcomes.

A general finding in the ablations studies revealed the inter-dependencies between the hyper-parameters. For example, there is an
inter-dependency between the reselection, replay, and reanalysis hyper-parameters. This can be seen in the ablation studies that focused
on the normalise and discounted rewards hyper-parameters. The default replay window size (10) hyper-parameter, results in a scenario
where the logged performance data is too little for the normalise and discounted rewards hyper-parameters to make a statistically
significant impact.

Furthermore, the ablation studies on the replay and reanalysis hyper-parameters, which resulted in problem dependent outcomes,
illustrates that a dynamic, online-learning approach is required, since some problems benefit from maintaining many records in the
12

performance log, while others do not.

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

Fig. 3. Critical difference plots for the average ranks of all low-level heuristics compared to three heuristic pool variants of the baseline BHH, across all datasets, runs
and epochs.

Table 11

BHH variants and their configuration. The heuristic pool configuration gd refers to the heuris-
tic pool configuration where only gradient-based heuristics are included, and mh refers to the
heuristic pool configuration where only MHs are included.

hyper-parameter considered conclusion

heuristic pool all, gd, mh gd performed best
population 5, 10, 15, 20, 25 smaller is better
credit ibest, pbest, rbest, gbest, symmetric problem dependent
reselection 1, 5, 10, 15, 20 larger is better
replay 1, 5, 10, 15, 20 problem dependent
reanalysis 1, 5, 10, 15, 20 problem dependent
burn in 0, 5, 10, 15, 20 lower is better
normalise false, true no significant difference
discounted rewards false, true no significant difference

9. Conclusion

The research done in this study stems from the difficult and tedious process of selecting the best heuristic for training FFNNs. The
research presented in this article identified the possibility of using a different approach, referred to as HHs, to automate the heuristic
selection process.

This research set out to develop a novel high-level heuristic that utilises probability theory in an online learning setting to drive
the automatic heuristic selection process.

For the experimental group that compares the BHH baseline with a number of low-level heuristics, it was found that the bhh_gd

configuration, which contains only gradient-based heuristics in the heuristic pool, performed the best out of the BHH variants,
achieving an overall rank of fourth amongst thirteen heuristics that were implemented and executed on fourteen datasets. The bhh_gd

configuration produced performance results close to that of the best low-level heuristics and was statistically outperformed only by
the top two low-level heuristics. The bhh_all configuration, which contains only gradient-based heuristics and MHs in the heuristic
pool, achieved an overall rank of sixth, and the bhh_mh configuration, which contains only MHs in the heuristic pool, achieved an
overall rank of eighth.

Although the bhh_gd configuration produced performance results comparable to the best low-level heuristics, the bhh_all and bhh_mh

configurations produced average results. It was found that, in general, gradient-based heuristics produced the best results, as such, it
13

is understandable that the bhh_gd yielded the best performance outcomes between the different BHH variants that were implemented.

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

Although the BHH variants were not able to produce better results than the top low-level heuristics, the BHH variants still effectively
trained the underlying FFNNs and produced good training outcomes overall. It was shown that the bhh_gd configuration produced
the lowest variance in rank between datasets out of all of the heuristics implemented, giving the BHH the ability to generalise well
to other problems.

Finally, it was shown that the BHH provides a mechanism whereby prior expert knowledge can be injected, before training
starts. Future research can exploit this knowledge and provide a significant bias towards heuristics that are known to perform well on
particular problem types. Future research can also investigate the scalability and effectiveness of the BHH on other model architectures
such as deep neural networks (DNNs). Furthermore, the selection mechanism of the BHH can be extended to not just select heuristics
from a heuristic pool, but also different model architectures from a model architecture pool.

CRediT authorship contribution statement

A.N. Schreuder: Writing – original draft. A.S. Bosman: Writing – review & editing. A.P. Engelbrecht: Writing – review & editing.
C.W. Cleghorn: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Appendix A. Naïve Bayes

This section aims to dissect the probabilistic model that is presented in Equation (1). The BHH implements a form of Naïve
Bayes classifier, and thus independence between events can be assumed. The following derived probability mass functions (PMFs) are
provided as fundamental building blocks to show the mechanism by which the BHH learns.

The independence between events for class label 𝑯 , simply yields the PMF of the Multinomial distribution as presented below:

𝑃 (𝑯 |𝜽) ∝ 𝐼∏
𝑖=1

𝐾∏
𝑘=1

𝑃 (ℎ𝑖,𝑘|𝜃𝑘)
∝

𝐼∏
𝑖=1

𝐾∏
𝑘=1

𝜃
11(ℎ𝑖,𝑘)
𝑘

∝
𝐾∏
𝑘=1

𝜃

∑𝐼
𝑖=1 11(ℎ𝑖,𝑘)

𝑘

∝
𝐾∏
𝑘=1

𝜃
𝑁𝑘

𝑘

(A.1)

where 𝑁𝑘 is a summary variable such that 𝑁𝑘 =
∑𝐼

𝑖=𝑖 11(ℎ𝑖,𝑘), denoting the count of occurrences of the event ℎ𝑖 taking on class 𝑘 in
𝐼 independent, identical runs.

The independence between events 𝑬, given class label 𝑯 , is denoted by the likelihood of 𝑬, conditional to the occurrence of
heuristic 𝑘 and model parameter 𝝓 as follows:

𝑃 (𝑬|𝑯 ;𝝓) ∝
𝐼∏
𝑖=1

𝐽∏
𝑗=1

𝐾∏
𝑘=1

𝑃 (𝑒𝑖,𝑗,𝑘|ℎ𝑖,𝑘;𝜙𝑗,𝑘)

∝
𝐼∏
𝑖=1

𝐽∏
𝑗=1

𝐾∏
𝑘=1

𝜙
11(𝑒𝑖,𝑗,𝑘)11(ℎ𝑖,𝑘)
𝑗,𝑘

∝
𝐽∏
𝑗=1

𝐾∏
𝑘=1

𝜙

∑𝐼
𝑖

[
11(𝑒𝑖,𝑗,𝑘)11(ℎ𝑖,𝑘)

]
𝑗,𝑘

∝
𝐽∏ 𝐾∏

𝜙
𝑁𝑗,𝑘

(A.2)
14

𝑗=1 𝑘=1
𝑗,𝑘

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

where 𝑁𝑗,𝑘 is a summary variable such that 𝑁𝑗,𝑘 =
∑𝐼

𝑖=𝑖 11(𝑒𝑖,𝑗,𝑘)11(ℎ𝑖,𝑘), denoting the count of occurrences of the events 𝑒𝑖 taking
on class 𝑗 and ℎ𝑖 taking on class 𝑘, i.e. the count of occurrences of both entity 𝑗 and heuristic 𝑘 occurring together in 𝐼 independent,
identical runs.

Finally, the independence between events for the performance criteria 𝑪 , given class label 𝑯 , is denoted by the likelihood of 𝑪 ,
conditional to the occurrence of heuristic 𝑘 and model parameter 𝝍 as given below:

𝑃 (𝑪|𝑯 ;𝝍) ∝
𝐼∏
𝑖=1

𝐾∏
𝑘=1

𝑃 (𝑐𝑖,𝑘|ℎ𝑖,𝑘;𝜓𝑘)

∝
𝐼∏
𝑖=1

𝐾∏
𝑘=1

𝜓
11(𝑐𝑖,𝑘)11(ℎ𝑖,𝑘)
𝑘

(1 −𝜓𝑘)10(𝑐𝑖,𝑘)11(ℎ𝑖,𝑘)

∝
𝐾∏
𝑘=1

𝜓

∑𝐼
𝑖=1 11(𝑐𝑖,𝑘)11(ℎ𝑖,𝑘)

𝑘
(1 −𝜓𝑘)

∑𝐼
𝑖=1 10(𝑐𝑖,𝑘)11(ℎ𝑖,𝑘)

∝
𝐾∏
𝑘=1

𝜓
𝑁1,𝑘
𝑘

(1 −𝜓𝑘)𝑁0,𝑘

∝
𝐾∏
𝑘=1

𝜓
𝑁1,𝑘
𝑘

(1 −𝜓𝑘)(𝑁𝑘−𝑁1,𝑘)

(A.3)

where 𝑁𝑘 is the same summary variable as described for Equation (A.1). 𝑁1,𝑘 is a summary variable such that 𝑁1,𝑘 =∑𝐼

𝑖=1 11(𝑐𝑖,𝑘)11(ℎ𝑖,𝑘), denoting the count of occurrences of the events 𝑐𝑖 taking on a success (i.e. 𝑐𝑖 = 1) and ℎ𝑖 taking on class 𝑘,
i.e. the count of occurrences of both succeeding in the performance criteria and heuristic 𝑘 occurring together in 𝐼 independent,
identical runs. Similarly, 𝑁0,𝑘 =𝑁𝑘 −𝑁1,𝑘 denotes the count of occurrences of the events 𝑐𝑖 taking on a failure (i.e. 𝑐𝑖 = 0) and ℎ𝑖
taking on class 𝑘.

Equations (A.1), (A.2) and (A.3) can be substituted into the proportional evaluation of the predictive model as given in Equa-
tion (1), resulting in

𝑃 (𝑯 |𝑬,𝑪 ;𝜽,𝝓,𝝍) ∝ 𝑃 (𝑬|𝑯 ;𝝓)𝑃 (𝑪|𝑯 ;𝝍)𝑃 (𝑯 |𝜽)
∝

[
𝐽∏
𝑗=1

𝐾∏
𝑘=1

𝜙
𝑁𝑗,𝑘

𝑗,𝑘

][
𝐾∏
𝑘=1

𝜓
𝑁1,𝑘
𝑘

(1 −𝜓𝑘)(𝑁𝑘−𝑁1,𝑘)

][
𝐾∏
𝑘=1

𝜃
𝑁𝑘

𝑘

]
(A.4)

Consider the practical implementation of the predictive model as shown in Equation (A.4). Computationally, the equation pre-
sented in Equation (A.4) will underflow on a real computer if the resulting probabilities are very small.

A.1. Numerical stability

When Equation (A.4) is evaluated, the numerical stability is shown to underflow if the resulting probabilities from its parts are
very small. Multiplication of multiple fractional parameters leads to an even smaller fractional number. Probabilities might be very
low at some points during training. A solution to the aforementioned problem is to apply the log-sum-exp trick. The transformation
of Equation (A.4) using the log-sum-exp trick is given as

𝐿𝑆𝐸(𝑃 (ℎ𝑘|𝑒𝑗 , 𝑐1;𝜽,𝝓,𝝍)) = ln(exp(𝜙𝑗,𝑘) + exp(𝜓𝑘) + exp(𝜃𝑘)) (A.5)

References

[1] A.S. Rakitianskaia, A.P. Engelbrecht, Training feedforward neural networks with dynamic particle swarm optimisation, Swarm Intell. 6 (2012) 233–270.
[2] J.A. Allen, S. Minton, Selecting the right heuristic algorithm: runtime performance predictors, in: Conference of the Canadian Society for Computational Studies

of Intelligence, Springer, 1996, pp. 41–53.
[3] E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, R. Qu, Hyper-heuristics: a survey of the state of the art, J. Oper. Res. Soc. 64 (2013)

1695–1724.
[4] G.S. Nel, A hyperheuristic approach towards the training of artificial neural networks, Ph.D. thesis, University of Stellenbosch, 2021.
[5] D. Oliva, M.S. Martins, A Bayesian based hyper-heuristic approach for global optimization, in: 2019 IEEE Congress on Evolutionary Computation (CEC), IEEE,

2019, pp. 1766–1773.
[6] J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61 (2015) 85–117.
[7] D. Kingma, J. Ba, Adam: a method for stochastic optimization, in: International Conference on Learning Representations, 2014.
[8] A. Engelbrecht, Computational Intelligence: An Introduction, Wiley, 2007.
[9] N. Qian, On the momentum term in gradient descent learning algorithms, Neural Netw. 12 (1999) 145–151.

[10] I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initialization and momentum in deep learning, in: International Conference on Machine
Learning, PMLR, 2013, pp. 1139–1147.

[11] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res. 12 (2011).
[12] M.D. Zeiler, Adadelta: an adaptive learning rate method, arXiv preprint, arXiv :1212 .5701, 2012.
[13] G. Hinton, N. Srivastava, K. Swersky, Neural Networks for Machine Learning Lecture 6a Overview of Mini-Batch Gradient Descent, 2012, p. 2, Cited on 14.
15

[14] Y. Bengio, Gradient-based optimization of hyperparameters, Neural Comput. 12 (2000) 1889–1900.

http://refhub.elsevier.com/S0020-0255(24)01277-5/bib770AF565C2105D8BEB7838491AED5B5Fs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibE7692B2FAEC2A71A2FF68DF8E481A2C3s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibE7692B2FAEC2A71A2FF68DF8E481A2C3s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibA6DB82A0BE22E2C76A25AABBA3E30775s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibA6DB82A0BE22E2C76A25AABBA3E30775s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib24D9960996E3D8A4C934A21DDC1B2E8Cs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib2E8ABA14F0F0BD32A133FC2B6ABBDF49s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib2E8ABA14F0F0BD32A133FC2B6ABBDF49s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibCD330A8AE12C8C1771902FA9F122EC8Ds1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib8C7DC9EE37E398902162C32E062799B4s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibA6FB10F7BD90DA7CCABE97AEA850CF0Fs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib49246F3E1275634E9C0848AAE62C2BF5s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibE30841DD7456ACE33774C77F2F12DB95s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibE30841DD7456ACE33774C77F2F12DB95s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibC68EF99FC4DFA45FA430CB9CA9B24573s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibCE318A8CDA741F6538D502BF59573CE6s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibF84992245C163C3EA0CE47894161ED83s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibC7C17605A32680D4A60E60840AD395D0s1

Information Sciences 686 (2025) 121363A.N. Schreuder, A.S. Bosman, A.P. Engelbrecht et al.

[15] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: overview and conceptual comparison, ACM Comput. Surv. 35 (2003) 268–308.
[16] A.B. Van Wyk, An Analysis of Overfitting in Particle Swarm Optimised Neural Networks, Master’s thesis, University of Pretoria, 2014.
[17] S.A. Abdulkarim, A.P. Engelbrecht, Time series forecasting with feedforward neural networks trained using particle swarm optimizers for dynamic environments,

Neural Comput. Appl. 33 (2021) 2667–2683.
[18] Y. Xue, Y. Tong, F. Neri, An ensemble of differential evolution and Adam for training feed-forward neural networks, Inf. Sci. 608 (2022) 453–471.
[19] K. Khan, A. Sahai, A comparison of ba, ga, pso, bp and lm for training feed forward neural networks in e-learning context, Int. J. Intell. Syst. Appl. 4 (2012) 23.
[20] E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, J.R. Woodward, A classification of hyper-heuristic approaches, in: Handbook of Metaheuristics, Springer,

2010, pp. 449–468.
[21] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, S. Schulenburg, Hyper-heuristics: an emerging direction in modern search technology, in: Handbook of Meta-

heuristics, Springer, 2003, pp. 457–474.
[22] J. Grobler, A.P. Engelbrecht, G. Kendall, V. Yadavalli, Investigating the use of local search for improving meta-hyper-heuristic performance, in: 2012 IEEE

Congress on Evolutionary Computation (CEC), IEEE, 2012, pp. 1–8.
[23] S.A. Van der Stockt, A.P. Engelbrecht, Analysis of selection hyper-heuristics for population-based metaheuristics in real-valued dynamic optimization, Swarm

Evol. Comput. (2018).
[24] J.A. Vrugt, B.A. Robinson, Improved evolutionary optimization from genetically adaptive multimethod search, Proc. Natl. Acad. Sci. USA 104 (2007) 708–711.
[25] B.K. Hackenberger, Bayes or not Bayes, is this the question?, Croat. Med. J. 60 (2019) 50.
[26] D. Wackerly, W. Mendenhall, R.L. Scheaffer, Mathematical statistics with applications, in: Cengage Learning, 2014.
[27] R. Eberhart, J. Kennedy, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.
[28] E. Özcan, B. Bilgin, E.E. Korkmaz, Hill climbers and mutational heuristics in hyperheuristics, in: Parallel Problem Solving from Nature-PPSN IX, Springer, 2006,

pp. 202–211.
[29] J. Görtler, R. Kehlbeck, O. Deussen, A visual exploration of Gaussian processes, Distill 4 (2019) e17.
[30] L. Rabiner, B. Juang, An introduction to hidden Markov models, IEEE ASSP Mag. 3 (1986) 4–16.
[31] A. Schreuder, Training Feedforward Neural Networks with Bayesian Hyper-Heuristics, Master’s dissertation, University of Pretoria, Department of Computer

Science, Pretoria, South Africa, 2022.
[32] F. Van den Bergh, A.P. Engelbrecht, A convergence proof for the particle swarm optimiser, Fundam. Inform. 105 (2010) 341–374.
[33] E. Mezura-Montes, J. Velázquez-Reyes, C.A. Coello Coello, A comparative study of differential evolution variants for global optimization, in: Proceedings of the

8th Annual Conference on Genetic and Evolutionary Computation, 2006, pp. 485–492.
[34] A. Lambora, K. Gupta, K. Chopra, Genetic algorithm - a literature review, in: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel

Computing (COMITCon), 2019, pp. 380–384.
[35] D. Dua, C. Graff, Uci machine learning repository, http://archive .ics .uci .edu /ml, 2017.
[36] R.A. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eugen. 7 (1936) 179–188.
[37] M. Bohanec, V. Rajkovic, Knowledge acquisition and explanation for multi-attribute decision making, in: 8th Intl Workshop on Expert Systems and Their

Applications, Citeseer, 1988, pp. 59–78.
[38] S.G. Waugh, Extending and benchmarking Cascade-Correlation: extensions to the Cascade-Correlation architecture and benchmarking of feed-forward supervised

artificial neural networks, Ph.D. thesis, University of Tasmania, 1995.
[39] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, J. Reis, Modeling wine preferences by data mining from physicochemical properties, Decis. Support Syst. 47 (2009)

547–553.
[40] J.C. Schlimmer, Concept acquisition through representational adjustment, Ph.D. thesis, University of California, Irvine, 1987.
[41] S. Moro, P. Cortez, P. Rita, A data-driven approach to predict the success of bank telemarketing, Decis. Support Syst. 62 (2014) 22–31.
[42] B. Strack, J.P. DeShazo, C. Gennings, J.L. Olmo, S. Ventura, K.J. Cios, J.N. Clore, Impact of HbA1C measurement on hospital readmission rates: analysis of 70,000

clinical database patient records, BioMed Res. Int. 2014 (2014).
[43] M. Cassotti, D. Ballabio, R. Todeschini, V. Consonni, A similarity-based qsar model for predicting acute toxicity towards the fathead minnow (pimephales

promelas), SAR QSAR Environ. Res. 26 (2015) 217–243.
[44] D. Harrison Jr., D.L. Rubinfeld, Hedonic housing prices and the demand for clean air, J. Environ. Econ. Manag. 5 (1978) 81–102.
[45] P. Cortez, A. Morais, A data mining approach to predict forest fires using meteorological data, in: New Trends in Artificial Intelligence, Proceedings of the 13th

EPIA, APPIA, Guimarães, Portugal, 2007, pp. 512–523.
[46] P. Cortez, A.M.G. Silva, Using data mining to predict secondary school student performance, in: Proceedings of 5th Future Business Technology Conference

(FUBUTEC), EUROSIS-ETI, 2008, pp. 5–12.
[47] A. Tsanas, M. Little, P. McSharry, L. Ramig, Accurate telemonitoring of Parkinson’s disease progression by non-invasive speech tests, IEEE Trans. Biomed. Eng.

57 (4) (2009) 884–893.
[48] S. De Vito, E. Massera, M. Piga, L. Martinotto, G. Di Francia, On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring

scenario, Sens. Actuators B, Chem. 129 (2008) 750–757.
16

[49] H. Fanaee-T, J. Gama, Event labeling combining ensemble detectors and background knowledge, Prog. Artif. Intell. 2 (2014) 113–127.

http://refhub.elsevier.com/S0020-0255(24)01277-5/bib8AADCE29F16C6D1EA144E4CCCF81F933s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib39C0C145CEDC6B24D5F48D1D56D5DBA0s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibA781C3A993B1E373098DF5A132F8B616s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibA781C3A993B1E373098DF5A132F8B616s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib17BAF7956299C7B3E6ADC08A28716A9Cs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibB8BEEE6EB0F7B8E13F625573B9957763s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibA3CAB4B51B3BB2CD3560E2D235A170E1s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibA3CAB4B51B3BB2CD3560E2D235A170E1s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibDF9CBDB3E9BA4DB50C5D51392925C39Fs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibDF9CBDB3E9BA4DB50C5D51392925C39Fs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib2889FB182FF3E408581F23DD835A4CD7s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib2889FB182FF3E408581F23DD835A4CD7s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib2F162BB9A125D9F87B8C631939437DD6s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib2F162BB9A125D9F87B8C631939437DD6s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibAEF5830BB2D88ABAC1EC72BDDE89EED7s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib92A88C433E10A84CD69D349E22AA5678s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib694B4D874B2713CE0625FBC328031408s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib30EDCDB995C4CC6DD45D4EFE17C87DF1s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibA7C3B40B3EB08FA346CA88A53A348ABFs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibA7C3B40B3EB08FA346CA88A53A348ABFs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib7F9F50535639E9031B341E976F91E245s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib3C55EFD37EED7156ED5BA8C6CF8259BEs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib121FA751AAA43D1159F1470373EFBB64s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib121FA751AAA43D1159F1470373EFBB64s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib5D4EAC99BCF7B088A953AEDFCF371C30s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib7294A2565E8EA07C688B5E539F7BE3E5s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib7294A2565E8EA07C688B5E539F7BE3E5s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib7DDBE24F8655FD2986C73C67389BD10As1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib7DDBE24F8655FD2986C73C67389BD10As1
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib619CB793646C19A1D5F0383571150595s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibCDEBCFEFEC22A9EFAFFCC957C0A37A6Fs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibCDEBCFEFEC22A9EFAFFCC957C0A37A6Fs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibD4D3523F63502FDE375AA7252E88A691s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibD4D3523F63502FDE375AA7252E88A691s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib40909DB760EB5489EF0EE5C2F3A49822s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib40909DB760EB5489EF0EE5C2F3A49822s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib4672BDF6EB4920FC790AC07759D36883s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibF2C34937AC8DB8857E134AE15F3F122Fs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib7AE6498945F471ABA5144392F63F0567s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib7AE6498945F471ABA5144392F63F0567s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibAF87980F2361EB2BF91426E7DE05D8CDs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibAF87980F2361EB2BF91426E7DE05D8CDs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib7FAA8B9877B525389C824813300BF553s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib6B8272B84B5E7740E591C731CC9FB62Bs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib6B8272B84B5E7740E591C731CC9FB62Bs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib9E9E90AC9874DEE17424987D679FC08As1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib9E9E90AC9874DEE17424987D679FC08As1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibF71A6322E6426085A160A6D0E5E2A9D2s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibF71A6322E6426085A160A6D0E5E2A9D2s1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib3A5AC19E54A29F1CE9DAADA69EE2E65Bs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bib3A5AC19E54A29F1CE9DAADA69EE2E65Bs1
http://refhub.elsevier.com/S0020-0255(24)01277-5/bibBC6C4156A415A90427D4593BB04DC73As1

	Training feedforward neural networks with Bayesian hyper-heuristics
	1 Introduction
	2 Artificial neural networks
	3 Heuristics
	4 Hyper-heuristics
	5 Probability
	6 Bayesian hyper-heuristics
	6.1 Overview
	6.2 Heuristic pool
	6.3 Proxies
	6.4 Entity pool
	6.5 Performance log
	6.6 Credit assignment strategy
	6.7 Selection mechanism
	6.8 Optimisation step
	6.8.1 Maximum a posteriori estimation

	6.9 Hyper-parameters

	7 Methodology
	7.1 BHH baseline
	7.2 BHH vs. low-level heuristics
	7.3 Heuristics
	7.4 Datasets
	7.5 Models
	7.6 Performance measures
	7.7 Statistical analysis
	7.8 Implementation

	8 Results
	8.1 Overview
	8.2 BHH vs. low-level heuristics

	9 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A Naïve Bayes
	A.1 Numerical stability

	References

