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A B S T R A C T 

State-of-the-art radio observatories produce large amounts of data which can be used to study the properties of radio galaxies. 
Ho we ver, with this rapid increase in data volume, it has become unrealistic to manually process all of the incoming data, which 

in turn led to the development of automated approaches for data processing tasks, such as morphological classification. Deep 

learning plays a crucial role in this automation process and it has been shown that convolutional neural networks (CNNs) can 

deliver good performance in the morphological classification of radio galaxies. This paper investigates two adaptations to the 
application of these CNNs for radio galaxy classification. The first adaptation consists of using principal component analysis 
(PCA) during pre-processing to align the galaxies’ principal components with the axes of the coordinate system, which will 
normalize the orientation of the galaxies. This adaptation led to a significant impro v ement in the classification accuracy of the 
CNNs and decreased the average time required to train the models. The second adaptation consists of guiding the CNN to look 

for specific features within the samples in an attempt to utilize domain knowledge to impro v e the training process. It was found 

that this adaptation generally leads to a stabler training process and in certain instances reduced o v erfitting within the network, 
as well as the number of epochs required for training. 

Key words: radio continuum: galaxies – methods: data analysis – methods: statistical – techniques: image processing. 
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 I N T RO D U C T I O N  

ost, if not all, massiv e galaxies hav e a supermassiv e black hole
t their centre. Active g alaxies are g alaxies that have an Active
alactic Nucleus (AGN), that is formed by the accretion of particles
nto their central supermassive black hole (Padovani et al. 2017 ).
adio galaxies are active galaxies that emit in the radio part of the
lectromagnetic spectrum, typically via the synchrotron emission
roduced from electrons that are accelerated by magnetic fields,
resent in galaxies (Stacy & Vestrand 2003 ). This emission can
ost ef fecti v ely be observ ed by making use of radio interferometers

Hardcastle & Croston 2020 ). 
The morphological classification of radio galaxies consists of

rouping them into classes according to their shapes. This classifica-
ion process and the definition of a classification system describing
he wide variety of observed radio galaxies play a vital role in
nswering other questions that are fundamental to astronomy, such
s how galaxies and galaxy clusters form and evolv e o v er cosmic
ime (Hardcastle & Croston 2020 ). 
 E-mail: kevinbrand99@gmail.com (KB); tlgrobler@sun.ac.za (TLG) 
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Two important morphological classes, namely class I and II
 anaroff–Rile y galaxies (FRI and FRII galaxies), were first identified
y Fanaroff & Riley ( 1974 ). To differentiate between these classes,
he F anaroff–Rile y ratio (FR ratio) was defined as the ratio of the
istance between their ‘hot spots’ (radio bright areas observed on
ither side of a galaxy’s core) to the total distance between the edges
f the radio source. Galaxies with an FR ratio less than 0.5 have bright
egions close to the galaxy’s core and are classified as FRI galaxies,
hilst galaxies with an FR ratio greater than 0.5 are edge-brightened

nd are classified as FRII galaxies. 
Some radio galaxies have a more complex warped shape, that is,

he two radio jets emanating from their centres are not aligned to
orm a straight line but are rather at an angle with each other. These
adio galaxies are known as bent-tail radio galaxies and they can be
eparated into two further classes depending on the angle between
heir jets, namely narrow-angle tailed (NAT, Rudnick & Owen 1976 )
nd wide-angle tailed galaxies (WAT, Owen & Rudnick 1976 ). For
he rest of this paper, these subclasses will be grouped together and
eferred to as bent galaxies. 

The final class of radio galaxies that we will consider in this
aper is the FR0 class, also known as the compact class. This class
as proposed for the classification of a subset of galaxies that do
ot fit into the original FR dichotomy very well. These galaxies
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1 Attention-gating mechanisms work similarly to human attention mecha- 
nisms by identifying and focusing on the features that are the most informative 
for the given task. 
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ave a very bright region surrounding the core, but as explained by
aldi, Capetti & Giovannini ( 2015 ), they have a much more compact
orphology. Galaxies with other, more complex morphologies fall 

utside the scope of this paper. 
With the development of new facilities, such as the Australian 

quare Kilometre Array Pathfinder (ASKAP, Johnston et al. 2008 ), 
he MeerKAT radio telescope (Jonas 2009 ), the Low-Frequency 
rray (LOFAR, van Haarlem et al. 2013 ), and the Murchison
idefield Array (MWA, Beardsley et al. 2019 ), it has become 

ossible to conduct surv e ys that will detect much larger numbers
f radio galaxies than was previously possible. As the rate of radio
ource detection grows, it becomes increasingly difficult to manually 
nalyse and classify each source. One approach to solving this 
roblem would be to make use of crowd-sourcing, where large groups 
f individuals voluntarily classify each source (Banfield et al. 2015 ). 
o we ver, this solution relies on the availability of enough individuals

hat can generate reliable labels, which might not be feasible as the
olume of data increases, especially once the construction of the 
KA (Dewdney et al. 2009 , 2013 ) has been completed. 
An alternative approach has been gaining traction in recent years. 

his approach consists of automating the analysis and labelling 
f sources and is much more robust to an influx in the volume
f data that is available. Machine learning is a useful tool in this
utomation process and has been shown to be quite ef fecti ve (e.g.
e La Calleja & Fuentes 2004 ; Alhassan, Taylor & Vaccari 2018 ;
ocking et al. 2018 ). 
Initially most of the machine learning techniques that were applied 

ere shallow learning techniques, such as decision trees (Proctor 
003 , 2006 ) and support vector machines (Sadeghi, Javaherian & 

iraghaei 2021 ), which achieved impressive results with respect to 
he classification of radio galaxies. Ho we ver, as the field of deep
earning continues its rapid growth, a clear shift has been observed 
owards the use of deep neural networks. 

To better understand why this shift is sensible, it is important 
o understand what some of the limitations are of the shallow 

echniques and why these limitations are rele v ant to radio galaxy
ata. One such limitation is that shallow learning algorithms tend to 
nderperform when compared to deep learning techniques on various 
igh-dimensional data sets (LeCun, Bengio & Hinton 2015 ). Seeing 
s radio galaxy data sets tend to consist of relatively large images, this
an be problematic. Furthermore, when applying shallow machine 
earning to high-dimensional data sets, a common approach is to re-
uce the dimensionality by extracting informati ve features. Ho we ver, 
his approach has certain drawbacks. By only training the shallow 

odels on the extracted features, we are introducing bias into the 
odels and preventing them from finding informative features that 
e might not be aware of (Janiesch, Zschech & Heinrich 2021 ). Deep

earning has also been applied with great success in applications that 
tilize large corpora of data (Chen & Lin 2014 ), whilst shallow learn-
ng algorithms have been shown to be inefficient in comparison (Na- 
afabadi et al. 2015 ). Thus, it is expected that deep learning will play a
rucial role in extracting information from future large-scale surveys. 

With respect to the morphological classification of radio galaxies, 
niyan & Thorat ( 2017 ) found that convolutional neural networks 

CNNs) can be very ef fecti ve. They constructed three CNNs that
ach played the role of a binary classifier that simply had to
ifferentiate between two classes. The predictions from these binary 
lassifiers were then combined to make a final prediction. This model 
howed that CNNs could achieve similar performance to manual 
orphological classification, but that they could do it quicker. 
Since then, various new CNNs have been created to perform 

orphological classification on radio galaxies. Some examples of 
hese CNNs include the single multiclass CNN created by Alhassan 
t al. ( 2018 ) to classify radio galaxies as compact, bent, FRI or
RII galaxies, a multiclass CNN trained on the first data set from

he Radio Galaxy Zoo project (Banfield et al. 2015 ) to differentiate
etween compact and extended sources (Lukic et al. 2018 ), CNNs
sed for the cross-identification of host galaxies (Alger et al. 2018 ),
n augmented Fast Region-based CNN (Fast R-CNN Girshick 2015 ) 
hat was applied to combinations of corresponding radio and infrared 
mages by (Wu et al. 2018 ) to simultaneously find and classify radio
ources. Ma et al. ( 2019 ) made use of a large number of unlabelled
amples to pre-train a convolutional auto-encoder (CAE), which is a 
ype of neural network that learns how to encode images into lower
imensional representations. The weights of the encoder section of 
his network were then fine-tuned, using a set of labelled samples to
erform the morphological classification of radio galaxies. 
Recently, Bowles et al. ( 2021 ) made use of an attention-gating
echanism 

1 instead of fully-connected layers in a CNN to show that
ne could use considerably fewer parameters to achieve performance 
hat is on par with the CNNs previously applied to morphological
lassification. Another important development was the develop- 
ent of group-equi v ariant CNNs for radio galaxy classification by
caife & Porter ( 2021 ), who explained that conventional CNNs
re not equi v ariant to certain isometries, such as rotations and
eflections, which contribute to intra-class variability. Thus, these 
NNs might not be able to accurately classify a sample during

nference if its orientation differs from the samples observed during 
raining, because the rotation will have an effect on the outputs of the
onvolutional layers and will thus affect the classification. Scaife & 

orter ( 2021 ) addressed this problem by making use of a subspace of
on ventional con volution kernels that is equi v ariant to rotations. The
se of these kernels led to an impro v ement in the performance of the
NN, which serves as additional proof that rotations in samples can
ave an effect on the performance of CNNs. 

.1 Addr essing r otational variations in radio sour ces 

aking use of group-equi v ariant CNNs is not the only way to address
otational variations in radio sources. One can also augment the 
raining data by applying rotations to the training samples, thus 
ncreasing the number of training samples and making it possible 
or CNNs to learn what classes look like at various orientations. This
pproach is widely adopted in the literature (Aniyan & Thorat 2017 ;
lhassan et al. 2018 ; Lukic et al. 2018 ; Ma et al. 2019 ; Becker et al.
021 ; Bowles et al. 2021 ), however it has certain flaws. Scaife &
orter ( 2021 ) noted that by using data augmentations to address
otational variations, one runs the risk of learning identical kernels for
ifferent orientations, which is a waste of some of the computational
ower of the CNN. Furthermore, they also explain that invariance 
ained through data augmentation does not guarantee invariance 
uring inference. Aside from the points mentioned by Scaife & Porter
 2021 ), one should also consider that data augmentation can lead to
 dramatic increase in the number of samples used during training,
hich will tend to lead to much longer training times. 
Bearing this in mind, this paper investigates a third approach that

ddresses the rotational variations in radio sources, which attempts to 
tandardize the rotation of all of the radio sources as a pre-processing
tep. The first step in this process is to construct a matrix that
MNRAS 522, 292–311 (2023) 
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ontains the 2D coordinates of the pixels that belong to the galaxy.
rincipal component analysis (PCA) is then applied to this matrix to
etermine the principal components of the galaxy. By aligning these
rincipal components with the main axes, we ef fecti vely standardize
he rotation of the radio sources. A similar approach was applied to
ptical galaxy images by De La Calleja & Fuentes ( 2004 ), but we
pecifically investigate the ef fecti veness of this pre-processing step
n radio sources and compare it to the commonly used approach of
otational data augmentation. 

.2 Incorporation of domain knowledge during learning 

he patterns/features that are deemed to be important by neural
etworks during training are generally unconstrained, which makes
t possible for them to arrive at non-optimal solutions (Lawrence,
iles & Tsoi 1998 ; Bader, H ̈olldobler & Marques 2008 ) or to make
ecisions that violate known physical constraints within the problem
omain (Daw et al. 2021 ; Chen & Liu 2021 ). These networks can also
 v erfit on noise or inconsequential patterns within the training data,
ut due to the ‘black box’ nature of neural networks (Olden & Jackson
002 ; Seidel, Schimmler & Borghoff 2019 ) it is very difficult to verify
hether the network has learned sensible patterns and to determine
hat those patterns might be (Seidel et al. 2019 ; Woods, Chen &
euscher 2019 ). This also means that neural networks cannot truly
ontribute to the development of our understanding of the problem
omain (Olden & Jackson 2002 ). 
These problems have led to the development of a variety of

pproaches that attempt to address the ‘black box’ nature of neural
etworks. Some of these approaches train neural networks and
hen develop an understanding of their decision-making process by
xtracting symbolic rules from the trained models (Huynh & Reggia
011 ; Seidel et al. 2019 ). The use of symbolic rules lies at the core
f knowledge-based neural networks (KBNN, Fu 1995 ; Kolman &
argaliot 2008 ). 
To better understand KBNNs, one should first consider that there

re two paradigms of learning, theoretical learning and learning from
ractical experience. Expert systems follow the theoretical paradigm
f learning and utilize expert knowledge of the problem domain dur-
ng the decision-making process, whilst empirical learning follows
he practical paradigm and learns how to solve a task by training on
 large number of representative samples from the problem domain
Towell & Shavlik 1994 ). 

Both expert systems and empirical learning systems have been
ble to achieve incredible results on real-world problems (Goethe &
ronzino 1995 ; Rahman & Hazim 1996 ; Sun, Wang & Wang
008 ). Ho we ver, each system has its disadvantages. Expert systems
equire a large investment of both time and resources to construct
omplete domain theories. This leads to the use of incomplete
heories, which could be detrimental in certain scenarios (Mitchell,
eller & Kedar-Cabelli 1986 ). Conversely, systems that make use
f empirical learning have no domain knowledge, which leads to
ifferent problems. For example, without domain knowledge, the
ystem is not aware of any constraints that determine whether results
re viable and thus there are no guarantees that they will produce
iable solutions (Mitchell et al. 1986 ). The lack of domain knowledge
lso means that the performance of the system is entirely dependent
n whether the training data is informative with respect to the problem
omain. Thus, poor performance is all but guaranteed if the quality
f the training data is poor (Schank, Collins & Hunter 1986 ). 
A combination of these two systems might be able to address

ome of these disadvantages, which is exactly what KBNNs attempt
o do. KBNNs combine these two systems by incorporating domain
NRAS 522, 292–311 (2023) 
heories into a neural network in the form of symbolic rules. They
hen make use of empirical learning algorithms to fine-tune the
eights of the neural network. This approach has some distinct
enefits. F or e xample, the use of empirical learning algorithms and
omain samples will refine any incomplete or incorrect domain the-
ries which will lead to better performance. Conversely, if empirical
earning leads to results that violate theoretical constraints, domain
heories can be used to constrain the network to only produce viable
esults. Considering these benefits, it should come as no surprise that
BNNs have been shown to be incredibly effective and that they tend

o generalize better than both expert and empirical learning systems
Towell & Shavlik 1994 ). 

The implementation details of KBNNs are not rele v ant to this
aper and will not be discussed. Ho we ver, it is important to note
hat these networks contain some neurons that are not dependent on
omain theory. Towell & Shavlik ( 1994 ) showed that the addition of
hese neurons provides neural networks with the necessary flexibility
o refine incomplete or inaccurate domain theories and to address
ome of the side effects that they cause. The addition of these neurons
s rele v ant to this paper, because this technique will also be used in
ome of our guided architectures. 

Theory-guided data science (TGDS) is a paradigm of data science
hat one can argue is a continuation of the work done for KBNNs.
he goal of TGDS is to produce models that do not e xclusiv ely make
se of either data or theoretical knowledge, but instead utilize both
Karpatne et al. 2017 ). This goal is achieved by making use of a wide
ariety of techniques that introduce domain knowledge into models
hat are traditionally purely data-driven. One such technique consists
f using Lagrangian multipliers to enforce theoretical constraints
n the loss functions of models that make use of error-based
earning. Other techniques include the use of theoretical knowledge
o efficiently initialize parameters, fine-tune model outputs and select
robabilistic models that are similar to the known distribution of the
roblem domain (Karpatne et al. 2017 ). 
A technique that is commonly used in TGDS, which will also be

sed in this paper, is feature engineering. This technique consists of
anipulating and combining existing features to create new features

hat are expected to be informative when classifying samples. Such
eatures are selected by making use of prior knowledge of the domain
nd the task at hand (Nargesian et al. 2017 ). The features that
re engineered can be very simple, such as the ratio between two
ther features (Heaton 2016 ), or they can be much more complex,
uch as the results of statistical transformations that were applied
o the data. If good features are selected, it has been shown that
eature engineering can lead to considerable impro v ements in the
erformance of models (Yu et al. 2010 ; Mulaudzi & Ajoodha 2021 ).
Based on the results achieved by both KBNNs and TGDS,

his paper investigates whether it would be useful to guide neural
etworks to look for specific features during training. This approach
as first tested on a toy example, where a shallow neural network was

onstructed to emulate the behaviour of the XOR binary operator.
nce it had been determined that such a guided neural network
as viable, guided CNNs were constructed and applied to the
orphological classification of radio galaxies. The performance of

he guided CNNs was e v aluated and compared to the performance of
nguided CNNs with a similar architecture to determine whether
here were any considerable benefits that justify guiding neural
etworks during training. 
Our guided neural networks should not be mistaken with Feature-

uided Denoising Convolutional Neural Networks (FDCNN Dong,
a & Basu 2021 ). FDCNNs make use of an explainable artificial

ntelligence technique, guided backpropagation, to identify and
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Table 1. XOR data set. 

Input 1 Input 2 Output 

0 0 0 
0 1 1 
1 0 1 
1 1 0 
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Table 2. Number of radio sources from different classes within our sample. 

Class Number 

Compact 208 
FRI 182 
FRII 357 
Bent 213 
Total 960 
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xtract important features in ultrasound images. These features are 
sed to impro v e the performance of a denoising neural network.
here are no significant similarities between FDCNNs and our 
uided networks, other than their name. 
Section 2 of this paper presents the data sets that were used, the

re-processing steps that were applied to the data, as well as the
rocess that was followed to extract features for the training of the
uided neural networks. This is followed by an explanation of the 
eural network architectures in Section 3 . The analytic process that 
as used to e v aluate and compare the rotational pre-processing steps

nd the guided networks is discussed in Section 4 . We then present
nd discuss the results of our experiments in Section 5 . Finally, we
raw our conclusions in Section 6 . 

 DATA  SETS  A N D  PRE-PROCESSING  

ROCED U R ES  

his section discusses the data sets that were used in this paper, the
teps involved in the pre-processing procedures, as well as the feature 
xtraction process. Section 2.1 presents the data sets and Section 2.2 
iscusses the various pre-processing techniques that were applied to 
he radio galaxy images. Finally, Section 2.3 explains how features 
ere extracted from these images. 

.1 Data sets 

.1.1 XOR binary operator 

he XOR binary operator is quite a simple operator. It is also known
s the e xclusiv e or operator, which means that it only returns true
f one of two binary inputs is equal to one. This operator was used
n this paper as a simple example to test whether a certain approach
o guiding neural netw orks w as feasible or not. The XOR data set
s very small and only consists of four samples that co v er the entire
omain. These samples can be seen in Table 1 . 

.1.2 Radio galaxy data set 

ur radio galaxy data set was assembled as follows. We first gathered
ositional and morphological information from the following well- 
ocumented catalogues e xtensiv ely used in the literature: CoNFIG 

Gendre & Wall 2008 ; Gendre, Best & Wall 2010 ), GROUPS (Proctor
011 ), FR0CAT (Baldi, Capetti & Massaro 2018 ), FRICAT (Capetti, 
assaro & Baldi 2017a ), FRIICAT (Capetti, Massaro & Baldi 

017b ), and WA TCA T (Missaglia et al. 2019 ). We then downloaded
00 by 300 pixels cutouts from the FIRST survey (Becker, White &
elf and 1995 ; Helf and, White & Beck er 2015 ) in FITS format using

he SkyView online tool (McGlynn, Scollick & White 1998 ). We then
onfirmed that the morphology of each radio galaxy as indicated in 
he different input catalogues was reliable when inspected at the 
epth and the resolution of the FIRST surv e y via visual inspection
f all radio galaxies by at least three team members. Objects for
hich consensus was not achieved were collaboratively rechecked. 
here consensus could not be achieved after the recheck, the radio
alaxy was dropped from our sample. Our resulting sample, which 
e called FIRST Radio Galaxy Morphology Reference Catalogue 

FRGMRC), consists of a total 960 sources. The breakdown in 
ifferent source classes is shown in Table 2 . The FRGMRC and the
upporting FIRST fits cutouts used for our work is publicly available
t https:// doi.org/ 10.5281/ zenodo.7645530 . 

.2 Radio galaxy pr e-pr ocessing 

n this section, we will discuss the various pre-processing techniques 
hat were used in this paper. We will provide an o v erview of what
hese techniques consist of and what purpose they serve. The details
f when each pre-processing step was used are delayed until the
iscussion of the inv estigativ e procedure in Section 4.2.1 . 

.2.1 Normalization 

ormalization consists of scaling all pixel values within an image to
all within the range [0, 1]. This pre-processing step is al w ays applied
o the radio galaxy images in this paper, irrespective of what they will
e used for, because the pixel ranges tend to differ between images,
hich leads to an unnecessary increase in the intra-class variances. 
ormalization is achieved by applying equation ( 1 ) to each pixel

n an image. In this equation, X represents the entire image and x ij 
epresents the individual pixels at row i and column j . 

 ij = 

x ij − min ( X) 

max ( X) − min ( X) 
(1) 

.2.2 Thresholding 

hresholding is a technique that is frequently used to extract 
mportant pixels from an image by removing noise and background 
ixels. This technique is especially important in this paper, because 
t impro v es the quality of the features that are extracted from the
mages and it assists with determining the principal components of 
he galaxies. 

We use a slightly different thresholding approach in this paper 
han is commonly used in the literature due to our rotational
tandardization algorithm’s sensitivity to thresholding artefacts. The 
rst step in our approach is to identify how much noise is present in

he image. This is done by constructing a histogram of pixel values
or each image. The number of bins that are populated with a large
umber of pixels provides an indication of the amount of noise that is
resent in the image. If there is noise present in the image there will
e a wider range of pixel values, which will lead to more histogram
ins being populated. 
If there is very little noise present in the image we can simply use

 static value to threshold the image. Alternatively, if there is noise
resent, we make use of a large quantile as a threshold to extract the
rightest galaxy pixels. We then make use of morphological dilations 
o ‘grow’ these bright pixels to form regions that contain all of the
MNRAS 522, 292–311 (2023) 
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alaxy pixels. We also make use of morphological operations to find
mall artefacts in the background and to remo v e them. 

In cases where the noise is severe, we create a new matrix, where
ach element represents the number of pixel values in the immediate
eighbourhoods of the corresponding pixel in the image. We can
xploit this information to extract the galaxy pixels, because the
ixels along the borders of the galaxy will have background pixels,
oise pixels and galaxy pixels in their neighbourhood, which means
hat the pixel values in their neighbourhoods will be much more
iverse. Thus, if we extract the elements with a large range of
eighbouring pixel values, we will be able to extract most of the pixels
ear the border of the radio galaxy. We then apply morphological hole
lling, which will fill holes that are surrounded by the pixels that we
av e e xtracted. In doing so, we will be able to also extract the galaxy
ixels that are not close to the border of the galaxy. 
Our approach sometimes includes a small number of pixels from

he regions surrounding the galaxy, which might lead to slight
istortions of the shape of the galaxy. Ho we ver, it is very successful
n removing thresholding artefacts, which is more important for our
lgorithms. For more details about our thresholding algorithm, the
eader is referred to the Github repository. 2 

.2.3 Rotational data augmentation 

s was mentioned earlier, an approach that is widely used to address
otational variations in radio galaxy data is to augment the training
ata by applying rotations to each of the training samples. This
pproach is also implemented in this paper to allow for a comparison
ith the method of rotational standardization. 
Each sample in the FRGMRC data set was rotated in 60 ◦ intervals,

rom 0 ◦ to 300 ◦, which creates six copies of each sample, but with
ifferent orientations. This makes it possible for the CNNs to learn
hat each class will look like at different orientations. 
Ideally, one would use smaller rotational intervals to ensure that

he CNN could recognize the classes at any possible orientation, but
his is likely to lead to a significant waste of time and computational
esources, because the CNN might not learn much from samples that
re too similar with regards to their orientation. 

One of the metrics which will be used to e v aluate the performance
f rotational data augmentation is the amount of time that it takes to
rain a CNN whilst using this approach. It was determined that with
mall rotational intervals, data augmentation leads to near-perfect
ccuracy on the samples in the testing data, which means a large
ortion of the training time might have been wasted. Thus, a rotational
nterval was selected that led to a slight reduction in the accuracy
f the CNN, because this would ensure that time was not wasted on
nnecessary training. 

.2.4 Rotational standardization 

o understand the approach that we use to standardize the rotation
f the radio galaxy images, it is vital to first understand PCA. The
rigins of PCA are unclear, but it can be traced back as far as 1829.
o we ver, the form of PCA that is commonly used today is attributed

o the work done by Hotelling ( 1933 ). 
PCA is commonly used as a technique for dimensionality reduc-

ion. As explained by Rao ( 1964 ), PCA consists of finding orthogonal
ectors that describe the data the best. To do so, it is necessary to find
he vectors along which the variance in the data is maximized. These
NRAS 522, 292–311 (2023) 
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ectors were established to be the eigenvectors of the covariance
atrix of the data and are also known as the principal components of

he data set. Thus, the first principal component will be the direction
n which the variance is the largest, the second principal component
ill be the direction with the second largest variance etc. To reduce

he dimensionality of the data to q dimensions, each sample can be
rojected onto the first q principal components, which represent the
 vectors along which the variance in the data is the largest and will
hus lead to the smallest loss of information. 

In this paper, we will not use PCA to reduce the dimensionality of
ur data, but will instead use it to identify the vectors that represent the
irections of maximum spread in our radio galaxies. We do so by first
ormalizing and thresholding each sample to identify the pixels that
elong to the radio galaxies. The quality of PCA is correlated to the
uality of this thresholding, so any improvements in the thresholding
lgorithm will lead to an impro v ement in the results of PCA. 

Once we have identified the galaxy pixels, we construct a 2 × P
atrix, X , where P is the number of pixels that were extracted. Each

olumn in X represents the coordinates of one of the pixels. The next
tep consists of centring the galaxy at the origin of the coordinate
ystem. This is done by subtracting the mean of each row in the matrix
rom the elements in that row. We then make use of the popular
UMPY library (Harris et al. 2020 ) to calculate the singular value
ecomposition (SVD) of the centred matrix. This decomposition is
hown in equation ( 2 ). For more information regarding the SVD, the
eader is referred to Klema & Laub ( 1980 ) 

 = U�V 

T (2) 

In this decomposition U is a 2 × 2 orthogonal matrix, � is a 2 ×
 diagonal matrix and V 

T is a P × P orthogonal matrix. We will only
eed the U matrix, because its columns contain the eigenvectors of
he covariance matrix of X , which we know are also the principal
omponents of X . We also know that these principal components
aximize the variance of our data. 
Seeing as our data is the coordinates of the galaxy pixels, these

rincipal components will maximize the spread of the galaxy pixels.
hus, if we rotate our coordinate system’s axes to align with these
rincipal components, we should be able to remo v e an y rotation from
ur image. 
One way to achieve this goal would be to pre-multiply the

ranspose of U with the coordinate of each pixel in our image. This
ould provide us with the corresponding coordinates in a coordinate

ystem that is aligned with the principal components. Ho we ver, this
pproach would be unnecessarily complicated and very inefficient. 

Instead, we start by determining whether U is the identity matrix.
f it is, we can determine that no rotation is necessary to align our
oordinate system with the principal components. If U is not the
dentity matrix, we need to calculate the angle with which we have to
otate our image. We know that pre-multiplication by the transpose
f the U matrix will lead to a rotation in our data and potentially a
eflection. Reflections are possible, because the sign of an eigenvector
an be changed and the result will still be an eigenvector. Thus, the
ign of any of the columns of U can be changed and the column will
till represent a principal component. This means that U 

T has to be
 combination of an arbitrary number of reflection matrices and a
otation matrix. 

Consider that a rotation matrix has the form shown in either
quation ( 3 ) or equation ( 4 ), depending on the direction of the
otation. These matrices are not in their conventional form, because
he flipped y-axis in computer graphics changes the direction of
otation. 
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Figure 1. Results of applying the rotational standardization algorithm, which leads to a 41.68 ◦ clockwise rotation. 
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Table 3. Thresholds used for core extraction. 

Standard deviation range Threshold 

0.2 < σ 80th quantile 
0.13 < σ < = 0.2 93rd quantile 
σ < = 0.13 98th quantile 
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� = 

[
cos ( θ ) − sin ( θ ) 
sin ( θ ) cos ( θ ) 

]
(3) 

 

� = 

[
cos ( θ ) sin ( θ ) 

− sin ( θ ) cos ( θ ) 

]
(4) 

By utilizing this knowledge, we should be able to extract the angle,
, from U . We do so by calculating the arcsin of the first element of

he second column of U 

T . We know that this element might have been
ultiplied by −1, but seeing as −sin ( θ ) = sin ( − θ ), this should not

ffect the absolute value of θ . 
Once we have calculated the rotation angle, we need to determine 

hether we should perform a clockwise or an anticlockwise rotation. 
efore we can determine the direction of the rotation, we will first
eed to determine whether the sign of any of the columns has been
ltered. 

We know that the sign of θ does not affect the result of the cosine
unction. Thus, we can use this result to establish whether the sign
f one of the columns have been changed. We do so by calculating
os ( θ ) and comparing the result to the first element of the first column
nd the second element of the second column of U . If the sign of the
lements in U differs from the sign of our calculated value, we can
ssume that the sign of the corresponding column has been flipped. 
e reverse this reflection by multiplying that column with −1. 
This process should address any reflections, meaning that we 

hould be left with only a rotation matrix. To determine whether 
e need to perform a clockwise or anticlockwise rotation, we have 

o determine which of the sine elements in U 

T is the ne gativ e element.
e do so by dividing each sine element with sin ( θ ) and inspecting

he sign of the results. 3 If the first element of the second column has a
e gativ e sign, we know that the rotation matrix is in the form shown
n equation ( 3 ), otherwise it is in the form shown in equation ( 4 ). 
 In the scenario where the sine elements have the same sign and the cosine 
lements are zero we will not be able to determine which column’s sign has 
een changed. Ho we ver, in this scenario the rotation angle has to be 90 ◦, 
hich means the direction of the rotation is not important. 

a  

c  
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o  

e
T

We tested our method of standardizing the orientation of the radio
alaxies, by determining whether we could use the rotation angle 
hat we calculated and the assumptions that we made to reconstruct
he U 

T matrix. We could do so successfully for all of the samples in
ur training data. For an example of the results that this algorithm
an achieve, the reader is referred to Fig. 1 . 

.3 Radio galaxy feature extraction 

e want to guide the CNNs to look for specific features in the
amples that we consider to be informative. This section will discuss
he features that we selected, as well as how we extracted them.

e extracted two sets of these features. One set was e xclusiv ely
xtracted by algorithms, whilst in the other, two of the features
ere extracted manually. This was done to determine whether either 

pproach of extracting features resulted in significant improvements 
n the performance of the guided networks. 

We selected four features that we deemed to be informative with
espect to the morphological classification of the radio galaxies. 
hese features include the FR ratio, whether the galaxy is bent or
ot, the number of so-called ‘bright spots’ that are present in the
alaxy, which we will refer to as cores for the rest of the paper, and
he ratio of the size of the cores to the total size of the galaxy. 

Before e xtracting an y features, the images had to be normalized
nd thresholded. Once this had been done, the first step consisted of
alculating the standard deviation of the galaxy pixels. The cores of
he galaxy were then extracted by using a threshold that depended
n this standard deviation. A number of thresholds were used during
xperimentation to find the thresholds that delivered the best results. 
hese thresholds can be seen in Table 3 . 
MNRAS 522, 292–311 (2023) 
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The number of pixels larger than the threshold are then counted.
his count is divided by the total number of pixels in the galaxy,
hich leads to the first feature that we want to extract, the ratio
f pixels in the cores to pixels in the galaxy. This feature indicates
hether the cores dominate the galaxy, which is especially pre v alent

n compact galaxies. 
Once this feature had been extracted we could count the number of

ores in the galaxy by counting the number of connected components
n the thresholded image. Whilst counting the connected components,
e also recorded the coordinates of the pixel with the maximum
alue in each component. We used these coordinates to represent the
enter of each component. If there are two cores we can simply use
he distance between them to represent the inter-core distance in the
R ratio. If there are more than two cores we calculated the distance
etween each core and its nearest neighbour and used the average
istance to represent the inter-core distance. If there was only one
ore, it could mean that we are dealing with a compact source, but
here is also the possibility that it is an FRI source where the distance
etween the cores is so small that they look like one core. Thus, we
alculate the distance from one side of this core to the other side
nd use a third of this distance to represent the inter-core distance.
his is only an estimate of what the distance would be if cores are
 v erlapping, but it is accurate enough to indicate that the cores are
ery close to one another. 

Before we can continue with feature extraction, it is necessary to
etermine whether there was a lot of noise present in the sample. The
eader might remember that if there is a lot of noise in a sample, the
hresholding algorithm tends to include some background pixels or
oise that is connected to the galaxy, which complicates the process
f identifying potential curves in the galaxy’s shape. 
Thus, if we detect a lot of noise during thresholding, we use

he standard deviation and mean of the extracted galaxy pixels to
alculate the z-score. The z-score represents how many standard
eviations each pixel is from the mean. We want to get rid of any
ackground pixels that were mistakenly extracted from the original
mage. These background pixels are generally much darker than the
est of the pixels, which means that they will have a considerably
arger z-score than the rest of the pixels. Thus, we only keep
ixels with a z-score that is smaller than the median z-score. This
ight seem to be a very aggressive threshold, but it was found

o deliver good results for the next steps of the feature extraction
rocess. 
Once we had remo v ed an y potential background pix els from the

mage, we used an approach that is very similar to the approach
rom Section 2.2.4 . The only difference was that we multiplied the
 matrix from the SVD directly with the matrix that contains the

oordinates of the galaxy pixels. This multiplication produced the
oordinates that the pixels would have if we rotated them to align the
rincipal component with the axes. By calculating the difference
etween the minimum and maximum column value in our new
oordinate system, we can determine the approximate distance from
ne side of the galaxy to the other. The inter-core distance can then
e divided by this distance to calculate the FR ratio. 
The final step is to determine whether the galaxy is bent. We do this

y using the distance between the minimum and maximum column
hat we just calculated, as well as the distance between the minimum
nd maximum row. If the galaxy is not bent, one of these distances
hould be considerably larger than the other, but if the galaxy is bent
hese distances should be closer to one another. 

Unfortunately, some factors complicate the process of identifying
urves in practice. These factors include the imperfect identification
f galaxy pixels, the small angle between tails in NATs, the similar
NRAS 522, 292–311 (2023) 
ertical and horizontal dimensions in certain compact, FRI and FRII
alaxies, etc. 

To select good thresholds for these values, we took into consid-
ration that bent galaxies are much more likely to have a curve in
he galaxy’s body, whilst curves in the bodies of other classes of
adio galaxies should be much rarer. Thus, we selected thresholds
hat would separate most of the bent galaxies from the other galaxies.
here were no thresholds that could perfectly achieve this separation,
ut we do not view this as a problem, seeing as we want the feature
o indicate whether a curve is present in the galaxy. We do not want
t to become a class label for bent-tailed galaxies. 

The hyperparameters used in this process are specific to this data
et. They can be heavily optimized, because this algorithm will not be
pplied to unseen samples, meaning that there is no risk of o v erfitting.
o we ver, if this approach is applied to a new data set, it might be
ecessary to tune these hyperparameters for the new samples. 
We also manually determined the number of cores in each galaxy

nd whether the galaxy was curved in any way. These features
ere not extracted by an astronomer and thus simply indicate the
umber of regions in an image that were considered to be cores and
hether it seemed like a galaxy was curved in any way. The manually

xtracted features were used in the additional set of features that were
entioned earlier to determine whether manually extracting features

eads to any significant improvements in performance. 

 A R C H I T E C T U R E S  

or this paper, a few guided, as well as unguided neural networks
ere constructed. These networks consist of a standard CNN that

imply classifies samples, an auxiliary CNN that is used to extract
he selected features from samples and three guided CNNs. These
uided networks are referred to as the wide, multiheaded and merged
eural networks and they are all guided to use information from the
xtracted features to a certain extent when classifying samples. 

This section will explain the architectures of the CNNs that
ere applied to the FRGMRC data as well as the process of
yperparameter selection. The full details of these architectures can
e found in the Github repository. The architectures of the networks
hat were applied to the XOR data can be seen in Appendix A . 

The reader will notice that the architectures in this section contain
ense blocks and convolutional blocks. Each convolutional block
ontains two convolutional layers, followed by a max pooling layer.
he dense blocks each consist of a dense layer, which is followed by
 dropout layer. 

These architectures have not been e xtensiv ely optimized. This was
one purposefully, because we want to be able to identify whether the
hanges that we make to the network architectures affect o v erfitting
nd model performance. If the models were already fine-tuned to
he point where there is no o v erfitting present in the networks and
he network performs perfectly, it would be difficult to determine
hether our changes affect the models’ performance. 
Thus, we are of the opinion that it is more important to ensure that

he hyperparameters and the general structure remain as similar as
ossible in the various networks to ensure that there are no factors
hat could affect network performance, other than the factors that we
re investigating. 

.1 Standard CNN 

s the name suggests, this network simply represents a standard
nguided CNNs as can be seen in Fig. 2 . It was used as a baseline with
hich to compare the performance of the guided CNNs. The standard
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Figure 2. Structure of the SCNNs. 

Figure 3. Structure of the ACNNs. 

Figure 4. Structure of the WCNNs. 

Figure 5. Structure of the MhCNNs. 
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onvolutional neural network (SCNN) was also used to compare our 
otational standardization technique to rotational augmentation. 

.2 Auxiliary CNN 

 representation of the auxiliary convolutional neural network 
ACNN) architecture can be seen in Fig. 3 . From this figure it can be
een that the ACNN architecture is very similar to that of the SCNN.
he only difference is that the output layer in the ACNN makes
se of a sigmoid acti v ation function to produce multilabel feature
redictions, whilst the SCNN makes use of a softmax acti v ation
unction to make a single class prediction. This network is used 
o engineer new features for the data sets, by determining the 
resence of the predetermined features within each of the given 
amples. 

.3 Wide CNN 

he wide convolutional neural network (WCNN) was based on the 
eural network architecture presented by Cheng et al. ( 2016 ). Similar
rchitectures have also been applied to radio galaxy data (e.g. Tang 
t al. 2022 ). Fig. 4 shows a representation of the modified architecture
sed for the WCNN in this paper. 
These networks have the benefit that they can learn from multiple 

nputs in parallel. In this paper, the network specifically receives 
dditional inputs just before the first dense layer blocks. These 
dditional inputs are the features engineered by the ACNNs. They 
re fed into the WCNNs after the convolutional layers, seeing as the
onvolutional layers are meant for image data and will probably not
e very useful if applied to the engineered features. 
These networks are the first guided neural networks and were used

o establish whether feature engineering using domain knowledge 
ould impro v e the training process in an y way. 

.4 Multiheaded CNN 

he multiheaded convolutional neural networks (MhCNN) are based 
n an existing neural network architecture that has been used for a
ide variety of applications. These networks generally have a shared 
ase, which branches out into a number of heads that each performs a
pecific task. For an example of these multiheaded neural networks, 
he reader is referred to the work done by Li, Ng & Natsev ( 2019 ). 

The structure of the multiheaded networks used in this paper is
hown in Fig. 5 . As can be seen, the MhCNNs split up into two
eparate heads after the convolutional layers. One head is similar to
he ACNN, whilst the other head is similar to the SCNN. 

At first glance, it might not be apparent that MhCNNs are guided
eural networks. Ho we ver, the reader should note that the two heads
hare multiple convolutional blocks. The optimization algorithm will 
hus adjust the weights according to an aggregate loss function which
ses the loss functions of both heads. This means that the auxiliary
ead will have an effect on parameters in the convolutional layers,
hich will in turn have an effect on the main head. Thus, during

he training process, the auxiliary head will still be able to guide the
ain head, albeit indirectly . Ideally , the shared convolutional layers
ill find patterns that are beneficial to both the auxiliary and main
eads, which could speed up training. 
MNRAS 522, 292–311 (2023) 
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Figure 6. Structure of the MCNNs. 
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After training, MhCNNs provide the extracted features as an
dditional output, which can then be used for other tasks. One such
ask could be to make use of these features to validate the class
ssigned to each sample. For example if the network did not detect
n y curv es in the body of a sample, but classified it as a bent-tailed
alaxy, one might need to double check the result. Such a network
ould also be used to learn additional labels for the samples, such as
he number of peaks and components in each sample, similar to what
as done for CLARAN (Wu et al. 2018 ). 

.5 Merged CNNs 

he merged convolutional neural networks (MCNNs) are a contin-
ation of the fundamental concepts used in the Mh and WCNNs.
hese MCNNs also make use of engineered features to guide the

raining process, but they construct these features within the hidden
ayers of the network. They then feed these engineered features into
he output layer. 

A variant of the merged neural network was first constructed for the
OR binary operator, seeing as the network structure could be kept

imple. 4 This made it possible to determine the updated terms from
rst principles. Doing so pro v ed that backpropagation and stochastic
radient descent were still applicable to networks that made use of
he outputs of hidden neurons in their loss function. 

Once it had been confirmed that it was possible to construct a
erged neural network, MCNNs were constructed for the FRGMRC

ata set. A representation of the architecture of these networks can
e seen in Fig. 6 . As can be seen in this figure, the final dense layer
s split into two sections. One section consists of ‘guided’ neurons
hat are used to extract the selected features from the sample, whilst
he other consists of standard ‘free’ neurons that are free to find any
atterns in the given sample that will assist in classification. 
MCNNs have similar benefits to those of the MhCNNs. They also

earn to extract features from the samples, which can be used for
ther downstream tasks, such as verifying whether the classification
abels are sensible or not. They also have the added benefit that the
xtracted features are fed back into the dense layer that classifies the
amples, which means that the extracted features can play a more
irect role in the classification process. 

.6 Hyperparameter selection 

yperparameters in machine learning models can drastically change
odel behaviour and thus influence the quality of the output. Thus,

t is important to select good values for them. 
NRAS 522, 292–311 (2023) 
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Unfortunately, due to the large number of interchangeable,
omplex elements present in neural networks, they tend to have
uite a large number of hyperparameters. This makes it infea-
ible to explore the entire hyperparameter space in search of
ood values. Instead, this paper evaluated the networks’ perfor-
ance on a validation set for a fe w v alues of each hyperparam-

ter and then selected the values that seem to lead to the best
erformance. 
A Nadam optimizer with a learning rate of 0.0001 was used for

ll of the networks in this paper. A grid search was conducted
hat determined the best learning rate for the SCNNs. The same
earning rate was used for the other neural networks, seeing as their
onvergence speed would be compared. 

For the hidden layers, ReLU and ELU acti v ation functions were
sed. ReLU acti v ation functions were used in the convolutional layers
nd ELU acti v ation functions were used in the dense layers. With
espect to weight initialization, He normal weight initialization was
sed for all of the dense layers and Xavier uniform initialization was
sed for the convolutional layers. The bias terms were all initialized
o zero. 

 EMPI RI CAL  ANALYSI S  

n this section, the analytic process will be discussed that was used
o compare the various neural networks. Section 4.1 will discuss the
oss functions and performance metrics that were used. This will be
ollowed by a discussion of the procedure that was used to generate
eliable performance e v aluations for the rotational pre-processing
teps as well as each of the neural network architectures. 

.1 Loss functions and metrics 

o be able to compare the various neural netw orks, it w as necessary
o select a few performance metrics. This subsection will discuss
hese metrics as well as the loss functions that were used. 

.1.1 Categorical cr oss-entr opy loss 

ategorical cross-entrop y tak es the probability of a sample belonging
o a class and compares it with the true label of that sample. It then
omputes a logarithmic penalty which corresponds to how far away
he prediction probability is from the desired output. This calculation
an be seen in equation ( 5 ). In this equation, N refers to the number of
amples in the data set, M refers to the number of classes, and p ij is the
utput from the neural network corresponding to class j and sample i .
inally, t ij = 1 if sample i belongs to class j . Categorical cross-entropy

oss is used for models that make a single class prediction. Thus, this
oss function was used for the neural networks that classified samples
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rom the FRGMRC data set to e v aluate the class predictions that they
ade. 

 = − 1 

N 

N ∑ 

i= 1 

M ∑ 

j= 1 

t ij log 2 ( p ij ) (5) 

.1.2 Binary cr oss-entr opy loss 

he TensorFlow implementation of binary cross-entropy loss is very 
imilar to categorical cross-entropy loss, except that it is used for
inary classification. The equation used to calculate this loss is very 
imilar to the equation used for categorical cross-entropy loss, as can 
e seen in equation ( 6 ). The value N still refers to the number of
amples, t i represents the true label for sample i and p i represents
he predicted label. This loss function was used to e v aluate ho w
ell neural networks were able to extract the bent feature from the
RGMRC data. 

 = − 1 

N 

N ∑ 

i= 1 

t i log 2 ( p i ) + (1 − t i ) log 2 (1 − p i ) (6) 

.1.3 Mean squared error 

he mean squared error (MSE) loss function is commonly used to 
 v aluate the performance of neural networks when they are utilized to
redict continuous variables. In this paper, it was used to evaluate how 

ell neural networks could extract the continuous-valued features 
rom the radio galaxies, such as the FR-ratio and the number of
ores. This loss can be seen in equation ( 7 ). N represents the number
f samples, t i is the true value of sample i and p i is the value predicted
y the network. 

 = 

1 

N 

N ∑ 

i= 1 

( t i − p i ) 
2 (7) 

A variant of this loss function was also used to optimize the
etworks that were trained on the XOR data set. The only difference
as that the entire equation was divided by 2. This has no impact
n the optimization process, because the weights that minimize C 

ill also minimize C 
2 . This division is generally excluded in the 

iterature, but it has been used here to simplify the deri v ati ve of the
oss function. 

.1.4 Mean absolute error 

he mean absolute error (MAE) is very similar to the MSE. The only
ifference is that it uses the absolute distance between predictions 
nd true values instead of the squared distance. We also make use of
his metric to e v aluate ho w well neural networks could extract the
ontinuous-valued features from the radio galaxies. This metric is 
ncluded, because it makes it easier to interpret how well the neural
etwork can extract the continuous-valued features. The MAE can 
e seen in equation ( 8 ). N represents the number of samples, t i is the
rue value of sample i and p i is the value predicted by the network. 

 = 

1 

N 

N ∑ 

i= 1 

| t i − p i | (8) 

.1.5 Combined loss function 

he MhCNNs and the MCNNs have two outputs, the features that 
ere extracted and the class label of the sample. To ensure that all
f the outputs are optimized, the loss function has to incorporate at
east one component for each output that can provide an empirical
 v aluation of the quality of the output. 

Ho we ver, not all of these outputs are necessarily equally important.
t might be more important to extract certain features, or it might be
ore important to classify the sample. Thus, weights were used 

o indicate how important each component was. The weighted loss 
unction can be seen in equation ( 9 ). In this equation, m represents
he main component of the loss, the categorical cross-entropy loss, 
 represents the auxiliary component which indicates how well the 
etworks were able to extract the specified features from the samples,
nd w 1 and w 2 represent the weights that correspond to each
omponent. 

 = w 1 m + w 2 a (9) 

.1.6 Classification accuracy 

he classification accuracy of a model is very easy to cal-
ulate. It is simply the number of correct classifications di- 
ided by the number of samples in the given data set. This
etric gives a good indication of the models’ classification 

erformance. 

.1.7 F1 Score 

he F1 score is a slightly more intricate performance metric. To
nderstand the F1 score, it is necessary to first understand what is
eant by the precision and recall of a network. Precision is calculated

s shown in equation ( 10 ). In this equation TP is the number of true
ositives and indicates how frequently the model accurately identifies 
he presence of the positive class. In a binary classification problem,
he positive class is the primary class that one is interested in. The
pposite is true for the ne gativ e class. FP is the number of false
ositives and indicates how frequently the model falsely identifies 
he presence of the positive class. 

recision = 

T P 

T P + F P 

(10) 

Equation ( 11 ) shows how the recall of the model is calculated.
N is the number of false ne gativ es and indicates how frequently a
odel falsely determines that the positive class is not present. 

ecall = 

T P 

T P + F N 

(11) 

These two metrics are then combined as shown in equation ( 12 )
o create the F1 score. For this paper, the F1 score was used as a
etric to e v aluate the classification performance of the networks on

he FRGMRC data. This was necessary, because there is a slight
mbalance in the class representations and the F1 score is less
ensitive to these imbalances than the classification accuracy is. In 
his case, the positive class is simply whether a sample belongs to
ne of the morphological classes. 

1 = 2 × Precision ∗ Recall 

Precision + Recall 
(12) 

Seeing as the F1 score was applied to problems that were not binary
lassifications, the calculations had to be adapted. The precision and 
ecall was calculated for each class. The average precision and recall
or all of the classes was then used to calculate the o v erall F1 score.
his is commonly known as the macro-average F1 score. 
MNRAS 522, 292–311 (2023) 
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Table 4. Number of samples in training, validation, and test data set. 

Training Validation Test Total 

702 87 88 877 
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.1.8 Overfitting metric 

e want to be able to determine whether guided neural networks
eneralize better than unguided neural networks. To be able to
ompare these networks we need a metric that provides an indication
f how much o v erfitting is present in the network. One indicator that
s commonly used, is the difference between the training loss and
he validation loss. If o v erfitting occurs, the training loss will keep
mproving, whilst the validation loss might plateau or even become
orse. 
Before we calculate the difference between the training and

alidation losses, it is important to acknowledge that the losses
hat are being optimized in the various networks differ from one
nother and have different scales. Thus, it would not be fair to
ompare them directly, because losses with a larger range of values
ill automatically make it seem like the network is o v erfitting more

everely. 
To address this problem, we first record all of the training and

alidation losses for every training run of a network and then use
hese losses to formulate an approximation of the range of values that
e can expect to observe for that loss. We then use this information

o normalize the losses, by using an equation similar to equation ( 1 ).
he only difference is that X will now represent all of the loss values

hat were recorded and x will refer to one of these loss values. 
Once this has been done, all of the losses will have values between

ero and one, which makes it possible to draw a fair comparison
etween the various networks. At this point we can simply calculate
he difference between the training loss and the validation loss when
raining finishes. The larger this difference is, the more o v erfitting
as occurred. 

.2 Investigation pr ocedur e 

ue to the stochastic nature of neural networks, one cannot expect
he training process to deliver consistent results. To get a reliable
ndication of the performance of the various networks, it is necessary
o train each network multiple times and to then use statistical
easures to e v aluate their performance o v er all of the runs. 
Thus, each of the neural networks in this paper were trained and

 v aluated o v er twenty independent runs. The performance metrics
ere recorded for each run. For the radio galaxy networks this
as done by making use of the Tensorboard callback in Tensorflow

Abadi et al. 2015 ). After all of the runs had finished, the logs were
sed to determine the average performance of the networks. 
To establish how well the networks generalize, the FRGMRC data

et was split up into a training, validation, and test data set before
he first training run. The sizes of these data sets are given in Table
 . The total number of samples in this table does not align with
he total number of samples in Table 2 . The difference is due to
ome compact sources that were added to the FRGMRC data set
fter experimentation, as well as a few duplicate sources that were
ropped at an advanced stage of the project. Neither of these changes
ffect our results, because the models were all trained and e v aluated
n the same set of samples. 
Recall that we also trained shallow networks for the XOR data set

s a feasibility study. These networks were trained for a maximum of
NRAS 522, 292–311 (2023) 
0 000 epochs on the the full data set. This is acceptable, because the
OR data set is e xhaustiv e. The radio galaxy CNNs were trained on

he training data set for a maximum of 100 epochs. After each epoch,
hey were also e v aluated on the validation data set, which indicated
ow well the models were generalizing to unseen data. 
To save some time an early stopping mechanism was used to stop

he training of the XOR neural networks when the loss function
eached a value that was smaller than 0.01. Early stopping was also
sed to stop the training of the radio galaxy networks if the validation
oss had not impro v ed for 5 epochs. This assisted in addressing the
 v erfitting in the network to a certain extent. Once the training of the
adio galaxy networks had concluded, the network’s state was reset
o the state when the minimum validation loss was achieved. The
etw ork w as then e v aluated on the test data set. 

.2.1 Rotational standardization investigation details 

n this paper, we compare the ef fecti veness of rotational augmen-
ation and rotational standardization to address rotational variations
hat are commonly found in the radio galaxy data. In these experi-

ents, SCNNs were trained on the FRGMRC data set after different
re-processing steps were applied. 
To e v aluate rotational augmentation, each of the training and

alidation data sets were augmented, using the approach detailed
n Section 2.2.3 . The test data set was not augmented, because this
ould lead to an unfair comparison of the various approaches, since

hey would ef fecti vely be e v aluated on different data sets. All of the
amples were then normalized, after which a SCNN was trained and
 v aluated on the processed data sets o v er twenty training runs. 

Rotational standardization was e v aluated in a similar fashion. The
nly difference was that instead of augmenting the data, the rotation
f each of the samples in the training, validation, and test data sets
as standardized, using the approach that was explained in Section
.2.4 . 
Finally, we also trained and e v aluated an SCNN on a data set

here the only pre-processing that was done consisted of normalizing
he samples. This SCNN was used as a baseline to determine how
mportant it is to address the rotational variations in a given data set.

.2.2 Feature guided training investigation details 

o investigate whether there are any benefits in guiding the networks
o look for specific features, three guided CNN architectures were
 v aluated, as well as one unguided architecture, which served as
 baseline with which to compare their performance. The guided
rchitectures included WCNNs, MCNNs, and MhCNNs. 

As mentioned earlier, the MCNNs and MhCNNs make use of
eights to balance the contribution of the main and auxiliary outputs

o the total loss of the network. To get an indication of the effect that
hese weights have, three MhCNNs and three MCNNs were trained.
ach network made use of different weight combinations, which can
e seen in Table 5 . All of the components of the loss functions had
 similar order of magnitude, which is why the weights also have a
imilar order of magnitude. 

Before training and e v aluating these networks, each sample was
ormalized. No other pre-processing steps were applied. We decided
ot to threshold the images before training, because during experi-
entation a SCNN performed considerably worse when trained on

hresholded images. The SCNN achieved an average accuracy of
6.2 per cent without thresholding and an average accuracy of 82.05
er cent with thresholding o v er twenty training runs. 
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Table 5. Weights used to balance loss components in radio galaxy networks. 

Network Main weight Auxiliary weight 

Even MhCNN 0.5 0.5 
Main MhCNN 0.75 0.25 
Auxiliary MhCNN 0.25 0.75 
Even MCNN 0.5 0.5 
Main MCNN 0.75 0.25 
Auxiliary MCNN 0.25 0.75 
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 RESULTS  

his section will present and discuss the results from our experi- 
ents. The results of our rotational standardization algorithm will 

e presented in Section 5.1 . This will be followed by a discussion
f the performance of the guided CNNs on the XOR and FRGMRC
ata set in Section 5.2 and Section 5.3 , respectively. 

.1 Rotational standardization results 

ecall that we trained three SCNNs to e v aluate our rotational
tandardization algorithm. One was trained on a data set where no 
otational processing was performed, one was trained on a data set
hat was augmented with rotated versions of the samples and one was
rained on a data set where our rotational standardization algorithm 

as applied as a pre-processing step. The average macro F1, loss,
nd training time of each of these networks can be seen in Table 6 . 

This table clearly indicates that approaches that address rotational 
ariations lead to far superior classification results in comparison 
ith approaches that ignore these variations. Such an increase 

n classification performance validates the claims that rotational 
 ariations negati vely af fect the performance of classifiers. 
Upon further investigation of the confusion matrices shown in Fig. 

 and the per-class metrics shown in Table 7 , we were also able to
stablish that these impro v ements in classification results occurred in 
ll four classes. Ho we ver, it became clear that addressing rotational
ariations had a considerably larger impact on the classification 
esults of bent and FRII galaxies. It was observed that CNNs were
ble to achieve good classification performance on compact and FRI 
alaxies, even when rotational variations were not addressed. This 
ndicates that CNNs are less sensitive to rotations in these galaxies 
han rotations in bent and FRII galaxies. We hypothesize that this is
ue to the simpler, compact nature of the FRI and compact galaxies.
Furthermore, it can be determined from the results in Table 6 and

able 7 that rotational augmentation also leads to better classification 
erformance than rotational standardization. That being said, Table 
 indicates that rotational standardization results in a slightly better 
ecall for bent and compact galaxies, which indicates that CNNs that 
ere trained and e v aluated on standardized galaxies are marginally 
etter at identifying these classes. 
Upon closer inspection of the samples on which classification 

rrors are made, we found that there was an o v erlap between the
odels using augmentation and standardization. Ho we ver, there 
ere also a number of samples on which only standardization or

ugmentation led to errors. This could indicate that standardization 
nd augmentation are relying on different features or have differ- 
nt vulnerabilities. Unfortunately, we could not identify any clear 
imilarities between samples on which each technique tended to 
ak e mistak es, nor could we establish any clear differences between

amples on which only standardization models would make a mistake 
nd samples on which only augmentation models w ould mak e a
istake. 
We suspect that the reason why augmentation generally leads 
o a better F1 score than rotational standardization is due to the
ensitivity of rotational standardization to the presence of additional 
adio sources and thresholding artefacts in the background. To clarify 
hat this means, we have included examples in Fig. 8 . These sources

nd artefacts lead to changes in the principal components, which in
urn leads to incorrect derotations. 

To further investigate the impact of these incorrect derotations, we 
ook a look at their pre v alence in our data set. What we found is that
2 samples were incorrectly derotated due to additional radio sources 
nd 6 samples were incorrectly rotated due to thresholding artefacts. 
espectively, this corresponds to approximately 3.6 per cent and 0.6 
er cent of the total data set. When looking at the class distribution
f these incorrect derotations, as shown in Table 8 , we can see that
hese problematic samples only affect the bent, FRI, and FRII classes
nd that they form a particularly large percentage of the FRI and bent
amples. The incorrectly derotated samples might not al w ays lead
irectly to classification errors, but they will have an indirect effect on
he models’ ability to classify samples from that class. The models
ill struggle to extract useful information from these problematic 

amples, because the information is at a different orientation, which 
ill lead to a loss of training information in an already small data set.

t is also entirely possible that these samples will lead to confusion
ithin the models, seeing as they will differ considerably from the
ther samples that have been standardized and thus increase the 
ntra-class variance. Our suspicions seem to be confirmed by the 
orrelation between the large portion of problematic FRI samples 
nd the large difference in FRI classification performance between 
ata augmentation and rotational standardization that we can observe 
n Table 7 and Fig. 7 . The difference in classification performance
or the FRII galaxies is also considerably smaller, which corre- 
ponds with the smaller percentage of samples that were incorrectly 
erotated. Ho we ver, we should note that this correlation between
he difference in classification performance and the percentage of 
ncorrectly derotated samples does not hold for bent galaxies. We 
uspect that this is due to the fact that bent galaxies have no clear
orrect orientation, which means that the ‘incorrect’ derotations will 
nly lead to a marginal increase in intra-class variance. 
We hypothesize that if one were to fine-tune the thresholding 

lgorithm to remo v e these background radio sources, rotational stan-
ardization would be able to compete with rotational augmentation 
n terms of classification performance. 

That being said, the true advantage of rotational standardization 
ies in the amount of time required to train the networks. The average
raining time for CNNs that were trained on augmented data is almost
 factor of five times longer than the times required to train CNNs
n samples with a standardized orientation. The training times for 
ugmented data will become even longer if the rotational intervals 
re reduced. This confirms our hypothesis that data augmentation 
ill be considerably slower due to the consideration of data set size.
What is interesting to note, is that on average, the CNNs also

rained faster on the samples with a standardized orientation than 
he samples where no rotational pre-processing was applied. This 
esult could be due to the fact that conventional CNNs have to learn
hat a feature looks like at various orientations, as was explained by
caife & Porter ( 2021 ). Thus, if rotational variations are reduced or
emo v ed, it is highly likely that less time will be spent on learning
hese duplicate feature filters, which in turn means that the CNN will
e able to learn a variety of informative features in less time. 
This reduction in training time is likely to become more prominent

s the complexity of the neural networks increases or if larger data
ets are used that include more samples or more classes. Thus, in
MNRAS 522, 292–311 (2023) 
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Table 6. Average performance of SCNNs with various rotational pre-processing strategies. 

Pre-processing Average macro F1 Average loss Average training time (s) 

None 0.876 0.34 116 
Rotation standardization 0.95 0.18 98 
Augmentation 0.971 0.12 476 

Figure 7. Average confusion matrices of SCNNs with various rotational pre-processing strategies. 

Table 7. Average per-class performance of SCNNs with various rotational pre-processing strategies. 

Bent Compact FRI FRII 
Pre-processing Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 

None 0.8 0.695 0.743 0.937 1.0 0.966 0.983 0.894 0.936 0.823 0.899 0.858 
Standardization 0.961 0.898 0.928 0.963 1.0 0.981 0.975 0.922 0.947 0.924 0.968 0.945 
Augmentation 0.99 0.879 0.93 1.0 0.995 0.998 1.0 0.986 0.993 0.932 0.996 0.963 
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Figure 8. Samples where rotational standardization failed due to background elements. 

Table 8. Distribution of incorrect derotations. 

Class Total incorrect derotations Percentage of class 

Bent 18 8.5 per cent 
Compact 0 0.0 per cent 
FRI 17 9.3 per cent 
FRII 12 3.2 per cent 
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Figure 9. Epochs taken to train the XOR networks. The given labels indicate 
the network architecture, as well as the weight distribution that was used for 
each merged network. The reader is referred to Appendix A for clarity on the 
meaning of the labels. 
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ime-sensitive scenarios it might be beneficial to rather use rotational 
tandardization instead of rotational augmentation. 

.2 Performance of guided neural networks on XOR 

he reader might recall that a variant of the merged architecture 
as e v aluated on the XOR data set first to determine whether it
as feasible to guide the training of neural networks. For more 

nformation regarding the architecture, the reader is referred to 
ppendix A . 
In Fig. 9 , one can see violin plots representing the number of

raining epochs it took for the XOR neural networks to reach a
oss smaller than 0.01. These violin plots have a box plot at their
MNRAS 522, 292–311 (2023) 
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Figure 10. Loss curves of XOR networks during training. 
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Figure 11. Violin plots of the macro F1 scores from Section 4.1.7 that were 
observed when e v aluating models on the test data set. The reader is referred 
back to Table 5 for an o v erview of the weights used in the MhCNNs and 
MCNNs. 
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enter. The thin lines in the box plot indicate the values smaller
han the 25th quantile and larger than the 75th quantile, the thick
ine indicates the values that are between the 25th and 75th quantile
nd the white dot indicates the median value. Surrounding this box
lot is a density estimation that is based on the observed values.
his assists in visualizing the expected distribution of each of the
erformance metrics. The wider the density estimation is, the more
ikely we are to observe the values in that re gion. F or this paper, the
ensity estimations were restricted to the range of values observed
n our experiments, thus no estimation is done for values outside of
he range of observed values. Estimations occurring outside of the
ox plot is due to the fact that the box plots exclude values that are
eemed to be outliers, but the density estimation does not. 

These violin plots indicate a large difference between the training
rocess of the guided and unguided XOR neural networks. The
raining process of the guided networks is clearly much stabler. We
an see that all four of the guided networks have a very compact
iolin plot, whilst the unguided network has a violin plot that spans
uite a large range of epochs. This is to be expected, seeing as the
uided networks will look for similar patterns during each training
un, whilst the unguided network is more likely to explore various
ifferent patterns in each run. 
We can also observe that the merged network with a heavy XOR

eight is clearly the guided network that trains the quickest. This
akes sense, seeing as the other guided networks might spend too
uch time on fine tuning the results of the NAND and OR neurons.
nother observation that can be made is that the standard XOR
etwork will train quicker than the guided networks in most runs.
o we ver, it can also train considerably longer than some of the
uided networks, such as the merged network with a heavy XOR
eight. 
To investig ate wh y these results were observed, the loss curves of

ach of the neural networks were plotted after training. These curves
an be seen in Fig. 10 . The reader should note that these loss curves
o not correspond to the training runs for the violin plots, seeing
s early stopping had to be disabled to record the entire loss curve
 v er 10 000 epochs. In these loss curves the solid line represents the
verage loss at each epoch and the shaded region indicates the 95
er cent confidence interval. The horizontal line at the bottom of the
gure indicates the early stopping threshold that was used. 
These loss curves also indicate that the training process of the
erged neural networks is much stabler than that of the standard
NRAS 522, 292–311 (2023) 
eural network, seeing as their confidence intervals are considerably
ore compact. Furthermore, these loss curves indicate that the
erged networks perform better than the violin plots suggested.
hese loss curves suggest that all of the merged neural networks
ould outperform the standard neural network if the threshold of

arly stopping was increased. It should also be noted that the merged
eural networks will outperform the standard neural network if
raining was conducted for less epochs. F or e xample, if training
as only conducted for 3000 epochs, all of the merged networks
ould achieve a better loss than the standard network. 
Merged neural networks seem to converge much quicker initially,

ut the convergence slo ws do wn in later epochs. This behaviour
akes sense, seeing as the merged networks will immediately start

earning to extract features and patterns that have been deemed to
e informative, whilst the standard neural network will spend more
ime exploring the search space and is thus likely to take longer to
nd good features. The quick convergence of these merged networks
ould be very beneficial for time-sensitive applications. 

.3 Performance of guided CNNs on FRGMRC data 

.3.1 Algorithmically extracted features 

o provide an accurate depiction of the performance of the CNNs on
he FRGMRC data, we generated a few violin plots that present the
bserved values of the performance metrics for each run of each of
he CNNs. We will focus on the violin plots of the macro F1 scores,
he o v erfitting metric and the number of epochs needed to train the
etworks, seeing as they were the most informative when e v aluating
he performance of the CNNs. The plots are shown in Figs 11 , 12 ,
nd 13 , respectively. 

When comparing the white dots that represent the median F1
core in Fig. 11 we can observe that all of the MhCNNs, as well
s the MCNN with a heavier weight for the main cross-entropy loss
anaged to achieve a better macro F1 score when classifying each of

he radio galaxies. Ho we ver, these scores are only marginally better
han that of the SCNN. 

Shifting our focus to Fig. 12 , the benefits of the guided networks
ecome more apparent. We can immediately observe that o v erfitting
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Figure 12. Violin plots of the o v erfitting scores from Section 4.1.8 that were 
observed after training the models. 

Figure 13. Violin plots of the number of epochs it took to train the CNNs. 
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Table 9. Average training times of CNNs on galaxy data set. 

Network Average training time (s) 

SCNN 116 
WCNN 99 
Even MhCNN 144 
Aux MhCNN 127 
Main MhCNN 137 
Even MCNN 119 
Aux MCNN 104 
Main MCNN 119 
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5 The training time of the WCNNs does not include the time taken to train 
the ACNNs. This was done to show what the training time would be if these 
features were already available. 
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s less likely to occur in the MCNNs and MhCNNs that use a larger
eight for the auxiliary loss component. We can also observe a 

imilar trend in the WCNN. 
These networks all have something in common, they make use of

igher quality features to guide the classification of the samples. To 
nderstand why this is true for the merged and multiheaded networks, 
he reader is reminded that these networks made use of a considerably
arger weight for the loss that corresponds to the features that are
xtracted from the samples. During training, the feature extraction 
ill thus be optimized much quicker than the classifications, which 
eans that the network will have access to high quality features 
uch sooner than the other guided networks. The wide network will 

lso have high quality features, because they were extracted by a 
retrained ACNN. 
It is very likely that it is these high quality features that makes the

etworks more robust to o v erfitting. We suspect that the networks
re more likely to learn to use these features for classification if they
re trustworthy at an early stage of training. If the network makes use
f these features, they will not need to find as many other features
n the training data, which reduces the risk of o v erfitting on noise or
ninformative features. 
From Fig. 13 it also becomes apparent that the auxiliary-weighted 
CNNs and MhCNNs, as well as the WCNNs generally require less

pochs to train. This is likely due to similar reasons as the reduction in
 v erfitting. Due to the presence of high quality feature vectors early
n the training process, we suspect that these networks don’t need to
pend as much time searching for features that assist in classifying
he given samples. 

The reader should note that, as shown by Table 9 , some of the
etworks don’t necessarily train quicker if they train in less epochs. 5 

he MCNNs train in less epochs and less time than the SCNNs,
ut the MhCNNs have a much more complex structure with more
arameters to tune than the other CNNs, which means each epoch
akes longer to complete. Ho we v er, the fact that the y train in less
pochs still indicates that by guiding the networks to look for specific
eatures, we can help the networks to converge in less training steps.
urthermore, if the code is optimized to train the two heads of the
hCNNs in parallel, it is likely that one will also be able to train the
hCNNs in less time than the SCNNs. 
What is also interesting to note is that the box plots of the auxiliary-

eighted MCNNs and MhCNNs is much more compact than that 
f the standard network, which is similar to the behaviour that we
bserved for the XOR data set. This is especially true for the box plot
f the MCNNs. The compact box plots could be another indication
hat the networks spend less time searching for features and more time 
ptimizing the extraction and use of the features that we proposed.
his leads to less variability in the training process and thus the
umber of epochs required for training becomes more consistent. 
We suspect that the MCNNs have a more compact box plot than

he MhCNNs, because the selected features play a more direct role
n the classification of the samples. Thus, if the selected features are
ruly informative and the network is able to accurately extract them,
here is no need for the network to look for other features. Due to
he indirect role that the selected features play in the MhCNNs,
t might be necessary for the MhCNNs to spend more time to
xplore the search space. Seeing as the convolutional layers have 
een trained to also extract the selected features, the chances are
ood that the MhCNN will still find these features and make use of
hem for classification, but it will take more time. The networks
re also likely to find other features in the process, which will
ead to an increase in the range of epochs that are required for
raining. 
MNRAS 522, 292–311 (2023) 
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M

Figure 14. Comparison of o v erfitting when using manual and algorithmi- 
cally extracted features. 

Figure 15. Comparison of epochs taken when using manual and algorithmi- 
cally extracted features. 
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.3.2 Manually extracted features 

s it has already been mentioned, we also have a set of feature
abels where some of the features were extracted manually from each
ample. We e v aluated the guided CNNs on this set of features as well,
ecause we wanted to determine whether it would make a significant
ifference in the networks’ performance. In this section we will
ainly focus on the violin plots shown in Figs 14 and 15 . 
From these figures, it becomes apparent that the auxiliary-

eighted MhCNNs and MCNNs, as well as the WCNNs, still tend
o o v erfit less. Ho we ver, the guided networks also seem to perform
orse when we make use of the manually extracted features. 
This behaviour seems counter-intuitive, but it makes sense after

onsidering that the manually extracted features are not necessarily
ccurate, especially the core count. The feature that indicates whether
he body of the galaxy is curved is likely to be accurate, because it is
 airly straightforw ard to determine if this is true or not when looking
t the images. Ho we ver, there were no clear rules for what should be
onsidered to be a core, which means that the core counts were based
NRAS 522, 292–311 (2023) 
n the intuition of the person who labelled them. This could lead to
naccurate core counts, which in turn is likely to lead confusion
ithin the neural networks when they attempt to learn how to extract

his feature. 
To investigate whether our suspicions were true, we calculated the

verage MSE of the core counts predicted by the auxiliary-weighted
CNNs after they were trained with the manually and automatically

xtracted core counts. We found that the MSE was 0.029 when using
he automatically extracted core counts and that the MSE was 0.113
hen using the manually extracted core counts. This confirms our

uspicion that the manually extracted core counts lead to confusion
n our guided networks which in turn would ne gativ ely affect the
 v erall performance of these networks. 
Thus, we suggest that algorithmically extracted features are used,

nless one is certain that the features can be accurately extracted
anually, using only information that is available in the training

ata. 

 C O N C L U S I O N  

he two goals of this paper were to investigate the benefits of
otational standardization as well as the benefits of guiding neural
etworks to look for specific features. 
In Section 5.1 , it was shown that rotational standardization

efinitely leads to better classification performance than if no attempt
s made to address rotational variations. Rotational standardization
lso managed to achieve this improvement in much less time than
otational augmentation can. That being said, augmentation might
till be the better choice in situations where time and computational
ower is not a problem, seeing as it can achieve better results. 
It was also identified that rotational standardization is susceptible

o additional radio sources in the images, as well as thresholding
rtefacts. Thus, if steps can be taken to address these problems in
he images, we are of the opinion that rotational standardization will
e able to ri v al rotational augmentation, both in training time and
lassification accuracy. 

When e v aluating the performance of guided neural networks on
he XOR data set in Section 5.2 , we determined that the training
rocess could become stabler and converge much quicker if we
uided the neural networks to look for informative features. These
esults are promising and clearly indicate that the training process
an be affected positively by guiding the networks. 

After e v aluating the guided architectures on the FRGMRC data in
ection 5.3.1 , we confirmed that it was vitally important that accurate
nd informative features were used to guide the training process.
urthermore, we confirmed that if these features were accurate and

nformative, it was possible to reduce overfitting in the networks. It
as also possible to reduce the average time needed for the training
f the WCNNs as well as the MCNNs with a larger weight for the
uxiliary loss. We are of the opinion that these guided architectures
ill be even more effective if the feature extraction process is fine-

uned. 
These results indicate that such guided architectures could be

eneficial in time-sensitive applications, in applications where a
table training process is essential, as well as in applications with
ultiple goals. Specifically, the multiheaded and merged neural

etworks could be very useful in applications where one wants
o identify specific features that could also be informative when
lassifying samples. As was seen in this paper, these guided neural
etworks can be trained to achieve two goals in less time than it
ight take to achieve one, as long as these goals can contribute to

ne another. 
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Future work could investigate ways to make the rotational stan- 
ardization approach more robust to background information in the 
mages. It could also consist of comparing rotational standardization 
o group-equi v ariant CNNs or constructing ne w guided architectures. 
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Table A1. Weights used to balance loss components in XOR networks. 

Network XOR weight ( l 1 ) NAND weight ( l 2 ) OR weight ( l 3 ) 

Even merged 0.34 0.33 0.33 
XOR merged 0.5 0.25 0.25 
NAND merged 0.25 0.5 0.25 
OR merged 0.25 0.25 0.5 
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PPENDIX  A :  X O R  N E U R A L  N E T WO R K  

R C H I T E C T U R E S  

n this section, we present the architectures used for the standard
nguided neural networks and the merged guided neural networks
hat were applied to the XOR data set. Section A1 will present the
tandard network and Section A2 will present the merged network. 

1 Standard XOR neural network 

t would not make sense to apply CNNs to the XOR data set. These
etworks are unnecessarily complex for simple tabular data. 
Thus a simple neural network was created for the XOR operator.

his network only has an input layer with two input neurons, a hidden
ayer with three hidden neurons and an output layer with one output
euron. Each neuron makes use of the sigmoid acti v ation function
nd the MSE variant that was discussed in Section 4.1.3 was used for
he loss function. A representation of the architecture can be seen in
ig. A1 . 
This standard neural network was used as a baseline with which

o compare the performance of the guided neural network. 

2 Merged XOR neural network 

 representation of the merged network for the XOR operator can be
een in Fig. A2 . In this figure b represents bias terms, w represents
he weight terms, z represents neuron inputs before applying the
NRAS 522, 292–311 (2023) 

Figure A1. Standard XOR neural network. 

Figur e A2. Mer ged XOR neural network. 
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cti v ation function, and a represents the inputs after applying the
cti v ation function. 

As can be seen in this figure, two of the hidden neurons are guided
o represent the NAND and OR binary operators, which are then
ed back into the output neuron that represent the XOR operator.
o understand why this was done, consider the fact that the XOR
perator can be rewritten in terms of the NAND and OR operators:
 1 XOR x 2 = ( x 1 NAND x 2 ) AND ( x 1 OR x 2 ). 

To ensure that gradient descent does not only optimize the XOR
unction, a loss function was used that aggregates the error of the
OR, NAND, and OR outputs. This loss function simply calculates

he weighted sum of each output’s MSE. This weighted sum can be
een in equation ( A1 ). 

 = 

l 1 

2 
( y 1 − a 2 1 ) 

2 + 

l 2 

2 
( y 2 − a 1 1 ) 

2 + 

l 3 

2 
( y 3 − a 1 2 ) 

2 (A1) 

The weights that were used for this loss function can be seen in
able A1 . 

3 Generalizability of guided ar chitectur es 

hen guided architectures encounter sources with different feature
 ariations or ne w features, there might be a concern that they will
ail to generalize and will perform poorly. In this section, we will
hortly discuss this concern and our suggested approach to address
t. 

The first scenario that one should consider is the presence of
ew features in our samples, whether in training or in inference. If
e encounter new informative features during training, our guided

rchitectures should be able to learn what these features are and how
o extract them by using the free neurons within the network, just as
 standard CNN would. Ho we ver, if we only encounter these new
eatures during inference, it is unlikely that our guided architectures
ill be able to sufficiently utilize them, but this would also hold true

or standard CNNs. CNNs in general cannot utilize features during
nference that they have not observed during training. 

Another scenario to consider would be rare or unusual variations
f the galaxies’ features. We are of the opinion that the guided
rchitectures will not be affected any worse by these variations than
tandard architectures, seeing as all of these architectures are unlikely
o be able to learn much from these variations if they are rare or
ncommon in our data sets. If, ho we v er, we hav e a new data set
here these feature variations are no longer rare or unusual, our
uided architectures will be able to learn from them by making use of
he free neurons. That being said, we do acknowledge that the guided
rchitectures do not attribute as much computational power to finding
ew features as the standard architectures do. Thus, if the change in
eature variations is so severe that the features we selected are no
onger informative, it is possible that our guided architectures will
erform worse than standard CNNs. We should consider, ho we ver,
hether we expect such severe changes in our feature space and
hether these changes would not represent an entirely new class of

adio galaxies instead of an unusual instance of a known class. 

art/stad989_fA1.eps
art/stad989_fA2.eps


Feature guided training and rotational standardization 311 

o  

u  

s
s
d
v
p  

a  

t  

n  

b  

f  

t

T

©
P
(

To address the concern that we might encounter such unexpected 
r rare feature variations in future large-scale surv e ys, we suggest the
se of an anomaly detection, or more specifically, a no v elty detection
ystem that is trained alongside the classification networks. Such a 
ystem could be used in parallel with the classification networks 
uring inference to detect when we encounter rare or new feature 
ariations. This system could assist us in finding samples that could 
ro v e to be problematic for our guided architectures. If these samples
2023 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 http://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and repr
re rare, we can simply extract them and make use of a human expert
o determine what they are and how they affected our classification
etwork. Ho we ver, if we start to encounter such samples on a frequent
asis, it could be an indication of concept drift or that we might have
ound a new class, in which case we would know that it is a good
ime to re-e v aluate and retrain our models. 
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