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ABSTRACT
Instead of comparing open and closed triads as static phenomena, 
this study examines how closure dynamics among inventors impact 
the extent to which inventors generate high-quality inventions at 
the triad level. Combining literature on small group synergy, social 
networks, and recombinant innovation, we propose that initial 
open triads of collaborating inventors that turn into a closed triad 
generate higher quality inventions than triads that maintain open. 
We also examine how the connectedness of the triad moderates 
the relationship between triad closure and the generation of triadic 
high-quality inventions. Using a matched sample of open and 
closed triads from 1987 to 2008, we find that over time, open triads 
that turn into closed ones generate higher-quality inventions than 
triads that remain open. Moreover, the triad’s degree of connected-
ness weakens the triadic closure’s positive impact on inventive 
performance. We discuss the implications for the study of innova-
tion, network triads, and collective synergy.
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1. Introduction

A core area of research on inventor networks concerns the impact on innovation 
generation (H. Singh et al. 2016). This literature emphasises the importance of networks 
because the innovation process is inherently social, where inventors engage in tasks that 
focus on collaborative problem-solving by providing each other with knowledge, sup-
port, and referrals (Fleming and Sorenson 2004; J. Singh and Fleming 2010; H. Singh 
et al. 2016). Within this area of investigation, Burt’s structural hole concept (Burt 2004), 
in particular, has been highly influential as it highlighted the benefits of open triads for 
ideas and novelty for individual brokers. Individuals occupying network brokerage 
positions tend to create novel innovations due to access to diverse and new knowledge 
and control benefits (Burt 2004; Fleming, Mingo, and Chen 2007). However, while 
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structural brokerage positions promote novel recombination of existing ideas, 
a brokerage position simultaneously hampers the implementation of these combinations 
and utilisation by others (Burt 2004; Fleming, Mingo, and Chen 2007; Obstfeld 2005).

Prior work on brokerage has improved our understanding of how triadic structural 
properties influence innovation-related outcomes (Kauppila, Bizzi, and Obstfeld 2018; 
Obstfeld 2005; Soda, Tortoriello, and Iorio 2018). Interestingly, studies on the relation-
ship between triadic structures and invention outcomes primarily focus on individual 
performance.1 An example is the study by Fleming, Mingo, and Chen (2007), who 
examine the influence of brokered versus cohesive, collaborative social structures on an 
individual’s creativity. Furthermore, Gómez‐Solórzano, Tortoriello, and Soda (2019) 
study, within the R&D function of a large European pharmaceutical company, how 
embedded triadic relationships of instrumental (i.e. knowledge-sharing) and non- 
instrumental (i.e. friendship) ties among inventors affect their ability to generate innova-
tions. More recently, Llopis and D’Este (2022) investigate the effects of balanced and 
unbalanced open triads on individual innovativeness.

Focusing on individual outcomes has greatly improved our understanding of how the 
social environment influences individual innovative performance. However, it draws 
attention away from the empirical and organisational fact that knowledge production 
and innovation often result from a combined effort of social actors whose resources 
synthesise novel outcomes at a collective level. Collaborative knowledge production is 
becoming the standard in many creative and innovation-based sectors (Wuchty, Jones, 
and Uzzi 2007). Invention follows this same development, fuelled by the increasingly 
high cumulative inventor knowledge needed to excel in a domain (Aggarwal, Hsu, and 
Wu 2020). With inventors becoming narrower but deeper in their knowledge domains, 
a group-based patent production structure may compensate for specialisation at the 
individual level (Orsatti, Quatraro, and Pezzoni 2020). It is, therefore, essential to shift 
from the individual to the group level. Our study focuses on the triadic level as the basic 
social unit, when investigating networks and relationships (Simmel 1950; Tortoriello and 
Krackhardt 2010).

Combining a dynamic view of triadic structure and outcomes (Spiro, Acton, and Butts  
2013) with the recombinant view on innovation (Schumpeter 1934) and literature on 
small groups (Larson 2010), we answer our research question: To what extent do open 
collaboration triads among inventors, that over time turn into closed triads, generate 
higher quality inventions at the triadic level compared to triads that remain open? 
Furthermore, we explore the question of how the connectedness of the inventors’ triad 
influences the relationship between dynamic triadic structure and invention outcomes. 
We test our hypotheses on a large-scale longitudinal dataset comprising a matched set of 
41,698 inventor triads in the U.S. biotechnology industry from 1987 to 2008. Findings 
reveal that open triads that close over time and connect previously unconnected alters 
positively influence invention quality at the triadic level. However, we find that the 
connectedness of the triad negatively moderates the positive relationship between triadic 
structure and triadic innovation outcomes.

1Only one exception exists: Soda et al. (2021) show in a supplementary analysis in the appendix of their study that 
inventor triads that remain open positively influence’s the ability of the triad to explore new knowledge areas.

2 D. NAN ET AL.



Our study makes three contributions to the existing network and innovation litera-
ture. First, informed by the observation that innovation is increasingly a collective effort, 
this study shifts the theoretical and empirical attention from the individual to outcomes 
at the triadic level. In this way, we increase our knowledge of network dynamics and its 
outcome effects at this fundamental network unit and shift our attention to a collective 
outcome highly relevant to organisational practice. Second, we challenge the conven-
tional wisdom in the social network literature that open triads, in most instances, per-
form better. We combine theoretical insights from network and innovation studies with 
insights from the teams and small groups literature, more specifically from the literature 
on group synergy (Kurtzberg and Amabile 2001) and collective intelligence (Woolley, 
Aggarwal, and Malone 2015) in one model. Furthermore, we theoretically argue and 
empirically show that closed triads are conducive to triadic innovation performance. The 
small group synergy literature’s theoretical precision helps network scholars delineate 
why specific tasks conducted in closed triads are more productive. Combining these 
relatively detached bodies of literature is a main theoretical contribution that leads to 
a deeper understanding of the relationship between network and collective outcome. 
Third, we contribute to brokerage theory on how the broader co-invention context in 
which the triad is located moderates the ability of the inventor triad to benefit in terms of 
inventive performance. In their review of the brokerage literature, Kwon et al. (2020) 
conclude that prior research on brokerage as behaviour has paid predominant attention 
to the broker. Other actors inside and outside the triad are usually neglected, with only 
a few exceptions (e.g. Zhelyazkov 2018). Kwon et al. (2020) consider this a major future 
research challenge. We answer this call by studying the connectedness of alters of the 
triad in the context of invention quality. In this way, a network structural element 
external to the triad is regarded as impactful for the collective outcomes of the invention 
process.

The rest of the paper is organised as follows. The following section reviews the 
literature on triadic performance and its relation with triadic network structure. 
Section three develops the theoretical mechanisms and sets up the hypotheses we seek 
to test. Section four introduces the treatment-control research design and discusses the 
development of the biotechnology sample, variable construction, and estimation method. 
Sections 4 and 5 present the results and robustness checks. Sections 6 and 7 discuss the 
implications of our findings and broader contribution to the literature while also 
identifying avenues for future research.

2. Theoretical background

2.1. Triadic performance

We build upon the common notion in innovation studies, which asserts that invention is 
the outcome of knowledge recombination (Fleming and Sorenson 2004; Schumpeter  
1934). To arrive at new combinations of existing and novel knowledge components, 
inventors usually engage in creative, problem-solving, and search processes in which they 
explore and apply solutions to problems that they encounter themselves (Arthur 2007) or 
are identified by their superiors at the corporate research and development (R&D) lab 
(Toh and Polidoro 2013). Prior research has shown that the recombinant innovation 
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process is often a social or relational process where inventors engage in tasks that focus 
on collaborative or interactive problem-solving by providing each other with (novel) 
knowledge, support, referrals, and cognitive search maps (Fleming and Sorenson 2004; 
A. Hargadon and Sutton 1997; H. Singh et al. 2016).

The literature on teams and group outcomes has shown that depending on the nature 
of the task and under certain conditions, groups outperform individuals or vice versa. 
Idea generation is a good example. The literature (e.g. Osborn 1953) initially maintained 
that individuals outperformed small groups. For instance, so-called production blocking 
causes poor group performance because group members must wait for each other to 
share ideas, severely hindering individual idea generation (Diehl and Stroebe 1987). Later 
research (Dugosh et al. 2000) showed that conditionally on cognitive stimulation, groups 
generated more ideas than individuals did. Cognitive stimulation regards activities 
designed to enhance cognitive functioning, including memory, attention, and other 
mental processes. This leads to an important question: For which tasks and under 
which conditions do small groups, like triads, perform better than individuals, and 
which mechanisms are at work in these cases?

Put differently, when do (small) collectives show synergy or collective intelligence? 
Larson (2010, 4) states that ‘a group is said to exhibit synergy when it is able to 
accomplish collectively something that could not reasonable have been achieved by any 
simple combination of individual member efforts’. A related concept stressing group 
processes instead of outcomes is collective intelligence. Teams or groups behave collec-
tively intelligently when their collective behaviours during the collaboration period are in 
line with the requirements of the (cognitive) tasks the team is assigned to and the 
(changing) environment (Janssens, Meslec, and Leenders 2022). Both concepts share 
a focus on interaction among individuals. Interaction refers to group members’ beha-
viours conducted together with or performed in the presence of other group members. It 
concerns (non)verbal face-to-face behaviours and behaviours conducted remotely or 
asynchronously, which also implies mutual adjustments (see Larson 2010, 5–6). The 
literature distinguishes weak and strong synergy (Larson 2010). Weak synergy is com-
monly defined as the performance of a group that is higher than the performance of 
a typical group member working individually. Strong synergy refers to the situation in 
which the group performs higher than the best-performing group member. This distinc-
tion is relevant to the discussion on the mechanisms supporting the relationship between 
triadic closure and invention quality.

Invention generation by inventors includes several tasks. The most important ones are 
generating creative ideas, solving problems, sharing and integrating knowledge, and 
learning (such as acquiring, retaining, and retrieving knowledge; Arthur 2007; Savino, 
Messeni Petruzzelli, and Albino 2017). The literature on synergy and collective intelli-
gence in small groups identifies three main tasks in which groups outperform indivi-
duals: (1) idea generation, (2) problem-solving, and (3) learning. Small groups tend to 
outperform individuals when it comes to idea generation conditional on the use of 
cognitive stimulation (Nijstad, Stroebe, and Lodewijkx 2002). Social interaction is essen-
tial here as it compels people to the ideas of others.

Furthermore, groups outperform individuals if problems to solve are complex (Jones  
2009) and outcomes are demonstrable, meaning people can make inferences about 
correct problem solutions (Laughlin et al. 2006). Because solving complex problems 
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requires higher intellectual effort, small groups can benefit from collective and comple-
mentary knowledge, social support, and a division of labour among group members.

In the context of learning, small groups tend to learn better and more than individuals 
alone. The literature lists several cognitive and social mechanisms (Nokes-Malach, 
Richey, and Gadgil 2015): cross-cueing, increasing working memory resources, joint 
management of attention, and using multiple perspectives. Important conditions for this 
group learning to emerge are that groups have a history of collaboration and work on 
similar tasks.

2.2. Triadic structure as a driver of triadic performance

The previous sections argued that a shift from the individual to the small group (triadic) 
level is needed. Furthermore, mechanisms and conditions were discussed when and why 
specific tasks performed by small groups, like triads, outperform individuals.

In this study, we particularly focus on the relationships among inventors as indicated 
by co-invention patterns (Moreira, Markus, and Laursen 2018; Nerkar and Paruchuri  
2005) in triadic network structures. Both anecdotal evidence and large-scale quantitative 
studies have shown that such patent co-invention ties involve intensive interaction and 
actual knowledge transfer between inventors (Carnabuci and Operti 2013; Fleming, 
Mingo, and Chen 2007; J. Singh 2005). These ties are likely to be strong ties, meaning 
they may even facilitate the transfer of tacit knowledge, widening the scope for idea 
generation, problem-solving, knowledge recombination, and learning. As indicated, the 
literature shows a widespread consensus that interpersonal (i.e. between employees) 
relationships, such as the collaboration ties among inventors that we study here, shape 
the recombinant invention potential of individuals (Baer et al. 2015; Phelps, Heidl, and 
Wadhwa 2012; J. Singh and Fleming 2010). However, the question of which triadic 
structure (open versus closed) is especially beneficial for triadic performance remains 
unanswered. The next sections develop a theoretical perspective on this question.

3. Hypotheses

3.1. Triadic closure and invention quality

We examine the situation where an open triad closes over time and theoretically argue 
why this triadic structural dynamic benefits the quality of triadic invention. To structure 
our arguments, we use the core tasks to develop an invention (i.e. idea generation, 
problem-solving, and learning).

3.1.1. Idea generation
The primary goal of this task is to create new concepts, approaches, or possibilities. It 
focuses on the expansive thinking phase, aiming to generate a wide scope of ideas without 
immediately evaluating their feasibility or practicality. The initial open triad has the 
collective ability to produce a high number of ideas due to the diversity of inputs and the 
inflow of information channelled through the missing connection. We draw, therefore, 
upon the brokerage literature to understand an open triad’s information and control 
benefits (Burt 1992, 2004; Grosser, Obstfeld et al. 2018). Open triads give one of the 
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participating actors an improved vision, with timely and proprietary access to informa-
tion and knowledge. In the open triad, different social domains connect, which offer 
access to more diverse information, knowledge, experiences, and thought worlds (Burt  
2004; A. Hargadon and Sutton 1997). Combining such unique resources provides an 
opportunity structure for the open triad to generate synergies of diverse ideas and 
perspectives that build upon the recombination of knowledge from the (three) inventors 
(Fleming, Mingo, and Chen 2007).

Nevertheless, the inventors in the open triad face a selection problem. After all, 
generating many ideas is one step, but selecting high-quality ones is the next step. The 
unconnected inventors’ different interests, perspectives, and languages will limit the 
triad’s ability to circulate ideas and knowledge efficiently. Idea circulation and commu-
nication among previously unconnected individuals generate an alignment of interests, 
perspectives, and languages (Obstfeld 2005). A welcome side effect of such connecting 
behaviour is that it motivates all three inventors to attend to usefulness when considering 
each other’s ideas and perspectives (Grant and Berry 2011), resulting in synergetic effects. 
This synergy offers the now-closed triad a situation in which there is a high-quality 
reciprocated exchange of ideas, which fosters the selection of high-quality ideas resulting 
in a higher invention quality. Empirical research produced mixed results, however. For 
instance, Williams and Sternberg (1988) found that the quality of ideas was a positive 
function of small group interaction, whereas Rietzschel, Nijstad, and Stroebe (2006) did 
not report a synergetic effect, although those groups tend to generate high-quality ideas 
more efficiently, that is, a lower number of ideas, but the same number of high-quality 
ideas. At best, there are some indications of weak synergy effects.

3.1.2. Problem-solving
Although idea generation and problem-solving are related, they are different processes. 
The former aims at producing a large number of ideas, which can later be filtered and 
refined. The latter follows a structured approach such as defining the problem, analysing 
possible causes, generating possible solutions, evaluating and selecting the best solution, 
and implementing it (Wang and Chiew 2010). McGrath (1984) categorises them as 
generative talks with no correct solutions and intellective tasks with a correct solution 
respectively.

Open triads can promote innovativeness as diverse perspectives from external sources 
are introduced into the problem-solving process. This diversity can lead to creative and 
novel solutions (Reagans and McEvily 2003). The asymmetry in relationships within 
open triads allows for a broader range of ideas, potentially leading to a more compre-
hensive exploration of possible solutions and outcomes. The problem-solving outcomes 
in open triads follow a longer path length between actors, potentially resulting in delays 
or misunderstandings and therefore hindering optimal knowledge and information 
circulation. Once triads close and as compared to triads that stay open, more efficient 
problem-solving processes emerge due to direct communication and coordinated efforts. 
Solutions can be implemented more quickly with minimal communication barriers. The 
close-knit nature of closed triads results in consistent and cohesive outcomes, as inven-
tors are closely connected and share a similar understanding of the problem and solution. 
Consequently, higher levels of coordination and integration generate higher invention 
quality (Amon, Vrzakova, and D’Mello 2019). In terms of synergy strength, there is 
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ample evidence of strong synergy in group problem-solving performance. In sum, idea 
generation and problem-solving are related but activities with different foci. Both 
activities connect triadic closure and invention quality in comparable ways, but due to 
strong synergy, the mechanism is stronger for problem-solving activities.

3.1.3. Learning
Open triads introduce a broader range of perspectives into learning in the triad, as 
external ideas can enter the triad through an intermediary (A. B. Hargadon 2002). This 
diversity can enrich discussions and enhance the learning experience. The asymmetry in 
ties within open triads may stimulate innovative thinking and problem-solving within 
the group, contributing to a more creative learning environment. Learning in open triads 
may face challenges related to indirect communication and coordination. Information 
may need to pass through intermediaries, potentially leading to circulation delays and 
negatively influencing learning processes. Once a triad closes, coordinated learning 
efforts often emerge, fostering a synchronised understanding of the resources among 
triad members. Closed triadic structures facilitate efficient knowledge transfer and 
circulation among its members due to direct connections (Chai, Yap, and Wang 2011). 
Information can flow quickly through the established network, leading to a rapid acqui-
sition of a shared understanding.

Furthermore, individuals within a closed triad likely accumulate trust and cooperative 
norms (Coleman 1988). This creates a safe environment where inventors are less worried 
about colleague inventors, particularly the initial broker, stealing ideas from them (Fleming, 
Mingo, and Chen 2007; Soda, Tortoriello, and Iorio 2018). Additionally, trust facilitates the 
acceptance of a new idea or divergent thinking (Burt and Merluzzi 2016). Due to the 
generated mutual ownership of newly developed knowledge combinations, the inventors 
engaged in the closed triad are likelier to adopt, champion, and diffuse ideas from the 
involved inventors (Fleming, Mingo, and Chen 2007). In turn, the increased trust among 
the inventors in the triad facilitates ongoing communication and effective transfer of 
complex knowledge, which is particularly relevant in R&D labs that rely on support and 
referrals to relevant bodies of knowledge (Reagans and McEvily 2003).

In sum, we assert that triadic closure improves the initial brokerage benefits of the 
open triad and counters the potential lack of coordinated action and communication 
from which open triads may suffer. The superior ability of the closed triad to mobilise, 
circulate, and coordinate diverse knowledge resources improves her future invention 
output quality at the triad level. Thus, we posit:

Hypothesis 1: Open inventor triads that turn into closed triads over time generate 
higher triadic quality inventions than those that remain open.

3.2. The moderating effect of triad connectedness

Our first hypothesis considered the relationship between triad closure and the 
quality of inventions generated at the triad level. Additionally, we argue that the 
level of connectedness of the members of the triad influences this relationship. 
Connectedness refers to whether the inventors in a triad are connected to a few or 
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many other alter inventors (i.e. via direct ties) and whether the alters are connected 
to highly connected alters of alters (i.e. indirect ties) (Bonacich 1987). We maintain 
that the extent to which a triad is connected to highly connected alters influences 
the relationship between triadic closure and invention quality. To develop 
a theoretical argument for this moderation effect, we build on Ahuja’s (2000) 
distinction between direct and indirect ties and their function for invention. The 
number of direct ties of a triad brings three benefits for invention and its quality: 
knowledge sharing, complementarity, and scale (Ahuja 2000, 429). Indirect ties, 
however, perform different functions for invention generation. First, indirect ties 
can serve as an information-collection mechanism (Salman and Saives 2005). 
Through indirect ties, inventors can receive information on the success or failure 
of simultaneous research efforts (Breschi and Lenzi 2017), and technological dead 
ends or promising technological trajectories can be detected early. Second, indirect 
network ties can serve as screening devices (Devarakonda, Pavićević, and Reuer  
2022), where additional partners inventors have can serve as an information filter, 
absorbing, sifting, and classifying new technical developments in a manner that goes 
beyond its information-processing capabilities.

Higher levels of triadic connectedness increase the amount of knowledge and 
information available to the triad. Triads connected to highly connected contacts 
have access to and receive a wider variety of diverse knowledge and information. 
Building on cognitive load theory (Sweller 2011), which is related to the bounded 
rationality concept (Simon 1991), we argue that the relationship between triadic 
closure and invention quality is negatively moderated by the connectedness of the 
members of a triad.

Cognitive load theory aims to understand how the cognitive load produced by tasks 
can hinder the actors’ ability to process new information and create long-term memories 
(Kirschner et al. 2018). Cognitive load typically increases when higher demands are 
imposed on an actor, making the task of processing information overly complex. The 
more direct and indirect ties an actor has, the more information is received. These large 
amounts of information lead to high levels of cognitive load, a situation often labelled as 
information overload (Edmunds and Morris 2000). Today, a broad consensus is that 
a heavy information load harms social actors’ performance.

When the supply of information is substantially higher than the information- 
processing capacity of the triad, difficulties emerge in identifying and dealing with (ir) 
relevant information. This especially occurs if the members of a triad have a higher level 
of connectedness. In this situation, more and more diverse information is flowing to the 
members of the triad via a larger number of indirect ties. Furthermore, research has 
shown that there is a negative relationship between path distance and tie strength (Burt, 
Opper, and Holm 2022), which as a consequence implies that the quality of the informa-
tion is on average lower.

Although the information processing capacity of a closed triad is higher than that of 
a triad that stays open, the limits of the former can be reached, too. Information overload 
is the result (Jackson and Farzaneh 2012). In sum, higher levels of connectedness can lead 
to information overload due to too much diverse and difficult-to-understand inflow of 
information, which is more severe for triads that stay open compared to triads that close. 
As a result, invention quality suffers.
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Therefore, our second hypothesis is as follows:

Hypothesis 2: The relationship between triadic closure and triadic invention quality is 
negatively moderated by the inventor triad’s connectedness

4. Data and methods

Previous studies on triadic closure have predominantly used survey-based data- 
gathering methods in a single firm (Kauppila, Bizzi, and Obstfeld 2018; Quintane 
and Carnabuci 2016; Soda, Tortoriello, and Iorio 2018). This paper uses a different 
data collection approach to capture actual triadic closure over time. We rely instead 
on a large-scale and longitudinal dataset covering many firms and their inventors to 
accommodate the empirical demands. The primary data source is patent data, which 
allows us to observe both the collaborative behaviour of inventors over time and the 
quality of their inventions. For several reasons, we chose the biotechnology industry 
as our research setting. First, the biotechnology industry is one of the most innovative 
and knowledge-intensive fields (Tzabbar 2009) and is well-known for its distributed 
knowledge (Powell, Koput, and Smithdoerr 1996). Although not all biotechnology- 
related inventions are patentable, patents are widely used in this sector to measure 
knowledge and technological invention (Fritsch, Titze, and Piontek 2020; Lanjouw 
and Schankerman 2004). Second, teamwork is common in the biotech sector, and this 
industry is therefore often studied in the context of inventor collaboration (Nerkar 
and Paruchuri 2005; Paruchuri 2010; Tzabbar and Vestal 2015). Hence, collaboration 
among biotech R&D scientists leading to co-invented patents provides a rich setting 
for observing the evolution of collaboration networks and testing the relationship 
between triadic closure and invention quality.

4.1. Research design

We explain the research design here and describe how we created the sample in the 
Sample section below. The unit of analysis in our study is the triad level. Specifically, we 
regard the three inventors in the open or closed triad as one combined group and use the 
combined invention measures averaged over three inventors. We aim to create a sample 
of open triad relations that subsequently become closed triad relations (treatment group) 
and a comparable sample of open triad relations that did not become closed triads 
(control group). This design identifies the treatment effect of the treatment (Zhang and 
Tong 2021). Our study allows us to test whether inventors in the open triad experience 
the predicted change in their invention quality when they are involved in a triadic closure 
process. By adopting the triad level analysis and including a control sample of open triads 
that stay open over time, we can control for changes in the invention quality of three 
inventors due to the triadic closure. However, this design cannot tell whether triadic 
closure increases invention quality under all conditions or is a preferred mode for 
organising invention compared with other arrangements. Though less ideal than rando-
mised controlled experiments, this research design represents a more feasible approach 
to address selection bias, a common issue for scholars working with observational data.
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We further implement Coarsened exact matching (CEM) from the full treatment and 
control samples to develop a set of treatment and control triads that are more balanced 
on pretreatment covariates (Blackwell et al. 2009; Younge, Tong, and Fleming 2015). By 
balancing the pretreatment covariates, the matched treatment and control inventor triads 
are assumed to share similar characteristics of key covariates, further reducing endo-
geneity concerns.

4.2. Sample

Our primary data source is the DISCERN (Duke Innovation & Scientific Enterprises 
Research Network) dataset, complemented by two other data sources, the Harvard Patent 
Network Dataverse and WRDS Compustat database. DISCERN data matched the pub-
licly listed U.S. headquartered firms with the assignees of patents from the United States 
Patent and Trademark Office (USPTO) from 1980 to 2015. DISCERN data accounts for 
firms’ name and ownership changes, thus improving the accuracy and scope of matches 
to patents, ownership structure, and dynamic reassignments of GVKEY codes to com-
panies. Harvard Patent Data offers the cleaned and disambiguated inventor names, and 
the WRDS Compustat database includes firm attributes. Our sample consists of 
U.S. biotechnology utility patents granted between 1987 and 2008. We chose the period 
1987–2008 because the biotechnology sector did not exist until 1973 when recombinant 
DNA was discovered, and serious collaboration and innovation started in the late 1980s. 
In addition, as we used the patent application year rather than the grant year to construct 
the inventor network, we need sufficient time lag between the application of patents to 
the grant of patents. Hence, as we only cleaned and disambiguated inventor names till 
2010, we ended the observation in the year 2008. There are advantages and disadvantages 
to using patent data. For example, as not all inventions are patentable, using patent data 
to capture collaborative relations may result in neglecting other forms of collaborative 
relations (Fritsch, Titze, and Piontek 2020). Nevertheless, prior research has established 
that co-patenting can be utilised to represent collaboration and actual knowledge transfer 
between inventors during the innovation process (Carnabuci and Operti 2013; Fleming, 
Mingo, and Chen 2007; J. Singh 2005).

Our data construction process went as follows: First, we identified biotechnology 
patents by obtaining biotech firms and their patents. Specifically, we identified all 
publicly traded U.S. biotech firms alive between 1987 to 2008 using Standard Industrial 
Classification (SIC) Codes (2833, 2834, 2835, 2836, 5122)2 in the Compustat database 
(George et al. 2001; Rzakhanov 2004). There are around 2000 public biotech firms in the 
chosen period. Second, we searched these biotech firms’ GVKEY in the DISCERN dataset 
to obtain their USPTO patents. DISCERN data provides dynamic reassignments of 
GVKEY codes to companies and their patents. Dynamic reassignment means that, for 
instance, if a sample firm merges with another firm, the patents of the merged firm are 
included in the stock of patents linked to the Compustat recode from that point onward, 
but not before. DISCERN data also matched the patent data to Compustat companies and 
their related subsidiaries. This step produces approximately 578 biotechnology firms and 

2SIC 2833 (medicinal chemicals), SIC 2834 (pharmaceutical preparations), SIC 2835 (in vitro/in vivo diagnostics). 
SIC 2836 (biological products), SIC 5122 (drugs and proprietary)
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96,419 patents produced by these firms. Third, we searched these patents using their 
publication number in the Harvard Dataverse to obtain the cleaned and disambiguated 
inventor names associated with these patents (Li et al. 2014). Finally, these steps gave us 
66,037 unique U.S. biotechnology patents by 48,960 biotech inventors.

We relied on the patent data to construct the inventors’ co-patenting network. When 
inventors are listed as inventors in a biotechnology patent, we assume that these 
inventors participate in biotechnology-related invention projects. Evidence from empiri-
cal studies (J. Singh 2005) and interviews with inventors and patent attorneys (Carnabuci 
and Operti 2013; Fleming, Mingo, and Chen 2007) indicate that co-invention or co- 
patenting reflects actual collaboration and that co-inventors provide information 
exchange and infrastructural support during and after the actual collaboration. 
A collaboration tie exists when two inventors work together on a project, which is 
operationalised in our study as two inventors listed as co-inventors on a patent 
(Fleming, Mingo, and Chen 2007; Lissoni, Llerena, and Sanditov 2013). We used patent 
application year rather than patent grant year as the former more accurately reflects 
inventor collaboration time (Guler and Nerkar 2012). We also assumed that collaborative 
relations last several years, even after the actual collaborative innovation, and followed 
previous studies in creating an inventor collaboration network with a three-year moving 
window (Fleming, Mingo, and Chen 2007). Specifically, we used patent applications 
within each three-year window to construct the collaboration network, and the colla-
boration network serves as input to analyse inventors’ triadic closure and predict inven-
tion quality. Similar archival approaches have used five-year windows, but we found no 
substantive differences in window size and chose the smaller size to maximise 
observations.

Figure 1 illustrates the construction of the inventor collaboration network, which 
follows the standard practice in the literature on inventor collaboration (Fleming, Mingo, 
and Chen 2007). Each inventor is linked to a patent that they have co-invented. As shown 
in Figure 1, as inventors A, B, and C are listed as co-inventors on patent i, they have 
collaborative ties with each other in the inventor network. Thus, each three-year period 
leads to one whole network in which inventors of one single patent form a fully linked 
clique, and inventors of multiple patents are linked to several other cliques. This 
approach leads to the collaboration network. Then, we utilised the igraph package in 
R to obtain structural measures of the inventor collaboration networks.

Figure 1. Illustration of the construction of the inventor collaboration network from patent data.
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The inventor collaboration network is further analysed to obtain a set of inventor 
triads. We obtain open triads by identifying inventor brokers. Inventor brokers collabo-
rate with two alters while there is no direct tie between the alters. As shown in Figure 1, 
inventor C has collaborated with B on patent i and has collaborated with D on patent j. As 
B and D have not collaborated on any patents, C is a broker between B and D forming an 
open triad relation. Then, we compared the open triad in the prior three-year period with 
the following three-year period to see the extent to which the open triad becomes closed 
or remains open. For example, we examined to what extent the alter inventors in an open 
triad relationship in the period 1987–1989 would collaborate in a closed triad manner in 
1988–1990, as well as how this predicts the forward citation of the focal inventor triad in 
1990 (‘invention quality’). As shown in Figure 1, if inventors B and D are listed as co- 
inventors on a patent in the next period, the open triad relation becomes a closed triad. 
Hence, our subset sample involves inventors who are involved in open triad relations in 
the network. Additionally, these inventors should have been patented in the year t to 
measure invention quality.

The final sample contains fewer cases of open triads that turn into closed triads than 
those that remain open. Specifically, our full sample consists of 20,849 open triad cases 
that become closed triads, and 319,810 cases that remain open triads. At this time, we 
implement CEM to create a matched treatment sample and a control sample. We 
followed prior research and matched on a subset of key covariates strongly affecting 
inventor innovation quality. The pretreatment covariates are triad-level inventor char-
acteristics representing multiple attributes of all three inventors in a triad relation. 
Previous studies used attributes such as an inventor’s city, assignee, patent technology 
classes, citations, and past performance to match inventors (Fleming, Mingo, and Chen  
2007). An inventor’s past patent performance, knowledge diversity, and tenure are some 
of the matching criteria most related to an inventor’s innovation capacity (Lee 2010). 

Figure 2. Illustration of open triads and triadic closure.
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Therefore, we selected triad-level past performance, knowledge diversity, and tenure as 
pretreatment covariates. We measure past performance by counting the number of 
patents in a three-year rolling window. Knowledge diversity is computed using the 
Herfindahl index of knowledge diversification. Finally, tenure is computed as the average 
number of years since the first patent is applied by the inventors. The CEM process 
allows us to compare similar, initially open triads that turn into a closed triad with triads 
that remain open (as shown in Figure 2). The triads in the control group (1) have 
generated approximately the same number of patents in the previous three years, (2) 
exhibit approximately the same extent of knowledge diversity in their previous patenting, 
and (3) have similar tenure years as triads in the control group. The summary of the 
matched and control sample is in Table 1. By merging the treated and control groups, we 
obtained a dataset of 41,698 cases.

4.3 Measures

4.3.1. Dependent variable
Our theory aims to predict the quality of the patented inventions generated by the 
inventor triad (Invention quality). Note that we consider the sum of generated patents, 
as all three inventors may jointly or individually benefit from the collaborative structural 
context in which they work. At least one of the inventors is involved in the patents 
considered. We utilise the inventive quality of the patent as a proxy for the inventive 
performance of patents generated by the triad. Previous work suggests that forward 
citation count is an appropriate indicator of the significance and quality of inventions 
and can be used to measure the (future) invention quality of inventors (Fleming 2001; 
Jaffe, Trajtenberg, and Henderson 1993; Lee 2010; H. Singh et al. 2016). Thus, the key 
dependent variable in our study is the future quality of the patents invented by the triad, 
measured as the citation-weighted patent count invented by the three inventors involved 
in the triad relation in the observation year (Hall, Jaffe, and Trajtenberg 2001; Katila  
2000). In our study, the citation-weighted patent count is measured by adding citations to 
the patent counts, i.e. citations that the focal patent receives in subsequent patents (Katila  
2000). These patents include the patents individually or collectively filed by the three 
inventors. For example, if an inventor has one patent and it received 10 citations, then 
this patent is counted as 11 patents. In this way, our measurement can reflect the quality 
of the invention. To address the truncation problem of the citation-weighted patent 
count, we only include citations in the following three years after the grant year of the 
patent. Self-citations are excluded from this data. We also used patent citations up to now 

Table 1. Descriptive analysis of treated and control group.
Variable Means Treated Means Control

Past performance 21.5344 20.6283
Knowledge diversity 0.8742 0.8472
Tenure 3.1602 3.2096

Sample Size
All 20849 340659
Matched 20849 20849
Unmatched 319810 0
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and adjusted the citation-weighted patent count by the group size as an alternative 
measure of invention quality.

4.3.2. Independent variables
Our main independent variable compares open triads that remain open with open triads 
that turn into a closed triad, which we obtain through the matching process. As a result, 
our independent variable is a binary variable with 1 representing triads that become 
closed triads (closed triad), and 0 representing triads that remain open.

The second independent variable in our model is the connectedness of the inventor 
triad (connectedness). To measure to what extent the three inventors are linked to 
more or less central actors in the network, we used Bonacich’s (1972) eigenvector 
centrality measure to represent the alters’ degree of connectedness. We chose eigen-
vector centrality measure as it captures the extent to which an inventor is directly or 
indirectly connected to more central inventors in the network, representing the 
information volume inventors receive. Highly connected inventors mean more direct 
ties and their direct ties are connected to other highly connected actors in the 
network (i.e. indirect ties). We think that eigenvector centrality reflects the level of 
connectedness taking into account the inventor triad’s first, second, and third levels 
of collaborators and is a proper measurement to measure the connectedness of the 
inventor triad. Bonacich’s eigenvector centrality measure (Bonacich 1987) quantifies 
the extent actors are connected to other central actors. In general, vertices with high 
eigenvector centralities are those connected to many other vertices, which are, in turn, 
connected to many others (and so on). For a given graph G with V vertices, let 
A=(a_(v,t)) be the adjacency matrix and the relative eigenvector centrality of vertex 
v can be defined as: 

Where M(v) is a set of neighbours of v and λ is the largest eigenvalue of the adjacency 
matrix. It is rewritten as: 

We relied on the biotechnology industry’s overall inventor network to calculate each 
inventor’s eigenvector centrality. Then, we summed up the eigenvector measures of the 
three inventors involved in the triad relation and divided them by 3 to obtain the average 
value.

4.3.3. Control variables
We controlled for other network features that might influence triad invention quality. 
Previous studies have pointed to the importance of individual brokerage behaviour for 
inventor performance (Fleming, Mingo, and Chen 2007). By connecting otherwise 
disconnected actors, inventors are in an advantageous position to control and access 
heterogeneous knowledge (Ahuja 2000; Burt 2004), which might influence triad-level 
invention quality. To address this possible effect on triad invention quality, we controlled 
for the average of the three inventors’ ego-network brokerage measure (brokerage) based 
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on Burt’s measure of constraints subtracted from 1. The formula of Burt’s constraint 
measure (Burt 2004) is: 

Where C_i is the network constraint of inventor i, and p_ij is the proportion of time and 
energy that inventor i invested in inventor j compared to all the network ties that have 
formed (p_iq and p_qj are defined analogously). The proportional tie strengths p_ij (p_iq 
and p_qj analogously) are defined as: 

a_ij is an element of adjacency matrix A. Lower values on this measure imply that 
inventors occupy less constrained positions, thereby brokering more extensively in 
the network. For isolated vertices, the constraint is undefined. We transformed the 
network constraint by subtracting it from 1 so that higher values indicate higher 
brokerage levels (Lee 2010). We controlled for inventor brokerage in the collaboration 
network constructed for the previous three years. The average of the three inventors’ 
ego-network density (density) is also included as a triad control variable. The network 
density for an ego inventor is given by the proportion of links between the ego’s alters 
divided by the number of links that could theoretically exist between them. Prior 
research on inventor networks has shown that ego network density decreases crea-
tivity but increases future use of inventions (Fleming, Mingo, and Chen 2007). 
Besides, we also controlled for the average degree centrality of the three inventors 
involved in the triad (centrality). Note that network variables at the triad level are 
obtained by summing up each of the measures for the three inventors involved in the 
triad and dividing by three.

We also included several other triad-level controls. Past performance (past performance) 
controls for the patent stock of the three inventors before the observation year to account 
for triad-level inventive capability differences. In our study, we used patent counts of the 
inventors in the open triad relation accumulated in the previous three-year period to 
measure past performance. This includes patents invented by each of the three inventors 
and co-patented by two or three inventors. We did not use patent count to t-1 as this 
measure is often skewed. We checked the regression results using both measures, which do 
not differ. Knowledge diversity (diversity) controls for a triad’s knowledge breadth. 
Previous studies found that heterogeneous knowledge contributes to inventive impact, 
independent of network position. Triads with a broad knowledge base may find unique or 
new combinations of technologies that lead to higher invention quality (Fleming 2001). We 
used the Herfindahl index of knowledge diversification (Garcia-Vega 2006) derived from 
the Herfindahl-Hirschman Index (HHI) to proxy for a triad’s heterogeneous knowledge. 
The Herfindahl index of knowledge diversification can be expressed as follows: 
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where Pi denotes the proportion of patents invented by three inventors in the triad 
relation in the previous three years in patent class i. These patents include patents 
invented by the inventor triad and co-patented by two or three of the inventors. For 
example, if inventors A, B, and C in the open triad relation have two patents and three co- 
patented patents, we merged these five patents and measure their distribution over 
different IPC classes. The index equals zero when the three inventors patent only in 
a single knowledge domain, and it is close to one when they patent in a broad knowledge 
domain. Tenure (tenure) controls for inventor experience. Previous studies show that 
inventors’ experience might influence their invention output (Fleming, Mingo, and Chen  
2007). Tenure is measured by the year difference between the earliest years that the 
inventor has patented and the observation years and averaged over the three inventors. 
The tie between brokers and alters may appear several times on different triads. To 
accommodate this effect, we included the control variable of tie strength, which captures 
the sum of the number of times the broker and alters collaborated during the three-year 
period before the observation year. For example, in triad B-C-D, if B-C tie appeared twice 
on triad relations, and C-D appeared once on triad relations during the three-time 
window before the observation year, then the measure of tie strength is 3. We also 
control for whether the inventor triad is formed with inventors from the same firm or 
different firms using the control variable of a cross-firm triad. The dummy variable of the 
cross-firm triad is 1 when the inventors of the triad relation are from different firms, and 
0 when the inventors are all from the same firm.

Although our level of analysis is triad-level, we also included firm-level attributes to 
control for firm effects. Observations across triads are not independent because inventors 
of the same firm are related. To account for this concern, we included firm-level past 
innovative performance (firm past performance), geographic distribution of firm inven-
tors (geographic distribution), firm alliance number (alliance), and firm turnover (turn-
over) as control variables. If the triad involves inventors from different firms, we take the 
average of the firm-level measures. A firm’s past innovative performance is related to 
triad-level invention quality, as inventors in a highly innovative firm may have a higher 
probability of participating in close collaboration and producing high-quality inventions. 
Firm past invention performance is measured using a firm’s accumulated patent count 
up to the observation year. Firm inventor geographic distribution captures the extent to 
which the firm sources knowledge from different geographic locations (Tóth et al. 2021), 
which is also related to the firm’s potential to produce high-quality inventions (Lahiri  
2010). The geographic distribution of inventors of a firm is obtained using the Herfindahl 
index of geographic distribution which is derived from the Herfindahl-Hirschman Index 
(HHI) (Garcia-Vega 2006). The Herfindahl index of geographic distribution can be 
expressed as follows: 

where Pi denotes the proportion of patents invented by a firm in the previous three years 
in city i. For patents associated with more than one city, we view the first city appearing 
on the patent as the location it is invented. We also controlled for the number of alliances 
announced by the firm in the previous five years. We obtained the alliance data from the 
SDC Platinum and matched the alliance data with the sample firms using their cusips. 
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According to the previous research, inventor turnover of a firm provides a channel for 
new knowledge, thus may influence a firm’s innovation process. To accommodate this 
effect, we controlled for a firm’s turnover. Firm turnover is measured by the total number 
of inter-firm inventor mobility events (new recruits and inventors leaving the firm) that 
happened during the previous five years. Based on the previous research, we tracked the 
patents to identify instances where a researcher was listed as an inventor in patents 
granted to two different firms (Corredoira and Rosenkopf 2010; Wagner and Goossen  
2018). We excluded instances where two firms applied for the same patent since it is 
assumed that these patents derive from the research cooperation between these two 
firms. Then, we counted the inventor turnover events that occurred in the five-year 
window preceding the year of observation for each firm to obtain the measure of turn-
over. We also measured the firm-level network size, i.e. the number of inventors of the 
firm to capture the network size the triad is embedded in. The measure of firm network 
size is highly correlated with the measure of firm past performance. Therefore, we did not 
include this measure in the model. Triad- and firm-level fixed effects make our analyses 
a firm- and triad-level fixed-effect model. The results now represent the change in the 
dependent variable with the changes in the level of independent variables for triads and 

Table 2. Measurement of variables.
Variable name Operationalization

Triad-level variables
Invention quality Citation-weighted patent count of three inventors in the triad during the observation year. 

Citation is the forward citation cumulated during the future 3 years after the 
observation year.

Closed triad Coded as one if an open triad in the previous period becomes a closed triad in the next period 
and coded as zero otherwise.

Connectedness The average value of eigenvector measures of three inventors in the triad. Eigenvector of each 
inventor is calculated based on the inventor network.

Brokerage Measured using Burt’s measure of constraints of inventors in the triad in the network, 
subtracted from 1 and averaged over three. For isolated vertices, constraint is set to zero.

Density Average of network density of three inventors in the triad in the network.
Centrality Average of degree centrality of three inventors involved in the triad relation in the network.
Past performance The number of granted patents of three inventors in the triad relation cumulated during the 

previous three years before the observation year. This includes patents invented by each of 
the three inventors as well as co-invented by two or three of the inventors.

Diversity Herfindahl-Hirschman Index (HHI) of the triad inventors’ patent distribution over different four-digit 
IPC classes during the previous three years before the observation year. These patents include 
patents that are invented by each of the three inventors as well as co-invented by two or three of 
the inventors. The index equals zero when the three inventors patent only in a single knowledge 
domain, and it is close to one when they patent in a broad knowledge domain.

Tenure Average year difference between the earliest years that inventors in the triad have patented 
and the observation year.

Tie strength Sum of the number of times the broker and alters collaborated during three-year period before 
the observation year.

Cross-firm triad The dummy variable is 1 when triad inventors are from different firms, and 0 when the triad 
inventors are from the same firm.

Firm-level variables
Firm past performance Number of granted patents of the firm accumulated up to the observation year.
Geographic 

distribution
Herfindahl-Hirschman Index (HHI) of the triad inventors’ patent distribution over different 

geographic locations (city) during the previous three years before the observation year. 
These patents include patents that are invented by each of the three inventors as well as co- 
invented by two or three of the inventors.

Firm alliance Number of alliances of the firm in the previous five years before the observation year.
Firm turnover Number of inventors’ turnover events that occurred in the firm in the previous five years 

preceding the year of observation.
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firms with similar characteristics. Finally, year dummies were included to control for 
time-fixed effects. The description of the variables is presented in Table 2.

4.4. Estimation method

The dependent variable in our study is the citation-weighted patent count of the triad. 
We included the natural logarithm of the measure in the regression model and used an 
OLS (Ordinary Least Squares) model two-way clustered across triad and firm. This 
model can control for the triad and firm-level fixed effects. We logged the variables of 
past performance, firm past performance, and centrality before including them in the 
model. In the results, heteroskedasticity-robust standard errors clustered at triad and 
firm levels are reported.

5. Results

Table 3 provides the descriptive statistics including means, standard deviations, mini-
mum values, maximum values, and VIF values for all the variables. Our sample included 
41,698 cases. As a diagnostic test, we performed variance inflation factors (VIF) for each 
variable. The maximum VIF is below the generally accepted threshold of 10 (O’Brien  
2007). Table 4 shows the correlation between variables. Multicollinearity is not an issue.

Table 5 displays the main regression results of our estimations. In Model 1, control 
variables are included. As shown in Model 1, triad-level density, past performance, tie 
strength, cross-firm triad, and firm-level inventor geographic dispersion are positively 
related to triad invention quality. Triad-level centrality and technological diversity have 
negative effects on triad invention quality. In Model 2, the main independent variable, 
closed triad, is added. Model 2 shows a positive effect (β = 0.071, p-value <0.05) of a triad 
becoming closed on triad invention quality. The coefficients of other controls remained 
similar. In terms of marginal effect, the coefficient implies that for a one-unit change in 
closed triads, the difference in the logs of expected counts of the innovation quality is 
0.071, given the other predictor variables in the model are held constant. Analogous 

Table 3. Descriptive statistics of variables.
Variable Obs. Mean Std. Min Max VIF

Invention quality 41698 8.71 21.44 0 967
Closed triad 41698 .5 .5 0 1 1.11
Connectedness 41698 .012 .07 0 .81 1.18
Brokerage 41698 4.02 .96 0 8.26 1.74
Density 41698 .72 .14 −.05 1 1.83
Log Centrality 41698 .08 .05 0 .23 3.40
Log Past performance 41698 2.71 .79 1.1 6.26 4.27
Diversity 41698 .87 .1 0 .99 2.54
Tenure 41698 3.18 4.09 0 24.67 1.10
Tie strength 41698 5.22 11.96 2 502 1.01
Cross-firm triad 41698 .18 .39 0 1 1.09
Log Firm past performance 41698 6.86 1.7 0 9.37 1.62
Geographic dispersion 41698 .88 .16 0 .99 1.42
Firm alliance 41698 4.54 6.75 0 54 1.22
Firm turnover 41698 5.42 5.22 0 29 1.54
Mean-VIF 1.79
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results were obtained when we measured the citation-weighted patent counts using 
forward citations up to now, adjusted by group size.

In Model 3, the connectedness of the triad is added. As shown, connectedness is 
negatively related to the triad invention quality. Model 4 includes the interaction term 
of closed triad and connectedness. We compute the marginal effects and visualise the 

Table 5. Regression results of OLS models with invention quality (3-year citation-weighted patent 
count) as DV.

Model 1 Model 2 Model 3 Model 4
VARIABLES Invention quality Invention quality Invention quality Invention quality

Closed triad 0.071* 0.079*
(0.047) (0.048)

Connectedness −1.094* −1.089**
(0.568) (0.462)

Closed triad*Connectedness −0.072
(0.371)

Brokerage 0.369 0.366 0.329 0.324
(0.258) (0.258) (0.259) (0.260)

Centrality −0.161** −0.159** −0.142* −0.140*
(0.081) (0.081) (0.080) (0.080)

Density 1.350** 1.346** 1.421** 1.416**
(0.633) (0.634) (0.655) (0.651)

Past performance 0.691*** 0.695*** 0.675*** 0.679***
(0.085) (0.084) (0.084) (0.084)

Diversity −0.854*** −0.870*** −0.820** −0.838**
(0.331) (0.330) (0.337) (0.334)

Tenure −0.007 −0.006 −0.006 −0.005
(0.004) (0.004) (0.004) (0.004)

Tie strength 0.002*** 0.002*** 0.002*** 0.002***
(0.000) (0.000) (0.000) (0.000)

Cross-firm triad 0.311*** 0.313*** 0.299*** 0.301***
(0.106) (0.105) (0.098) (0.098)

Firm past performance 0.000 −0.000 0.001 0.001
(0.022) (0.021) (0.021) (0.021)

Geographic dispersion 0.523** 0.523** 0.494** 0.494**
(0.205) (0.204) (0.196) (0.195)

Firm alliance 0.003 0.004 0.003 0.004
(0.006) (0.006) (0.006) (0.006)

Firm turnover 0.005 0.005 0.007 0.007
(0.008) (0.008) (0.008) (0.008)

Inventor 1 attributes Included Included Included Included
Inventor 2 attributes Included Included Included Included
Inventor 3 attributes Included Included Included Included
Year Included Included Included Included
Triad Included Included Included Included
Firm Included Included Included Included
Constant −0.060 −0.100 −0.088 −0.134

(0.337) (0.337) (0.340) (0.341)
Observations 41,698 41,698 41,698 41,698
R-squared 0.267 0.268 0.270 0.271

Robust standard errors are in parentheses, ***p < 0.001, **p < 0.01, *p < 0.05.

Table 6. Marginal effects of closed triad.
dy/dx Std. z P > |z| [95% Conf. Interval]

Closed triad 1.72 0.28 5.97 0.000 1.16 2.29
Margin Std. z P > |z| [95% Conf. Interval]

Open triad 7.85 0.17 46.09 0.000 7.51 8.18
Closed triad 9.58 0.18 52.41 0.000 9.22 9.93
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moderation effect. Overall, the marginal effect of the interaction between closed triad and 
connectedness is negative and statistically significant, supporting our moderation 
hypothesis. A summary is provided in Tables 6 and the accompanying graphs.

Table 6 shows the average marginal effect and margins of closed triad on invention 
quality. The table reads as follows. The average marginal effect of closed triad is 1.72. It 
means that on average, the case of a dynamic closed triad effect, compared to the case of 
open triad, increases the invention quality by 1.72. The margins also show that the 
margins of open triad are 7.85, while the margins of closed triad are 9.58. Figure 3 
shows the comparison of margins of open triad and closed triad.

Figure 4 compares the margins of open and closed triads at different levels of 
connectedness. Connectedness takes the value of one standard deviation below the mean 
(−0.05) to one standard deviation above the mean (0.08). The figure shows that as 
connectedness increases, the level of invention quality decreases, indicating that connect-
edness negatively moderates the main effect.
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Figure 3. The predictive margins of closed triad on triad invention quality.
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Figure 4. The predictive margins of closed triad on triad invention quality at different levels of 
connectedness.
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In Figure 5, we plot the conditional effect of closed triad at each observed value of 
connectedness using the R interplot package (Solt and Hu 2015). The solid line represents 
coefficients of closed triad on invention quality for all values of connectedness estimated 
from the data and the model. The shaded region represents the 95% confidence intervals 
of these estimates. This plot reveals that closed triad’s estimated marginal effects on 
invention quality are positive and statistically significant for those with connectedness 
values up to 0.3. They are not distinguishable from zero for those with higher connected-
ness values. In our sample, about 90% of connectedness values lie between 0 ~ 0.2. It 
means that at most of the observed values of connectedness, closed triad has a positive 
effect on invention quality. Also, as connectedness increases, the coefficient of closed triad 
on invention quality decreases and when the connectedness reaches a high level, closed 
triad may even have a negative effect on invention quality. Thus, connectedness has 
a negative moderation effect on the relationship between closed triad and invention 
quality.

6. Robustness check

We utilised an alternative measure of the dependent variable in the robustness check. 
When measuring the citation-weighted patent count, instead of using patents that the 
three inventors independently or jointly invented, we utilised patents jointly invented by 
the three inventors as our dependent variable. The regression results are displayed in 
Table 7. The results show similar effects of the independent variables.

7. Discussion and conclusion

In this study, we specifically examined to what extent and why triadic closure is related to 
invention quality at the triadic level. We built on the literature on brokering behaviour, 
the recombinant view on innovation, and small group synergy to propose those open 
triads that turn into a closed triad – connecting previously unconnected inventor alters – 

Figure 5. The coefficients of closed triad on invention quality by connectedness.
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generate higher-quality inventions compared to open triads that maintain separated 
alters. We asserted that triadic closure over time benefits triad outcomes by initially 
providing proprietary access to diverse and non-redundant knowledge resources and 
deep knowledge exchange to generate new ideas and subsequently mobilising and 
coordinating the resources of their connections to implement and diffuse inventions. 
We also examined the extent to which the connectedness of the triad influences the 
relationship between triad closure dynamics and the generation of high-quality 
inventions.

Our study has important theoretical implications. We challenge existing work on 
brokerage and brokering by taking a collective triadic perspective. For instance, Soda, 
Tortoriello, and Iorio (2018) find that employees who combine a brokerage position with 
a tertius gaudens orientation perform better. In another (ethnographic) study, Kellogg 

Table 7. Regression results of OLS models with invention quality (measured with patents jointly 
applied by triad inventors) as DV.

Model 1 Model 2 Model 3 Model 4
VARIABLES Invention quality Invention quality Invention quality Invention quality

Closed triad 0.326*** 0.327***
(0.041) (0.041)

Connectedness 0.083 0.051
(0.121) (0.067)

Closed triad*Connectedness −0.184
(0.211)

Brokerage −0.156** −0.170** −0.153** −0.171**
(0.074) (0.070) (0.074) (0.070)

Centrality −0.009 −0.002 −0.011 −0.002
(0.031) (0.029) (0.031) (0.029)

Density 0.509* 0.488* 0.503* 0.485*
(0.294) (0.270) (0.295) (0.270)

Past performance 0.018 0.034 0.020 0.033
(0.034) (0.033) (0.034) (0.033)

Diversity 0.021 −0.055 0.018 −0.057
(0.129) (0.124) (0.129) (0.124)

Tenure −0.006*** −0.002 −0.006*** −0.002
(0.002) (0.002) (0.002) (0.002)

Tie strength 0.001 0.001 0.001 0.001
(0.000) (0.000) (0.000) (0.000)

Cross-firm triad 0.097** 0.107*** 0.098** 0.106***
(0.042) (0.037) (0.042) (0.037)

Firm past performance 0.023*** 0.020*** 0.023*** 0.020***
(0.008) (0.007) (0.008) (0.007)

Geographic dispersion 0.073 0.073 0.075 0.073
(0.059) (0.058) (0.058) (0.057)

Firm alliance −0.003* −0.002 −0.003* −0.002
(0.002) (0.001) (0.002) (0.001)

Firm turnover −0.002 −0.001 −0.002 −0.001
(0.002) (0.002) (0.002) (0.002)

Inventor 1 attributes Included Included Included Included
Inventor 2 attributes Included Included Included Included
Inventor 3 attributes Included Included Included Included
Year Included Included Included Included
Triad Included Included Included Included
Firm Included Included Included Included
Constant −0.019 −0.205** −0.017 −0.207**

(0.077) (0.081) (0.078) (0.082)
Observations 41,698 41,698 41,698 41,698
R-squared 0.068 0.149 0.068 0.149

Robust standard errors are in parentheses, ***p < 0.001, **p < 0.01, *p < 0.05.
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(2014) shows that brokerage practices – maintaining disconnected alters – benefit 
healthcare professionals by making them indispensable as managers of information. 
While brokerage-gaudens pairing might be helpful in certain professions, as they benefit 
the individual broker with unique information and control benefits, we find the opposite 
in the context of innovative performance at the triad level. One possible way to explain 
this difference is the importance of recombining knowledge and information, which is 
the nature of the tasks conducted in the innovation project (Patrucco et al. 2022). If, for 
example, the invention is characterised by a high level of interdependence between its 
components (complex) and asks for, for example, intensive problem solving, information 
search, and learning, triadic closure is preferred over an open triad, as the former allows 
for tighter control, higher cohesion levels, and the production of synergy. Another reason 
for our divergent findings is that we study state changes of triadic networks and relate 
this to triad-level outcomes, whereas the vast majority of brokerage studies focused on 
individual (broker) or firm-level outcomes. This supports the notion that at different 
levels of analysis, different mechanisms produce distinct outcomes. We also challenge the 
idea that open triads are mere catalysts that ‘alter the interaction among other actors and 
are minimally affected by the interaction’ (Stovel and Shaw 2012, 146). Instead, our study 
shows that open triads that unite initially unconnected alters enjoy tangible gains – in 
terms of superior inventive performance.

We also contribute to the network and innovation literature (Fleming, Mingo, and 
Chen 2007) by infusing our understanding of triads and innovation with insights from 
the literature on small group synergy (Kurtzberg and Amabile 2001) and collective 
intelligence (Woolley, Aggarwal, and Malone 2015). A few studies have examined triads 
in the context of innovation (e.g. Soda et al. 2021), but the theoretical precision of the 
small group synergy literature supports more fine-grained theoretical notions of why 
certain tasks are more productive in open triads that close over time versus triads that 
remain open. In particular, we highlight processes key to invention quality, that is, idea 
generation, problem-solving, and learning processes, and argue that initial open triads 
that close over time benefit weak and strong synergy effects among inventors. Combining 
the small groups literature with triadic network literature provides a deeper understand-
ing of networks and collective outcomes.

This study also adds to existing work on networks that takes an alter-centric approach 
(Grosser, Venkataramani, and Labianca 2017; Kleinbaum, Jordan, and Audia 2015; Lin  
20022). The prior literature on networks in the context of invention has primarily 
focused on ego network structure and less on the alters’ individual characteristics and 
network ties. With our findings, we join an ongoing conversation on how external 
indirect ties influence the innovation performance of a social actor. For instance, 
Grosser, Venkataramani, and Labianca (2017) show how the innovative behaviour and 
network density of the alter influence the innovation behaviour of an ego. In another 
study, H. Singh et al. (2016) studied the value of the knowledge obtained from direct 
versus indirect contacts (through the alters). We provide evidence of the importance of 
the connectedness of the triad. Despite triadic closure, the triad’s well-connectedness 
might overload the processing capability of the triad in such a way that it decreases its 
ability to generate high-quality inventions.

Our triad-level study contributes to the literature on networks and innovation (Allen 
and Cohen 1969; Baer et al. 2015; Obstfeld 2005; Perry-Smith and Mannucci 2017; 

24 D. NAN ET AL.



Reagans and McEvily 2003). Two existing studies are pertinent to assess our contribution 
in the context of inventor brokerage. In a cross-industry study, Fleming, Mingo, and 
Chen (2007) illustrate how inventors that span structural holes in collaboration networks 
generate new combinations of knowledge, while inventors located in cohesive sub- 
networks are more likely to generate useful inventions. We extend this line of reasoning 
by showing how inventor triads close over time, combining the benefits of brokerage and 
closure at the triadic level in a dynamic fashion. Our findings nuance the results of Lee 
(2010), who found that the brokerage-performance relationship disappears when includ-
ing fixed effects. In our estimations of a matched sample of open triads that close versus 
remain open, we demonstrate how triadic closure is superior to remaining open. Our 
focus on inventor triads complements existing work on networks of R&D personnel and 
their individual invention capabilities (Carnabuci and Diószegi 2015; Fleming, Mingo, 
and Chen 2007; Nerkar and Paruchuri 2005; Tortoriello 2015).

8. Limitations and future research

This study is not without limitations. For instance, we cannot identify who exactly is 
responsible for establishing connections between alters. We can only proxy this as a state 
change of a triad, which implies connecting behaviour by at least one of the inventors in 
the triad. The existing research on brokering behaviour places a disproportionate focus 
on the broker’s role in uniting behaviour (Halevy, Halali, and Zlatev 2018; Zhelyazkov  
2018). However, we do not know whether the broker promotes collaboration among alter 
inventors or whether alternative channels, such as alters’ strategic orientation or beha-
viour, facilitate closure. After all, having a shared intermediary provides both alters with 
detailed information about that common partner’s availability, suitability, and reliability 
(Obstfeld 2005) and might trigger strategic ‘tertius iungens’ behaviour. There also are 
indications that collaboration history in the form of prior ties in the past is an important 
antecedent of triadic closure (Ter Wal 2014). Furthermore, Soda et al. (2021) show that 
knowledge differences among the broker and alters encourage triadic closure. These 
different determinants of triadic closure might result in different processes (e.g. trust 
building, knowledge sharing) impacting levels of synergy and collective outcomes.

Our study also suffers from using co-invention data, which is common in patent- 
based studies (e.g. Fleming, Mingo, and Chen 2007). Co-invention data can only proxy 
for the collaborative behaviour of inventors. Moreover, to identify the co-patenting 
behaviour of inventors, they need to patent regularly, thus, we zoom in on a subset of 
productive inventors.

Building on cognitive (over) load theory, we hypothesised and empirically 
found a negative moderation effect of triad connectedness. However, one can 
further develop a complementary interpretation of this effect, which is different 
from our information processing argument. As we mentioned, triad connectedness 
might also proxy for access to relatively mature knowledge and is subject to and 
limited by a firm’s dominant logic. Thus, the negative moderation effect could 
result from the type of knowledge the well-connected triad has access to. For 
example, Dong and Yang (2016) argue that such actors, due to their many ties, 
predominantly have access to what they call mature knowledge. This more mature 
knowledge is well-established and often less valuable for recombinant efforts 
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aiming to identify new technological opportunities. A related argument is devel-
oped and tested by van de Kaa (2018), who maintains that well-connected actors 
can exert more influence on other actors in the network and can spread informa-
tion to other actors more easily. Through this influence, these actors can force 
standards (van de Kaa 2018) or dominant designs (Brem, Nylund, and Schuster  
2016) on less influential network actors, inhibiting their innovation quality 
because these standards and designs build on more established knowledge. Our 
study does not, however, allow us to disentangle the underlying reasons.

We identify three promising areas for future research. Future research could 
examine how the strength of tie configuration in triads impacts innovation out-
comes. Moon, Di Benedetto, and Kim (2022) study shows, for example, that 
a closed triad with one strong tie between the focal actor and an alter, weak 
ties between the two alters, and a weak tie between the focal unit and the second 
alter, outperforms a closed triad with only strong ties between alters. How do 
innovation outcomes pan out if we take the strength of ties configuration of open 
triads into the equation? To what extent would open and closed triads that are 
composed of different configurations of uniplex and multiplex ties impact inven-
tion quality and other innovation outcomes (Ferriani, Fonti, and Corrado 2013)? 
Second, we invite scholars to study the so-called network oscillation in which 
individuals might embed themselves in closed groups during some period, fol-
lowed by periods of connecting across social domains (Burt and Merluzzi 2016). 
We acknowledge Burt and Merluzzi’s (2016) call for future research on the 
mechanisms that drive such network oscillation. For instance, in the context of 
innovation, individuals or even triads that oscillate between dense and sparse 
networks might influence their ability to engage in exploitative versus exploratory 
innovation behaviour (March 1991; Paruchuri and Awate 2017). Finally, our study 
raises questions regarding the processes, behaviour, and outcomes of inventor 
triad collaboration. For instance, the brokering behaviour of ego brokers and 
their roles may shape alters’ innovation outcomes. Generating symmetric networks 
might influence the broker’s ability to generate new combinations and marshal 
resources and may also help or harm the alters. As we study overall triad out-
comes, this is an interesting avenue for future research, connecting individual- 
and triad-level literature.

In conclusion, this study demonstrates the importance of a dynamic view of triad 
closure when investigating how collaboration networks among inventors impact 
R&D-based invention. We encourage future research to continue to study how triads 
and their behaviour influence invention outcomes.
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