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ABSTRACT Narrowband Internet of Things (NB-IoT) is one of the most promising technologies for
enabling reliable communication among low-power, and low cost devices present in massive machine-type
communications (mMTC). In NB-IoT, random access (RA) is implemented in the medium access control
(MAC) layer to resolve access contention among massive IoT devices. Efficient network access techniques
are required to effectively solve the massive access issues in NB-IoT, guaranteeing increased throughput and
high spectrum utilization. In this paper, we present a comprehensive overview of NB-IoT towards supporting
mMTC, with focus on the NB-IoT coexistence with 5G, as well the design challenges and requirements of
RA in NB-IoT. Moreover, available literature is reviewed to highlight the RA congestion control schemes
proposed during the past few years to alleviate RA collisions. While existing RA approaches mainly focus
on conventional contention-based techniques for performing RA, intelligent learning based and grant-free
Non-Orthogonal Multiple Access (NOMA) have been identified as a potential candidates to increase the
transmission efficiency of mMTC applications.

INDEX TERMS Narrowband Internet of Things, random access, radio access network congestion, grant-free
non-orthogonal multiple access, machine learning.

I. INTRODUCTION
Mobile devices and wireless communication have developed
significantly over the past years. Fuelling to this growth
is the demand for both high-speed wireless connections,
faster and seamless Internet based services and applications,
making 5G one of the most promising technologies for
future applications. In most cases, the 5G cellular network
is characterised by high bandwidth, large coverage, and low
latency compared to cellular networks such as 3G and 4G.

Further development of the 5G architecture has facili-
tated the advancement in Internet of Things (IoT) where
autonomous devices are interconnected using a combination
of cellular, short range and long range wireless technologies.
5G based IoT enables multiple innovative applications
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between billions of low powered machine type devices
(MTD), introducing massive Machine Type Communication
(mMTC). mMTC span a wide range of application areas
including home automation, industrial control, smart cities,
and health care. It is expected that over 100 billion IoT
devices will be connected to the mobile network in the year
2030 [1].

To better meet the demands of massive Machine Type
Communication (mMTC), Narrowband Internet of Things
(NB-IoT) was developed by the Third Generation Partnership
Project (3GPP) to facilitate communication among large-
scale deployments of IoT devices [2]. According to [3]
and [4], NB-IoT is the most promising Low PowerWide Area
Network (LPWAN) technology compared to technologies
such as ZigBee, LoRa, and Ingenu. The main design require-
ments of NB-IoT are to provide deep coverage for massive
connections at low cost and low power consumption [5].
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These requirements present numerous design challenges for
NB-IoT development due to the need for new and improved
techniques in terms of energy saving, enhanced coverage,
and low data rates. Most of these improvements are achieved
by reusing some of the design features of LTE, making it
more suitable to accommodate a large number of devices with
improved quality of services.

During the initial connection establishment of massive
Machine Type Communication (mMTC) networks, a user
equipment (UE), referring to the 3GPP standard naming
for an NB-IoT node, initiates the random access (RA)
procedure by sending an initial preamble sequence to the
base station (eNB) using the uplink NB-IoT physical random-
access channel (NPRACH). Due to the limited number of
preambles, two or more UEs may transmit the same preamble
simultaneously, resulting in a collision. The collided devices
cannot transmit data until a successful preamble transmission
is achieved. Successful preamble reception is made even
more challenging since the UEs are placed in unreachable
geographic locations, such as deep basements and under-
ground environments, where the wireless signals may not
easily penetrate.

NPRACH repetitions have thus been introduced to improve
the reliability of RA by allowing collided devices to repeat
preamble transmission several times, thus improving the
signal reception of the preambles at the eNB. Taking into
consideration that mMTC aims to support 1,000,000 devices
per square kilometer (km2), this means that numerous devices
will concurrently perform RA over the shared channel
causing severe radio access network (RAN) congestion as
well as increased repetitions [6], [7]. Themassive deployment
of NB-IoT devices lead to increased latency, packet loss
and severe packet delay during RAN congestion. Improved
massive connectivity techniques controlling random access in
NB-IoT are thus required to increase random access success,
thereby reducing access delay, and lower power consumption
of the UE.

To the best of our knowledge, this paper is the first to
survey random access network congestion management in
NB-IoT. In this paper, an in-depth discussion of the issues
and requirements affecting random access in NB-IoT is
provided. Due to the demand for efficient massive connec-
tivity techniques, our thorough survey offers classification
and discussion of the existing RA enhancement techniques
proposed in NB-IoT as well as the potential of grant-
free Non-Orthogonal Multiple Access (NOMA) schemes in
addressing the shortcomings of grant-based RA techniques
in supporting mMTC. Table 1 summarises existing surveys
in comparison with ours.

LIST OF FREQUENTLY USED ACRONYMS
ACB Access class barring
CE Coverage enhancement
CRQ Contention resolution queues
DL Downlink
CFO Carrier frequency offset

TABLE 1. A description of previous related surveys on NB-IoT.

eNB Evolved node base station
LPWAN Low power wide area network
MAC Medium access control
MCL Maximum coupling loss
MTD Machine type devices
mMTC massive machine type communication
NOMA Non-orthogonal multiple access
NPRACH Narrowband internet of things physical

random-access channel
NR New radio
PD-NOMA Power domain non-orthogonal Multiple

Access
PHY Physical layer
RL Reinforcement learning
UE User equipment
UL Uplink
RACH Random-access channel
RAN Radio access network
SCMA Sparse code multiple access
SIC Successive interference cancellation
TA Timing advanced
TOA Time-of-Arrival

The major contributions of this review article can be
summarized as follows.

NB-IoT is a new radio interface that is still at its initial
stages of development thus there is still ongoing research
to find optimal configurations to facilitate improvement in
the system performance. RA optimization can easily be
achieved once the RA requirements and challenges are
clearly identified and understood. Therefore, this paper aims
to provide an in-depth discussion on the technical design
challenges and requirements of random access in NB-IoT.

Several researchers have studied and proposed novel
solutions addressing random access congestion schemes in
NB-IoT networks. Our study extensively reviews available
literature and provides a classification of the existing random
access congestion control schemes proposed for NB-IoT
and mMTC in general. The RA schemes classification is
beneficial to potential researchers who want to propose
congestion control techniques for mMTC.
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Most of the existing RA control techniques rely on
contention-based RA for network access. With the tremen-
dous growth of IoT traffic, these schemes are incapable
of accommodating the traffic growth due to the signalling
overhead and excessive latency. Our work review both grant-
free NOMA and the intelligent learning approaches that are
deployed to efficiently handle themassive connectivity of IoT
devices in mMTC network and compares the performances of
these newly proposed approaches.

The remainder of the paper is organized as follows.
In Section II and III, we provide a general overview of NB-
IoT and random access control in NB-IoT, followed by the
design challenges and requirements of NB-IoT in section IV.
Section V provide the schemes developed to address random
access congestion control in NB-IoT. Lastly, we present
the latest trends of grant-free NOMA and machine learning
schemes that are proposed to address the RA challenges of
mMTC.

II. NB-IoT OVERVIEW
The evolution of 5G networks presents a huge potential for
MTC by supporting short, infrequent, and heterogeneous
traffic which may be attractive for delay insensitive IoT
applications such as water meter readings and goods’ tracking
services. Envisaging this growth, the Third Generation
Partnership Project (3GPP) carried out deliberate extensive
research way back in 2005 focusing on improving existing
wireless technologies. Since wireless networks serves net-
work devices with varying resources and application needs,
different UE categories were introduced to cater for this
need. The differences between the 3GPP UE categories
and the evolution towards NB-IoT are summarised in
Table 2.
NB-IoT [2], [15] can coexist with networks such as GSM,

LTE and general packet service (GPRS). This coexistence
enables high utilization of the design features of existing
cellular technologies, contributing immensely to the fast
deployment of NB-IoT which is made possible by reusing
existing hardware and spectrum without coexistence issues.

NB-IoT can be deployed in three different modes, namely,
guard band, stand-alone and in-band. In stand-alone mode,
NB-IoT uses a dedicated band, whereas in-band and guard-
band uses a physical resource block (PRB) within LTE.
In all these modes, NB-IoT is designed to provide low cost
devices, low power consumption, massive connectivity, and
deep coverage [2], [16].
The PHY andMAC layer design of LTE are redesigned and

optimised to enhance NB-IoT performance as follows:

• Downlink and uplink channels utilises a bandwidth of
180 kHz

• Orthogonal frequency-division multiple access
(OFDMA) is used in the downlink channel with 15 kHz
subcarrier spacing over 12 subcarriers

• The frame structure used for transmission is 10 ms long
uses slot duration of 0.5 ms.

• Single-carrier frequency-division multiple access
(SC-FDMA)is used in the uplink channel with either
3.75 kHz or 15 kHz subcarrier spacing

• Uplink supports both single tone and multi-tone (i.e. 3,
6, 12 tones) operation.

• The physical layer uses forward error correction (FEC)
using turbo coding techniques and Cyclic Redundancy
Check (CRC)codes.

• Repetition of control signals and data transmission
is used to achieve coverage enhancement in devices
located in deep structures.

• Uses frequency division duplexing (FDD) half-duplex
• Quadrature phase-shift keying (QPSK) and binary
phase-shift keying (BPSK)/QPSK modulations are
utilised on the downlink/uplink subcarrier.

Both the uplink and downlink channels inherit their
numerology from LTE. According to [17] and [18], the uplink
channel bandwidth is shared between 15 subcarriers of either
3.75 kHz or 15 kHz spacing. In uplink transmission, single
carrier frequency division multiple access (SC-FDMA) is
used to transmit data. Both singletone and multi-tone are
supported in uplink transmission. The physical channels used
for uplink communication are:

1) Narrowband physical uplink shared channel
(NPUSCH): carries control signals and actual data from
the UE to the eNB. The data being communicated is
differentiated using two different formats. Format 1 is
used to send uplink data with maximum transmission
block size of 1000 bits and format 2 is used for carrying
signaling data.

2) Narrowband Random Access Channel (NPRACH):
used to facilitate random access procedure which is
normally performed before the data payloads can be
send by the UE.

In the downlink transmission, orthogonal frequency division
multiple access (OFDMA) is used by the 12 subcarriers with
subcarrier spacing of 15 kHz. The physical signals/channels
found in downlink communication are as follows:

1) Narrowband Downlink Shared Channel (NPDSCH):
used to transmit data that is specific for UE.

2) Narrowband Downlink Control Channel (NPDCCH):
contains donlink control information (DCI).

3) Narrowband Broadcast Channel (NPBCH): responsi-
ble for communicating the master information block
(MIB) from the eNB to the UE.

4) Narrowband Primary Synchronization Signal(NPSS)/
(NSSS): used for establishing time-frequency synchro-
nization between the UE and the eNB.

A. COMPARISON OF NB-IoT WITH OTHER LPWAN
TECHNOLOGIES
Existing wireless networks such as Bluetooth, Wi-Fi, and
ZigBee are not suitable for IoT applications due to their
limited coverage and high data rate offerings [19]. IoT appli-
cations, therefore, benefit more from LPWAN technologies
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TABLE 2. Advancement of UE categories towards NB-IoT.

due to their low cost and low data rates attributes. LPWAN
technologies can be categorised as licensed and unlicensed
frequencies, and each technology is differentiated in terms of
security, power consumption, delay, coverage, and scalability.
The different LPWAN technologies are described below.

LoRa [19] which stands for long range, is a physical
layer technology developed by Semtec to provide long
range communication. It operates in the unlicenced band
of 868 MHz, 915 MHz, and 433MHz bands [20]. The media
access control used in LoRa is referred to as LoRaWAN.
In a typical LoRa network, LoRa nodes are connected to a
LoRa gatewaywhich further connects to the LoRa application
server through the LoRa network server. LoRa networks can
cover up to 2km, and this is made possible by the chip spread
spectrummodulation, which also contributes to its low power
consumption.

Founded in France by a company of the same name,
Sigfox [21], [22] is a LPWAN technology with a physical
presence in over 70 countries. The Sigfox technology
transmits data packets to the Sigfox base station using
ultra-narrowband (UNB), attributing to low interference and

collisions. It operates at Industry, Scientific, and Medical
(ISM) frequencies ranging between 862 MHz to 928 MHz.
Sigfox uses the binary phase shift keying (BPSK) modulation
technique, which benefits the technology in terms of
spectrum efficiency, high receiver sensitivity and affordable
hardware designs. It saves the energy consumption of the
nodes by limiting the amount of data it can transmit in a day
to 12 bytes and 4 messages for uplink and downlink channels
respectively. Since the technology is able to cover between
30-50 km in open spaces and 3-10 km in a city, Sigfox is
suitable for applications requiring low data transmission and
large areas coverage [23].

Initially founded in 2008, Ingenu [24], [25] was developed
to overcome limitations such as link capacity, and low data
rate faced by LoRa and Sigfox. Ingenu tried to improve these
limitations by using direct-sequence spread spectrum (DSSS)
modulation and Random Phase Multiple Access (RPMA)
technique within the 2.4 GHz ISM band. This way, UE are
able to send data using high data rates up to 624 kbps on
uplink and 156 kbps on the DL. Additional features of Ingenu
includes receiver sensitivity up to 142dBm and it may easily
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suffer interference due caused by other wireless networks
operating in the same spectrum.

The Weightless LPWAN protocol is created by the
Weightless Special Interest Group (SIG) to operate in
the TV white spaces. It defines three different standards,
namely, Weightless-N, Weightless-W, and Weightless-P.
The difference among the three specified protocols are:
Weightless-N: the IoT devices connect to the base station
through ultra-narrow band and it utilises the ISM spectrum
which varies per region. Differential Binary Phase Shift
Keying modulation (DBPSK). It supports data rates up
to 100 kbps and is only able to send data in the uplink
channel. This one way communication is not appropriate for
most applications especially those that requires reliability
because it does not guarantee receipt of data packets. The
coverage area supported by weightless N is 5km in cities.
Weightless-W operates in the 470-790 MHz spectrum aimed
for TV white space. Its data rates ranges between 1kbps and
10Mbps. More than one modulation scheme is supported by
the Weightless-W standard such as DBPSK and 16-QAM
(16-Quadrature Amplitude Modulation). Successful deploy-
ment of Weightless-W is hindered by the limitation of
hardware design and unavailability of TV white spaces.
Weightless-P is the latest standard among the three standards.
It provides data rate up to 100kbps and utilises Gaussian
minimum shift keying (GMSK). It has a lower lifespan
compared to weightless-N. It is able to cover around 2km in
the city and offers more coverage in the village.

DASH7 Alliance Protocol (D7AP) is developed by the
DASH Alliance to support wireless sensor and actuator
network (WSAN) and radio-frequency identification (RFID)
applications. It utilises a radio interface and network
stack standardised by ISO/IEC 18000-7 in 433MHz, 868,
and 915 MHz ISM bands. The wireless devices can be
connected either in a star or tree topology using 2-GFSK and
access the media using CSMA/CA. Traffic and operational
features of DASH7 are considered to be bursty, light,
asynchronous, stealth and transitive (BLAST). Mobile nodes
within 2 Km can effectively communicate with each other
offering data rates up to 167 kbps. Low power consumption
is achieved through using pull and push communication
technique between the wireless nodes and the base station,
where by, nodes are kept in sleep mode most of their active
time and only transmit data during a specific time. The key
devices included in the DASH7 architecture are shown in the
diagram below.

Initially a proprietary technology, Z-wave was developed
in 2001 by Zensys in 2001 for home automation. Amaximum
of 232 home equipment used for cooking, security, lighting,
etc are connected to one another using a mesh topology.
These devices communicate a maximum message length of
256 bytes at radio frequencies of 908.4MHz, 868.4MHz,
and 919MHz in USA, Europe, and Australia respectively,
and are able to transmit data up to 100 kbps. The allocated
frequency spectrum offers low interference due to the
limited presence of devices connected within the spectrum.

It utilises FSK modulation technique and the signal can
cover a communication range between 30 meters up to
100 meters depending on the location density. Power is
conserved by switching the nodes on and off during allocated
time slots which prevents the nodes from continuous data
transmission. Interoperability between devices is achieved
through using a four layered architecture consisting of the
application layer, MAC layer,routing layer and the transfer
layer.

NB-IoT utilises a system bandwidth used of 180 Khz
which is equivalent to one physical resource block (PRB)
of LTE. Unlike other LPWAN technologies, NB-IoT utilises
the licensed spectrum which offers numerous benefits in
terms of reliability, high transmission power and reduced
interference. It is against this background that NB-IoT
received wide acceptance from major telecommunication
operators such as Erickson, Nokia, Intel and Huawei [26]
whose contribution towards NB-IoT is illustrated in [27].
Further NB-IoT enhancements are made in release 14, release
15 and release 16. The comparison of NB-IoT with other
LPWAN technologies is presented in Table 3.

B. NB-IoT IN 5G
The 5G new radio (NR) air interface, introduced by 3GPP in
release 15, operates in both low and high frequency ranges.
Utilising these two frequency ranges enables sufficient
coverage among the three major 5G use cases, namely,
enhanced mobile broadband (eMBB), ultra reliable low
latency communications (URLLC), and massive machine
type communication (mMTC) [28]. These use cases are
identified to serve the diverse users and service requirements
in the emerging Internet of Things (IoT). Specifically, eMBB
targets applications demanding high data rates and low
latency, whereas URLLC targets applications demanding
extremely low latency and extremely high reliability. mMTC
targets applications that are delay-tolerant and have low data
rates.

Generally, mMTC is characterised by massive IoT devices,
whose applications transmit sporadic, small volumes of data
that is mainly uplink dominated. The NB-IoT standard is
developed to satisfy various mMTC services with the below
performance objectives:

1) Provide coverage equivalent to a maximum coupling
loss (MCL) of 164 dB.

2) Support uplink (UL) and downlink (DL) data rates of
at least 160 bits per second (bps).

3) Deliver data packets of 105 bytes within 10 seconds.
4) Achieve 10 years battery life while transmitting daily

UL data of 200 bytes and 20 byte DL message.
5) Support 1,000,000 devices per square kilometer (km2).

Utilising the NB-IoT architecture to accommodate mMTC
requires smooth transitioning and support between legacy 4G
and 5G NR. Efficient LTE to 5G migration techniques are
required to guarantee seamless continuation of services and
excellent coexistence between NB-IoT and NR. Coexistence
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TABLE 3. Comparison of NB-IoT with other LPWAN technologies.

between NB-IoT and 5G NR is achieved by deploying
NB-IoT carriers within the NR carrier. Unlike LTE, the 5G
communication system presents several attractive features
that makes its coexistence with NB-IoT possible. These
features are:

• Scalable OFDM numerology: similar to NB-IoT, the 5G
NR physical layer design uses OFDM modulation with
support for 15-kHz subcarrier numerology. NR supports
additional subcarrier spacing ranging between 15 kHz
to 240 kHz. In addition, 5G NR supports two frequency
bands, namely, FR1 and FR2 supporting frequency
band from 0.45 GHz to 6 GHz and frequency band
from 24 GHz to 52.6 GHz respectively. mMTC utilises
below 2GHz bands.

• Flexible frame structure: there are various waveforms
parameters which differs in terms of Sub-Carrier

Spacing (SCS), slot duration, and slots per sub-frame
thus enabling more than one 5G service to be offered
within the same carrier.

• Ultra-lean design: regular transmission of the broadcast
signals, synchronization signals, and reference signals
are reduced to improve the energy efficiency of the NB-
IoT devices as well as to avoid interference between the
two wireless networks.

Appropriate positioning of NB-IoT within the NR carrier
is achieved through proper alignment of subcarrier grids and
resource blocks which guarantees subcarrier orthogonality
and increases resource utilization [29].

A number of 5G technologies have been introduced to
cater for the traffic growth introduced by the massive NB-
IoT devices. The key 5G enabling technologies are indicated
in Table 4.
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TABLE 4. 5G enabling technologies for NB-IoT.

III. RANDOM ACCESS PROCEDURE IN NB-IoT
Random access is a media access protocol technique utilised
by M2M to acquire access to the eNB. Generally, every
user wishing to transmit data over the NB-IoT is expected
to establish a network connection through the random
access procedure in order to perform uplink synchronization
required for data transmission. The distributed and simple
operational design of the random access scheme makes it
an attractive and preferred access control solution for M2M
communication [30]. Random access schemes are classified
into either grant-free or grant-based access, which essentially
determines how UE accesses the radio resources during a
data transmission demand. The grant-free scheme provides
users with the flexibility of selecting resource blocks at
any given time. Users accessing the spectrum through the
grant-free scheme do not have to wait to be granted radio
resources by the base stations. Slotted Aloha, a grant-based

random access scheme commonly used in cellular networks,
allows a UE to randomly select a traffic channel that they
use to establish a connection with the network. All the
UEs requiring data transmissions perform random access
through sending messages to the NB-IoT physical random-
access channel (NPRACH) which is a newly designed
uplink physical channel for NB-IoT. NPRACH provides
time-frequency resources required for data transmission and
performs accurate preamble detection required to maintain
uplink orthogonality among the various UE.

Three distinct NPRACH configurations indicating
NPRACH repetition value, preamble transmission interval,
NPRACH starting time, NPRACH periodicity etc, are
specified for the coverage classes supported in NB-IoT [31].
The coverage classes, namely, a) CE level 0, b) CE level 1,
and c) CE level 2 with MCL of 144 dB, 154 dB and 164 dB
respectively [17], [32], serve UEs with varying path losses.
The coverage enhancement classes are indicated in figure 2.
The NPRACH subcarriers are shared by the three coverage
classes in units of 12.

The random access procedure can be triggered by any of
the following actions:

• UE originated initial access to the NB-IoT network.
• Network initiated response to a paging message.
• Transitioning from idle state to connected state.
• Random access re-attempt after random access failure.

Normally, the contention-based RA procedure includes
four signalling messages that are exchanged between the
UE and the eNB. The signalling messages are indicated in
figure 1.

The steps used to achieve uplink connection are shown
below:
Step 1: Upon successful initial synchronization with the

eNB, a UE selects a CE level based on the measured
reference signal receiving power (RSRP). It then chooses any
random access preamble and transmit it over the NPRACH to
establish a connection with the NB-IoT network.
Step 2: Since multiple UE transmits preambles, the eNB

determines the source of the preamble and responds by
sending a random access response (RAR) on the NPDSCH
which contains information related to cell identification and
uplink timing.
Step 3:Using the uplink resources allocated in step 2, a UE

transmit its identification information to the eNB.
Step 4: The eNB responds with a contention resolution

message including the identification of the permitted UE. The
permitted UE can proceed with data transmission.

The successful exchange of the four messages symbolises
the completion of the random access procedure. Since
random access is facilitated by slotted ALOHA, more
than one UE can transmit the same preamble sequence
simultaneously resulting in either detectable collisions or
undetectable collisions [33]. All the UE involved in collisions
will enter a random back-off and reattempt the random access
procedure in the next random access opportunity (RAO). The
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FIGURE 1. Random access procedure in NB-IoT.

FIGURE 2. Coverage enhancement levels.

major drawback associated with the random access technique
is the excessive preamble collisions and re-transmissions in
the contention-based schemes which occur as a result of
a UE choosing the same resource block to facilitate data
transmissions.

IV. DESIGN CHALLENGES AND REQUIREMENTS OF
RANDOM ACCESS IN NB-IoT
Heterogeneous machine type devices (MTD), characterised
by massive number of devices including cameras, actuators,
and water meter readers determines when to access NB-IoT
physical random-access channel (NPRACH) in a distributed
manner. To achieve high NPRACH success opportunity
among M2M in NB-IoT, the MTD require:

• Sufficient NPRACH spectrum resources
• Efficient preamble detection scheme
• Reliable preamble design
• Sufficient preambles to perform RA
• Correct identification of all the active UE
• Utilization of more channels
• Data transmission of massive connections
• Reliable repetition scheme

Achieving the above requirements is highly influenced by
factors such as massive connectivity, control and signalling
overhead, NPRACH repetitions, preamble misdetection,
preamble collision, and limited spectrum resources, which

degrade the random access performance of the MTD. These
factors are discussed as follows:

A. MASSIVE CONNECTIVITY
mMTC is characterised by a large number of low cost and
energy constrained devices that send infrequent, bursty, low
priority, andmostly uplink dominated traffic at different times
of the day. For example, a fire alarm signal will generate
a large amount of small data payloads at the time smoke
is detected in a building. During the initial access on the
network, IoT devices utilise the contention-based random
access procedure to transmit preambles on the NPRACH
to establish resource allocation with the NB-IoT network.
Since mMTC aims to support 1000 000 devices per square
kilometer, the massive simultaneous NPRACH access from
these devices can easily congest the radio access network
(RAN), causing intolerable access delay, packet loss, and
even service unavailability [14].

B. CONTROL AND SIGNALING OVERHEAD
Connection setup and connection release signalling packets
are continuously exchanged between the UE and the eNB.
The characteristics of MTC traffic, which are sporadic
and predominantly uplink, significantly contribute to the
overhead of connection establishment. Unlike in conventional
mobile networks, UEs in the NB-IoT network do not
consistently sense and transmit data. Normally, when a UE
detects no activity on the network, it enters idle mode.
However, upon detecting traffic activity, a UE switches back
into transmission mode and begins sending uplink traffic to
the eNB. Since a large number of UEs are deployed in 5G IoT,
there is a massive exchange of small-sized control packets
between the UEs and the eNB, compromising the quality
of the link. Existing MAC layer techniques are not capable
of efficiently handling the massive load of small-sized data
control packets. Therefore, 5G approaches that can analyse
the behaviour of sporadic traffic are required to alleviate the
burden caused by signalling overhead.

C. NPRACH REPETITIONS
Achieving coverage enhancement (CE) of+20dB (compared
to GSM/GPRS) is one of the design objectives of NB-
IoT. Improved coverage guarantees sufficient signal power
to the 5G enabled IoT devices deployed in remote areas
with high penetration losses such as basements. In NB-
IoT, coverage enhancement is achieved through the use of
tones, repetitions, modulation and coding schemes (MCS).
NPRACH repetitions and data repetitions are employed
in both uplink and downlink transmissions, enhancing the
reliability of the random access procedure by repeating the
preamble transmission up to 1024 and 2048 times in uplink
and downlink, respectively [17], thus improving the received
signal at the eNB.

These repetitions are performed across the three CE levels
supported in NB-IoT. The number of repetitions increases
with higher path loss, meaning that UEs located towards
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the network edge are likely to perform more repetitions
than those closer to the eNB. Preamble repetition values
differ for each coverage class based on path loss, with more
repetitions in higher CE levels to compensate for signal
attenuation. However, increased NPRACH repetitions can
burden spectrum resources, leading to random access delays
and higher energy consumption [34]. Additionally, UEs
persist in the RA connection until the maximum number of
repetition attempts is reached, at which point they transition
to the next higher CE level for a new RA attempt. This
can lead to an unequal distribution of UEs among CE
levels, resulting in uneven traffic load across the three levels.
The unique RA configurations for each CE level can also
introduce network performance disparities. Further research
is necessary to understand the impact of data repetitions on
NPRACH success and to determine the optimal repetition
value that ensures an acceptable distribution of UEs among
CE levels.

D. PREAMBLE MISDETECTION
Unlike LTE, which employs Zadoff-Chu (ZC) sequences,
the newly designed NPRACH preamble is specifically
intended to facilitate connections from multiple UEs for RA
operations. During RA, the eNBmonitors the time-frequency
resources for the initial uplink preamble. Upon receiving the
signal, the eNB estimates the time of arrival (ToA), Carrier
Frequency Offset (CFO), and UE identity. It then generates
and transmits the RAR to the UE. These estimated parameters
are crucial for maintaining orthogonality with multiple UEs
and scheduling data transmissions. Inefficient NPRACH
receiver designs significantly impact the correct detection of
the transmitting user, affecting parameter estimation between
the UE and the eNB. This results in increased random access
delay, reduced system throughput, and a higher packet error
rate [35].

E. PREAMBLE COLLISION
The NB-IoT cell can configure up to 48 subcarriers,
equivalent to 48 preambles from which a user attempting
to establish a connection selects one preamble at random.
Considering the large number of IoT devices, this limited
number of preambles available in the network causesmultiple
UEs to select the same preamble for performing the initial
RA, resulting in NPRACH collision. When a collision
occurs, the eNB fails to correctly detect the preamble,
and it will not be able to respond with message 2 of the
RA procedure. Preamble collision, more common in event-
driven applications, leads to RACH failure, causing random
access delay, packet loss, and under-utilization of radio
resources [36]. While having more preambles can reduce
collisions, it negatively affects the remaining uplink resources
reserved for data transmission.

F. LIMITED SPECTRUM RESOURCES
To better meet the IoT requirements, NB-IoT is designed to
operate in a narrow system bandwidth of 180 kHz which
is equivalent to one physical resource block (PRB) of LTE.

Efficient utilization of the limited system bandwidth used by
both NPRACH and NPUSCH for uplink transmissions is key
in achieving maximum access success and data transmissions
in the NB-IoT network. Although sufficient NPRACH
resources reservation increases NPRACH repetitions which
guarantees the successful reception and decoding of the
preamble at the eNB, it may lower the NPUSCH resources
required for data transmission. Adequate channel resources
are thus required to ensure fairness among data transmission
and random access.

Existing solutions designed to serve long sized packets
lacks the sufficient capacity to accommodate the large
amount of random access in MTC. Newer RA enhancement
solutions are thus required to effectively deal with themassive
uplink traffic while alleviating the aforementioned weak-
nesses. These solutions should particularly aim to reduce
preamble repetitions, provide optimal RA configuration
parameters, and improve preamble detection and at the base
station.

V. APPROACHES TO RANDOM ACCESS IMPROVEMENTS
FOR mMTC
mMTC random access schemes are expected to provide
simple and adaptive access to a multitude of user equip-
ment contending for channel access. However, centrally
coordinating the short, sporadic, and unpredictable traffic
transmissions from massive IoT devices is a challenging task
due to the obstacles outlined in the previous section.

Several random access enhancement schemes have been
proposed in LTE networks to address the random access
overload and congestion challenges, including access class
barring (ACB) [37], [38], [39], slotted access [40], [41], [42],
prioritized random access scheme [43], [44], [45], [46], group
based [47], [48], [49], and Distributed Queueing [50], [51],
[52], [53], [54].

A. ACCESS CLASS BARRING
Access Class Barring (ACB) is the standardised access
protocol adopted in LTE to facilitate access requests. The
ACB mechanism classifies UEs into different access classes
(ACs) depending on their requirements. To manage the
PRACH overload issue, devices in the various ACs check
their access eligibility by determining the barring status. The
UE achieve this by generating a random number between
0 and 1 and compare it to the ACB probability barring
factor. Network access is granted if the UE generated value
is less than or equal to the barring factor, otherwise the
transmitting node back off for some time. Both the ACB
barring factor and the barring time are broadcasted in the
system information block. In order to improve the overall
system performance, it is critical for the eNB to select optimal
barring factor and barring time values especially when the
network is experiencing network overload. The optimal ACB
value to reduce the congestion and access delay is determined
in [37] and [55]. Generally, the ACB scheme is beneficial
in scenarios where M2M devices consists of varying QoS

VOLUME 12, 2024 95495



L. Iiyambo et al.: Survey on NB-IoT Random Access

requirements of which service differentiation is achieved by
grouping M2M devices in different access classes. In such
a scenario, RA is only granted to devices in the allowable
classes with the rest of the devices barred from access. The
limitation of the ACB scheme is that it trades-off access
delay for high access success which can be attractive to
applications that can withstand long access delay but not
suitable for event based mMTC applications. Furthermore,
the dynamic nature of mMTC traffic makes it difficult to
obtain the exact number of devices attempting RA causing
improper determination of the optimal ACB factor. There
exist a number of proposals to improve the performance of
ACB. For instance, dynamic ACB is proposed such that the
eNB adaptively changes the ACB factor depending on the
state of the network environment or the network parameters.

B. SLOTTED ACCESS SCHEME
The slotted access scheme is a common cellular network
standard used for accessing the random access channel in
LTE, NB-IoT and GSM. The slotted access scheme utilises
time slots to coordinate the transmission of devices by
assigning M2M devices to dedicated RA slots in which
they can transmit without restricting the number of devices
transmitting in a specific time slot. If two or more devices
access the same channel in a given time slot, then there is a
collision and the receiver is unable to obtain any transmitted
information. To reduce the collision probability, each user is
limited to transmit at the beginning of each time slot. Any
device wishing to transmit data will therefore wait for the next
available time slot so that it can transmit its data. Although
time-slot synchronization simplifies collision detection, the
massive and infrequent number of access requests leads
to increased collisions and reduced efficiency potentially
reducing the overall throughput. Moreover, as the number of
devices in the network increases, the contention for time slots
also increases.

C. PRIORITIZED RANDOM ACCESS
Most of the access request schemes do not take into
consideration the QoS requirements of the UE during random
access. Moreover, the fixed access priorities present in the
conventional ACB scheme lack the flexibility of changing
during the random access procedure. To satisfy the QoS of
the various mMTC, prioritized access schemes are proposed
to provide maximum resource utilization by pre-allocating
random access resources to the UE depending on their
requirements. Typically, prioritized random access schemes
categorises theUE in different classes based on their priorities
then it assigns varying channel resources to the devices in the
various classes. Specifically, delay-sensitive devices such as
emergency alarms are allocated higher priority thus utilising
more resources than the delay-tolerant devices which are
assigned low priorities. Although all the classes are assigned
different resources, the limited PRACH resources may not be
sufficient for all devices, especially when there’s a sudden

increase in the number of heterogeneous devices accessing
the network.

D. GROUP-BASED
In theGroup-Based Scheme,M2Mdevices are grouped based
on their geographic location or application requirements,
and they access the random access channel based on
this grouping. Instead of all M2M devices contending
simultaneously, group based schemes allow only one group
or a specific number of devices from a particular group to
access the channel at a given time, thus reducing the collision
in the network. Depending on the application requirements,
certain groups can be prioritised, ensuring improved QoS for
those applications. Some group based access schemes can
dynamically adapt to changing network conditions, which is
beneficial in networks with fluctuating traffic load.

E. DISTRIBUTED QUEUING
Distributed Queuing (DQ) organizes contending mMTC
devices into logical queues to perform RA. During RA,
a device select a RA slot and wait for the RAR for it to
know about the success or failure of its preamble. Since more
than one device can choose the same preamble, a dedicated
contention resolution queue (CRQ) is assigned to the devices
that selected the same preamble. Devices entering the CRQ
become aware of their position in the queue through the RAR,
and utilises their position to connect to the base station. The
positions are continuously updated using internal counters.
On the other hand, devices that did not experience collision
enters the data transmission queue (DTQ) to proceed with
sending their data. Devices wishing to perform random access
for the first time are only accommodated once the CRQ is
empty. Unlike ACB and slotted-ALOHA that do not scale
well with bursty traffic, the DQ solutions are stable when
there is a sudden increase in traffic. furthermore, a low
probability of collision is achieved through the distribution
of the collided devices in their own queues. The drawback
of the DQ schemes is that an increase in preamble collisions
escalates the CRQ resulting in higher access delay.

The NB-IoT random access procedure which adopts
both the ACB scheme and slotted access is significantly
challenged with the NPRACH overload issue caused by
the simultaneous initial access requests of the massive
M2M devices. To cope with these issues, novel random
access congestion control techniques are studied to efficiently
handle the massive access issue while meeting the perfor-
mance requirements under insufficient spectrum resources.
Although NB-IoT has inherited LTE design functionalities,
the unique characteristics of NB-IoT such as repetitions,
three CE levels, and the new random access preamble design
presents challenges that requires improved RA congestion
control solutions.

Several MAC and PHY performance models have been
implemented to investigate RAN congestion issues in NB-
IoT, focusing on 1) performance analysis [6], [40], [56], [57],
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2) optimization [58], [59], [60], and 3) NPRACH receiver
design [6], [35], [61], [62], [63], [64], [65], and 4) collision
resolution [66]. A summary of the RA schemes proposed for
NB-IoT is shown in Table 5.
The performance analysis of multi-channel slotted

ALOHA system under heavy load is investigated in [42].
The authors derived approximation formulas to determine
the number of users who successfully complete the random
access procedure during the random access slot. Since NB-
IoT is designed to use three CE levels, the work in [42] is
not suitable for NB-IoT, hence the model presented by [40]
and [56], which determines the access success probability and
average access delay specific for each CE level. Similarly, the
authors in [57] also analysed the RACH by considering the
repetition values that were introduced to achieve coverage
enhancement in NB-IoT. Performance analysis schemes are
essential in providing in depth understanding of RA that is
useful in determining optimal network parameters.

Random access can be effectively measured by the number
of UE that successfully complete the four-way handshake.
RACH optimization parameters such as backoff window,
number of contending users, and repetition values should
be carefully tuned to improve network throughput. In [60],
the authors aim to increase the access success probability
through joint optimization of preamble and CE levels based
parameters. The work in [58] merged cognitive radio (CR)
and NB-IoT to allow UE to access empty radio channels
thus maximising throughput for RA. In [59], the authors
proposed a reinforcement learning-based approach which
dynamically allocate uplink resources thus maximising the
network throughput. A distributed queuing based RA scheme
is proposed in [66] to increase access success probability by
employing contention resolution queues (CRQ).

Successful preamble transmission using NPRACH is criti-
cal for resource reservation in NB-IoT. NPRACH collision,
which is commonly caused by concurrent transmission of
multiple preambles, can be mitigated by developing efficient
NPRACH receiver designs schemes focusing on preamble
detection [61], [64], [65], [67], preamble increase [62], and
efficient ToA estimation [35], [68].
Generally, NPRACH receiver schemes consist of pream-

ble detection and timing delay estimation [33]. Preamble
detection algorithms are employed at the eNB to efficiently
detect the presence of preambles transmitted by the UE
using the single-carrier frequency hopping OFDM symbol.
A typical preamble detection approach utilises stochastic
geometry to model and analyse the spatial distribution
of IoT devices following a Poisson Point Process (PPP)
arrangement. Stochastic geometry and Poisson Point Process
are both powerful tools for modeling the random deployment
of base stations characterised by random and temporal arrival
of packets which is the case in NB-IoT networks. Since
stochastic geometry generally perform very poorly with the
increase in traffic demand among the various interactive
queues at each eNB [69], it is often combined with queuing

theory to derive spatiotemporal network parameters that
are useful for preamble detection. To guarantee successful
preamble detection at the eNB, preamble repetition is
performed several times depending on the CE level of the
UE. The accumulated signal power of the repeated preamble
transmissions are compared against a detection threshold to
determine the presence of a preamble. Optimal preamble
detection threshold ensures increased detection probability
and reduced false alarm status, which are both crucial for NB-
IoT performance. In, the Neyman–Pearson criterion is used as
a preamble detection threshold.

Upon preamble detection, the timing delay is estimated
from the received preamble sequence. ToA estimation,
which is obtained through inner and outer pseudo-random
preamble hopping among the various subcarriers, is useful for
achieving uplink synchronization and ensuring orthogonality
between the UE. The NPRACH receiver algorithm proposed
in [61] is based on a 2-D Fast Fourier transformation (FFT)
to estimates the ToA and RCFO from the received preamble
signal. The FFT has high computational complexity making
it unsuitable to be deployed in NB-IoT. In [65], a low
computation iterative scheme is proposed to determine resid-
ual carrier frequency offset (RCFO) and timing advanced
(TA), thus avoiding the high computational complexity
present in the 2-D FFT method. Another low complexity
scheme [64] decouples ToA estimation from preamble
detection by exploiting the phase of the received signal.
Incorrect preamble and Time-of-Arrival (ToA) detection
causes poor network performance and unavailability of
services [70].

The preamble reuse technique proposed in [62] alleviate
preamble collisions by enabling UE to transmit a partial
preamble sequence (PPS). PPS is a smaller chunk of the long
preamble sequence. A drawback of this scheme is the high
detection performance degradation at the expense of reduced
collisions. Kim et al. increase RA preambles by utilising the
non-orthogonal preamble structure. These structure increases
the amount of preambles through using various ZC sequences
providing an opportunity for a large number of UE to attempt
RA with guaranteed minimal collisions.

The authors in [66] proposed a collision resolution
queue based on Distributed Queue (DQ) mechanism. In the
proposed study, NB-IoT devices are assigned to the three
contention resolution queues (CRQ) which are mapped to
the three CE levels available in the NB-IoT network. All the
colliding devices wait in the CRQ according to the fashion in
which they should allowed to perform RA. Simulation results
of the proposed model indicate reduced access delay.

VI. NEW TRENDS IN mMTC RA CONTROL
A. INTELLIGENT RA SCHEMES
Over the past years, RA enhancement techniques have
focused on reducing the RAN overload issue in mMTC net-
works by integrating intelligent schemes into the traditional
schemes. When applied to RA, learning-based algorithms
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TABLE 5. RA congestion control schemes for NB-IoT.

alleviate RAN congestion by enhancing RACH configura-
tion, optimizing parameters, and predicting traffic patterns
which increases the network throughput as well as the success
probability of the UE attempting channel access [71], [72],
[73]. For example, a huge volume of data related to random
access parameters sensed from the surrounding environment
can be analysed using intelligent schemes to create new
behaviour patterns that can predict traffic load thus reducing
the probability of concurrent random access collisions. Such
issues could not easily be tackled using traditional approaches
due to the complexity and volume of data involved. The
effectiveness of intelligent learning approaches in optimizing
random access is compared to non-learning based approaches
in [74].

According to [75] and [76], reinforcement learning (RL)
protocols are more suitable for modelling multiple access
in wireless communications due to their model-free char-
acteristics and their ability to enable a UE to adapt to the
dynamic wireless network. Furthermore, the low processing
complexity of RL algorithms makes them more suitable for
battery-constrained MTDs. Therefore, RL is highly utilized

in 5G applications to support various network functions and
services.

The application of machine learning (ML) in effectively
managing RA congestion has gained popularity over the past
few years as indicated in Table 6. Specifically, queue-learning
(Q-learning), a sub-category of reinforcement learning (RL),
have been extensively studied in RA congestion control for
dynamic ACB parameter adjustment in LTE [75], [77], [78],
[79], [80], [81], [82], [83].

1) ACCESS CONFIGURATION
In the ACB scheme, random access attempts are limited by
the ACB factor broadcasted to the UE by the eNB, thus
delaying the start of RA for numerous UEs. To alleviate
congestion and improve the random access process, the ACB
factor should be adapted based on the traffic load. This
adaptation helps avoid the underutilization of resources while
increasing the number of preamble transmissions. Different
RL based ACB tuning schemes consider traffic control for
multiple classes of MTC devices during the tuning of ACB
barring factor. For example, in [78], the authors aim to
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optimize machine-to-machine (M2M) traffic over human-to-
human (H2H) traffic. Since M2M applications are associated
with distinct levels of QoS requirements, the work in [83],
[84], and [82] adjust the ACB factor in a network consisting
of heterogeneous traffic priorities ensuring that different ACB
factors are assigned to the various traffic classes. Similar
to [83], the authors in [81] consider the priority classes of the
UE and assigns high ACB factor to devices experiencing high
access delay. Unlike the traditional schemes which considers
the lone tuning of ACB factor to optimize performance, the
authors in [79] adjust both the barring factor and the barring
time improving the energy and delay of the UE. The key
performance metrics used to evaluate the capability of the
introduced RL-based ACB schemes are defined in terms of
the probability to successfully complete the RA procedure as
well as the access delay. Experimental results show improved
success access probability and lower average delay even
in situations where there is an increase in the number of
MTC devices. Although dynamic ACB control significantly
improves the success probability of mMTC, the constant
ACB updates cause increased energy consumption, affecting
the performance of the low powered UEs.

2) RACH RESOURCE ALLOCATION
In addition to access configuration schemes, other studies
solve the congestion in random access channel through
RACH resource allocation using ML [59], [85], [86], [87],
[88], [89]. Resource allocation techniques are specifically
suitable for controlling access to the shared random access
channel by guaranteeing specific resources to certain devices
at the time of random access. For instance, when mMTC
devices co-exist with highly reliable, low-latency devices,
the eNB will separate the preamble resources and assign
more resources to the low latency devices, thus improving
access and data transmission. Utilising intelligent learning
schemes for resource assignment is useful during the initial
assessment of random access as it can quantify whether
the available resources can sufficiently meet the demand
of the various traffics in the network. Moreover, dynamic
resource allocation approaches ensure equal distribution
of RACH resources for both data transmission and RA
procedure guaranteeing high success access. In [85], the
authors consider the QoS of both M2M and H2H and
implement a Q-learning approach which separates the
preambles between H2H and M2M MTC devices. Similarly,
[86] also proposes an intelligent preamble allocation scheme,
dividing the available preambles between MTC and URLLC
devices. In [87], a different resource allocation algorithm is
proposed, allowing MTC devices to intelligently select the
less congested base station based on its QoS performance.
The application of RL in managing RACH resources is also
proposed in [59], in which the authors dynamically allocate
NPRACH resources to the various CE levels in NB-IoT. Ref-
erence [88] and [89] address RAN congestion by proposing
Q-learning techniques to determine unique time slots for their
transmissions.

3) PREAMBLE DETECTION
Although access configuration and resource assignment
schemes significantly reduce preamble collisions, the retrans-
missions of multiple UE can still increase the collision,
impairing the access delay as well as uplink resources. In the
conventional random access procedure, collision detection
occurs when the UE fails to correctly decode the received
preamble and fails to send the random access request
response to the UE. Additionally, when two or more UEs
select identical preambles and their preambles are correctly
decoded, both UEs will receive the same message 2 and
transmit their message 3 using similar resources resulting
in a collision. Thus, efficient preamble detection schemes
are required to correctly recognize the collided preambles
to improve the performance of random access procedure.
The work in [90] implements deep neural network to detect
random access collisions. In [91], [92], and [93], intelligent
approaches are proposed to predict active UEs and other
synchronization parameters in NB-IoT. Simulation results
indicate that the proposed schemes achieve better accuracy
in estimating the ToA and CFO of the preamble structure.

B. GRANT-FREE NON-ORTHOGONAL MULTIPLE ACCESS
(NOMA) RA
In the conventional cellular networks, the grant-based four-
step handshaking procedure adopted for establishing the
connection between the base station and the MTC devices
is a source of significant signalling overhead and excessive
latency [94], [95]. The control signalling exchanged to
facilitate the provision of resources prior to data transmis-
sion makes grant-based RA inefficient for mMTC. Novel
channel access techniques such as grant-free RA effectively
accommodate mMTC, lowering the signalling overhead and
access delay. During grant-free RA, each UE randomly
chooses resource blocks and transmits its packets to the
eNB without waiting for a transmission grant from the
base station. Most existing grant-based schemes are utilised
in orthogonal multiple access (OMA), whereas grant-free
RA schemes are combined with non-orthogonal multiple
access (NOMA) to support massive connectivity in 5G
mobile systems. OMA enables multiple users to share
orthogonal resources simultaneously by dividing resources in
time, frequency, or code. As an example, in code division
multiple access (CDMA), a unique orthogonal code is
assigned to every user sharing the same frequency. The
assignment of unique codes allows multiple devices to
share the same frequency without causing interferences,
as their signals can be distinguished by their unique codes.
Additionally, the receiver employed in OMAmay implement
interference mitigation techniques to reduce the impact of co-
channel interference from other users. Since users operate
in orthogonal resources, the interference mitigation schemes
are typically simpler compared to non-orthogonal schemes.
Although OMA schemes allocate orthogonal resources to
various users, ensuring that their transmissions do not overlap
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in time, frequency, or code, they are inefficient for massive
connectivity since they only allow each subcarrier to be
accessed by one device at a time. Furthermore, the high traffic
volume present in mMTC disadvantages OMA schemes from
fully meeting the requirements in terms of spectral efficiency
and power utilization.

On the other hand, NOMA [96], [97], [98] allows multiple
users to simultaneously transmit data over a single subcarrier
through non-orthogonal resource allocation in the power
domain. NOMA allows for overlapping resource usage,
offering more flexibility and higher spectral efficiency, but at
the cost of increased decoding complexity and sophisticated
interference management. Although NOMA has not been
utilised in earlier cellular technologies such as 1G, 2G,
3G and 4G, it can easily be adopted in modern wireless
systems due to its compatibility with technologies such
as OFDMA, which is used in older cellular systems.
According to [99], NOMA provides 30% more throughput
than traditional OMA schemes. NOMA has been extensively
studied in recent literature to improve spectral density in
IoT based 5G wireless networks, supporting both data
transmission and random access procedure. Utilising NOMA
in RA significantly improves random access by allocating
more uplink resources that can be utilised for the initial
random access procedure. Furthermore, different users have
access to various subcarriers, and one subcarrier can be
accessed by multiple users attempting the random access
procedure. The variants of NOMA, namely power domain
non-orthogonal multiple access (PD-NOMA) [99], [100],
[101], [102] and sparse code multiple access (SC-NOMA)
[103], [104], [105], [106], multiplexes multiple users in
power-domain and code-domain respectively. Specifically,
in power domain, superposition coding (SC) is employed
at the transmitter to allow multiple users to share the
same resource by superposing multiple signals onto a single
carrier in frequency domain. Prior to superposition coding,
a power allocation strategy is adopted to allocate power levels
to the users. Specifically, users are assigned power levels
through centralized power allocation technique, distributed
power control, or a combination of the two [107]. In the
centralised power allocation technique, the base station
assigns transmission power to the users based on their channel
conditions, such that the users located in close proximity
with the transmitter are assigned low power whereas users
located further from the transmitter are allocated high
power. On the other hand, in distributed power control,
all the users assign themselves with transmission power.
To address the inter-user interference that occurs as a
result of multiple users sharing the same subcarrier, NOMA
employs successive interference cancellation (SIC) at the
receiver to decode the different signals. SIC first decodes the
message with the highest transmission power followed by the
message with the second-highest power. SIC can efficiently
increase performance by utilising the signal to noise ratio
(SNR) disparity between users caused by multipath signal

transmission. Optimal uplink power allocation control is
critical for detecting the desired signals, which can increase
the system throughput [108], [109]. In PD-NOMA, it is
important for transmitting devices to set their transmission
power according to the channel conditions of users to ensure
successful decoding at the SIC receiver. Hence, the studies
in [110] developed an analytical model aimed at determining
the optimal power transmission probabilities for UEs to
guarantee maximum network throughput.

On the other hand, code-domain NOMA (CD-NOMA)
supports massive connections of radio devices by allowing
multiple users to share radio frequency resources. Sparse
code multiple access (SCMA), a type of code-domain
NOMA, maps the input bits directly to a multi-dimensional
complex codeword by assigning distinctive codebooks to
individual users. The codebooks are designed using opera-
tions such as interleaving, phase rotations, and permutations,
which assist the correct functioning of the message-passing
algorithm (MPA) during interference cancellation. SCMA
is characterized by a number of attributes that make it
suitable for massive connectivity. Firstly, SCMA provides
non-orthogonal multiple-user access by assigning different
codebooks to users, guaranteeing high coding gain at
the receivers. Secondly, SCMA supports uplink grant-free
multiple access, where users do not need to wait for a
transmission grant from the base station. In SCMA grant-free
access, users are pre-configured with resources such as time
slot, frequency sub-band, preamble, and codebook that they
use to perform random access. Thirdly, the SCMA codebooks
can dynamically scale to accommodate a high number of
users so that the superimposed signals are greater than the
orthogonal resources. Lastly, the MPA receiver can decode
each user’s signals with reasonable complexity due to the
sparsity of SCMA codewords.

Both CD-NOMA and PD-NOMA guarantee enhanced
fairness and high spectral efficiency by allowing concurrent
spectrum access for multiple users regardless of their channel
conditions and QoS requirements [128], [129]. Several
grant-free CD-NOMA and PD-NOMA schemes have been
developed in recent studies to reduce the collision probability
in random access in mMTC, focusing on power assignment,
subcarrier allocation, as well as SIC receiver optimization.
Some of these schemes integrate traditional congestion
control schemes such as ALOHA and ACBwith NOMA. The
recent NOMA-based RAN schemes are provided in 7.

In [112], [113], [114], and [115], the authors investigated
the hybrid of ALOHA-NOMA as potential MAC protocols
for IoT devices. The proposed protocol takes full advantage
of the high throughput of NOMA and low complexity of
ALOHA to accommodate the increase in IoT applications
in 5G networks. ALOHA-NOMA resolves collisions by
utilizing multiple power levels as well as SIC, which
minimizes retransmissions and achieves improved energy
efficiency at the receiver. In [114], the authors proposed a
dynamic frame structure in ALOHA-NOMA adapting to the
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TABLE 6. Machine learning approaches for random access congestion in mMTC.

TABLE 7. NOMA based RAN enhancement schemes.

total number of IoT devices present in the network. The
active devices continuously change their transmission power

to improve the quality of the SIC receiver, thus improving
the system throughput. In [112], a NOMA-based RA scheme
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with multichannel ALOHA has been proposed in which UEs
select their transmission power from a set of predefined
power levels.

The selection of subchannel and power level is highly
dependent on the channel gain, which yields an improvement
in energy efficiency. In [113], the authors proposed a Slotted
ALOHA-NOMA (SAN) receiver scheme aimed at correctly
identifying active IoT devices. Such information is useful
in determining appropriate power levels for the IoT devices
as well as providing relevant channel-based information,
i.e., users transmitting on a specific channel at a certain
time. In [115], the authors propose two protocols based on
the combination of slotted-ALOHA and uplink NOMA to
minimize collisions in wireless sensor networks (WSNs).
The proposed scheme prohibits collisions from occurring by
deploying two NOMA detection schemes, namely successive
interference cancellation (SIC) and joint decoding (JD).
Although ALOHA-NOMA techniques improve spectral den-
sity and system throughput, an increase in the number of IoT
devices can easily result in poor system performance as the
devices compete for resources.

The application of Sparse Code Multiple Access (SCMA)
in Random Access, referred to as SCMA-Applied Random
Access (SARA), has been proposed in several studies,
including [124], to support the massive IoT connectivity
of 5G wireless networks. SARA allows IoT devices that
select the same preamble sequence to successfully connect
to the network, which is not the case with the conventional
Random Access procedure in LTE/LTE-A. In [124], the
authors proposed an SCMA-based Random Access scheme
to alleviate preamble collision among IoT devices in 5G
wireless networks. The proposed scheme modifies the four-
step Random Access procedure by employing the SCMA
technique in the third step of the procedure, ensuring no
preamble collision among IoT devices selecting the same
preamble.

To further reduce random access channel congestion in
mMTC networks, the application of Machine Learning (ML)
in Non-Orthogonal Multiple Access (NOMA) is gaining
momentum as a leading solution. The implementation of
Q-learning in NOMA was first proposed in [117]. In their
proposed scheme, a decentralized Q-learning algorithm
allows each User Equipment (UE) to select appropriate
transmission power and time slots by interacting with the
network environment. Upon the transmission of packets, the
eNB decodes the messages using Successive Interference
Cancellation (SIC) and notifies the transmitting device of
the outcome of the decoding. Simulation results comparing
the proposed algorithm with non-NOMA-based schemes
indicate improved throughput, especially when the number
of devices increases. However, the increase in the number
of devices affects the computation time in which the
devices determine the access slots and transmission power.
The authors in [116] investigated a NOMA based MTC
system transmitting short data packets and proposed an
adaptive Q-learning (AQL) algorithm for power allocation

and time-slot assignment for the short packets [116]. Similar
to [116] and [117], the work in [119] considers the
coexistence of eMBB and mMTC devices in a NOMA
based system, and utilise the deep reinforcement learning
(DRL)algorithm to guarantee reliable packet transmission
of mMTC devices in the available RA slots while ensuring
improved throughput of eMBB devices. In [118], the authors
proposed a deep reinforcement learning NOMA based
optimization scheme in MTC that allows devices to choose
their transmission power. Depending on the power levels,
the base station derives the transmission probabilities and
shares it with the IoT devices which uses it to determine
its own transmission power. To achieve ideal decoding in
uplink PD-NOMA, SIC requires diverse received power to
successfully distinguish UE that share the same resource
element. The authors in [107] proposed a power level
pool optimization model which employs a Multi-Agent
Reinforcement Learning (MARL) to study the power levels
between Human-Type Communications (HTC) and MTC.
Competing MTC devices are allocated subchannels after
performing ACB access control then NOMA power levels are
assigned using centralized power allocation and distributed
power control. In [125], a Q-Learning based SCMA scheme
to improve RA by assigning the best SCMA codebooks
and time-slots to MTC devices is proposed. In the proposed
scheme, the Q-learning technique minimises the codebook
collision which often occurs when two IoT devices select
the same codebook. Reference [126] proposed a distributed
Q-Learning (DQL) throughput maximization scheme which
select the optimal subframes and codebooks forMTC devices
in SCMA based RA networks. The subframe and codebook
selection is performed according to the congestion level and
codebook indexes. Reference [121] proposed a Q-learning-
assisted grant-free non-orthogonal RA (NORA) scheme to
minimise RA collision by determining optimal transmission
power and subchannel for the MTC devices. In [120], the
authors proposed a RA enhancement scheme where the
Q-learning technique is applied for power level selection for
the IoT devices. While majority of the existing literature
focuses on addressing RA challenges in mMTC systems
with minimal literature focusing on NB-IoT, in [122], the
authors propose a DRL based NB-IoT resource allocation
mechanism, allocating time, frequency, and power resources
to devices in the NB-IoT network. Another resource allo-
cation scheme for NB-IoT is proposed in [123] in which
transmission power and subcarrier assignment is performed.
The scheme assigns devices to the subcarrier using NOMA
and aims to increase the number of devices on a single
subcarrier with minimal power consumption. In [127], the
authors proposed a grant-free scheme integrating code-
domain NOMA into NB-IoT, which considers the noise and
channel conditions during preamble detection.

VII. CONCLUSION
NB-IoT, designed to support massive machine devices, has
gained popularity as a leading LPWAN solution. A large
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number of low rate, low cost, and delay tolerant IoT devices
are supported in the NB-IoT network enabling services
such as asset tracking, smart city, environment monitoring,
industrial automation, etc. In order to cope with the demand
formassive access presented by 5G, random access procedure
is employed to provide initial connection to the NB-IoT
network. The limited number of preambles as well as the
presence of preamble collision and repetitions affects the
performance of random access, decreasing the chance of
successful preamble reception at the base station. In this
study, recent work related to random access congestion
control in NB-IoT has been surveyed and discussed. Most
of the existing studies utilise access control schemes such
as access class barring, slotted access, prioritized access,
etc to develop congestion alleviation schemes focusing on
throughput optimization, random access channel receiver
designs, performance analysis, and collision resolution.
Moreover, our review paper highlights the potential of
adopting grant-free NOMA and intelligent learning schemes
in addressing the signaling overhead and access delay issues
brought forth by the massive connectivity of mMTC. Based
on the comparisons we made between the existing literature
focusing on random access enhancement in mMTC, it is
evident that there is a need to develop more intelligent
learning schemes to address the challenges of massive access
emerging from MTC applications. Our review paper have
also demonstrated the key performance indicators used to
evaluate the performance of RAN enhancement schemes and
provided the quantitative results of the various approaches.
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