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ABSTRACT The rise of user-centric design demands ubiquitous access to infrastructure and applications,
facilitated by the Edge-Cloud network andmicroservices. However, efficiently managing resource allocation
while orchestrating microservice placement in such dynamic environments presents a significant challenge.
These challenges stem from the limited resources of edge devices, the need for low latency responses, and the
potential for performance degradation due to service failures or inefficient deployments. This paper addresses
the challenge of microservice placement in Edge-Cloud environments by proposing a novel Reinforcement
Learning algorithm called Bi-Generic Advantage Actor-Critic for Microservice Placement Policy. This
algorithm’s ability to learn and adapt to the dynamic environment makes it well-suited for optimizing
resource allocation and service placement decisions within the Edge-Cloud. We compare this algorithm
against three baseline algorithms through simulations on a real-world dataset, evaluating performance
metrics such as execution time, network usage, averagemigration delay, and energy consumption. The results
demonstrate the superiority of the proposed method, with an 8% reduction in execution time, translating
to faster response times for users. Additionally, it achieves a 4% decrease in network usage and a 2%
decrease in energy consumption compared to the best-performing baseline. This research contributes by
reproducing the Edge-Cloud environment, applying the novel Bi-Generic Advantage Actor-Critic technique,
and demonstrating significant improvements over the state-of-the-art baseline algorithms in microservice
placement and resource management within Edge-Cloud environments.

INDEX TERMS Edge computing, microservices, network optimization, online placement, scheduling
algorithms, reinforcement learning.

I. INTRODUCTION
The ongoing shift toward a data-driven technological
paradigm has led to the development of numerous devices and
applications capable of harnessing extensive data [1]. This
technological expansion, driven by the anticipation of future
user needs, has resulted in resource-intensive applications
such as online streaming, mobile gaming and mixed-reality
experience services [2]. Initially, Cloud computing addressed
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resource scarcity because of the vast amounts of resources
it offers. However, concerns over data privacy [3], the cost
of Cloud resources [4], and transmission latency due to
geographical distances [5] have prompted the proposal of
a complementary infrastructure known as Edge-Cloud [6].
Unlike Cloud computing, which offers resources but may
be latency-constrained, Edge computing typically has limited
computational resources and storage. By effectively integrat-
ing both infrastructures, we can optimize performance by
offloading demanding tasks to the cloud while leveraging the
low latency capabilities of Edge computing.
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In response to user demands for ubiquitous access to
applications across devices and scenarios, the Microservice
Architecture (MSA) emerged [7], [8]. This architectural
shift involves decoupling traditional applications into isolated
and interdependent functionalities within container instances.
However, implementing microservices faces challenges,
mainly when one microservice failure can result in prolonged
downtime compared to traditional applications. This failure is
due to complex inter-dependencies [9].
The deployment of microservice applications in the Edge-

Cloud presents a formidable challenge. The Edge-Cloud
environment demands optimization of various competing
performance factors because microservice applications are
susceptible to failures. This optimization impacts the Quality
of Service (QoS) in terms of latency and communication
costs during scheduling and placement [10]. To address
this joint optimization problem of resource allocation and
service placement in the Edge-Cloud environment, Rein-
forcement Learning (RL) emerges as a promising solution
[11]. RL, in contrast with other optimization techniques,
learns from experience the optimal policy for the complex
environment by accounting for the multiple interdependent
factors which affect performance. RL is adaptive and suitable
for a long-term use case, which is beneficial in the Edge-
Cloud environment. This paper poses the central research
question: ‘‘How can RL be implemented to enhance QoS
by minimizing latency and resource cost for microservices
placement in the Edge-Cloud?’’ The Bi-Generic Advantage
Actor-Critic for Microservice Placement Policy (BAMPP),
an RL algorithm, is chosen for its ability to model complex
environments and make decisions that were previously
unpredictable in attempts to solve this problem. The key
contributions of this paper include:

1) The Edge-Cloud environment, including the complex
interactions between edge devices and microservice
applications, is modelled as an RL environment.

2) We propose a novel algorithm called Bi-Generic
Advantage Actor-Critic for Microservice Placement
Policy (BAMPP) to address the joint optimization
problem of microservice placement and resource
management. BAMPP extends the traditional Advan-
tage Actor-Critic method by computing the critic
network updates based on the state-value loss ratio,
which improves the network’s stability throughout the
learning process. This innovation allows for more
efficient and reliable resource allocation in Edge-Cloud
environments.

3) We simulated real-world datasets and applications. The
simulation models the Edge-Cloud behavior in the
event of microservice application deployment.

4) Through simulations on EdgeSIMPy, BAMPP is
demonstrated to be better than other baseline methods
in achieving optimal microservice performance in the
Edge Cloud.

The paper includes the following sections: Section II
delves into preliminary studies, and Section III deals with
system and application models. Section IV explains the
problem formulation. Section V touches on the design of
the RL model. Section VI describes the simulation setup.
Section VII elaborates on the results and discusses them.
Finally, Section VIII presents the conclusion.

II. RELATED WORK
The Edge-Cloud is a crucial paradigm to meet the demands
of modern, latency-sensitive, and resource-intensive applica-
tions for the Internet of Things (IoT). This literature review
examines recent research on optimizing various aspects of
microservice deployment, resource management, and service
orchestration to ensure QoS and efficient resource usage in
Edge-Cloud environments. In light of the contribution of this
paper, an overview of the literature is provided as shown in
Table 1.

A. DYNAMIC APPROACHES
Several studies have explored dynamic algorithms for
microservice placement and resource management. In their
research, Pallewatta et al. [12] propose a decentralized
microservices-based IoT application placement policy specif-
ically designed for a heterogeneous and resource-constrained
Edge-Cloud environment. Their work demonstrates a 40%
improvement in application placement compared to the
independent Edge or Cloud computing environment. In sub-
sequent research, they affirm the benefits of decentralized
over centralized placement and emphasize the need to
address resource challenges in both queuing and placement
decisions [13]. Similar to the adaptive policy formed
by Faticanti et al. [14] introduce an algorithm called Fog
Placement Algorithm (FPA). FPA is a cascade solution with
two algorithms: one for throughput-oriented partitioning and
another for microservice orchestration. The FPA’s execution
time and migration delay are comparable and scalable to
baseline algorithms, but the results lack detailed numerical
information.

Furthermore, the algorithm’s performance is validated
through experiments based on assumptions such as fixed
throughput requirements and specific network configura-
tions. These limitations hinder the findings’ generalizability.
He et al. [15] determined that to address the service
placement problem for microservice orchestration; the issue
needs to be formulated as a fractional polynomial problem
and then resolved using a greedy-based algorithm. They
observe that the problem of microservice placement arises
due to the complex dependencies between microservices and
the occasional presence of multiple instances of a single
microservice within a container. Dependency chains between
microservices within a container increase overall service
execution time if an instance fails to instantiate. The authors
evaluate their strategy on average response and execution
times compared to a Genetic Algorithm (GA) and Random
algorithm. They further analyze the performance of their
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algorithms with different system scales, including varying
numbers of users, services, servers, and user requirements.
Their approach notably reduces the computational complex-
ity of microservice dependencies and demonstrates a superior
performance in terms of speed.

Similar to Luo et al. [16] observe that microservice
placement presents significant challenges due to the dynamic
and complex dependencies, leading to inefficiencies in
resource utilization and violations of Service Level Agree-
ments (SLAs). SLAs are vital performance guarantees that
service providers must meet to ensure the viability of their
products. To address these issues, the authors present ERMS,
an algorithm designed for proactive scheduling. ERMS
profilesmicroservices based on latency and resource demand,
enabling efficient resource allocation and improved perfor-
mance. Their findings reveal that ERMS not only slashes
resource utilization by over 40% compared to baselines but
also successfully reduces the count of deployed containers
by an impressive 58%. All this is achieved while preserving
the end-to-end latency, ensuring a consistent user experience.
While the studies by He et al. and Luo et al. share similarities
with the current research due to their consideration of
microservice dependencies, this paper expands upon their
work by incorporating additional performance metrics, such
as energy consumption. This broader perspective allows
for a more comprehensive evaluation of the effectiveness
of an RL-based algorithm when applied to this problem
within the context of real-world data. Dynamic approaches
show promising results in optimizing resource usage and
application placement. These approaches allow adaptation to
changing conditions, but may require substantial modifica-
tions to accommodate additional constraints.

B. NATURE-INSPIRED APPROACHES
Nature-inspired algorithms have been applied to address the
complexities of microservice orchestration. In their study,
Lin et al. [17] identify various challenges in optimizing
scheduling schemes for microservices, including balancing
resource load, minimizing network transmission overhead,
and enhancing the reliability of microservice clusters. Their
application scenario involves a single container with multiple
instances of each microservice. To address these challenges,
the authors present an Ant Colony Optimization (ACO)
algorithm that considers device resources, microservice
operational requirements, and failure rates. This algorithm
aims to improve the overall performance of the system.While
the algorithm outperformed GA, it is crucial to acknowledge
that its performance may vary if applied to real-world
applications or datasets. This discrepancy in performance is
due to its limited generalizability, which could impact its
effectiveness in different scenarios. Fan et al. [18] proposed
a Particle Swarm Optimization (PSO) algorithm to address
this challenge. Their methodology reduces network latency,
improves service reliability, and accomplishes efficient load
balancing. By iteratively eliminating infeasible particles

from optimization, they achieved quicker convergence.
Comparative results with other variants of PSO showed
significant improvements in network latency, reliability and
load balancing. It is worth noting that their algorithm’s
performance primarily depends on the number of user
requests; with fewer than two requests, it performs similarly
to baselines due to the smaller search space. This preference is
because the number of infeasible particles retracted from the
search space is consistent with the user requests; thus, smaller
requests mean fewer particles. Given the limitations, Chen
and Xiao [19] extend the research by pursuing a parallel PSO
model. The parallel PSO extends the performance of a single
PSO model. Their method leverages the fast convergence
speed and fewer parameters of the PSO algorithm, combined
with parallel computing and Pareto-optimal theory. Their
approach aims to improve load balancing, reduce network
transmission overhead, and enhance optimization speed.
While their model shows performance gains, the added
computational costs act as a bottleneck. The algorithm’s
partial load balancing performance is slightly worse than
other algorithms.

Nevertheless, nature-inspired algorithms are reliable com-
pared to simple deterministic algorithms such as the Random
algorithm and produce reasonable solutions. For this reason,
Wen et al. [20] employ GA to address the critical issue of reli-
ability in microservice orchestration across geo-distributed
remote data centers. Fundamentally, PSO draws inspiration
from the collective behavior of large animal groups, like
flocks of birds or schools of fish. Each solution, symbolized
by a particle, dynamically adjusts its position based on
its own experiences and those of its neighboring particles
within the swarm. In contrast, GA mimics the process of
natural selection by using operations like selection, crossover,
and mutation to evolve solutions over generations. For
the authors, a reliable microservice orchestration means
a microservice orchestration that is progressively adaptive
and secure from cyber-attacks. Their algorithm determines
microservice allocation and deployment while monitoring
the system’s security through state-of-the-art methods. While
they consider reliability, they focus on the setting of
cybersecurity, while this paper considers reliability in the
setting of microservice dependencies. Nature-inspired algo-
rithms demonstrate effectiveness in handling multi-objective
optimization problems in microservice management. They
offer flexibility in accommodating multiple constraints but
may require significant computational resources to find
optimal solutions.

C. REINFORCEMENT LEARNING APPROACHES
Resource management is crucial in supporting mobile
users running microservice applications in Edge computing.
RL emerges as a prominent means to tackle this challenge.
Several authors have explored various RL approaches to
optimize Edge computing environments. Tang et al. [21]
utilized a Markov Decision Process (MDP) for container
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migration to enhance mobile user experience. Their strategy
outperformed existing approaches regarding delay but over-
looked the impact of microservice dependencies crucial in
Edge-Cloud computing scenarios. Conversely, Lv et al. [22]
tackled the deployment of microservices in Edge computing
environments. They aim to reduce overall service response
time while maintaining load balance. Their novel Reward
Sharing Deep Q Learning (RSDQL) algorithm aims to
minimize communication overhead and achieve task load
balance. Experiments validated RSDQL’s superiority over
existing methods regarding communication overhead and
load balance, including GA, PSO, and Random Search (RS).
However, other performance metrics, such as scalability
and reliability, were not explicitly addressed. Yu et al. [23]
focused on online microservice orchestration for IoT appli-
cations. They proposed a multi-objective Deep Reinforce-
ment Learning (DRL) algorithm called MOTION, which
simultaneously reduces energy consumption and service
response time. MOTION demonstrated impressive service
time, energy cost, and rewards performance but overlooked
factors like reliability and scalability. Tong et al. [24] tackled
the challenge of microservice autoscaling in Edge-Cloud
environments using an RL method called Soft Actor-Critic
(SAC). Their approach, Graph-based Joint Microservice
Autoscaling (GJMA), utilizes spectral graph theory, graph
convolutional networks, and multi-agent RL to enable servers
to independently and collaboratively determine auto-scaling
strategies. GJMA achieved superior average waiting time
and 99 percentile latency compared to other algorithms,
indicating quick response times.

Nevertheless, a comprehensive analysis of factors such
as reliability and scalability remains crucial for a holistic
understanding of Edge computing resource management.
RL approaches show promise in adapting to dynamic
environments and balancing multiple objectives. They
offer a good trade-off between optimization and com-
putational demand, settling for near-optimal solutions
with less computational overhead compared to nature-
inspired algorithms. Recent research in the Edge-Cloud
framework and microservice placement has explored various
approaches, from dynamic algorithms to nature-inspired
optimization and RL. Each approach offers unique strengths:
dynamic methods provide adaptable outcomes, nature-
inspired algorithms excel at multi-objective optimiza-
tion, and RL techniques offer adaptability to dynamic
environments.

However, The microservices placement problem is an
end-to-end challenge. The various studies presented target
a sector of this pipeline. While these studies contribute
to optimizing resource management in Edge computing by
showcasing the performance gains in implementing these
unique algorithms, there is a lack of a comprehensive solution
that covers the entire system. Most comparisons are limited
to their respective domains, highlighting improvements over
traditional methods but not considering the broader scope
of microservices orchestration [25]. This neglect limits the

generalizability of their results, making it harder to decide
on a uniform standard for microservice deployment under
the constraint of resource management for the Edge-Cloud
environment.

FIGURE 1. The diagram above illustrates the process involved in user
requests of a microservice.

III. SYSTEM MODEL
This section, explores the microservice system architecture.
The network architecture is the first component contributing
to the system architecture, which describes the devices
present and narrates their organization to achieve the
microservices migration and placement. Next, the application
model describes the applications considered in demonstrating
our system’s capabilities. The network usage model describes
the use of the network to facilitate system communi-
cation during runtime. Additionally, there are two other
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TABLE 1. Comparison of related works.

TABLE 2. Summary of notations.

components: an energy consumptionmodel that characterizes
the energy expended by the system while executing services
and communication costs incurred running the system. Fig.1.
shows themain activities involved during the system response
to a microservice request during runtime. The notations
corresponding to these components are listed in the Table 2.

A. NETWORK ARCHITECTURE
This component describes the devices present and narrates
their organization to achieve the microservice migration
and placement. For this paper, we modeled the network

architecture in three layers. The end layer comprises User
Equipment (UE) such as smartphones and wearables, the
edge layer comprises gateways, access points and micro data
centers, and the cloud layer comprises remote data centers.
In this paper, the devices vary in resource capacity; however,
the overall view emphasizes the availability of resources the
higher you go up the layer. In our network architecture,
allocating resources from the edge layer to facilitate user
service allocation is the main priority. Fig.2 provides an
illustration of the Edge-Cloud architecture used in this paper.

B. APPLICATION MODEL
This component describes the applications considered in the
demonstration of our system. The application model is based
on the concept of microservices, which are small, indepen-
dent, and loosely coupled services that communicate with
each other through well-defined interfaces. The application
model defines how the applications interact with each other.

We build the microservices in the context of the sys-
tem’s functionality. This construction is known as the
bounded context. The microservices are then deployed in
container instances, forming part of the application’s directed
acyclic graph (DAG). The application can be described
as a tuple ⟨µs_set, µs_relation⟩ where the set of unique
microservices and the relationship between microservices is
µs_set = {µs1, µs2, . . . , µsn} and µs_relation respectively.
Vertices and edges characterize the DAG. Fig. 3 displays
an example of the DAG of an application. In this case,
the vertices are the set of unique microservices, while
the edges are the relationships between the microservices.
When a microservice µsi depends on another µsj, they are
considered related or interdependent, denoted as (µsi, µsj) ∈
µs_relation. A microservice µsi’s resource properties within
the application are represented by the tuple ⟨ri, cti ⟩; the
relationship between µsi and µsj, denoted (µsi, µsj) includes
resource cost such as communication overhead oij, RAM
requirement ri, and computational cost cti required by the
microservices respectively.

In this paper, we implement three microservice application
instances with differing sizes to illustrate the performance
of the proposed algorithm concerning how the number
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FIGURE 2. An illustration of the Edge-Cloud network based on [2].

of microservices in an application affects performance.
Fig.1 displays how the microservices relate to the Network
Infrastructure.

FIGURE 3. A simple microservice DAG.

C. RESOURCE UTILIZATION MODEL
In this paper, the system’s operation is assumed to be
according to a fixed length of time slots T = {0, 1, 2, . . . , t}
where each t denotes a finite time unit in milliseconds.
For this reason, each application’s computational runtime is
determined by the microservices’ runtime. In this paper, the
set of servers is represented asU = {u1, u2, u3, . . . , up}, each
server up in the network has properties ⟨rp, cp⟩where rp is the

fixed RAM of the server up and cp is the computational limit
of each server.

During runtime, each requested microservice is placed
onto one of the available servers in the set Uavailable. This
process includes checking if inserting the specified microser-
vice into any server would not exceed its resource limitations,
considering the existing resource usage on that server. The
system makes the allocation decision by taking into account
the device resource availability and latency between the
server and the user, as well as respecting the dependencies
between the microservices. The dependencies demand that
should one service rely on another before it can be called on
the server, the supporting microservice must be deployed to
avoid additional latency and communication overheads. The
server up is said to be available when its current resources
allow for processing additional microservice requests. This
relationship is mathematically expressed as;

n∑
i=1

resi,k · xi,p + resj,k ≤ Capacityp,k ,

∀k ∈ R,∀p ∈ Uavailable (1)

Here, n is the number of microservices already allocated
to the server. i indexes the already allocated microservices,
j represents the new microservice being considered for
allocation, and k references the different resources being
considered. resi,k is the amount of resource k required by
microservice µsi. Also, xi,p is a binary variable indicating
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whether microservice µsi is allocated to server p, resj,k is the
amount of resource k required by the next microservice µsj.
Cp,k is the total capacity of resource k on the server up. R is
the set of RAM and computation resource types. Uavailable is
the set of all available servers.

In the event that a request is made to a device, the
microservice controller checks the operation of the edge
device to determine if it can run the microservice task with
the resources available; if not, the task is forwarded to the next
edge device. However, when the device is unavailable to be
allocated a microservice, the microservice is terminated, and
the request is considered a failure. The average failed request
is expressed as;

avg_fail_request =
1
T

T∑
t=1

∑µs_set
i=1 fi,t∑µs_set

i=1 (si,t + fi,t )
(2)

where avg_fail_request is the average failure rate, T is the
total runtime of the application, and fi,t is the number of failed
requests for the microservice i during time interval t . si,t is the
number of successful requests considered for any instance of
microservice µsi during time interval t .

D. ENERGY CONSUMPTION MODEL
This component measures the system’s energy expenditure
during service execution. The energy consumption model
accounts for energy used by the devices and network commu-
nication. The energy consumption model aims to minimize
the total energy cost of the system while satisfying the user’s
performance expectations. The energy consumption can be
expressed as;

Et = Et−1 + sys_utils (3)

where Et is the energy consumption of the edge device up at
time t , Et−1 is the previous energy consumption of the current
edge device up, and sys_utils is the idle energy used by the
device.

E. COMMUNICATION MODEL
This component highlights the communication cost incurred
in running the system. The communication model considers
both the latency and bandwidth of the network links. The
communication model aims to optimize the system’s network
performance while ensuring reliable performance and secure
data transmission. The mathematical model for the network
usage is given as follows;

network_usage =
n∑
i=1

payloadi
trans_latency ∗ b

(4)

where n is the number of microservices on a deployed server,
payloadi is the size of the actual data transmitted from
microservice µsi, trans_latency is the transmission latency
incurred by the network link, and b is the network link
bandwidth.

IV. PROBLEM FORMULATION
The problem at hand is designing a task scheduling policy
for an application’s microservices before execution by edge
devices. The objective is to select the optimal microservice-
to-edge device pairing based on the properties of the edge
devices and the tasks to maximize performance and cost
efficiency. The optimization problem can be expressed
as a set of objectives and a set of constraints defined
as follows.

min{average failed requests}, (5)

min{network usage} (6)

subject to : C1 :
n∑
i=1

resi,r · xi,p + resj,r ≤ Capacityp,r

(7)

C2 :
n∑
i=1

resi,c · xi,p + resj,c ≤ Capacityp,c

(8)

where n is the number of microservices allocated to
the server, i indexes the already allocated microservices,
j represents the new microservice being considered for
allocation, r references the RAM resource, and c refers to
the computational resource. resi,r is the amount of RAM r
required by microservice µsi and resi,c is the amount of CPU
or computation c required by microservice µsi. Also, xi,p
is a binary variable indicating whether microservice µsi is
allocated to server p, resj,r is the amount of RAM r required
by the next microserviceµsj and resj,c is the amount of CPU c
needed for the next microservice µsj Cp,c is the total capacity
of CPU c on the server up.

The Equations represent the optimization objectives of this
paper, respectively: minimizing the average failed requests
and minimizing the network usage. The Equations also
represent the constraints of this paper, where C1 stands for
the RAM constraint, and C2 stands for the CPU availability
constraint.

V. MICROSERVICE PLACEMENT USING REINFORCEMENT
LEARNING
In this section, we model an approximation of the joint
optimization problem after theMarkov property. TheMarkov
property implies that future decisions depend only on the
current state and action. Under RL, we formulate an agent
that, at each time step t , occupies a specific state st
in the environment and takes an action at . The decision
policy π maps each action to a state. The agent receives
a reward upon transitioning to the next state, st+1. This
process happens repeatedly until the agent terminates. In the
following subsections, first, a description of the agent’s state,
action and reward functions is given. Next, we will discuss
the model-free agent utilized to generate the decision policy
for the environment.
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A. STATE SPACE, ACTION SPACE, REWARD
1) STATE SPACE
In the collaborative Edge-Cloud environment, the RL agent
observes the state of the environment. The state space S
consists of observations st where t ∈ N . We must observe
system resources at each time step to determine if the
constraints are met while pursuing the objective. For instance,
when placing a microservice on a device, the state value
or observation as seen by the agent is shown in Fig.4. The
training process concludes when all microservices are placed
on edge devices. Specifically, termination occurs as soon
as there are no more microservices to be placed, indicating
the completion of the learning phase. In a failed placement,
the agent initiates failure recovery by either forwarding the
microservice to the cloud device or placing it on another
edge device. As shown in Fig.4, the device resources are
considered a grid. We consider the microservice resources
only when the edge devices can allocate utilization. The cloud
data center is only viewed as a final resort. These observations
are crucial for evaluating the system resources and ensuring
constraints are met while pursuing objectives.

FIGURE 4. An example of a state observation by the agent during training.

2) ACTION SPACE
The action space A = {a0, a1, . . . , an} is constituted by the
action values ai. Agents select actions from this space in
each step, influencing state transitions. Once an observation is
made within the state space, the agent chooses an action from
the action space based on the policy π in each time step. Over
time, the environment evolves by altering the utilization of
memory or CPU resources on edge devices, increasing device
usage with each placement.

3) REWARD
RL aims to maximize the cumulative reward for all time slots
over a discount factor of 0 < γ < 1. The reward function,
designed to minimize computational cost, failure requests,

and network usage, is described in [26] as follows:

Rt = rt + γ rt+1 + γ 2rt+2 + . . .+ γ T−1rT (9)

The reward value is;

r =

{
1, when constraints C1, C2 are met
0, otherwise

(10)

When the agent successfully places amicroservice, it receives
a reward of 1; otherwise, it receives a reward of 0. The goal
is to maximize the expected return.

B. MARKOV DECISION PROCESS
In RL, the recursive actions of the agent within the
environment according to a policy π to increase the possible
accumulated reward is termed training. The policy π maps
agent actions to environment states, determiningwhich action
is taken in each state. According to the problem formulation,
the objective is to achieveminimal network usage, energy and
execution latency despite the constraints during microservice
deployment and placement. RL is proposed to achieve these
joint objectives because it can effectively handle multiple
goals simultaneously. Based on this premise, there are
different approaches we can take to develop a policy that
guarantees success. One approach suggests that we consider
which actions under particular states would grant the most
rewards and then apply this intuition by following the
policy for the entire trajectory. Another approach focuses on
identifying the optimal starting state tomaximize rewards and
then following the policy throughout the trajectory. A third
approach proposes directly optimizing the policy itself to
find the best decisions for the agent, maximizing rewards
across the entire trajectory. Therefore, policy-based methods
are particularly well-suited to address these challenges and
will be the focus of this paper.

C. POLICY-BASED REINFORCEMENT LEARNING
A neural network with specific parameters generates a
policy. We use the neural network to find the parameters
that maximize the expected rewards in the environment
through iterative parameter adjustment. The policy πθ maps
the state-action space Qπθ (s, a) to the state value V πθ (s),
where θ represents the parameters learned by the policy
gradient algorithm. How this works is that the policy gradient
algorithms search for a local maximum in the state space
by ascending the gradient of the policy with respect to the
parameters.

Given a stochastic policy, the aim is to find the best
parameters to satisfy the expectation (11). By calculating the
gradient of the expectation, we adjust the policy parameters
to favor sequences that lead to higher rewards.

J (θ ) = Eτ∼pθ (τ )[
∑
t

r(st , at )] (11)

Actor-Critic methods refine rewards by adjusting the proba-
bility of actions based on their relative value compared to the
average reward.
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D. BI-GENERIC ADVANTAGE ACTOR-CRITIC FOR
MICROSERVICE PLACEMENT POLICY
The policy gradient algorithm is an RL technique that
optimizes the parameterized policy with respect to the
expected long-term gains. We take the gradient of the policy
with respect to the parameters to increase the probability
of generating the best trajectory, which results in the most
rewards. It is formulated from [27] as:

∇θJ (θ ) = E[∇θ logπθ (a|s)Qπθ (s, a)] (12)

where Q∗θ (s, a) is the long-term reward value, however,
during training, the policy gradient attains high variance,
which makes learning challenging to reach convergence.
For this reason, a baseline is introduced: B(s) = V πθ (s),
and the baseline is chosen to be the state-value function
because of its feasibility, considering the already existing
relationship between the state-action function and the state-
value function (13).

Qπθ (st , at ) = E[rt+1 + γV πθ (st + 1)] (13)

An advantage function is introduced (14).

Aπθ (s, a) = Qπθ (s, a)− V πθ (s) (14)

The advantage function represents the value at any given state
where there is an advantage of choosing one action over the
generally expected action. From (14), the policy gradient can
now be written as

∇θJ (θ ) = E[∇θ logπθ (a|s)Aπθ (s, a)] (15)

where Qπθ (s, a) serves as the actor by updating the policy
distribution while V πθ (s) serves as the critic estimating
the value function [27]. A neural network is utilized as a
function approximator to derive the actor function [28]. The
advantage estimation can struggle because it handles data
and makes updates with step sizes, leading to slow and
sometimes unreliable learning. For this reason, incorporating
a penalty term limits the training to an acceptable range.
The penalty term balances policy improvement and stability
by guiding step sizes. The penalty term guides the policy
gradient step sizes, helping to balance policy improvement
and stability. In contrast to PPO, the critic is updated based
on the loss between the predicted state value and the current
state value; the BAMPP algorithm updates the critic based on
the difference between the previous and current state value.
Fig. 5 shows how these concepts fit together in addressing the
problem.

VI. DESIGN AND IMPLEMENTATION
With the approach to microservice placement outlined, the
next step involves simulating the Edge-Cloud environment.
This simulation, described in detail below, models the
optimization problem, and evaluates the proposed algorithm’s
performance. First, we describe the simulation setup in the
context of the problem. Next, we detail the microservice
applications considered.

Algorithm 1 BAMPP Algorithm
Input:Edge Servers information, Application information
Output:Decision Policy
1: Initialize learning rate a, discount factor γ , clip range ϵ

2: Initialize actor network, π(a|s, θ) and critic network
V π (s,w)

3: for episode = 1, . . . ,T do
4: for time slott = 1, . . . , tmax do
5: Select action at ∼ π (·|st , θ)
6: Execute at , and observe the reward rt and the

next state st+1
7: Calculate the advantage function:
8: Aπ (st , at ) = rt + γV (st+1,w)− V (st ,w)
9: Calculate the ratio of probabilities:
10:

ratio =
πθ (at |st )

πθold (at |st )

11: Update the actor network:
12:

θ ← θold + a∇θ log
(
ratioclipped · Aπ (st , at )

)
13: Update the critic network:
14: w← wold−a∇w V

Vold
15: end for
16: end for

A. SIMULATION SETUP
The simulation setup specifies the configurations for the
environment setup. The simulation is conducted using the
EdgeSimPy platform [29], a Python programming environ-
ment. We chose EdgeSimPy because of its libraries, which
enable the simulation of various resource management poli-
cies and deployment schemes for microservice applications.
Since Python’s RL toolkit is readily available, there’s no need
for external extensions.

We simulated the RL algorithms with the Stable Baselines
package. We conducted the simulations on a Windows 11 PC
with AMD Athlon Gold 3150U, Radeon Graphics 2.40 GHz,
and 8 GB of RAM. EdgeSimPy can simulate complex
environments with multiple network infrastructures ordered
in hierarchies. This hierarchical structure is crucial for the
simulation as it closely mimics real-world scenarios, repre-
senting both vertical and horizontal scaling of services during
application deployment. In this hierarchy, we categorize the
devices into levels. Level 0 represents a cloud data center,
level 1 is a proxy server, level 2 is a gateway server, and level
3 corresponds to User Equipment (UE). The devices at levels
1 and 2 constitute the Edge environment, level 0 devices
represent the Cloud infrastructure, and level 3 is for the
user devices. This hierarchical arrangement reflects resource
availability and geographical distance from the devices. The
lower the level, the more resources the device has available.
Although devices further from the user have lower levels, the
number of devices closer is many and offers their resources
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FIGURE 5. An illustration of the components of the BAMPP system.

to the UE. We spell out the details of the configurations
for the network infrastructure in Table 3. In this simulation,
we regard the entire scenario as occurring in the Melbourne
Central Business District, with applications dependent on the
Edge infrastructure and 132 devices unless the edge devices
exceed their capacity. The next section details the specific
configurations for the microservice applications.

B. APPLICATION CONFIGURATION
In the simulator, we created applications as microservices,
with each microservice denoted as an application module.
The microservices are then deployed in a single container
instance using system-level virtualization. We consider three
smart applications: the Cardiovascular Health Monitoring
(CHM) application [30], the Drone Swarm Coordination
(DRN) application [31] and the E-commerce (ECOM) appli-
cation [31]. These applications generate synthetic workloads
that model real-world applications. The CHM application has
four microservices, DRN has 21 microservices, and ECOM
has 34 microservices. The selection of these applications
aimed to assess the proposed algorithm’s scalability in terms
of increasing microservices, workloads, and complex depen-
dencies. Managing a microservice infrastructure becomes
more challenging as the number of dependencies increases.
After we built the microservice applications, we focused
on the heart of the investigation: the experimental results
and performance evaluation. The following section presents

experimental results using configuration settings detailed in
Table 3, Table4 and Table 5. These experiments compare
our proposed RL algorithm with established baselines to
evaluate its effectiveness in optimizing resources within a
heterogeneous environment.

VII. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION
In conducting these experiments, variations in the placement
of the microservice occurs between the centralized placement
on the cloud and the distributed placement at the network
edge, with a preference for network edge placement. The
experiments were run ten times, with the average taken and
presented in the results. Moreover, we compare the proposed
RL algorithm to the following baselines;

1) Integer Linear Programming Scheme(IPS) [13]: Inte-
ger Linear Programming models the optimization
problem as a mathematical programming equation.
By utilizing mathematical programming methods,
we formulated the best placement order.

2) Proximal Policy Optimization (PPO) [27]: The PPO
algorithm is an online policy-gradient RL method
that improves the stability and convergence of the
learning rate by maintaining the policy updates within
a reasonable range. PPO is a variant of the Actor-Critic
method, with the actor and critic sharing one neural
network instead of separated networks.
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FIGURE 6. Network Usage against Execution time.

3) Advantage Actor-Critic (A2C) [32]: The A2C algo-
rithm is an online policy-gradient algorithm. The actor
is the policy function trained by the neural network,
while the critic is a value function likewise trained by
a separate neural network. The actor (policy) and critic
(value function) estimate advantages, which help focus
neural network updates during training on actions that
lead to better-than-expected outcomes.

The algorithms represent the standard architectures present
in microservice placement studies because of the prevalence
of literature regarding their use. The simulations aim to
determine which algorithm best optimizes resources for
enhanced QoS within the heterogeneous environment. For
this reason, we conducted the experiments to analyze the
following: how well the network usage varies with the
execution time, as shown in Fig.6; the average migration
delay of microservices within deployment time, as shown
in Fig.7, the average energy consumed within deployment
time as shown in Fig.8 and the performance of the RL
algorithms during evaluation show their reliability in Fig. 9.
These metrics are important because they show how well the
algorithms meet the objectives of the optimization problem
while observing the constraints.

FIGURE 7. The figure above is the average migration delay recorded for
microservice dependencies during application deployment.

Microservices are communication-intensive applications,
meaning the individual microservices make many API calls
to co-dependent microservices during execution. In the event
that a particular microservice call fails to be created, the
chain of dependencies risks failure. Other microservices that
could be created in the container cannot complete their

133120 VOLUME 12, 2024



K. Afachao et al.: Efficient Microservice Deployment in the Edge-Cloud Networks

FIGURE 8. The energy consumed by the edge devices during application
deployment.

FIGURE 9. The variation of reward scores during the evaluation of the
algorithms.

execution cycle without calling the microservice in their
dependency chain; thus, the network bursts in congestion
of API calls, flooding the network space and leading to an
increase in communication overhead. The execution time for
a microservice varies proportionally to the network usage,
as shown in Fig.6. However, the execution of DRN and
ECOM differ from the execution of CHM due to the impact
of microservice failures. In DRN and ECOM, microservice
failures increase network usage, leading to a spike in network
congestion. The increased number of failures experienced
by the IPS algorithm leads to a spike in network usage.
This spike then results in a shorter execution time. The
other algorithms, IPS, PPO, and A2C, follow a similar trend.
However, the BAMPP algorithm consistently achieves a
shorter execution time for all its microservices during the
CHM scenario. As the number of microservices increases in
DRN and ECOM scenarios, the performance advantage of
the BAMPP algorithm becomes increasingly apparent. This

consistent performance solidifies its position as the superior
method among those compared.

Fig.7 compares the average migration delay in seconds
of the four methods, IPS, PPO, A2C, and BAMPP, across
the microservice applications. Across the CHM application,
all four methods exhibit similar average migration delays,
with the BAMPP algorithm demonstrating a slightly lower
delay than the others. In the case of the ECOM application,
the differences in performance become less pronounced as
the Cloud Server consolidates the performance. The BAMPP
algorithm demonstrates a lower average migration delay
than the other three methods. The performance gap is even
more significant for the DRN application, where the BAMPP
algorithm showcases a 4% lower average migration delay
compared to IPS and PPO while achieving a 2% reduction
compared to A2C.

Fig.8 depicts the energy consumption of the edge devices
for the execution of the three applications. The performance
of CHM varies only slightly from DRN: in the execution
of both applications, the cloud passively supplements the
edge devices; hence, the edge devices do not consume much
energy. In the execution of ECOM, the overwhelming number
of microservices coupled with the nature of the algorithms
reveals the disparity between IPS, PPO, A2C, and BAMPP.
IPS, as a mathematical programming alternative, attempts to
reconcile the vast number ofmicroserviceswith the allocation
between edge devices. Thus, it drives up the CPU utilization
to ensure the microservices are distributed cost-effectively
between the edge devices. As a result, energy consumption
increases for the edge devices. However, PPO, A2C, and
BAMPP cause edge devices to consume less energy by
learning a placement strategy and adapting it to the scenario.
In ECOM, the BAMPP algorithm achieves the lowest energy
consumption of 172 KJ, representing an improvement of
16.5% over IPS, 14.9% over PPO, and 8.5% over A2C.
The energy consumption is a metric that reflects the ability
of the placement algorithm to balance between the edge
devices under the prospect of long-term gains. Over the long
term, edge devices are preferred to have energy management
policies to prolong their lifespan. Edge devices lack the level
of cooling given to cloud data servers, leading to a longer life
span for the latter.

A problem with RL methods is that the empirical returns
tend to have a large scale of values and lead to a high
variance of the rewards. For example, given a discount value
of 0.99 and a time horizon of 100 where a sample of the
rewards are (2195, 2070, 1000, 2060) for PPO and (24995,
24983, 24987, 24992) for BAMPP, the high variation between
the results of PPO shows a tendency to prioritize exploration
over exploitation in an unstable manner compared to that of
BAMPP. During deployment, PPOmight exhibit both periods
of significant success and abrupt failures. The results are
explainable with little to no sudden failures, given the stable
range of variation with the BAMPP algorithm. Specifically,
BAMPP’s architecture utilizes several key components.
It incorporates clipped surrogate losses from PPO, advantage
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TABLE 3. Configuration settings for simulation of CHM.

TABLE 4. Configuration settings for simulation of DRN.

TABLE 5. Configuration settings for simulation of ECOM.

function approximation from A2C, and state value loss cal-
culations for the critic network, enabling efficient and stable

learning. Fig 9 shows the reward variation of the various
RL methods when evaluated for an equal time horizon of
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1000 episodes. The BAMPP algorithm performs better in all
three scenarios than the others due to its more stable updates.

The performance of the BAMPP algorithm shows the per-
formance gains RL brings to the placement of microservices.
The neural network used in the policy-gradient methods is
a function approximator that allows the agent to converge
on a function faster than the deterministic approach, which
requires many iterations to approximate the function. The RL
agents efficiently learn the environment through exploratory
and exploitative interaction with the environment, which
allows policies to be developed that consider the context of
each microservice and the placement decision that would
favor it. The preference for BAMPP over the others is evident
from the results. Also, the RL algorithms performed better
than the IPS algorithm in terms of execution time and network
usage costs, migration delay, energy consumption and
reliability. In CHM execution, migration delays were equal
across all four algorithms. However, BAMPP experienced a
6% improvement over IPS and a 2% improvement over both
PPO and A2C in energy consumption.

VIII. CONCLUSION AND FUTURE WORK
This paper presented the need for resource management
in microservice scheduling and placement in the Edge-
Cloud. For this reason, we considered an investigation
into the optimization of microservices during execution
with RL. The two proposed algorithms under RL were
Q-learning and A2C. With the environment specified and
the problem well described, a simulation was carried out
with the iFogSim tool to evaluate the performance of these
proposed algorithms with respect to the Scalable placement
algorithm and the Mixed Integer Linear Programming
algorithm. The simulation considered the following metrics:
network usage, execution time, failure of inter-microservice
dependencies and the average energy consumption. The
simulation modeled three smart application microservices:
the Cardiovascular Health Monitoring application, the Drone
Swarm Coordination application, and the E-commerce appli-
cation. During the execution of the E-commerce application,
the BAMPP algorithm experienced a gain of 91% over
IPS, 35% over PPO, and 27% over A2C in network
usage. Overall, the RL methods performed better than
the other baseline methods. In a future paper, the scope
of applications examined would be more comprehensive,
considering nature-inspired algorithms like Particle Swarm
Algorithm, different kinds of microservice dependencies as
well as numbers of microservices to establish the point where
the performance of the algorithms begins to wane under fixed
Edge-Cloud resources.

APPENDIX: SIMULATION PARAMETERS
See Tables 3–5.
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