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Restoration (UNDER, 2021-2030). While several science-based guidelines exist
to aid in achieving successful restoration outcomes, significant variation remains
in the outcomes of restoration projects. Some of this disparity can be attributed
to unexpected responses of ecosystem components to planned interventions.

. Given the complex nature of ecosystems, we propose that concepts from

Complex Systems Science (CSS) that are linked to non-linearity, such as regime
shifts, ecological resilience and ecological feedbacks, should be employed to help
explain this variation in restoration outcomes from an ecological perspective.

. Our framework, Explore Before You Restore, illustrates how these concepts im-

pact restoration outcomes by influencing degradation and recovery trajectories.
Additionally, we propose incorporating CSS concepts into the typical restora-
tion project cycle through a CSS assessment phase and suggest that the need
for such assessment is explicitly included in the guidelines to improve restoration

outcomes.

. To facilitate this inclusion and make it workable by practitioners, we describe indi-

cators and methods available for restoration teams to answer key questions that
should make up such CSS assessment. In doing so, we identify key outstanding
science and policy tasks that are needed to further operationalize CSS assess-

ment in restoration.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2024 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

922 wileyonlinelibrary.com/journal/jpe J Appl Ecol. 2024;61:922-939.


www.wileyonlinelibrary.com/journal/jpe
mailto:
mailto:
https://orcid.org/0000-0002-7168-2390
https://orcid.org/0000-0001-8553-4893
https://orcid.org/0000-0001-5632-4061
https://orcid.org/0000-0003-2602-7247
https://orcid.org/0000-0003-0978-6639
https://orcid.org/0000-0002-9226-3160
https://orcid.org/0000-0001-8245-4062
https://orcid.org/0000-0003-0529-4020
https://orcid.org/0000-0002-3755-6024
https://orcid.org/0000-0002-6770-0031
https://orcid.org/0000-0002-0812-3027
https://orcid.org/0000-0002-4026-5957
https://orcid.org/0000-0001-5963-5527
https://orcid.org/0000-0002-5005-2568
https://orcid.org/0000-0003-3094-8620
https://orcid.org/0000-0002-8728-5533
https://orcid.org/0000-0003-1627-763X
https://orcid.org/0000-0002-1802-0128
https://orcid.org/0000-0002-1661-6542
https://orcid.org/0000-0002-2100-0312
https://orcid.org/0000-0002-5357-0176
https://orcid.org/0000-0002-9260-3815
https://orcid.org/0000-0003-1490-0168
https://orcid.org/0000-0001-5169-7176
https://orcid.org/0000-0002-2067-9108
https://orcid.org/0000-0001-5572-1284
https://orcid.org/0000-0001-9421-527X
http://creativecommons.org/licenses/by/4.0/
mailto:sybryn.maes@gmail.com
mailto:sybryn.maes@kuleuven.be
mailto:sybryn.maes@kuleuven.be

MAES ET AL.

923

KEYWORDS

1 | BACKGROUND

1.1 | Complex system science concepts in an era of
restoration

A movement for ecosystem restoration has emerged in response
to global land and water degradation and associated loss of biodi-
versity and ecosystem services (Nicholson et al., 2020; Strassburg
et al., 2020). Restoration initiatives aimed at moving ecosystems from
an undesired (i.e. degraded, damaged or destroyed) to a desired re-
gime are booming worldwide (Chazdon et al., 2021; Gann et al., 2019).
The United Nations (UN) responded to this momentum by launch-
ing the UN Decade on Ecosystem Restoration 2021-2030, which has
encouraged further initiatives (Abhilash, 2021; FAO et al., 2021). By
now, many useful guidelines and tools exist to steer the restoration
community towards scientifically sound restoration, for example the
UNDER Principles and Standards of Practice for Ecosystem Restoration
(FAO et al., 2021, 2023), the Society for Ecological Restoration's
Principles and Standards (Gann et al., 2019) and ITTO's Guidelines for
Forest Landscape Restoration in the Tropics (ITTO, 2020).

Despite these clearly defined targets and guidelines (Di Sacco
et al., 2021), restoration outcomes vary widely, with multiple fail-
ures to establish target ecosystems (Banin et al., 2023; Brancalion &
Holl, 2020; Brudvig & Catano, 2021; Dudney et al., 2022). Examples
of ecological failures, that is attributed to biotic and abiotic ecological
constraints, include poor survival of planted or naturally regenerating
trees in forest restoration (Banin et al., 2023; Christmann et al., 2023;
Kodikara et al.,, 2017; Magaju et al., 2020), no population growth
of targeted fish species in lake or coral reef restoration (Bostrom-
Einarsson et al., 2020; Fox et al., 2019; Graham et al., 2013) and fail-
ure to restore non-turbid water conditions in lake restoration (Gulati
et al., 2008; Jilbert et al., 2020; Sgndergaard et al., 2007).

Undesired ecological outcomes in restoration may occur due to
unexpected responses of ecosystem components to planned inter-
ventions. We argue that, as well as overly ambitious or unrealistic
expectations, threshold behaviour due to complex system dynamics
associated with ecological systems can explain unexpected resto-
ration responses. In other words, ecosystem complexity itself poses
constraints to restoration success (Munson et al., 2018; Van Nes
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5. Synthesis and applications. By illustrating how key Complex Systems Science (CSS)
concepts linked to non-linear threshold behaviour can impact restoration out-
comes through influencing recovery trajectories, our framework Explore Before
You Restore demonstrates the need to incorporate Complex Systems thinking in
ecosystem restoration. We argue that inclusion of CSS assessment into restora-
tion project cycles, and more broadly, into international restoration guidelines,

may significantly improve restoration outcomes.

complex systems science, feedbacks, hysteresis, non-linearity, regime shift, resilience,
restoration project cycle, threshold

et al,, 2016). Namely, natural ecosystems are Complex Systems,
which are studied in the discipline of Complex Systems Science (CSS)
and defined by eight emergent properties: heterogeneity, hierarchy,
self-organization, openness, adaptation, memory, non-linearity and
uncertainty (Appendix S1; Anand et al., 2010; Bullock et al., 2021;
Filotas et al., 2014; Riva et al., 2022). Here, we emphasize three key
concepts linked to the specific CSS property of non-linearity that we
believe hold pivotal implications for restoration outcomes from an
ecological perspective: regime shifts (and potential hysteresis), ecolog-
ical resilience and ecological feedbacks.

Non-linearity implies that ecosystems may show dispropor-
tionately large responses to environmental disturbances over time
(e.g. drought, herbivory). In grasslands, for instance, herbivory may
lead to slight declines in biomass in wet years, but the same levels
of herbivory may also cause major declines in biomass and changes
in vegetation composition in dry years (Stone & Ezrati, 1996). As a
result of chronic environmental degradation, non-linearity can cause
abrupt regime shifts in ecosystems, whereby they shift to an alterna-
tive stable state or regime by crossing a critical (disturbance) thresh-
old (Table 1; Figure 1a; Dantas et al., 2016; Scheffer et al., 2001).
An abrupt regime shift is reflected by a sudden, dramatic change
in ecosystem state variables, for example lake waters shifting from
clear to turbid due to eutrophication (Scheffer, 2001; Scheffer
et al., 2001; Seidl & Turner, 2022), coral reefs shifting from coral- to
algal domination (Graham et al., 2013) or forests shifting to savanna
systems (or vice versa) due to changes in fire regime or dry season
length (Figure 1b; Dantas et al., 2016; Fletcher et al., 2014; Oliveras
& Malhi, 2016; Staver et al., 2011). After such a shift, restoration to
the pre-degradation regime is likely slow and requires substantial re-
ductions in the environmental pressures, possibly even to a level well
below the one that led to the shift; a phenomenon called hysteresis
(Table 1; Figure 1c; Muys, 2013; Selkoe et al., 2015; Staal et al., 2020).
Thus, regime shifts, driven by non-linear behaviour in ecosystems,
can influence recovery trajectories (Mayer & Rietkerk, 2004; Suding
& Hobbs, 2009; Suding & Gross, 2006). Further, restoration trajecto-
ries will depend on whether or not a regime shift has already taken
place in the ecosystem at the time when restoration interventions are
applied, and if not, on how close to a critical threshold the ecosystem
is at that time (Ghazoul et al., 2015; Ghazoul & Chazdon, 2017).
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TABLE 1 Glossary (see Appendix S2 for extended glossary).

Regime shift: (Carpenter et al., 2011; Dudney et al., 2018; Kéfi
et al., 2013; Scheffer et al., 2012; Van Meerbeek et al., 2021;
Van Nes et al., 2016)

An ecosystem regime is an identifiable configuration with
characteristic structure, functions and feedbacks. A regime shift
is the change of an ecosystem from one regime or reference
condition to an alternative regime as a result of non-linear
(abrupt or smooth) responses of ecosystem state variables (e.g.
biomass) to environmental pressures (Figure 1a)

Critical threshold (CT; or Critical transition or Tipping point): The point
at which small disturbances can trigger large, abrupt changes in
ecosystem state variable(s)

Early-warning signals (EWS): Generic indicators (e.g. critical slowing
down) that mark loss of ecological resilience in a system,
indicating that a regime shift is likely to occur

Hysteresis (or History-dependence): A phenomenon whereby the
ecosystem degradation trajectory differs from the recovery
trajectory: crossing the critical degradation threshold (CT2
in Figure 1a) results in a shift in the ecosystem regime from
1 (green) to 2 (red). To restore an ecosystem to regime 1, the
environmental degradation pressure(s) (e.g. eutrophication) must
be reduced to a lower threshold than the one which triggered
the transformation of the ecosystem to an alternative regime
(i.e. to CT1 instead of CT2)

Ecological resilience: (Dornelles et al., 2020; Dudney et al., 2018;
Holling, 1973; Nicholson et al., 2020; Standish et al., 2014)

A measure of the ability of ecosystems to absorb change and
disturbances and still remain within critical thresholds of the
same regime, that is maintain the regime

Helpful resilience: Resilience that helps to achieve the defined
restoration aim. Higher helpful resilience of an ecosystem in
regime 1 implies that a shift to regime 2 is less likely to occur
under the same degradation scenario. This is considered
helpful or desirable if the aim is to avoid regime shifts
(Figure 1a)

Unhelpful resilience: Resilience that hinders the achievement of
the defined restoration aim (Dudney et al., 2018; Standish
et al., 2014). Higher unhelpful resilience of an ecosystem
in regime 2 after a regime shift occurs implies that a
shift back to 1 is less likely to occur, which is considered
unhelpful or undesirable if the aim is to restore regime 1
(Figure 1a)

Ecological feedbacks: (Van Nes et al., 2016)

Dynamic ecological interactions between (a)biotic factors (e.g.
vegetation composition) and disturbance regimes (e.g. fire
regime, grazing level) in an ecosystem that loop back to control
system dynamics. Feedbacks can either dampen (negative
or stabilizing feedbacks) or reinforce (positive or amplifying
feedbacks) system change, thereby maintaining one regime or
causing it to shift to an alternative one

A second concept that is intricately connected to non-linear
behaviour of complex systems and thus to potential regime shifts,
is the ecological resilience of degraded ecosystems to disturbances
(Ghazoul et al., 2015; Ghazoul & Chazdon, 2017). Ecological re-
silience is a measure of the ecosystem's ability to absorb change
and disturbance and still maintain the same regime (Appendix S1,
Table S2). A decrease in resilience due to environmental deg-
radation increases the likelihood of a regime shift to occur (i.e.
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lower helpful resilience sensu Standish et al. (2014); Table 1; Folke
et al., 2004; Rocha et al., 2015). On the other hand, ecosystems
can be in a highly resilient alternative regime after prolonged
degradation due to hysteresis, when the presence of ecological
feedbacks maintain the degraded regime (i.e. higher unhelpful re-
silience sensu Standish et al. (2014); Table 1; Dornelles et al., 2020;
Dudney et al.,, 2018; Staal et al., 2020). Both low resilience of the
desired regime as well as high resilience of the undesired regime
can hamper restoration performance (Magnuszewski et al., 2015;
Standish et al., 2014).

A third concept that is tightly linked to non-linearity of com-
plex (eco)systems are ecological feedbacks, that is dampening or
reinforcing interactions between (a)biotic factors (e.g. vegetation
composition) and disturbance regimes (e.g. fires) that loop back
to control ecosystem dynamics (Table 1). These feedbacks can
both maintain an ecosystem in a specific regime as well as cause
it to shift to an alternative one and can thereby strongly influ-
ence degradation as well as recovery trajectories, thus influencing
restoration outcomes (Hobbs et al., 2011; Scheffer et al., 2009;
Verbesselt et al., 2016).

Importantly, potential hysteresis or history-dependence, is tightly
linked to each of the three CSS concepts since this feature (i) can
occur after a regime shift took place, (i) reflects the new regime hav-
ing a high unhelpful resilience and (iii) is governed by the presence of

ecological feedbacks that maintain the new regime.

1.2 | CSS concepts in restoration guidelines
Most current restoration guidelines produced by international or-
ganizations do not sufficiently incorporate or operationalize CSS
concepts linked to non-linear threshold behaviour (Appendix S2).
While some guidelines include concepts of ‘alternative ecosystems’
(Gann et al., 2019; Appendix S2, Table S1), most do not. There is lim-
ited to no inclusion of concepts related to regime shifts, contrast-
ing with frequent inclusion of the resilience concept (Appendix S2,
Table S1: 298 x ‘resilience’ vs. 0 x ‘regime shift’ across all guide-
lines). Resilience, however, is rarely accompanied by a clear defini-
tion or concrete measurement tools, limiting its operational use in
restoration practice. Further assessing the meaning of resilience in
the guidelines, the focus is on restoring ecosystems that are resil-
ient to all kinds of shocks (i.e. building general resilience), rather than
on which ecosystem components should be resilient to which dis-
turbances, and how to quantify and achieve this (i.e. building spe-
cific resilience; Dudney et al., 2018; Folke et al., 2010; Appendix S2,
Table S2: 99% ‘general’ vs. 1% ‘specific’). Through this focus on gen-
eral resilience, the guidelines imply that resilience is always ‘good’,
‘helpful’ or ‘desirable’ in ecosystem restoration. However, this is
not always the case, as resilience can be an unhelpful ecosystem
feature, hindering successful restoration by reinforcing undesirable
regimes, as we discuss above.

We argue that abrupt non-linear regime shifts, unhelpful eco-
logical resilience and ecological feedbacks that maintain undesired
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ecosystem regimes, can result in divergent, unexpected and unpre-
dictable responses to restoration interventions, ultimately leading
to undesired or ‘failed’ restoration outcomes (Krievins et al., 2018;
Mayer & Rietkerk, 2004). Many restoration projects may involve
degradation scenarios where a regime shift has not (yet) occurred,
and resilience is still helpful, but we argue that the guidelines should
be flexible and suitable to all degradation scenarios, including those
where advanced degradation has already occurred. Hence, op-
erationalizing these CSS concepts into the current guidelines and
across restoration project cycles, can minimize or even avoid unde-
sired outcomes, as well as potentially speed up the achievement of
desired outcomes.

Importantly, the desired regime in restoration may not necessar-
ily reflect the historic pre-degradation regime (Bardgett et al., 2021;
Bullock et al., 2021; Crow, 2014; Gann et al., 2019). While historic
regimes were traditionally the focus of ‘ecological restoration’, res-
toration stakeholders often now make a decision on whether their
interventions should aim to ‘Resist’, ‘Accept’ or ‘Direct’ the increas-
ingly unpredictable and unprecedented environmental changes that
ecosystems are facing (Jackson, 2021; Lynch et al., 2022).

Furthermore, we acknowledge that ecological aspects alone
are not sufficient to explain failed restoration outcomes (Elias
et al., 2022; Maniraho et al., 2023). The process of successfully and
efficiently restoring degraded ecosystems also relies on the trust
and engagement of relevant stakeholder groups such as local com-
munities and authorities, and on the social-economic and political
settings such as functionality of the land tenure policies (Ahammad
et al., 2023; Metcalf et al., 2015; Petursdottir et al., 2013; Walters
et al., 2021). Since we aim to demonstrate here how CS dynam-
ics can explain some of the variation in restoration outcomes from
an ecological perspective, instead of highlighting the various di-
mensions that may influence restoration outcomes, inclusion of
social-economic factors are beyond the scope of our manuscript.
That is, our framework (i) focuses on the ecological dimension of
CS dynamics, which is nested within a broader social-ecological
dimension (Nikinmaa, 2020) and (ii) assumes that restoration plan-
ning is being approached from a social-ecological perspective,
that is the interventions are designed with careful consideration
of social-economic as well as ecological dimensions (Crow, 2014;
Elias et al., 2022; Lade et al., 2013; Maniraho et al., 2023; Nayak &
Armitage, 2018).

In the following sections of our framework Explore Before You
Restore, we demonstrate how regime shifts, ecological resilience and
feedbacks influence recovery trajectories with examples from sci-
ence and practice and then suggest how these concepts might be
included in restoration practice. In doing so, we identify key science
and policy tasks that are needed to operationalize these concepts
into useful tools for the restoration community. Our framework fol-
lows a typical 6-step restoration project cycle (Table 3; Appendix S3,
Table S1: Assessing, Planning, Implementing, Monitoring &
Evaluating, Maintaining and Adaptive Management) and is, there-
fore, directly applicable for restoration practitioners, scientists and
policymakers.
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2 | HOW COMPLEX SYSTEMS SCIENCE
CONCEPTS CAN HELP EXPLAIN
RESTORATION TRAJECTORIES

Regime shifts, possibly coupled with high unhelpful resilience of the
new regime in cases of hysteresis, can strongly influence recovery
trajectories and thus determine which restoration interventions, rang-
ing from simple to more complex, are needed to achieve desired tar-
gets (Figure 2; Mayer & Rietkerk, 2004; Selkoe et al., 2015; Suding &
Hobbs, 2009). Namely, in ecosystems that have experienced an abrupt
regime shift but with no evidence of hysteresis, reversing degradation
to below the threshold level that led to the shift is likely sufficient to
restore the system to the pre-threshold regime (i.e. reverse the shift)
(Figure 2 middle scenario: halt degradation and/or additional interven-
tions, Chazdon et al., 2021). For example, regeneration of native veg-
etation is sometimes constrained by invasive plant species in severely
degraded tropical forests. Effective control of invasives, in these
cases, may promote recovery of native species composition associ-
ated with the pre-threshold ecosystem regime (Brancalion et al., 2019;
Douterlungne et al., 2013; Gratton & Denno, 2005).

By contrast, in ecosystems where hysteresis maintains the de-
graded regime through ecological feedbacks that strengthen un-
helpful resilience (Table 2), restoration efforts need to do more
than simply establish the environmental condition(s) that were
prevalent before the shift. Disrupting the high unhelpful resil-
ience of the new regime typically requires multiple, coinciding
and often expensive, interventions (Figure 2 bottom scenario: halt
degradation and additional interventions; Chazdon et al., 2021,
Muys, 2013; Selkoe et al., 2015; Van Nes et al., 2014). For instance,
after several decades of heavy grazing in terrestrial grasslands,
palatable plants may essentially be absent, with natural recovery
of these systems taking up to 100 years or longer due to hysteresis
(Cipriotti et al., 2019). In arid ecosystems, increased aridity may
then lead to desertification, making the possibility for vegetation
recovery even lower, even where aridity levels subsequently de-
crease (Kéfi et al., 2007). Achieving successful restoration then
requires a combination of interventions, such as reducing grazing,
combined with measures such as reseeding with desirable well-
adapted species, woody species control, soil erosion prevention
and protection and soil water management (Table 2).

Furthermore, reduced helpful resilience of a system undergoing
degradation, but which is still in the desired ecosystem regime, can
also influence the restoration trajectory (with or without a pending
regime shift) (Selkoe et al., 2015). Even though halting degradation
will likely restore the desired regime (Figure 2 top scenario), reduced
resilience can slow down recovery. For instance, abandonment of
agricultural systems can create favourable conditions for tree re-
generation to restore forests with generally little need for additional
interventions (Figure 2; Boulton et al., 2022; Poorter et al., 2016;
Rolim et al., 2017; Rozendaal et al., 2019). Reduced helpful resilience
of these post-agricultural systems, however, driven by the intensity
of the past agricultural land use and environmental changes and re-
flected by, for example a lack of seed sources or resprouting ability
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FIGURE 1 Conceptual graph of Complex System dynamics in ecosystems: That is (a) the presence of regime shifts in response to
environmental pressures, with (b) an example of a regime shift in tropical forest ecosystems and (c) the trajectory to successful restoration
(c). (a) From left to right: (i) linear response to environmental pressures, (ii-iv) non-linear response to environmental pressures with presence
of regime shift, where transition to alternative regime is (iij) smooth so no presence of critical thresholds, vs. (iii-iv) presence of critical
thresholds causing an abrupt regime shift to an alternative regime and (iv) exhibiting hysteresis, which implies that the alternative regime is
highly resilient (Hu et al., 2022; Selkoe et al., 2015; Suding & Hobbs, 2009). After an abrupt regime shift (iii-iv), the ecosystem collapses ‘C’
from regime 1 to 2. Ecosystem Recovery ‘R’ occurs when the system is restored through the reversed abrupt pathway to regime 1. In the
case of hysteresis ‘H’, the ecosystem collapse pathway differs from the recovery pathway due to high resilience of regime 2. (b) Photographic
evidence of a regime shift in Amazonian floodplain forests (from Flores & Holmgren, 2021a, 2021b). When these forests are repeatedly
burnt, tree growth rates slow down due to soil nutrient and seed dispersal limitations. After a first wildfire (2), these forests lose most of
their seed banks. With time, seed banks are able to recover, that is forest recovery (1). After a second wildfire (3), burned forests persist in
the open regime with a tree species composition, % sand and % herbaceous cover similar to white-sand savannas. These forests experience
a regime shift to a white-sand savanna as reported by Flores & Holmgren, 2021b, due to the amplifying feedback of repeated fires on change
in tree cover and seed availability (bottom right). (c) Forests burnt once in the floodplain landscape (2) need to be protected from wildfires to
prevent recurring fires, which hinder natural forest recovery (1), while re-burnt forests (3) require additional assisted interventions (beyond
natural regeneration and fire protection) to fully recover forest structure, diversity and functioning, such as seeding, soil fertility increases
and soil erosion prevention. Particularly active seeding of well-adapted tree species in repeatedly burnt sites should increase tree cover,
triggering recovery of the tree cover-seed availability feedback that restores the forest (bottom right).
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FIGURE 2 Incorporating CSS concepts in a restoration project cycle's Assessing and Planning phase. Key questions (green boxes)

to incorporate in the CSS assessment phase in the restoration project cycle (left: Assessing) and guidance on how to prepare planned
interventions for CSS assessment (right: Planning). The scheme assumes that degradation leads to a loss of helpful resilience potentially
leading to an abrupt regime shift and that the aim of restoration is to avoid or reverse such shifts. Left: Assessing: Green boxes represent
four questions to be answered by restoration teams during CSS assessment. Depending on the replies, three ecosystem regime scenarios
arise: (i) no regime shift occurred (i.e. low unhelpful resilience in orange) and none expected (i.e. high helpful resilience in grey) (top scenario),
(ii) pending regime shift (i.e. low helpful resilience), but no evidence of hysteresis (i.e. low unhelpful resilience) (middle scenario) and (iii)
regime shift has occurred or is pending (i.e. low helpful resilience) and evidence of hysteresis (i.e. high unhelpful resilience) (bottom scenario).
Lagging resilience indicators (blue) can be assessed to determine whether a regime shift has occurred, while leading indicators (blue) may
signal a pending regime shift. Right: Planning: Yellow boxes represent suitable restoration interventions ranging from simple to more complex
(top to bottom), with increasing evidence of regime shifts and hysteresis, that is increasing levels of unhelpful resilience (yellow arrow). The
range of interventions are categorized according to the intervention continuum framework proposed by Chazdon et al. (2021) (unassisted,
lightly, moderately and intensively assisted recovery). The interventions should act to strengthen or disrupt ecological feedbacks that
increase helpful and decrease unhelpful resilience.
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for native tree species or soil nutrient imbalances, can slow down
regeneration (Broughton et al., 2022; Cramer et al., 2008; Flores &
Holmgren, 2021a, 2021b; Lawrence et al., 2010; Styger et al., 2007,
2009; Verheyen, 2021). Here, additional interventions (e.g. litter
addition, enrichment planting) might speed up recovery (Figure 2;
Sansevero et al., 2017; Styger et al., 2007).

In sum, restoration practice should strengthen ecological feed-
backs thatincrease helpful resilience, and at the same time weaken or
disrupt those that increase unhelpful resilience. These feedbacks will
ultimately determine the likelihood of an abrupt shift between eco-
system regimes (Figure 2; Hoffmann et al., 2012; Huang et al., 2018;
Stevens et al., 2017). For instance, if the target regime is grassland,
woody encroachment may shift it towards a forest regime. The re-
inforcing ‘canopy closure feedback’ (i.e. trees — canopy closure —
more trees through less below-canopy grasses to fuel fires) would
drive the shift towards a forest regime, while the ‘open vegetation
feedback’ (i.e. grasses — fire — more grasses through increased
fuel loads) would maintain the desired regime. The canopy closure
feedback underpins unhelpful resilience because it reinforces the
undesired regime (and should be weakened), while the open veg-
etation feedback underpins helpful resilience because it reinforces
the desired regime (and should be strengthened). Reintroduction of
fires or introduction of grazers will both weaken the canopy closure
(decrease unhelpful resilience) and strengthen the open vegetation

TABLE 3 Restoration project cycle.

Assessing e Drivers of degradation + Pre-degradation regime

e Expected impact of climate change

e Local and regional socio-economic context

e Reciprocal engagement of local stakeholders

e Complex Systems Science (CSS) Assessment

A Has regime shift occurred? Lagging indicators
B Regime shift likely to occur? Leading indicators
C
D

Evidence of hysteresis?

Journal of Applied Ecology E EEEE;:M

feedback (increase helpful resilience) (Johnstone et al., 2016; Pausas
& Keeley, 20144, 2014b).

Restoration management and guidelines have mainly focused
on general resilience, which stems from the common but incorrect
assumption that resilience is always helpful or ‘good’ (Appendix S3,
Table S2; McDonald, 2000; Nimmo et al., 2015; Standish et al., 2014).
This point has likewise been raised in other socio-ecological disci-
plines (Dornelles et al., 2020; Oliver et al., 2018; Van De Leemput
et al.,, 2014). The singular focus on increasing helpful resilience is
likely not sufficient to address degradation scenarios with abrupt
regime shifts and hysteresis, where the presence of high unhelpful
resilience implies a need for more complex interventions to actively
disrupt those ecological feedbacks maintaining the undesired regime
(Table 2).

Based on the evidence and examples of how CSS concepts can
influence recovery trajectories and how restoration teams can tailor
their interventions, we argue that restoration guidelines should ex-
plicitly incorporate CSS assessments in the restoration project cycle
(Table 3). In such CSS assessment, restoration teams should evalu-
ate; (i) the likelihood of an abrupt regime shift to occur, (ii) evidence
of hysteresis or high unhelpful resilience in the degraded system and
(iii) the underpinning ecological feedbacks that must be strength-
ened and/or disrupted to maintain the system in or shift it to, the
desired regime (Figure 2; Table 2).

Adaptive management

e Re-evaluate objectives

e Reiterate cycle to

A Maintaining or Ongoing
management if
objectives met

B Assessing if objectives
not met

Underpinning ecological feedbacks of resilience?

Planning Visioning
e Determine short-term, measurable objectives and longer-term goals
Designing
e Determine interventions to achieve objectives
(Unassisted to Intensively assisted interventions)
e Establish Key Performance Indicators (KPIs) to track performance
o Tailor interventions to CSS assessment
A Determine complexity of interventions needed
B Strengthen and/or Disrupt feedbacks
C tHelpful and/or | Unhelpful RESILIENCE
Implementing e Perform interventions
Monitoring & e Track restoration performance through measured KPIs
Evaluating e Are the objectives being met?
e Which constraints still remain?
Maintaining e Continue tracking restoration performance (M&E)

e Continue restoration management

Note: Our framework Explore Before You Restore suggests that key CSS concepts of regime shifts, ecological resilience and ecological feedbacks need
to be incorporated in the project cycle to improve restoration outcomes. Suggested CSS aspects to be incorporated in the project cycle are in bold.
Importantly, our framework assumes that restoration planning (i) carefully considers the social-economic dimensions (in addition to ecological ones)
and (ii) is approached from a social-ecological perspective (Crow, 2014; Elias et al., 2022; Maniraho et al., 2023).
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3 | CSS ASSESSMENT IN RESTORATION
PRACTICE

Our framework follows a restoration project cycle which typically com-
prises six phases, including five distinct phases (Assessing, Planning,
Implementing, Monitoring & Evaluation, Maintaining) and one phase that
cuts across all others (Adaptive management) (Appendix S3). To incorpo-
rate CSS thinking in ecosystem restoration, we suggest that the Assessing
phase is extended to involve four key questions related to CS dynamics in
degraded systems (Table 3; Figure 2). These questions include (A) whether
an abrupt regime shift has occurred or (B) is likely to occur, (C) where it has
occurred, whether there is evidence of hysteresis (high unhelpful resil-
ience of the degraded regime) and (D) which ecological feedbacks under-
pin helpful and unhelpful resilience (Figure 3). During Planning, restoration
interventions should be tailored to the CSS assessment (Figure 3). Below,
we provide an overview of indicators available to answer these ques-
tions during CSS assessment, based on currently available knowledge and
tools. In doing so, we identify key outstanding science and policy tasks
needed to further operationalize CSS assessment in restoration (Table 4).

3.1 | Question A: Has a regime shift occurred
(lagging indicators)?

A critical question to ask is whether a prior abrupt regime shift has oc-

curred to create the degraded ecosystem (Figure 2). If environmental

degradation has led to an abrupt regime shift, the degraded eco-
system will be substantially reorganized into a self-maintaining new
stable regime (Figure 1a, scenario iii-iv). Importantly, a regime shift
could also lead the system into a new unstable regime, resulting in
a spiral of environmental degradation, for example failure of plant
recruitment and growth leads to greater soil exposure and thence
greater erosion and further vegetative failure. The complexity of
restoration interventions will need to be greater after a regime
shift to facilitate successful recovery (Figure 1; Table 2; Carpenter
et al., 2008; Ghazoul & Chazdon, 2017; Suding et al., 2004).

To evaluate whether a regime shift has already occurred in
the degraded system, restoration teams can use lagging indica-
tors of resilience, which assess whether helpful resilience has de-
creased (Carpenter et al., 2008; Carpenter & Brock, 2006; Cowan
et al., 2021; Ota et al., 2021; Scheffer et al., 2009). Such indicators
are ecological attributes that develop over long periods of time in an
ecosystem, hence reflecting a unique regime at a single point in time,
and they can, therefore, indicate substantial reorganization of the
degraded system (Berdugo et al., 2020; Cowan et al., 2021; Seidl &
Turner, 2022). Lagging indicators in terrestrial vegetated ecosystems,
for instance, are metrics describing the above- and below-ground
species diversity, dominance and composition, vegetation cover and
structure and soil fertility (Cowan et al., 2021). For lake ecosystems,
typical indicators may be nutrient (e.g. Oxygen, Phosphorus) or chlo-
rophyll concentrations, pH, turbidity and species diversity (Carpenter &
Cottingham, 1997; Ortiz et al., 2020). Significant differences in these

Restoration Project Cycle

—
Regime
ShiftS ﬁ--__-___--——--_---_——-—---__——--_-_—--\ 27
Ecological 1 Complex . 1
>_|. Systems Strengthen or disrupt feedbacks that [-----__ -
resilience 1 X Planning / helpful and 4, unhelpful 1 .
|' Science resilience : i
feedbacks 1 1
— 1 1 .
1 1 Implementing
I 1 .
: A) Has regime shift occurred? : i
1 B) Is regime shift likely to occur? 1 H
1 Assessing C) Is there evidence of hysteresis (unhelpful resilience)? | '
] D) Which ecological feedbacks underpin helpful 1 |
1 resilience? I '
v\ [ l’
\\ ““““““ - ,I
' Maintain X "
“‘ - Monitoring &
1 ! Evaluation
1 1 1
1 1 ’
NO Objectives met? YES ,/,
S -
Adaptive management

N

FIGURE 3 The different phases of a Restoration Project Cycle identified by scanning nine ecosystem restoration guidelines from
international organizations published in the last decade 2012-2022 (Appendix S3). The details of each phase are explained in Table 3. Our
framework suggests that three key elements of Complex Systems Science (top left) should be incorporated into the project cycle to improve
restoration outcomes.
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TABLE 4 Outstanding restoration science, practice, & policy tasks.

Theme Task

Restoration Science-Practice

Journal of Applied Ecology E EE‘E@JW

Extend the framework Explore Before You Restore

e Operationalize resilience indicators (lagging, leading) into tools for ecosystem restoration

e Develop practical methods to assess hysteresis

e Extend ecosystem-, biome- and region- specific case study evidence on regime shifts and hysteresis in
global databases and scientific literature

e Support global restoration performance monitoring networks

o Evaluate relationships between loss of resilience, abrupt regime shifts and restoration performance
for different approaches (e.g. NR, ANR, Tree planting), bringing together different knowledge sources,
that is western science, with Indigenous and Local Knowledge (ILK)

Restoration Policy

Operationalize CSS assessment into the Restoration Guidelines

e Introduce the idea that (unhelpful) resilience can also hinder restoration
e Translate CSS assessment in the restoration project cycle into practical and accessible language for the

diversity of restoration teams

e Target interventions that strengthen helpful resilience and weaken unhelpful resilience
e Support global restoration performance monitoring networks

metrics between the degraded system, and either undisturbed con-
trols (spatial comparison) or historic reference ecosystems (temporal
comparison), at the time of restoration planning, can indicate that an
abrupt shift towards a new stable regime has taken place, since the
‘lagging’ characteristic of these indicators implies that a new regime
has already been in place for some time at the start of restoration
(Figure 1a; Cowan et al., 2021).

For instance, humid Amazonian forests can shift to an al-
ternative savanna state due to altered fire regimes (Barlow &
Peres, 2008; Brando et al., 2014; Flores & Holmgren, 2021a, 2021b;
Silvério et al., 2013). These vegetation state shifts are correlated
with changes in vegetation structure and composition, biodiversity
and ecosystem functioning that can be used as ‘lagging’ resilience
indicators. For example, repeatedly burnt Amazonian blackwater
floodplain forests lose tree cover, increase herbaceous cover and
shift tree species composition from typically forest species towards
an increasing abundance of white-sand savanna species (locally
known as ‘campinas’; Flores & Holmgren, 2021a). These vegetation
shifts, from closed floodplain forests to white-sand savannas as fire
occurrence increases, appear to be caused by both nutrient erosion
(Flores & Holmgren, 2021a) and seed dispersal limitation (Flores
& Holmgren, 2021b). Seed dispersal limitation could be caused by
shifts in animal communities responsible for seed dispersal. For
example, burnt forests and white-sand savannas show a lower
abundance of omnivorous and frugivorous fish that are key seed
dispersers for many forest tree species (Lugo-Carvajal et al., 2023).
These complex changes in soil, plant and animal communities can
be used as lagging indicators of resilience. Though these metrics
may only provide an indication of regime shifts that happened at
some point in the system's degradation history, for restoration this
may already be instructive. We argue that it may be more important
in ecosystem restoration to identify whether the degraded system
finds itself in a new and undesired stable regime, which drivers of
degradation have led to the regime, and what is causing the un-
desired regime to be maintained in the case of hysteresis, than to
identify when exactly the regime shift took place.

RIGHTSE LI MN iy

3.2 | Question B: Is a regime shift likely to occur
(leading or early-warning indicators)?

If the degraded system is not yet substantially reorganized, a
shift may still be pending due to ongoing loss of helpful resilience
(Boulton et al., 2022; Scheffer et al., 2001). Assessing the exact dis-
tance of an ecosystem to a critical threshold based on empirical data
is not (yet) feasible and may always remain challenging (Davidson
et al., 2023; Hillebrand et al., 2020; Van Nes et al., 2014). However,
loss of helpful resilience over time, signalling a pending regime shift,
can be evaluated through repeated measurements of leading indi-
cators of resilience or ‘early-warning signals’, that is ecosystem at-
tributes that specifically respond to environmental disturbances,
such as tree growth or vegetation greenness which decrease due
to drought of fire disturbances. Such leading indicators are useful to
evaluate ‘early-warning signals’ that signal the vicinity of an abrupt
shift (EWS, Table 1; Biggs et al., 2009; Carpenter et al., 2008; Cowan
etal., 2021; Dai et al., 2012; Dakos et al., 2008; Forzieri et al., 2022).
Specifically, studies show that trends of slower recovery rates or
of increased variability in these indicators in response to disturbances
(i.e. critical slowdown or flickering, respectively), indicate that the eco-
system is approaching an abrupt shift (Carpenter et al., 2008; Dakos
etal., 2015; Scheffer et al., 2001, 2009). For example, slower recovery
of vegetation greenness related to successive droughts, and evaluated
using remote sensing time series, has predicted tree mortality as the
onset of a regime shift in different forest types (Boulton et al., 2022;
Dakos et al., 2012; Liu et al., 2019; Verbesselt et al., 2016). Since
leading indicators are useful to predict the likelihood of particular
outcomes (Carpenter et al., 2008; Carpenter & Brock, 2006; Cowan
et al.,, 2021; Ota et al., 2021; Scheffer et al., 2009), leading indicators
of ecological resilience can thus be used to assess whether a regime
shift might occur in the future in the context of CSS assessment.
Importantly, to assess a pending regime shift with leading indica-
tors requires evaluating a rate of change, which is based on repeated
measurements of the indicator over time. Repeated measurements

in restoration could be extracted from, among others, indigenous


https://besjournals.onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2F1365-2664.14614&mode=

MAES ET AL.

AR || of Applied Ecology E%E;ST‘F“

and local knowledge (ILK), repeated inventories and remote sens-
ing (Falardeau et al., 2022; Pascual et al., 2017; Wheeler & Root-
Bernstein, 2020). Gathering such data prior to restoration is generally
not feasible for restoration teams, however, as it requires time and
money and delays restoration on the ground. Therefore, project
teams should realistically focus on incorporating repeated measure-
ments of (the response of) leading indicators (e.g. species recruitment,
biomass) to key disturbances in the ecosystem (e.g. fire, drought) in
their M&E strategies. In this way, they can monitor possible changes
in the response of the degraded ecosystem to disturbances from the
restoration onset, which may signal a pending regime shift and adjust
their interventions if they find indications for the latter.

3.3 | Question C: Is there evidence of hysteresis?
Or which feedbacks underpin unhelpful resilience?

If a regime shift is likely to occur or has occurred, evaluating hys-
teretic behaviour in the degraded system is key, since greater res-
toration efforts are required to reverse the (potential) shift when
hysteresis is present (Figure 2). Although trial treatments or driver
reversal experiments allow quantification of hysteresis in the field
by observing whether the system returns to a previous regime after
halting or reversing the driver of degradation (Gann et al., 2019;
McDonald, 2000; Ratajczak et al., 2018; Standish et al., 2014), these
methods are again generally not feasible for teams on the ground
because of a lack of time and money.

To assess hysteresis, restoration project teams should, therefore,
evaluate whether the degraded system shows signs of strong eco-
logical feedbacks at the local or landscape scale that act to maintain
the undesired regime (unhelpful resilience). Such feedbacks can signal
hysteretic behaviour (Figure 2; Table 2). In the case of the repeatedly
burnt tropical floodplain forests, for example, lower tree cover due to
wildfires in the degradation history of the system had led to a depleted
seed bank, which leads to reduced seed dispersal and consequently
lower seed availability and tree recruitment. This continues low tree
cover and constrains forest recovery through these self-maintaining
‘history-dependent’ feedbacks between low tree cover and poor seed
sources (Flores & Holmgren, 2021b). In many coral reefs, for instance, a
combination of fishing, eutrophication and global warming has resulted
in algal dominance and low abundance of herbivore fish groups that
feed on algae. This feedback maintains the algal dominance and pre-
vents successful coral recruitment through outcompeting successfully
recruited corals (Graham et al., 2013). See Table 2 for more examples of
hysteretic behaviour across different ecosystem types that can ham-

per successful recovery and thus impact ecosystem restoration.
3.4 | Question D: Which feedbacks underpin
helpful resilience?

Besides feedbacks that maintain the undesired regime and indi-
cate hysteresis by underpinning unhelpful resilience (question C),

RIGHTSE LI MN iy

feedbacks that maintain the desired regime and thus underpin help-
ful resilience must be identified as well to facilitate successful eco-
system recovery. In the example of a shift from the floodplain forest
to a more open savanna ecosystem regime, feedbacks that would
promote tree cover, such as assisted natural regeneration or seeding,
underpin helpful resilience and could help force a shift to the desired
forest regime. Intervening in this feedback is key to strengthen-
ing helpful resilience, in addition to weakening unhelpful resilience
through, for example disrupting feedbacks that maintain the sa-
vanna regime by means of fire protection (Flores et al., 2016; Flores
& Holmgren, 2021a, 2021b; Table 2 ‘Additional interventions’).

Similarly, in the example of a shift from the coral- to the algal-
dominated regime in degraded coral reefs, intervening in the
feedbacks that promote coral recruitment and underpin helpful re-
silience, for example by introducing parrot- and surgeon fishes, can
help force a shift to the desired coral regime (Graham et al., 2013).
At the same time, disrupting the feedbacks that maintain the algal
domination, which underpin unhelpful resilience, for example by
introducing herbivore fish species that feed on the algae, will help
to force the same shift (Graham et al., 2013, Table 2 ‘Additional
interventions’).

In sum, if restoration teams include CSS assessments in their
restoration project cycles, they can adequately determine the com-
plexity of required interventions based on the presence or likeli-
hood of regime shifts and evidence of hysteresis (Figure 2, Planning).
Further, they can target their interventions to specifically disrupt
feedbacks that underpin unhelpful resilience and strengthen those
that underpin helpful resilience. While collecting information about
regime shifts, hysteresis and feedbacks may, in practice, be chal-
lenging, costly and time consuming, we reiterate that it can greatly
improve restoration outcomes (Magnuszewski et al., 2015; Maxwell
et al., 2017; Qiu et al., 2022; Xiao et al., 2020), possibly saving re-
sources in the long run.

4 | OUTSTANDING TASKS

Answering questions A and B from the previous section assumes res-
toration teams select measurable and feasible indicators that are: (i)
comparable to relevant reference systems across time or space and
(i) responsive to the key disturbance(s) in their ecosystem(s) (for ques-
tion B) (Cowan et al., 2021). Despite promising prospects of specific
resilience indicators and methods to detect regime shifts (Andersen
et al., 2009; Boulton et al., 2022; Lenton, 2011), operationalization of
these methods into clear recommendations and tools to use across
different ecosystem types remains a key outstanding task for the
scientific community (Table 4; Selkoe et al., 2015). Specifically, we
identify the development of practical tools and methods to assess
ecological resilience loss, abrupt regime shifts and hysteresis in de-
graded systems as outstanding tasks, as these are, to our knowledge,
non-existent. The lack of scientific consensus on the usefulness and
applicability of regime shifts in ecology likely also hampers this opera-
tionalization (Higgins et al., 2023; Hillebrand et al., 2023). Further, a
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helpful platform where restoration teams can explore whether eco-
systems from similar climates and degradation settings have experi-
enced a regime shift, is the online database www.regimeshifts.org (Biggs
etal., 2009; Stockholm Resilience Centre, 2022). This evidence-based
catalogue should, however, be extended, as more scientists and
practitioners assess regime shifts across different ecosystems and
biomes (Table 4). Similarly, data-driven networks where teams can
share their M&E restoration performance data (e.g. https://globalrest
orationobservatory.com/) should be encouraged to facilitate global
monitoring of restoration performance as we progress in the UNDER
(Ladouceur & Shackelford, 2021). Further, scientifically testing the
hypotheses brought forward in our framework, that is that the loss
of helpful resilience and presence of abrupt regime shifts significantly
influence restoration performance, remains another outstanding task
(Table 4). Importantly, this should be done while bringing together dif-
ferent knowledge sources, that is western science. with Indigenous
and Local Knowledge (ILK) (Falardeau et al., 2022; Wheeler & Root-
Bernstein, 2020), as well as considering the broader social-ecological
dimension of CS dynamics and ecosystem restoration (Appendix S1,
Table S2; Folke et al., 2010; Nikinmaa, 2020). For restoration policy-
makers, we encourage them to step away from common assumptions
on helpful ‘general’ resilience and instead introduce the concept of
unhelpful resilience and further incorporate CSS assessment into
their guidelines (Table 4). A crucial step towards CSS incorporation
will be to start ‘learning-by-doing’ (Kato & Ahern, 2008; Walters &
Holling, 1990), that is apply the proposed CSS assessment in real-life
restoration projects, tailor the restoration strategies to it, and monitor
and evaluate the remaining constraints and effectiveness (Table 3).
Importantly, such inclusion of CSS assessment in restoration should
be done through translating the key concepts in practical and compre-
hensible language that are accessible to a wide diversity of restora-
tion teams, for example also those teams with limited or no scientific

expertise.
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