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Abstract
1. Identifying important demographic drivers of population dynamics is fundamen-

tal for understanding life- history evolution and implementing effective conserva-
tion measures. Integrated population models (IPMs) coupled with transient life 
table response experiments (tLTREs) allow ecologists to quantify the contribu-
tions of demographic parameters to observed population change. While IPMs can 
estimate parameters that are not estimable using any data source alone, for ex-
ample, immigration, the estimated contribution of such parameters to population 
change is prone to bias. Currently, it is unclear when robust conclusions can be 
drawn from them.

2. We sought to understand the drivers of a rebounding southern elephant seal 
population on Marion Island using the IPM–tLTRE framework, applied to count 
and mark–recapture data on 9500 female seals over nearly 40 years. Given the 
uncertainty around IPM–tLTRE estimates of immigration, we also aimed to inves-
tigate the utility of simulation and sensitivity analyses as general tools for evaluat-
ing the robustness of conclusions obtained in this framework.

3. Using a Bayesian IPM and tLTRE analysis, we quantified the contributions of sur-
vival, immigration and population structure to population growth. We assessed 
the sensitivity of our estimates to choice of multivariate priors on immigration 
and other vital rates. To do so we make a novel application of Gaussian process 
priors, in comparison with commonly used shrinkage priors. Using simulation, we 
assessed our model's ability to estimate the demographic contribution of immi-
gration under different levels of temporal variance in immigration.

4. The tLTRE analysis suggested that adult survival and immigration were the most 
important drivers of recent population growth. While the contribution of im-
migration was sensitive to prior choices, the estimate was consistently large. 
Furthermore, our simulation study validated the importance of immigration by 
showing that our estimate of its demographic contribution is unlikely to result as 
a biased overestimate.

[Correction added on 6 February 2024, 
after first online publication: Some minor 
formatting changes have been made.]  
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1  |  INTRODUC TION

Understanding the drivers of population dynamics is a funda-
mental goal in ecology, and an important ingredient in efforts to 
mitigate current global declines in biodiversity. A better under-
standing of the demographic drivers (e.g. survival, reproduction, 
dispersal) of population growth allows us to predict how popu-
lations will change over time, to assess their vulnerability to en-
vironmental stressors and to develop effective conservation 
strategies (Koons et al., 2017). Moreover, identifying the demo-
graphic processes that shape population dynamics can generate 
insights into the evolution of life histories (Stearns, 1992). It is 
therefore essential that robust methods are available to quan-
tify population growth rates and the demographic forces shaping 
them. The current state of the art consists of transient life table 
response experiments (tLTREs; Koons et al., 2016) coupled with 
integrated population models (IPMs; Besbeas et al., 2002; Schaub 
& Kéry, 2021). Together, these analyses leverage individual-  and 
population- level data to potentially identify the most important 
drivers of observed population trends. However, several recent 
studies have shown that some IPM estimates are very sensitive 
to model misspecification (Plard et al., 2021; Riecke et al., 2019), 
while others obtained in the IPM–tLTRE framework may be sys-
tematically biased (Paquet et al., 2021). Thus, ecologists wishing 
to use these powerful methods face a dilemma. In most studies, no 
alternative methods of equal scope or rigour will be available, and 
yet, the reliability of certain IPM–tLTRE estimates may be doubt-
ful, or difficult to gauge.

Integrated population models combine multiple data types in a 
single likelihood to estimate vital rates, population size and struc-
ture. They do this by modelling the state of the population as a latent 
process on which each data type depends through its own obser-
vation model. A major feature of IPMs is their ability to estimate 
‘additional’ parameters (sensu Riecke et al., 2019) that are not iden-
tifiable from models of any one data type alone. A typical example is 
the estimation of immigration using mark–recapture, fecundity and 
population count data (Abadi et al., 2010). The mark–recapture and 
fecundity data inform rates of birth, death and emigration, allowing 
the IPM to extract the signal on immigration from the population 
count data.

The tLTREs we consider decompose the temporal variance in 
realised population growth rates into contributions due to each 
of the vital rates and population structure (see Koons et al., 2016 
for two other types). These contributions take into account the 
temporal variance in each parameter, its covariance with other 
parameters and the sensitivity of the growth rate to changes in 
each parameter (Koons et al., 2016, 2017). In contrast to their 
predecessors, the various life table response experiments (LTREs; 
Caswell, 1989, 2010), they relax the assumptions that the pop-
ulation is in equilibrium or subject to stationary environmental 
variation—assumptions that are often inappropriate in a rapidly 
changing world. Whereas LTREs are possible using only vital rate 
estimates, tLTREs also require estimates of the population size 
and structure over time (Koons et al., 2016). Since few natural 
populations can be studied in sufficient detail to directly estimate 
all these quantities, IPMs will often be a prerequisite for tLTREs 
(Schaub & Kéry, 2021; Chapter 9.4).

While the estimation of additional parameters is a major poten-
tial benefit of IPMs, it is also one of their main challenges. Recent 
simulation studies show that biases in other model parameters 
readily propagate to the additional parameter (Plard et al., 2021; 
Riecke et al., 2019). Such biases may arise from a failure to account 
for individual heterogeneity, non- breeding adults and marker 
loss, among others. Even in the absence of bias affecting mean 
additional parameter estimates, their temporal variation may be 
difficult to estimate, creating problems for downstream tLTREs 
(Paquet et al., 2021). For example, when immigration is estimated 
as an additional parameter, these authors found that its tLTRE 
contribution was accurately estimated when the true contribution 
is moderate or large, but systematically overestimated when the 
true contribution is small. Here, we focus on immigration, but it 
is important to note that most of the methodological discussion 
applies to any additional parameter.

Integrated population models are typically fit in a Bayesian 
framework, where priors are specified as well as a likelihood. 
Because additional parameters are not directly informed by data, 
one expects their estimates to be sensitive to the prior structure 
used for them. While there is some work on prior specification for 
additional parameters (e.g. Schaub & Fletcher, 2015), there is still 
a need to better understand the use of multivariate priors in this 

5. Our results highlight the connectivity between distant populations of southern 
elephant seals, illustrating that female dispersal can be important in regulating 
the abundance of local populations even when natal site fidelity is high. More 
generally, we demonstrate how robust ecological conclusions may be obtained 
about immigration from the IPM–tLTRE framework, by combining sensitivity 
analysis and simulation.

K E Y W O R D S
demographic contribution, Gaussian process, immigration, integrated population model, IPM, 
robust estimation, tLTRE, transient life- table response experiment
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context. The multivariate priors we consider specify a distribu-
tion over the vector of annual values for a parameter in all years 
of the study; a common example is a year random effect (Kéry & 
Schaub, 2011, Chapter 4). Merely adopting a year random effect will 
draw annual estimates towards the overall mean, so these ‘shrink-
age’ priors directly affect the temporal variance of parameters, and 
the sensitivity of tLTRE estimates to this choice should be carefully 
assessed. On the other hand, if additional parameter estimates are 
not regularised by any prior structure, their tLTRE contributions are 
severely overestimated, regardless of the size of the true contribu-
tion (Paquet et al., 2021).

Here, we sought to quantify the demographic drivers of pop-
ulation growth in a recovering southern elephant seal (Mirounga 
leonina) population at Marion Island in the southern Indian Ocean. 
Southern elephant seals are sexually dimorphic marine predators 
that exhibit high foraging and breeding site fidelity (McIntyre 
et al., 2017). Over the past seven decades, their southern Indian 
Ocean populations have experienced significant shifts in abun-
dance (Laborie et al., 2023), but no studies have attempted ret-
rospective analysis to assess the contribution of different vital 
rates and population structure to long- term variation in real-
ised population growth. In relatively long- lived mammals such 
as elephant seals, life- history theory predicts that population 
growth will be more sensitive to factors affecting adult survival 
rather than changes in juvenile survival or birth rates (Gaillard 
et al., 1998). Due to elephant seals' extreme polygynous mating 
system, dispersal might be expected to be male- biased (but see Li 
& Kokko, 2019). Female elephant seals generally display high site 
fidelity, especially in the breeding season (Hofmeyr et al., 2012). 
However, encounters of foreign- tagged seals have highlighted a 
degree of inter- island female dispersal (Bester, 1988; Oosthuizen 
et al., 2011) and suggested that even low levels of female immi-
gration can have important effects on population structure and 
growth rate of the small populations (McMahon et al., 2005). Thus, 
quantifying the contribution of female immigration is important to 
understand changes in observed population growth over the past 
decades.

We built a Bayesian IPM with nearly 40 years of mark–recap-
ture, fecundity and population count data, then used the posterior 
estimates to calculate tLTRE contributions. Our IPM estimated im-
migration as an additional parameter, and we used two approaches 
to evaluate the robustness of its estimated tLTRE contribution. 
First, we followed the suggestion of Paquet et al. (2021) and fit-
ted our IPM to simulated data with different levels of variation in 
immigration, comparing true and estimated contributions. Second, 
we compared the tLTRE estimates obtained using different mul-
tivariate priors on the vital rates and on immigration. In addition 
to the commonly used ‘temporal random effect’ structure, we ex-
plored Gaussian process priors as an alternative way to regularise 
our estimates in time. We discuss the ecological implications of 
our results and draw attention to the effects of regularisation and 
model fit in estimating the demographic contribution of immigra-
tion in the IPM–tLTRE framework.

2  |  METHODS

2.1  |  Study species and data collection

The southern elephant seal is a strongly sexually dimorphic, po-
lygynous, capital- breeding marine predator. Adult seals spend most 
of their lives at sea, but haul out to breed during the austral spring 
and moult during summer. Female seals produce offspring from age 
3, with the majority pupping for the first time aged 4 (Oosthuizen 
et al., 2021). On Marion Island, breeding females come ashore from 
mid- September to mid- October, forming aggregations of up to 70 
individuals on isolated rocky beaches. They give birth to a single pup 
a few days after arriving and remain ashore for just over 3 weeks 
to suckle. At the end of this period, they wean their pup, mate and 
return to sea to forage.

Since 1983, almost every weaned pup at Marion Island has been 
marked with two tags on the inter- digital webbing of their hind flip-
pers. Tag loss is known to occur in this study (Oosthuizen et al., 2010), 
and double- tagging allows us to account for it in our mark–recap-
ture model. Surveys to resight tagged seals were conducted on all 
the island's beaches, weekly during the breeding season and every 
10 days at other times of the year. All animal handling activities 
were approved by the Animal Ethics Committee of the Faculty of 
Veterinary Science, University of Pretoria (AUCC040827- 022, 
AUCC040827- 023, AUCC040827- 024 and previous permits).

2.1.1  |  Mark–recapture data

Here, we analysed individual- based demographic data from all 9500 
female seals tagged between 1983 and 2020. From the raw resight-
ing data, we defined robust design mark–recapture data following 
Oosthuizen et al. (2019). The robust design is made of primary pe-
riods, in our case years, between which the population is assumed 
open, and secondary periods within each year, between which the 
population is assumed closed (Pollock, 1982). The robust design 
sampling enables better estimation of breeding probabilities in our 
mark–recapture model (see below).

We defined three secondary periods as (i) the even weeks of 
the breeding season, (ii) the odd weeks of the breeding season and 
(iii) the rest of the year outside the breeding season. The breeding 
season is 8 weeks long, and female seals may arrive during any of 
the first 4 weeks. By partitioning these 8 weeks into even and odd 
weeks, every seal is available for resighting during both secondary 
periods of the breeding season, regardless of the week in which she 
arrives. Furthermore, all seals undertake an obligatory moult outside 
the breeding season.

These three secondary periods result in 15 observable states for 
each tagged seal in each year. A tagged seal may be resighted, or not, 
within each of these three periods, giving 23 = 8 preliminary states. 
For the seven states in which at least one resighting occurred, the 
seal may have one or two tags, giving the 2 ⋅ 7 + 1 = 15 observable 
states per tagged seal per year. (We assumed that the number of 
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tags does not change between the three resighting periods in each 
year).

2.1.2  |  Breeding count data

From 1986 to 2021, the number of breeding females was counted 
on 15 October every year. This date coincides with the peak num-
ber of breeding females, but seals that arrive very early or very late 
in the breeding season may be absent then (Kirkman et al., 2004; 
Oosthuizen et al., 2023). Therefore, these counts represent an index 
of abundance rather than true abundance.

2.1.3  |  Fecundity data

Adult female southern elephant seals may skip breeding in some 
years (de Bruyn et al., 2011) and we estimate breeding probabili-
ties in our mark–recapture model (see below). Those that do breed 
almost always give birth to a single pup, with twins accounting for 
less than 1% of births (McMahon & Hindell, 2003). Hence, we as-
sume that all births produce a single pup, and fecundity is described 
by a single parameter, the probability of surviving from birth until 
weaning when the pups are tagged. Survival to weaning has been 
estimated in the Marion Island population (Pistorius et al., 2001), so 
we use these estimates to define an informative prior for it and do 
not model fecundity data directly (see Appendix 2.3).

2.2  |  Integrated population model

We fitted three versions of our IPM that differed in the multivariate 
priors we placed on the vital rates and on immigration. Because im-
migration is estimated as an additional parameter, we allow our prior 
structures to differ between it and the other demographic param-
eters. Therefore, for convenience, we restrict the term ‘vital rates’ to 
include survival and breeding probabilities and exclude immigration. 
We considered temporal random effects (‘RE’) and Gaussian process 
(‘GP’) prior structures, with the precise formulation of these differ-
ing between the vital rates and immigration (see below). In what fol-
lows we refer to the three versions of the IPM as IPMRE,RE, IPMGP,RE 
and IPMGP,GP, where the first subscript denotes the prior on the vital 
rates and the second the prior on immigration (we do not consider 
IPMRE,GP due to poor model fit; see the discussion).

2.2.1  |  Latent population model

Our IPM used a female- based, stage- structured model with a ‘pre- 
breeding census’ to describe the latent population dynamics. Here 
and elsewhere, ‘breeding’ refers to the birth of a pup, not con-
ception. The population was divided into four age- specific pre- 
breeding classes (Pb1,t, Pb2,t, Pb3,t, Pb4,t) consisting of locally born 

1-  to 4- year- olds that had never bred, a breeding class (Brt) of seals 
that give birth in the current year, and a non- breeding class (Nbt) of 
seals that bred in the past but not in the present year. In addition, 
we defined an immigrant class (Int) of foreign- born seals breeding 
for the first time on Marion Island in the present year. Although 
most foreign- born seals probably arrive at Marion as pre- breeders 
(Oosthuizen et al., 2011), our definition of the immigrant class im-
plies that they contribute to Int only if they breed on Marion for the 
first time in year t. A life- cycle diagram of our stage- structured pop-
ulation model is presented in Figure 1.

The model's vital rates consisted of time- varying, annual survival 
probabilities, and conditional probabilities that a seal in a particular 
state in 1 year will breed the following year, given survival. We de-
fined survival probabilities for weaned pups (s0,t), pre- breeders and 
non- breeders (sN,t), and breeders (sB,t), and conditional breeding prob-
abilities for 2-  (f3,t) and 3-  (f4,t) year- old pre- breeders, non- breeders 
(nbt) and breeders (bbt). We also defined sW ,t as the probability of 
survival from birth in year t until weaning. As usual, we use the term 
‘survival’ for ‘apparent survival’, namely, the event that a seal sur-
vives and does not permanently emigrate from the population.

Following Schaub and Fletcher (2015), we parametrised immi-
gration as a number rather than a rate, as it is then independent of 
estimates of the population size. Immigration rate �t is then a de-
rived parameter, defined as the number of immigrants in year t + 1 
per seal in year t:

�t =
Int+1

Pb1,t + Pb2,t + Pb3,t + Pb4,t + Brt + Nbt + Int
.

F I G U R E  1  A life- cycle diagram for the female- based population 
model with a ‘pre- breeding census’. Nodes represent stage classes 
for pre- breeders (Pbage) age 1–4, breeders (Br), non- breeders (Nb) 
and new immigrant breeders (In). Solid lines represent survival and 
state transitions, and dashed lines represent birth and survival of 
the single pup to age one. The stage- specific survival probabilities 
are for survival from birth to weaning (sW), from weaning to age one 
(s0) and annual survival for pre- breeders and non- breeders (sN), and 
breeders and immigrants (sB). f3, f4 are probabilities of first breeding 
age 3–4, and nb, bb are the breeding probabilities of non- breeders, 
and breeders and immigrants, respectively. The factor of 1∕2 on 
the dashed lines reflects an assumption of equal sex ratio at birth.
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We incorporated demographic stochasticity by using binomial 
distributions for non- immigrant population stage sizes at time t + 1 , 
given the population and vital rates at time t (see Appendix 2.1 for 
full details). With a slight abuse of notation, our population model 
can be written as a matrix population model:

More precisely, this describes the conditional expectation of the 
variables on the left side of the equation, given those on the right 
side (Buckland et al., 2007). Our priors on the stage class sizes in the 
initial year are described in Appendix 2.2.

The population model makes several simplifying assumptions. 
First, because very few immigrants are tagged, it assumes that 
new immigrant breeders share survival and breeding probabilities 
with locally born breeders. Second, it assumes that 4- year- old pre- 
breeders that survive to the following year necessarily breed; only 
2% of tagged seals were observed to live at least 5 years without 
being observed breeding by their fifth year. Third, the model as-
sumes that there is no heterogeneity in survival or breeding proba-
bilities beyond that captured by our stage classes.

2.2.2  |  Multievent mark–recapture model

Multievent models generalise multistate mark–recapture models 
by allowing uncertainty in the assignment of state upon capture 
(Pradel, 2005). Non- breeding seals do not attend the breeding ag-
gregations (de Bruyn et al., 2011) but may still be resighted during the 
moult. However, undetected breeders can generate the same cap-
ture history, so adult seals that are not observed in the breeding sea-
son cannot be assigned a breeding state with certainty. Although it 
is possible to incorporate non- breeders as an unobservable state in a 
multistate model, this requires further assumptions, for example, that 
breeders and non- breeders share survival and breeding probabilities 
(Kendall & Nichols, 2002). The model of Oosthuizen et al. (2019) in-
corporates non- breeders without requiring this common demogra-
phy assumption, and their results suggest that vital rates may differ 
between breeders and non- breeders on Marion Island. Therefore, 
we use their multievent model instead of a multistate model.

Multievent models characterise each individual using a hidden 
Markov model, with their observed capture history arising from a 
(partially) hidden process representing their biological state through 
time. Our ‘hidden’ states are defined to be the pre- breeding, breed-
ing and non- breeding states described above for our population 

model, as well as a zero- year- old state in which all seals are tagged. 
To account for tag loss, we include tag number (one or two) as part 
of a seal's state. Lastly, we also include an absorbing ‘dead’ state to 
which a seal transitions if it dies, permanently emigrates from the 
population, or loses all tags.

Each seal transitions between these states according to our 
stage- dependent survival (s0,t , sN,t , sB,t) and breeding probabilities 
(f3,t , f4,t , nbt , bbt), as well as �, the probability of losing one tag. We model 
� as constant in time, but allow it to vary according to the tag location 
on the inner or outer inter- digital webbing, as this is known to affect 
rates of tag loss (Oosthuizen et al., 2010). Our model assumes that at 
most one tag can be lost annually, and that tag loss events are indepen-
dent of each other (given tag location). These assumptions are likely 
to be violated (Schwarz et al., 2012); therefore, although our model 
corrects estimates of survival for tag loss, a small bias may persist.

Each year a tagged seal may be observed during the two second-
ary periods of the breeding season, and outside the breeding season, 
resulting in one of the 15 observation states defined above in the 
section ‘Mark–recapture data’. The conditional distributions of the 
observation states given the hidden state are defined in terms of 
four time- varying detection probabilities. These are the probability 
of detecting a breeder in the even (pBe,t) and odd (pBu,t) weeks of the 
breeding season, and the probability of detecting breeders (qB,t), and 
pre- breeders and non- breeders (qN,t), outside the breeding season. 
For the full specification of transition and emission matrices for the 
multievent model, see Appendix 1.1.

2.2.3  |  Breeding count model

We modelled the breeding counts as

Due to the ease of counting seals on Marion Island, it is highly 
unlikely that the counts differ from the true number present on 15 
October by more than 20; setting the count standard deviation �c to 
10 encodes this prior information in our model. This treatment relies 
on the interpretation of �c as the standard deviation of the count errors 
alone, and not as the residual standard deviation for the entire IPM (cf. 
Schaub & Kéry, 2021, chapters 5.5.2, 6.6.5 and elsewhere). Indeed, we 
do not have strong prior beliefs about residual variance in the IPM as 
a whole and would certainly not feel justified in setting a value for it. 

(1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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countt ∼ Normal
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Brt + Int , �c = 10

)
.
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We offer results and discussion to support our interpretation of �c in 
Appendix 7. In addition, to show that this choice has little effect on our 
results, we fit two different versions of IPMGP,RE in which we estimate 
�c under an informative and a vague prior (see Appendix 2.6).

As noted above, early-  and late- arriving females are not present 
for the 15 October counts. Therefore, the ‘true’ number of seals esti-
mated by these counts is some (high) proportion of the season's total 
number of breeding females. There is no evidence to suggest that 
the proportion missed has changed systematically over the course of 
the study so, although our population estimates are a slight under-
estimate, our population growth rate estimates should be unbiased 
(Schaub & Kéry, 2021; Chapter 4.3.2).

2.2.4  |  Priors on vital rates

Here, we use ‘vital rates’ as shorthand for all the survival and con-
ditional breeding probabilities except for survival to weaning, as the 
latter is incorporated with an informative prior rather than estimated 
from data in our study. We let �t denote a generic vital rate in year 
t, and use boldface for vectors of time- varying quantities over the 
study period, for example, � =

(
�1, ⋯ , �T

)
.

We fitted the multievent model with two multivariate priors on 
each of the vital rates. First, we used a ‘random effects’ (RE) struc-
ture with a temporal random effect on the logit scale:

Second, we used a Gaussian process (GP; Rasmussen & 
Williams, 2006) structure inspired by Vehtari (2023), in which we 
placed GP priors on the mean and (log) standard deviation of the 
logit- normal distributions on each vital rate:

Both the RE and GP priors have the desirable property of regu-
larising the estimates of �t in time. The RE priors shrink the estimates 
towards the overall mean (Kéry & Schaub, 2011, Chapter 4), pro-
viding ‘global’ regularisation in the sense that information is shared 
between estimates in all years. In contrast, the more flexible GP pri-
ors provide ‘local’ regularisation in which information is only shared 
between ‘nearby’ years, and the scale at which this partial pooling 
occurs is learnt from the data (McElreath, 2020; Chapter 14.5).

Appendix 1.2 contains the specification of hyperprior distribu-
tions and describes the exponentiated quadratic kernels defining the 
covariance matrices of each GP.

2.2.5  |  Priors on immigration

The estimated tLTRE contribution of immigration is unreliable 
without some form of regularisation (Paquet et al., 2021). We 

considered two multivariate priors on the number of immigrants, 
which achieve this regularisation in different ways. First, we used 
a Poisson- Lognormal prior for the number of immigrants each year:

This is analogous to a temporal random effect. Second, we used 
a Gaussian process prior (on the log scale):

where �log(In) is constant with value �log(In) and the covariance matrix 
Klog(In) is determined by an exponentiated quadratic kernel.

Appendix 2.4 contains the specification of hyperprior distribu-
tions for the Poisson- Lognormal and Gaussian process priors.

2.2.6  |  Goodness-of-fit

We used posterior predictive checks to assess the fit of our mul-
tievent models and IPMs (Conn et al., 2018). Currently, there is no 
test for the overall goodness-of-fit of IPMs (Schaub & Kéry, 2021; 
Chapter 7), and model checking practices are underdeveloped for 
multievent models (Pradel, 2005). See Appendix 3 for details.

2.2.7  |  Implementation

We fitted our IPM in Stan (Carpenter et al., 2017), using cmdstanr 
to interface from R (R Core Team, 2022), where we performed all 
other analyses. For all models, we ran four chains with 1000 warmup 
and 1000 sampling iterations each, and checked that all parameters 
had split- ̂R statistic less than 1.01 (Vehtari et al., 2021), large effec-
tive sample sizes and that divergent transitions after warmup were 
absent or rare (Monnahan et al., 2017). For further details of our 
implementation, including marginalisation of discrete latent states, 
approximations to Binomial and Poisson distributions, reduced 
data representations (Turek et al., 2016), and ‘cheap’, approximate 
Gaussian processes, see Appendix 6.

2.3  |  Transient life table response experiment

We conducted a tLTRE with the posterior samples of our fitted 
IPMGP,RE (Koons et al., 2016, 2017). Although seals were tagged 
from 1983, we restricted our tLTRE to the period 1990–2021. As 
all seals are tagged as pups, it takes several years for some stage 
classes to contain marked individuals, and hence for some class- 
specific vital rates to be informed by data (e.g. nb, non- breeders' 
breeding probability). To see how well the vital rates are informed 
by the data alone (without the influence of multivariate priors that 
share information between years), we fitted a ‘fixed effects' version 
of the multievent model with independent Uniform(0, 1) priors on all 

logit
(
�t
)
∼ Normal

(
�� , ��

)
for all t.

logit
(
�t
)
∼Normal

(
��,t , ��,t

)
for all t,

�� =
(
��,1, ⋯ ,��,T

)
∼Multivariate Normal

(
0,K

��

)
,

log
(
��

)
=
(
log

(
��,1

)
, ⋯ , log

(
��,T

))
∼Multivariate Normal

(
0,Klog(��)

)
.

Int ∼Poisson
(
Λt

)
for all t,

Λt ∼Lognormal
(
�log(Λ), �log(Λ)

)
.

log(In) ∼ Multivariate Normal
(
�log(In),Klog(In)

)
,

https://besjournals.onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2F1365-2656.14053&mode=


638  |    CHRISTIAN et al.

vital rates. Using it, we judged that the vital rates were only reliably 
estimated from 1990 (see Appendix 1.3, Figure S2).

We defined the total population size, Tott, as the sum of all stage- 
class sizes:

According to our population model (Equation 1), the realised 
population growth rate from year t to t + 1 is given by

Here, the variables pBr, pNb, pIn and pPb represent the proportion 
of the total population made of breeders, non- breeders, new immi-
grant breeders and pre- breeders (of any age), respectively. Note that 
the breeding probabilities f3, f4, bb and nb do not appear in the ex-
pression, because the total population size (hence realised growth 
rate) is unaffected by the stage class to which an individual tran-
sitions, as long as she survives. Lastly, to simplify the treatment of 
growth rate sensitivities to population structure (see Appendix 4.1 
for more details), we reparameterise our expression for �t in terms 
of pNb and pPb alone:

2.4  |  Simulations

To assess our model's ability to accurately estimate the demographic 
contribution of immigration, we conducted a simulation study fol-
lowing the recommendation of Paquet et al. (2021). We simulated 
data from IPMGP,RE under three levels of temporal variation in immi-
gration, then fitted IPMGP,RE to each simulated data set and compared 
the estimated tLTRE contributions to truth. For each simulation, we 
set all parameters equal to a random draw from the joint posterior 
of IPMGP,RE fit to real data. The only exception was �log(Λ), the stand-
ard deviation of the Poisson- Lognormal model for the number of 
immigrants. Under the ‘medium’ and ‘high’ levels of variation in im-
migration, we set �log(Λ) = 0.2 and �log(Λ) = 0.4, respectively. Under 
the ‘low’ level of variation, we set the number of immigrants to be 
constant over time.

Repeatedly fitting the IPM is computationally expensive, so we 
used an approximate, iterative procedure when fitting simulated 
data; see Appendix 5 for details.

3  |  RESULTS

3.1  |  Realised growth rate and tLTRE contributions

The realised population growth rate fluctuated appreciably over the 
period 1990–2021, but exceeded one for most of the last third of 
this period (Figure 2a). This is consistent with our count data and 
general impression of a population that is growing rapidly in recent 
years (Figure 2b). The tLTRE analysis suggests that breeder survival 
(sB) and immigration (�) were the two most important drivers of this 

growth (Figure 2c), although there is substantial uncertainty in the 
latter estimate (as is typical for additional parameters; Schaub & 
Kéry, 2021). These primary tLTRE contributions can be explained 
by the relatively large sensitivities of breeder survival and immigra-
tion, in conjunction with substantial temporal variation. Indeed, the 
annual number of immigrants fluctuated strongly over the study 
period, roughly trebling its minimum at its maximum and increasing 
sharply in recent years (Figure 2d). Breeder survival also showed a 
marked increase of ∼ 10 percentage points over the second half of 
the study period (Figure 2e).

Secondary tLTRE contributions were made by pre-  and non- 
breeder survival (sN), and the non- breeder proportion of total pop-
ulation (pNb). Although survival from weaning to age one (s0) varied 
more than the other survival probabilities (Figure 2e), its low sen-
sitivity resulted in a smaller tLTRE contribution. Lastly, the contri-
bution of the pre- breeder proportion of total population (pPb) was 
negligible.

3.2  |  Prior sensitivity of immigration

Our choice of priors on immigration and the vital rates had a 
substantial effect on the estimates of annual immigration and its 
demographic contribution. The annual estimates of immigration 
from models IPMGP,RE and IPMGP,GP showed similar trends, such 
as low immigration in the mid- 1990s and a sharp increase after 
2015 (Figure 3b). However, the GP prior on immigration resulted in 
smaller credible intervals and smoother estimates without strong 
outliers (e.g. IPMGP,RE's large estimate in 2001). The tLTRE esti-
mates reflected this reduction in the temporal variance of immi-
gration, with a smaller contribution from IPMGP,GP than IPMGP,RE 
(Figure 3a). The largest tLTRE estimate of immigration was pro-
duced by IPMRE,RE with ‘random effects' priors on the vital rates 
and immigration.

3.3  |  Priors on the vital rates and goodness-of-fit 
for the multievent model

We found that our multievent model with random effects priors on 
the vital rates failed to capture the number of detected breeders in 
the data (Figure 4a). Comparing the estimates of breeder survival 
from this model to models with Gaussian process priors (Figure 4c cf. 
4d), or fixed effects priors (Appendix 1.3, Figure S2), it appears that 
breeder survival was overestimated in the early years of the study, 
due to the ‘global’ sharing of information from the random effects 
structure. As a result of this, the annual number of detected breed-
ers between 1986 and 1995 was consistently lower in the real data 
than in most posterior replicate data sets (Figure 4a). When using 
the more flexible GP prior this lack of fit was corrected (Figure 4b), as 
the estimates for breeder survival could respond to apparent, sub-
tle trends and the uncertainty in these estimates could respond to 
scarcer information in the study's early years (Figure 4d).

Tott = Pb1,t + Pb2,t + Pb3,t + Pb4,t + Brt + Nbt + Int .
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)
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(
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F I G U R E  2  Estimates from IPMGP,RE and the tLTRE analysis for the period 1990–2021, showing posterior medians and 90% credible 
intervals. (a) Realised population growth rate; (b) total population size and the total number of locally born and new immigrant breeders 
(Brtot = Br + In). The black dots show the 15 October breeding counts. The small credible intervals for Brtot are not visible at this scale. (c) 
tLTRE contributions of survival from weaning to age 1 (s0), pre- breeder and non- breeder survival (sN), breeder survival (sB), immigration rate 
(�) and the proportion of total population comprised of pre- breeders of any age (pPb) and non- breeders (pNb). (d–f) Annual estimates for each 
of the variables in the tLTRE analysis.
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3.4  |  Simulations

When fit to simulated data, our IPM overestimated the 
contribution of immigration when the true contribution was 
small, slightly underestimated it when truth was moderate and 

substantially underestimated it when truth was large (Figure 5a). 
The coverage of posterior credible intervals was very poor when 
the number of immigrants was constant over time (50% intervals 
had 2% coverage, 90% intervals had 45% coverage), improved for 
the medium level of immigration (50% CrI: 62%, 90% CrI: 93%), 

F I G U R E  3  Sensitivity of tLTRE contributions (a) and annual estimates of immigration (b) to multivariate priors placed on the vital rates and 
immigration. The IPM subscripts indicate whether a ‘random effect’ (RE) or Gaussian process (GP) prior structure was used for the vital rates 
(first subscript) and for immigration (second subscript). Annual estimates for IPMRE,RE are not shown in (b) as they are qualitatively similar to 
those of IPMGP,RE with which it shares a prior on immigration (see Appendix 2.5, Figure S8 for all three).

(a) (b)

F I G U R E  4  Posterior predictive checks of breeder detections (top row), and breeder survival estimates (bottom row), for multievent 
models with random effects (RE) or Gaussian process (GP) priors. (a) The observed number of seals detected during the breeding season 
each year (in dark blue) and 100 posterior replicates (in grey) under RE priors. The inset shows the Bayesian p- value for a Freeman–Tukey 
discrepancy measure of expected and observed breeders over all years (see Appendix 3.1 for details). (b) As for (a), but for the multievent 
model with GP priors on vital rates. The number of detections is low in the first few years as few tagged seals have entered the breeding 
population. One year (1998) had anomalously low detections due to fieldwork constraints. (c, d) Annual estimates of breeder survival for the 
multievent model with RE (c) and GP (d) vital rate priors.
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but declined again under the high level of variation in immigration 
(50% CrI: 42%, 90% CrI: 81%).

In comparison with the posteriors obtained from simulated data, 
our estimate of the contribution of immigration is consistent with 
those obtained under medium or high temporal variation in immi-
gration (Figure 5b). Since the model did not overestimate the con-
tribution of immigration when temporal variance in immigration was 
medium or high, we conclude that our estimated contribution of im-
migration is not an overestimate.

4  |  DISCUSSION

We used more than 30 years of mark–recapture and population 
count data to estimate the demographic contribution of popula-
tion structure, female immigration and annual survival to population 
growth in southern elephant seals. Our IPM–tLTRE analysis suggests 
that increased adult survival and immigration are responsible for 
reversing the long- term population decrease of the Marion Island 
population. Adult survival strongly influences the lifetime reproduc-
tive success of long- lived iteroparous species (Gaillard et al., 1998), 
including southern elephant seals (Oosthuizen et al., 2018). On the 
other hand, little is known about the importance of immigration for 
the population dynamics of elephant seals, reflecting the general dif-
ficulty of quantifying immigration in wild animal populations.

In recent years, IPMs have become the go- to method for estimat-
ing immigration when direct data on movement from source popula-
tions is unavailable (Millon et al., 2019). Coupling these models with 
retrospective population analyses offers ecologists the long- sought 
possibility of quantifying immigration and the demographic role it 
plays in local population dynamics. One of our primary aims was to 
understand the role of immigration in the recovery of Marion Island's 

elephant seals over the last few decades. Previous work showed that 
a large proportion of breeding females could have been born else-
where (Oosthuizen et al., 2012), suggesting that immigration might 
be important in driving population growth. However, recent theoret-
ical work has shown that the IPM–tLTRE framework systematically 
overestimates the demographic contribution of immigration when 
the true contribution is small (see Figure 5a and Paquet et al., 2021). 
This is an issue of fundamental importance, but one which has not 
been adequately addressed in the literature; for example, it is not 
discussed in the recent monograph on IPMs (Schaub & Kéry, 2021).

To guard against erroneous inference about immigration, it 
is critically important to assess the goodness-of-fit of one's IPM. 
While all inference relies on a model that fits, immigration is partic-
ularly sensitive to model misspecification because it is not directly 
informed by data in an IPM (Plard et al., 2021; Riecke et al., 2019; 
Schaub & Kéry, 2021, Chapter 7). For the same reason, we expect 
that immigration and its demographic contribution will always be 
sensitive to the priors placed on it, as we found here (Figure 3). 
This is especially true of multivariate priors and the demographic 
contribution of immigration, because such priors directly influence 
temporal variance through shrinkage or smoothing. Furthermore, 
because immigration is a latent variable, we think it unlikely that 
one choice of prior could be preferred over another through good-
ness-of-fit or model selection. We therefore consider prior sen-
sitivity analysis to be essential for obtaining robust conclusions 
about immigration.

Another way to guard against erroneously overestimating the 
importance of immigration is to ‘calibrate’ the estimates from one's 
own model using simulation (Paquet et al., 2021). Fortunately, the 
bulk of our real data estimates from IPMGP,RE exceed the range 
of estimates from simulated data with small true contributions 
(Figure 5b). Furthermore, our IPM underestimated medium and 

F I G U R E  5  Transient life table response experiment (tLTRE) contributions of immigration for simulations in which IPMGP,RE is fit to data 
generated from the model, with low, medium or high levels of temporal variation in immigration. One hundred replicates were simulated 
under each level of immigration. (a) True versus estimated (posterior median) contributions for each simulation. (b) Posterior medians and 
90% credible intervals for the tLTRE contribution of immigration in each of the simulations, with the real data estimate overlaid in black.

(a) (b)
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large true contributions (Figure 5a). Taken together, this suggests 
that we have not overestimated the demographic contribution 
of immigration and may even have underestimated it. Therefore, 
although substantial uncertainty remains over our quantitative 
estimate of the contribution of immigration, at least partly due 
to prior sensitivity, we are confident of the ecological conclusion 
that immigration has played an important role in this population's 
recovery.

Elephant seal breeding populations within the Indian sector 
of the Southern Ocean are likely the main source of immigrant 
seals to Marion Island. Movement between Marion Island, Prince 
Edward Island and the Crozet archipelago is common (Oosthuizen 
et al., 2009, 2011) but these source populations (particularly Prince 
Edward Island; Bester & Hofmeyr, 2005) are relatively small (about 
4000 breeding females at Crozet; Laborie et al., 2023). Although 
more distant, the large populations of elephant seals at Heard Island 
and the Kerguelen Archipelago (about 100,000 breeding females; 
Laborie et al., 2023) probably also contribute immigrant seals to 
Marion Island (Bester, 1988; Oosthuizen et al., 2011). Both the 
Kerguelen and Crozet populations have increased since the 1990s 
(at 1.6% and 5.1% per annum, respectively; Laborie et al., 2023) and 
this could explain the increasing trend in immigrant seals estimated 
in our IPM. The general pattern of population increase may be linked 
to increased survival (but this is difficult to know as survival can only 
be estimated at Marion Island) and large- scale changes in productiv-
ity within the southern Indian Ocean in recent decades.

4.1  |  Regularising immigration

To the extent that it can be resolved, we view the problem of ac-
curately estimating the demographic contribution of immigration 
as a regularisation problem (assuming, crucially, that the IPM fits 
the data). Regularisation refers to a suite of techniques that con-
strain model estimates through the use of penalised likelihoods 
(in frequentist inference) or regularising priors (in Bayesian infer-
ence; Hobbs & Hooten, 2015; McElreath, 2020). Since immigra-
tion is not directly informed by data, it offers the IPM an almost 
unconstrained variable with which to fit the data (and its noise), 
and this makes regularisation a sensible strategy. Furthermore, 
Paquet et al. (2021) showed that an IPM without any regularising 
prior on immigration (their IPMNoConst) dramatically overestimated 
the demographic contribution of immigration, while estimates 
from an IPM with regularising ‘shrinkage’ priors (their IPMPois) 
were unbiased when the true contribution was moderate or large. 
Therefore, we consider regularisation to be essential for estimat-
ing the demographic contribution of immigration as accurately as 
possible.

Granting this, the problem becomes one of choosing an appro-
priate regularising prior. The natural candidates are multivariate 
priors that share information between the annual estimates of im-
migration. To date, most (if not all) IPMs that have used a multivari-
ate prior on immigration have opted for a Poisson- Lognormal prior 

or similar temporal random effect (Paquet et al., 2021). These pri-
ors share information between annual estimates but do not take 
into account time- series structure. For example, the annual esti-
mates of immigration in 1990 and 2019 are given equal weight in 
informing the estimate in 2020. In contrast, our Gaussian process 
prior exploits the time- series structure in the problem by inducing 
correlations between annual estimates in nearby years. These cor-
relations decay with increasing time between years, so the 2019 
estimate is much more informative of the 2020 estimate than is 
the 1990 estimate.

Our results suggest that Gaussian process priors on immi-
gration have potentially useful properties for estimating the de-
mographic contribution of immigration. In comparison with the 
Poisson- Lognormal prior, the GP prior provides smoother annual 
estimates with smaller standard errors (Figure 3b). This trans-
lates into reduced temporal variance in the posterior samples of 
immigration, and results in a smaller estimate of its demographic 
contribution (Figure 3a). If immigration is absorbing residual vari-
ation in the IPM (as it is expected to; Paquet et al., 2021), this 
behaviour may help to ‘push’ that variation into other variables 
in the model where it is less detrimental to the tLTRE estimates. 
At the same time, the GP prior was flexible enough to capture 
apparent trends that contribute to temporal variance in immigra-
tion (e.g. the post 2015 increase in immigration; Figure 3b). These 
properties suggest that GP priors may be capable of providing 
more accurate estimates of the demographic contribution of im-
migration, but more work is required to formally assess if and 
when this is the case.

4.2  |  Sensitivity of immigration to vital rate priors

Perhaps surprisingly, the contribution of immigration was also sensi-
tive to the prior structure on the vital rates (IPMRE,RE cf. IPMGP,RE ). 
This occurred even though we have strong mark–recapture data, 
with hundreds of marked pups and breeders annually, and high de-
tection probabilities (Appendix 1.3, Figure 4). Our interpretation of 
this result is that the effect of vital rate priors on the contribution of 
immigration was mediated through goodness-of-fit. The more flex-
ible GP priors on the vital rates improved the model fit in at least 
one important respect (Figure 4a,b). The improved fit of IPMGP,RE 
is probably responsible for its smaller tLTRE contribution relative 
to IPMRE,RE, because a lack of fit should increase residual variation, 
which is probably absorbed by immigration, inflating its temporal 
variance (Paquet et al., 2021).

One could reasonably ask why we have considered IPMRE,RE,  
when its component multievent model fails an important 
goodness- of- fit test (Figure 4a). We did so because it illustrates 
that the degree of fit of an IPM may have a non- negligible effect 
on the downstream tLTRE estimate of immigration. In our case, we 
could detect (one kind of) lack of fit with a simple posterior pre-
dictive check, but this may not always be easy. Indeed, Bayesian 
p- values are known to be ‘conservative’ (they do not indicate 
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true lack of fit as often as they should; Conn et al., 2018), and 
goodness- of- fit tests for multievent models and IPMs are both un-
derdeveloped at present. Therefore, it is conceivable that differ-
ent IPMs could all have passable fit in terms of the tests applied, 
but substantially different estimates of the demographic contribu-
tion of immigration.

5  |  CONCLUSIONS

Dispersal significantly influences ecological and evolutionary 
patterns by directly affecting processes such as gene flow, popu-
lation size and species viability. Yet, because immigration can be 
challenging to estimate, it is often disregarded as a demographic 
process that affects the population dynamics of colonially breed-
ing marine predators. Female elephant seals generally have 
high site fidelity (Hofmeyr et al., 2012) and male- biased disper-
sal would not be unusual in this extremely polygynous species. 
However, our results suggest that female dispersal and connec-
tivity between distant populations, along with adult survival, 
were the main drivers responsible for the rebound of the Marion 
Island population.

This study is one of a growing number of studies that have used 
the IPM–tLTRE framework and found immigration to be one of the 
most important drivers of population dynamics (Millon et al., 2019; 
Paquet et al., 2021). Given the potential biases inherent in this pro-
cedure (Paquet et al., 2021) and the sensitivity to prior choices, it is 
probably wise to interpret the contribution of immigration as ‘im-
migration plus noise’ in many circumstances (Paquet et al., 2021). 
Of course, what we want to estimate is immigration, and regular-
ising priors could be a useful tool to reduce the noise in these esti-
mates. Gaussian processes are often used to model time series (e.g. 
Gelman et al., 2013, Chapter 21; Vehtari, 2023), but have, to our 
knowledge, not been used in the context of IPMs before (e.g. Schaub 
& Kéry, 2021). Our results suggest promise for regularisation, but 
further investigation is required so that a regularising prior can be 
chosen in a principled way.
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