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Abstract— Due to dynamic characteristic of demand response
and stochastic nature of power generation, it brings great
challenge to smart energy management. In this paper, a demand
response model is created with two-level dynamic pricing transac-
tion among grid operator, service provider and customers, which
also involves customers’ active participation with load shifting
issue. To effectively control system load on the demand side,
an improved deep reinforcement learning approach is proposed
with a recursive least square (RLS) technique to deal with the
dynamic pricing demand response problem, which accelerates the
on-line training and optimization efficiency. On the power gen-
eration side, a probabilistic penalty-based boundary intersection
(PBI) based multi-objective optimization algorithm is improved
to optimize the economic cost, emission rate and statistic voltage
stability index (SVSI) simultaneously with generated stochastic
scenarios, which can ensure energy conservation and environmen-
tal protection, as well as system security. The case results reveal
that the proposed two-level optimization strategy successfully
deals with energy management with dynamic pricing demand
response.

Note to Practitioners—This paper is motivated by solving
stochastic energy management issue of isolated power system
with dynamic pricing demand response. Those existing methods
merely focus on the load demand or power generation side, and
the methods for demand response issue lacks efficient on-line
learning ability, while this work proposes a recursive least square
based deep reinforcement learning approach to tackle with the
two-level dynamic pricing demand response issue, scenario based
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PBI multi-objective optimization is proposed to solve the power
dispatch issue on power generation side, and the numerical
analysis results suggest that the proposed optimization strategy
can deal with the whole energy management issue well. The
future work will focus on the dynamic power-load coordination
in the energy management issue.

Index Terms— Demand response, stochastic, energy manage-
ment, reinforcement learning, multi-objective optimization.

I. INTRODUCTION

DUE to the increasing penetration of intermittent energy
resources, demand response (DR) plays a crucial role

in enhancing power system reliability by reducing peak load
stress and minimizing potential supply interruptions from
power generators [1], [2]. Existing research has extensively
explored price-incentive-based DR models to reduce consump-
tion during peak periods [3], [4], [5], [6], [7], [8], [9], [10],
[11]. Literature [3] proposes a demand response management
system with service provider and customers, mutual optimal
solution can be made by service provider for the utility.
In [5], a deep reinforcement learning (DRL) based energy
management algorithm is proposed with a neural network
for electricity price forecasting. In [8], a demand response
algorithm for smart facility energy management based on
deep reinforcement learning is proposed, using long short-term
memory units and multi-layer perceptions to effectively mini-
mize power costs while maintaining satisfaction. Literature [9]
considers the uncertainty of resident’s behavior, real-time elec-
tricity price and outdoor temperature, and proposes a real-time
DR strategy for optimal scheduling of home appliances. Lit-
erature [11] presents a dynamic pricing demand response
model with considering grid operator, service provider and
customers, and utilizes a Q-learning method to solve it.
Although these price-incentive-based DR models can manage
demand response to some extent, most rely on one-stage
approaches that fail to consider the dynamic adjustments in
customer behavior resulting from discrepancies between power
generation and system load. This limitation makes one-stage
approaches inefficient at dynamically controlling load demand.

Afterwards, some existing energy management approaches
are presented to deal with both DR and power dispatch
issues [12], [13], [14], [15], [16], [17], [18], [19], [20].
Reference [12] proposes an efficient online algorithm within
an AC optimal power flow framework for real-time load
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scheduling in micro-grids, providing competitive scheduling
decisions based only on past and current inputs. In [14],
a hierarchical optimization mechanism for demand response
aggregators is proposed that integrates self-scheduling and
load decomposition to optimize market participation by
identifying customer behavior. Literature [17] proposes a
distributed demand response method for multi-energy resi-
dential communities, using coordination decision-making and
information transmission mechanisms to optimize coordina-
tion. Literature [20] proposes an extension to the classical
two-stage stochastic programming model to capture the inter-
actions between local generation and demands with uncertain
renewable generation and heterogeneous energy management
settings. However, those existing one-stage DR models lack of
considering customers’ dynamic adjustment behavior caused
by the deviation between power generation and load demand,
and those solution approaches rely on accurate model for
dealing with dynamic and uncertain issues [21]. Hence, the
wholesale price is taken as the function of power balance
deviation on the basis of formulated model in literature [11],
which can balance power generation and load requirement
combined with load shifting mechanism. Besides, stochastic
power generation model with multiple objective requirements
is also created under above dynamic pricing mechanism,
and a two-stage optimization strategy with adjusting both
system load and power generation is proposed for dealing with
smart energy management issue. The main contributions are
summarized as follows:

(1) To well control load requirement on the demand side,
a two-level dynamic pricing demand response model is for-
mulated with load shifting mechanism, it can make optimal
wholesale price, retail price and load shifting schemes, which
can better trade-off the total economic benefit and customers’
dissatisfaction.

(2) Due to dynamic and uncertain characteristics of DR,
an improved deep deterministic policy gradient (DDPG)
algorithm is proposed to enhance on-line learning efficiency
with a recursive least square approach, which can accelerate
real-time training efficiency with considering its Markov deci-
sion process with forgetting factors.

(3) To deal with stochastic multi-objectives optimization
issue on power generation side, a decomposition based
multi-objective algorithm is improved under a probabilistic
PBI framework with random drift mechanism to adaptively
search Pareto optimal schemes, which can reduce the compu-
tational complexity and speed up the optimization efficiency.

The remainder of the paper is organized as follows: The DR
problem formulation is presented in section II, the stochastic
optimal model of power generation is presented in section III,
the proposed methodology is shown in section IV, and the
simulation results and conclusion are presented in section V
and section VI.

II. UPPER-LAYER OPTIMIZATION MODEL BASED ON
TWO-LEVEL DYNAMIC PRICING DEMAND RESPONSE

The electricity market plays a crucial role in manag-
ing demand-side loads by fostering dynamic interactions
among the three principal stakeholders: grid operators, ser-
vice providers, and customers. Grid operators oversee the
high-voltage national grid, determining wholesale electricity

Fig. 1. The structure of dynamic pricing demand response.

prices based on real-time data regarding total load consump-
tion and power generation. This pricing mechanism balances
supply and demand to enhance system stability and efficiency.
Service providers act as intermediaries, purchasing electricity
at wholesale prices and reselling it to customers at retail
prices. Their pricing strategies are crafted to respond to market
conditions, maximize returns, and promote efficient energy
use among customers. Dynamic pricing encourages customers
to modify their energy consumption based on price signals,
resulting in energy savings and cost reductions. Customers
actively engage in the dynamic pricing demand response (DR)
program, optimizing their energy usage to reduce costs and
help balance energy demand [11]. A transparent and respon-
sive pricing model aligns customer behavior with the energy
system’s broader goals, promoting peak shaving and valley
filling to flatten the load curve and enhance supply-demand
equilibrium. Figure 1 illustrates the collaborative relationship
among grid operators, service providers, and customers, show-
ing how cooperation in the electricity market improves energy
management and system stability. This model incentives all
parties to adopt practices that advance their respective goals
while enhancing the overall efficiency and sustainability of the
energy system.

A. Customers’ Model
Customer’s load can be classified as load demand and load

consumption, load demand is customer’s required load before
consumption, and load consumption is the load that is actually
consumed. Each load can be classified as critical load and
controllable load, which means:{

lt,n = lcri tic
t,n + lcon

t,n , t = 1, 2, . . . , T ; n = 1, 2, . . . , Nc

L t,n = Lcri tic
t,n + Lcon

t,n , t = 1, 2, . . . , T ; n = 1, 2, . . . , Nc

(1)

where lt,n and L t,n represent load consumption and load
demand of nth customer at t th period, lcon

t,n and Lcon
t,n denote

controllable load consumption and controllable load demand
of nth customer at the t th period, lcri tic

t,n and Lcri tic
t,n are critical

load consumption and critical load demand of nth customer at
the t th period. T and Nc represent total time period length and
customer number. Critical loads denote the load demand that
must be critically satisfied, while controllable loads mean all
system loads other than critical loads. The load consumption
of critical loads must equal to load demand, which means that
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lcri tic
t,n = Lcri tic

t,n . Load consumption of controllable loads at
customers can be described by:{

lcon
t,n = Lcon

t,n [1+ ξt (ρ
retail
t,n − ρ

g
t )/ρ

g
t ]

ρretail
t,n ≥ ρg,t

(2)

where ξt < 0 denotes the elastic parameter at the t th time
period, but it ensures lcon

t,n positive, which means that it satisfies
ξt > ρ

g
t /(ρ

g
t − ρretail

t,n ) when ρretail
t,n > ρ

g
t . ρretail

t,n represents
the retail price of the nth customer at the t th period, ρ

g
t is

the wholesale price from the grid operator at the t th period.
The dissatisfaction cost function Cdis

t,n of each customer at the
t th period can be described as:{

Cdis
t,n =

αn

2
(Lcon

t,n − lcon
t,n )2
+ βn(Lcon

t,n − lcon
t,n )

Dmin ≤ Lcon
t,n − lcon

t,n ≤ Dmax

(3)

where αn > 0 and βn > 0 are parameters related to the
customer (CU). Specifically, αn represents the preference value
among different CUs, while βn is a predetermined constant.
The parameter αn reflects the CU’s attitude towards reducing
electricity demand: The larger αn value indicates a greater
inclination of the CU to reduce demand to increase satisfac-
tion, and vice versa. Dmin and Dmax denote lower bound and
upper bound of the deviation between load demand and load
consumption, respectively. The quadratic term in the equation
encourages the system to minimize the difference between
demand and consumption, thereby promoting a more bal-
anced and stable energy consumption pattern. The linear term
represents an additional penalty when the actual controllable
consumption is less than the controllable load demand. The
electricity purchasing cost C pur

t,n from service provider can be
described as:

C pur
t,n = ρretail

t,n ∗ lt,n (4)

The main goal of each customer is to minimize the cost as
follows:

Cn = min
T∑

t=1

(Cdis
t,n + C pur

t,n ) (5)

B. Service Provider and Grid Operator Model
The main goal of the service provider is to maximize

economic profit B by alternating dynamic retail price as
follows:{

B = max
∑T

t=1

∑Nc

n=1
(ρretail

t,n − ρ
g
t ) ∗ lt,n

κminρ
g
t,min ≤ ρretail

t,n ≤ κmaxρ
g
t,max

(6)

where κmin and κmax represent the predetermined coefficients
of retail price bounds, ρ

g
t,min and ρ

g
t,max denote the lower bound

and upper bound of the wholesale price at the t th period. The
grid operator decides the wholesale price ρ

g
t for the service

provider with consideration of energy supply-demand balance
at the current period, it will increase as demand surplus
and decrease as power surplus, which means that it can be
expressed as: {

ρ
g
t = G(lt , lt − P̂ t )

lt =
∑Nc

n=1
lt,n

(7)

where G(·) represents the relationship function among power
generation, load demand and electricity price, lt is the total
load consumption at t th period, P̂ t denotes the predicted total
power output at t th period. The power supply P̂ t can be
described as

∑NBus
b=1 Pb

G,t , where Pb
G,t denotes power generation

of bth bus at t th period. The service provider also offers load
shifting scheme for customers to save economic cost with
invariant total load of arbitrary customer, the controllable part
of load consumption can be described as:

lcon
t,n =

∑
t ′∈4+t

1t ′,t,n −
∑

t ′∈4−t
1t,t ′,n

0 ≤ 1t ′,t,n ≤ 1max,t,n

0 ≤ 1t,t ′,n ≤ 1t,max,n∑
t∈T

∑
t ′∈4+t

1t ′,t,n =
∑

t∈T

∑
t ′∈4−t

1t,t ′,n

(8)

where 1t ′,t,n represents load shifting from t ′th period to
t th period at nth customer, 4−t and 4+t denote period set of
shifting load from and to t th period, 1t,max,n and 1max,t,n are
the maximum limits of load shifting from and to t th period.

C. Objective Function
As a dynamic pricing demand response program is to

maximize profit of the service provider and save economic cost
of customers, the total objective can be described as follows:

CL = max[wB − (1− w)

Nc∑
n=1

Cn] (9)

where 0 < w < 1 represents the weight parameter. With
consideration of customer’ quantification cost, benefit income
cannot be measured in the same way, discount weight w is
applied to describe total benefit of service providers.

III. SCENARIO BASED OPTIMAL OPERATION OF HYBRID
ENERGY SYSTEM IN LOWER-LAYER MODEL

A. Multiple Objective Requirements
On the power supply side, hybrid energy system including

stable power generator, wind power and energy storages is to
coordinate all energy resources to meet load demand require-
ment. With consideration of the stochastic characteristics of
wind power, a scenario based technique is utilized to create
the optimal operation model of hybrid energy system.

1) Minimization of Generation Cost: Since power gener-
ation cost is mainly caused by stable power generators and
energy storage units, it can be described as [22]:

F1 =
∑Ns

s=1

∑T

t=1
Pr(s)

∑NBus

b=1
( f b,s

T he + f b,s
E S )

f b,s
T he =

∑N c
b

i=1
[αb

i0 + αb
i1 Pb,s

c,i,t + αb
i2 Pn,s

c,i,t
2

+|αb
i3sin(αb

i4(Pb,min
c,i − Pb,s

c,i,t ))|]

f b,s
E S =

∑N e
b

l=1
ρ

b,l
E S|P

b,s
e,l,t |

(10)

where Pr(s) represents the probability of the sth scenario,
f b,s
T he and f b,s

E S denote generation cost and charging/discharging
cost of power generator and energy storage units at bth bus in
the sth scenario, αb

i0, αb
i1, αb

i2, αb
i3 and αb

i4 are cost coefficients
of the i th stable power generator at the bth bus, Pb,s

c,i,t denotes
power output of the i th stable power generator at the bth bus
at the t th period in the sth scenario, Pb,min

c,i is the lower
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bound of power output of the i th stable power generator at
the bth bus, Pb,s

e,l,t denotes the charging/discharging output of
the lth energy storage unit at the bth bus, ρ

b,l
E S denotes the

charging/discharging cost parameter of the lth energy storage
unit at the bth bus, Ns and NBus are the number of scenarios
and buses, N c

b and N e
b denote the number of stable power

generator and energy storages at the bth bus.
2) Minimization of Emission Rate: As emission pollution

is also generated by stable power generator, another objective
is to minimize the emission rate of stable power generator,
which can be expressed as follows:

F2 =
∑Ns

s=1

∑T

t=1
Pr(s)

∑NBus

b=1
f b,s
emi

f b,s
emi =

∑N c
b

i=1
[βb

i0 + βb
i1 Pb,s

c,i,t + βb
i2 Pb,s

c,i,t
2

+βb
i3exp(βb

i4 Pb,s
c,i,t )]

(11)

where f b,s
emi represents emission rate at the bth bus in the

sth scenario, βb
i0, βb

i1, βb
i2, βb

i3 and βb
i4 are the coefficients of

emission rate of the i th stable power generator at the bth bus.
3) Minimization of statistic voltage stability index (SVSI):

To ensure voltage stability and keep power system away
from voltage collapse, the SVSI is utilized here to evaluate
the voltage stability index, it can be generally described as
follows [23]:

F3 = max
k
{L̂1,t , L̂2,t , · · · , L̂k,t , · · · , L̂ ND,t } (12)

where ND denotes the number of load buses, the voltage
stability index L̂k,t of the kth bus can be expressed as follows:

L̂k,t =

Ns∑
s=1

Pr(s)|1−

∑NBus
i=1 Bki V s

i,t

V s
k,t

| (13)

where V s
k,t represents the voltage at the kth bus, and Bki

denotes the element of matrix B, which can be calculated
as:

B = Y−1
L L Y LG (14)

where Y L L and Y LG represent sub-matrices of Jacobian
matrix. Y L L contains admittance elements between load buses,
while Y LG has admittance between load and generator buses.

B. Constraint Limits

Here, Pb,s
c,i,t , Pb,s

e,l,t , θ s
bj,t and Qb,s

G,t are taken as decision
variables to optimize generation cost, emission rate and SVSI
with satisfying following constraint limits. Specifically, θ s

bj,t is
the voltage angle between bus i and bus j at the t th period,
Qb,s

G,t denotes the reactive power supply at the t th period of
the bth bus.

1) Power Generation Limits: As power generators have
limited adjustment capacity, stable power output must satisfy
following conditions:{

Pb
c,i,min ≤ Pb,s

c,i,t ≤ Pb
c,i,max

DN b
c,i ≤ Pb,s

c,i,t − Pb,s
c,i,t−1 ≤ U Pb

c,i
(15)

where Pb
c,i,min and Pb

c,i,max represent the minimum and maxi-
mum output of the i th stable power generator at the bth bus,
DN b

c,i and U Pb
c,i denote ramp down and up limits of stable

output. Pb,s
e,l,t can be considered as Pb,s

cha,l,t when an energy stor-
age unit is in a charging state, otherwise, it is taken as Pb,s

dis,l,t
when it is in a discharging state. The charging/discharging
process must also satisfy:

Eb,s
l,t+1 = Eb,s

l,t + Pb,s
e,l,t ∗1T

Pb,s
e,l,t = ηb

cha,l Pb,s
cha,l,t , i f i t is charging

Pb,s
e,l,t = −ηb

dis,l Pb,s
dis,l,t , i f i t is discharging

Eb
l,min ≤ Eb,s

l,t ≤ Eb
l,max

0 ≤ Pb,s
cha,l,t ≤ Pb

cha,l,max

0 ≤ Pb,s
dis,l,t ≤ Pb

dis,l,max

Eb,s
l,0 = Eb

l,ini tial

(16)

where Eb,s
l,t represents the storage state of the lth energy

storage unit at the t th period at the bth bus of the sth scenario,
Pb,s

e,l,t is charging/discharging output, 1T denotes time period
length, Pb,s

cha,l,t and Pb,s
dis,l,t denote output of energy storage unit

at the charging and discharging state, ηb
cha,l and ηb

dis,l are the
efficiency factor of energy storage unit at the charging and
discharging state, Eb

l,min and Eb
l,max denote the minimum and

maximum bound of the lth energy storage unit at the bth bus,
Pb

cha,l,max and Pb
dis,l,max represent the maximum charging and

discharging limits of the lth energy storage unit at the bth bus,
Eb

l,ini tial denotes the initial storage unit state of the lth energy
storage unit at the bth bus.

2) Power Flow Limits: The power supply Pb,s
G,t (the sth sce-

nario of Pb
G,t ) at each bus can be described as:

Pb,s
G,t =

N c
b∑

i=1

Pb,s
c,i,t +

Nw
b∑

j=1

Pb,s
w, j,t +

N e
b∑

l=1

Pb,s
e,l,t (17)

where Pb,s
w, j,t denotes wind output of the j th wind generator

at the bth bus at the t th period of the sth scenario, Nw
b is the

number of wind generators at the bth bus. Some power flow
limits must be satisfied as follows: Pb,s

G,t − Pb
D,t = V s

b,t

∑Nb

j=1
V s

j,t (Gbj cosθ s
bj,t + Bbj sinθ s

bj,t )

Qb,s
G,t − Qb

D,t = V s
b,t

∑Nb

j=1
V s

j,t (Gbj sinθ s
bj,t + Bbj cosθ s

bj,t )

(18)

where Pb
D,t and Qb

D,t represents active power and reactive
power demand at the t th period of the bth bus, Gbj and Bbj
denote transfer conductance and transfer susceptance between
bus b and bus j , Nb is the number of adjacent buses to
bth bus. The summation of load Pb

D,t is total load consumption∑N
n=1 Ln,t , which means

∑NBus
b=1 Pb

D,t =
∑N

n=1 Ln,t . At the
same time, these variables have the following limits:

Vb,min ≤ V s
b,t ≤ Vb,max

Pb
G,min ≤ Pb,s

G,t ≤ Pb
G,max

Qb
G,min ≤ Qb,s

G,t ≤ Qb
G,max

|Ss
b,t | ≤ Smax

b

(19)

where Vb,min and Vb,max represent the minimum and maximum
voltage limits of bus b, which is mainly to the control voltage
to approximate reference voltage. Pb

G,min and Pb
G,max denote

the minimum and maximum bounds of power supply at bus
b, Qb

G,min and Qb
G,max are the minimum and maximum reactive

power at bus b, Ss
b,t denotes the apparent power flow at bus
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b, it can be calculated by

√
Pb,s

G,t
2
+ Qb,s

G,t

2
, and its maximum

limit is labeled Smax
b,t .

C. Probabilistic Analysis on Intermittent Energy Resources
Wind power can be the primary reason for the stochastic

characteristics of power system, while wind power generation
is strongly related to wind speed, the relationship between
them can be described as follows:

Pb,s
w, j,t =


Pb

w, j,max ∗
vb

j − vb
j,in

vb
j,rate − vb

j,in
, vb

j,in ≤ vb
j < vb

j,rate

Pb
w, j,max , vb

j,rate ≤ vb
j < vb

j,out

0, vb
j < vb

j,inorvb
j ≥ vb

j,out

(20)

where vb
j represents wind speed of the j th wind generator at

the bth bus, vb
j,in , vb

j,rate and vb
j,out denote cut-in, rated and

cut-out wind speed of the j th wind generator at the bth bus.
As it is stated in the literature [24], wind speed follows the
Weibull distribution function. The probability of the generated
scenario is mainly calculated with the distribution function of
wind power, which can be calculated as follows:

Pr(s) =
∫ ∫

�

Nw
b∏

j=1

NBus∏
b=1

fdis(Pb,s
w, j,t )d Pb,s

w,1,t · · · d P NBus ,s
w,Nw

b ,t (21)

where � represents the security level domain of generated
scenarios, f (·) denotes the probability density function (PDF)
of Fdis(·). With consideration of the stochastic characteristics,
suppose total wind power at the t th period in the sth scenario
is labeled as P s

w,t , P s
w,t can be divided into two parts: stable

output P s
w,t and fluctuating output P̃ s

w,t . Here, the fluctuating
output P̃ s

w,t can be divided into several intervals with different
probabilities, which is mainly on the basis of different levels of
power supply security. Since energy storage can be an excel-
lent energy resources for supplementing power disturbance due
to its quick response ability, the uncertainty risk levels can be
divided as:

� =



�1, 0 ≤ P̃ s
w,t <

1
N

N e
b∑

l=1

NBus∑
b=1

Pb
l,max

�2,
1
N

N e
b∑

l=1

NBus∑
b=1

Pb
l,max ≤ P̃ s

w,t <
2
N

N e
b∑

l=1

NBus∑
b=1

Pb
l,max

· · ·

�N ,
N − 1

N

N e
b∑

l=1

NBus∑
b=1

Pb
l,max ≤ P̃ s

w,t <

N e
b∑

l=1

NBus∑
b=1

Pb
l,max

(22)

where �i (i = 1, 2, · · · , N ) represents the i th uncertainty risk
level, N is the number of uncertainty risk levels, Pb

l,max denotes
the maximum and minimum charging/discharging output.

IV. THE PROPOSED TWO-STAGE OPTIMIZATION
STRATEGY FOR SMART ENERGY MANAGEMENT

Due to the dynamic characteristics of demand response
and stochastic power generation, a two-stage optimization

strategy is proposed to address smart energy management
within the dynamic pricing mechanism of power systems. This
strategy can be viewed as a hierarchical strategy consisting
of an upper and lower stage, designed to optimize both the
load side and the generation side. The upper layer (first
stage) involves optimizing load-side management, including
interactions between consumers and service providers. The
grid operator determines the wholesale electricity price based
on deviation of total load consumption and generation. Subse-
quently, the service provider sets the retail electricity price
to maximize returns while promoting efficient energy use
among customers. The lower stage (second stage) focuses on
optimizing power generation. In the upper stage, a learning-
based approach is used to solve the dynamic pricing problem
on the load side. The pricing strategy is optimized based on
demand response, which, in turn, affects customer behavior
and load demand patterns. The dynamic pricing mechanism
aims to balance supply and demand by encouraging customers
to shift their consumption to off-peak hours, thereby smooth-
ing the overall load curve. In the lower stage, a scenario-based
PBI approach is used to optimize power dispatch, considering
the intermittent nature of energy resources. This optimization
considers probabilistic characteristics and stochastic scenarios
to ensure economic cost-effectiveness, reduce emissions, and
improve voltage stability. Power dispatch optimization relies
on load demand derived from the dynamic pricing layer to
ensure that the generation mix aligns with the expected load
pattern. Separating the optimization into these two stages
allows for strategic optimization of each aspect, resulting in
a comprehensive strategy that maximizes economic efficiency
and system reliability.

A. Improved Deep Reinforcement Learning Approach for
Dynamic Pricing Demand Response

Given the inherent uncertainty and flexibility within the
electricity market, employing deep reinforcement learning for
dynamic pricing decision-making presents substantial advan-
tages. This approach eliminates the need to predefined an
environmental model dictating retail pricing behavior. Instead,
it facilitates an empirical understanding of the relationship
between retail prices and profits through dynamic interac-
tions with customers (CU). Furthermore, deep reinforcement
learning adapts to constantly evolving market conditions by
continuously integrating both historical and real-time data.
This capability not only enhances the effectiveness of demand
response mechanisms but also contributes to the develop-
ment of optimal dynamic pricing strategies. The dynamic
pricing problem can be modeled as a discrete finite horizon
Markov decision process (MDP) due to uncertainty relation-
ship between wholesale price and load demand. As it is known
that MDP has four main elements, which can be defined as
follows:

1) State Set: The power demand of customers is
defined as a state set, which can be described as S =
{S1, S2, · · · , St , · · · , ST }, where St = {(L t,n, lt,n)|n =

1, 2, . . . , Nc}.
2) Action Set: The action set mainly consists of a retail

price and a wholesale price, which can be described as A =
{A1, A2, · · · , At , · · · , AT }, where At = {(ρ

retail
t,n , ρ

g
t )|n =

1, 2, · · · , Nc}.
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3) Reward Set: The current reward of state St and action
At can be described as R(St , At ). Here, constraint limits are
taken as negative parts due to their negative effect on optima
approximation, it can be described as −V iocon , where V iocon
represents the extent of constraint violation, the positive part
of reward function is described as E , hence reward functions
can be defined as E−ξR V iocon , where ξR denotes the discount
factor. The constraint violation V iocon can be described as:

V iocon =

T∑
t=1

Nc∑
n=1

max{ρg
t − ρretail

t,n , 0}

+

T∑
t=1

Nc∑
n=1

max{Dmin − (Lcon
t,n − lcon

t,n ), 0}

+

T∑
t=1

Nc∑
n=1

max{(Lcon
t,n − lcon

t,n )− Dmax , 0}

+

T∑
t=1

Nc∑
n=1

max{κminρ
g
t,min − ρretail

t,n , 0}

+

T∑
t=1

Nc∑
n=1

max{ρretail
t,n − κmaxρ

g
t,max , 0}

+

T∑
t=1

|ρg,t − G(lt , lt − P̂ t )|

+

T∑
t=1

Nc∑
n=1

[

∑
t ′∈4+t

max(1t ′,t,n −1max,t,n, 0)

+

∑
t ′∈4−t

max(1t,t ′,n −1t,max,n, 0)]

+ |

∑
t∈T

∑
t ′∈4+t

1t ′,t,n −
∑
t∈T

∑
t ′∈4−t

1t,t ′,n| (23)

4) State-Value Function: The state-value function mainly
evaluates the results after a sequence of state and action,
which means that it must be a function of state S and action
A. Combined with Bellman theory, the state-value function
Q(S, A) can be described as;

Q(S, A) = max
A
[R(S, A)+ ξQ max

A′
Q(S′, A′)] (24)

where S′ and A′ represent the state and action vector at
the next stage, ξQ denotes the discount factor of the state-
value function. In the DDPG algorithm, target critic network
and target actor network are utilized to enhance the learning
efficiency, and the transition is sampled from Environment to
be stored in Replay Bu f f er , the algorithm structure is shown
in Fig.2.

After actor-network and critic-network training on weights
θµ and θ Q , its generated action can be described as
argmaxA Q(S, A). During the training process, two target
networks are copied to deduce target value yi = R(S(i), A(i))+

ξQ Q(S(i), A(i)), where S(i) and A(i) represent the i th sample of
state vector and actor vector. Then, the training loss function
can be described as:

L =
1

Nsam

Nsam∑
i=1

(Q(S(i)′, A(i)′)− yi )
2 (25)

Fig. 2. The algorithm structure of RLS based DDPG.

where Nsam denotes the number of samples, S(i)′ and A(i)′

represent the i th sample of the state vector and actor vector
at the next stage. Those traditional DDPG algorithms adopt
off-line policy training mechanism, the policy gradient requires
to restart when new samples comes for training, which lacks of
flexibility to deal with dynamic pricing profile in the demand
response model. Hence, a RLS approximation approach is
utilized to improve the DDPG algorithm. With consideration
of the recursive model for sample learning, the loss function
can be rewritten as follows:

L =
k∑

i=k−p+1

(Q(S(i)′, A(i)′)− yi )
2 (26)

where k denotes the current training index, p is the recursive
training length. For avoiding an over-fitting issue, a regular-
ization norm must also be taken into consideration. Moreover,
state and act vector is a time-related Markov decision process,
recent samples have more influence on current training effi-
ciency, and a forgetting factor should also be considered. Then
the loss function can be updated as:

L =
k∑

i=k−p+1

γ k−i
Q (Q(S(i)′, A(i)′)− yi )

2
+ λQ

NQ∑
j=1

θ
( j)
Q

2
(27)

where 0 < γQ < 1 denotes the forgetting factor, λQ rep-
resents the discount factor. With consideration of neural
network learning of a critic network, the state-value function
Q(S(i)′, A(i)′) can be described as

∑NQ
j=1 θ

( j)
Q φ j (A(i)′), where

NQ is the number of hidden neurons in a critic network, θ
( j)
Q

represents the j th component of the critic network weight,
φ j (·) denotes the network function. The compact version of
the loss function can be expressed as follows:

L(2) = (Y −8T 2)T 0(Y −8T 2)+ λQ ||2||
2 (28)

where 2 represents vector [θ (1)
Q , θ

(2)
Q , · · · , θ

(NQ)

Q ]
T , Y =

[yk−p+1, yk−p+2, · · · , yk]
T , 8 is the NQ × p matrix with

element φ j (A(i)′), and matrix 0 can be described as:
γ

p−1
Q 0 0 0
0 γ

p−2
Q · · · 0

...
...

...
...

0 0 · · · 1

 (29)
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The optimal solution of the weight vector 2 can be approxi-
mated as follows:

2m+1 = (λQ I + Rm+1)
−1Um+1 (30)

where I represents the identity matrix, Rm+1 and Um+1 denote
two exponentially-weighted covariance matrices, which can be
deduced as: {

Rm+1 = γQ Rm +8T 8

Um+1 = γQUm +8T Y
(31)

According to the above procedures, the optimal weight of actor
network and critic network can be obtained, then the weight
θµ′ and θ Q′ of the target actor network and critic network can
be updated as follows:{

θµ′
← τθµ

+ (1− τ)θµ′

θ Q′
← τθ Q

+ (1− τ)θ Q′ (32)

where 0 < τ < 1 denotes the control parameter. After the
above procedures, those obtained target network weights can
guide learning at the next round.

B. Decomposition Based Probabilistic Multi-Population
Evolutionary Algorithm for Multiple
Objective Optimization

After dynamic optimization of the price-incentive demand
response, the optimal system load at each period can be
deduced, and the remaining issue is to manage power output on
the power generation side. Due to the stochastic characteristics
and multiple-objective requirement of power system, a prob-
abilistic multi-objective evolutionary algorithm is improved
to optimize its energy management problem. Obviously, the
optimal operation of power system is a multi-objective opti-
mization problem. In this paper, a decomposition based
probabilistic PBI algorithm is developed with an adaptive par-
ticle swarm optimization technique. The decision variable of
the sth scenario can be noted as x s

= [x s
1, · · · , x s

b, · · · , x s
Bus],

and each component x s
b can be described as:

Pb,s
c,1,1 · · · Pb,s

c,N c
b ,1 Pb,s

e,1,1 · · · Pb,s
e,N e

b ,1 θ s
b,1

...
...

...
...

...
...

...

Pb,s
c,1,T · · · Pb,s

c,N c
b ,T Pb,s

e,1,T · · · Pb,s
e,N e

b ,T θ s
b,T


(33)

Since those generated scenarios can increase computational
complexity during the optimization process, a scenario reduc-
tion technique is also utilized to deal with this problem. The
main idea of this scenario reduction is to screen out those
similar scenarios with covariance analysis, which can retain
the efficiency with less scenarios. For a given scenario x s ,
calculate the covariance Covss ′ between scenario s ∈ Ns and
another arbitrary scenario s ′ ∈ Ns , then the covariance set
Covs = {Covss ′ |s ′ ∈ Ns&s ′ ̸= s}, retains one scenario and
delete all other similar scenarios from Covs . After the above
scenario reduction technique on every scenario, then it can
obtain streamlined scenarios. Combined with scenario based
probabilistic characteristics, the optimal operation model of

a hybrid energy system can be divided into ND probabilistic
subproblems, which can be described as:

min g pbi (x |λi , z∗) =
∑Ns

s=1
Pr(s)(d i(s)

1 + ζd i(s)
2 )

d i(s)
1 = (F(x s)− z∗)T λi/||λi

||

d i(s)
2 = ||F(x s)− z∗ − (d i(s)

1 /||λi
||)λi
||

x s
∈ �, s = 1, 2, · · · , Ns

(34)

where λi represents the weight vector of the i th subproblem,
z∗ denotes the utopia vector, d i(s)

1 is the distance between
the projection point and z∗, d i(s)

2 is the distance between
initial point and projection point, F(x s) denotes the
objective function vector, which can be described as
[ f1(x s), f2(x s), · · · , fM(x s)], M denotes the number of
objective functions, � is the feasible domain. Then, each
subproblem can be treated as a single objective optimization
problem, and a random drift particle swarm optimization
algorithm is utilized to optimize it. Here, the velocity and
position of each particle can be updated as follows [25]:{

vk
i, j = α|Ck

j − xk−1
i, j |δ

k
i, j + β(Ek

i, j − xk−1
i, j )

xk
i, j = xk−1

i, j + vk
i, j , j = 1, 2, · · · , d

(35)

where vk
i, j and xk

i, j represent the velocity and position of the
i th particle in the j th dimension at the kth step, α and β

denote the drift coefficients, d is the number of the element
dimension, δk

i, j is the random number of the i th particle in the
j th component at the kth step, which is generated in a standard
normal distribution. Ck

j is the mean of the best position of
the j th dimension at the kth step, and Ek

i, j is the local focus
position of the i th particle in the j th dimension at the kth step,
they can be calculated as follows: Ck

j =

∑Np

i=1 yk−1
i, j

Np

Ek
i, j = κk

i, j yk−1
i, j + (1− κk

i, j )yk−1
i∗, j

(36)

where Np represents the number of particles, yk−1
i, j denotes the

j th dimension of the i th particle at the k − 1th step, yk−1
i∗, j is

the global best position at the k − 1th step, κk
i, j denotes the

random drift parameter, which can be calculated as follows:

κk
i, j =

c1r k
1,i, j

c1r k
1,i, j + c2r k

2,i, j

(37)

where c1 and c2 represent acceleration coefficients of seeking
pbest and gbest solutions, r k

1,i, j and r k
2,i, j denote two random

generated number in (0, 1]. According to the above iterations,
each subproblem can generate an optimal solution with a
certain weight vector, and all those optimal solutions can
form Pareto fronts of a multi-objective optimization problem.
In addition, all constraint handling techniques can be found in
the literature [26].

C. The Flowchart of Proposed Optimization Strategy for
Smart Energy Management

In the process of dynamic pricing based on learning algo-
rithms, a neural network is utilized to approximate the function
G(·) that models the relationship between power generation,
load demand, and electricity prices. The neural network, which
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Fig. 3. The flowchart of proposed two-level optimization strategy.

uses power generation and load demand as input variables,
seeks to predict electricity prices by training on historical data.
Through iterative training, the model incrementally refines its
approximation of the objective function G(·), thereby improv-
ing its ability to predict wholesale electricity prices under
specific conditions of power generation and load demand.
Subsequently, reinforcement learning is applied to determine
the optimal retail electricity price that motivates customers
to shift their load to adjust their energy usage in response
to fluctuating prices. This step is crucial for formulating an
effective pricing strategy that promotes the desired pattern
of electricity consumption. Demand forecasting is crucial in
enabling the supply side to plan and optimize power dis-
patch effectively. In the subsequent phase of scenario-based
power dispatch, scenario analysis techniques are employed to
envision various potential future scenarios in energy supply,
considering the variability and unpredictability of renewable
energy sources. A multi-objective optimization approach is
then implemented to balance economic costs, emission rates,
and voltage stability. The most efficient dispatch strategy is
obtained through the analysis of Pareto-optimal solutions.
This strategy not only addresses economic and environmental
considerations but also ensures voltage stability. The results
inform the demand side, facilitating further refinement of the
pricing model and dynamic pricing strategies. The flowchart of
proposed two-level optimization strategy has been presented
in Fig.3.

V. CASE STUDY

To verify the efficiency of the proposed optimization strat-
egy, this case presents a modified IEEE 112-bus test system,
where total system load is conducted by grid operator, service
provider, and customers. The results analysis of this case
mainly consists of dynamic pricing DR and multi-objective
power dispatch. The details of dynamic pricing DR can be
found in the literature [11], [27], the test system is studied at a
peak load 35 p.u. (base power 100KVA). On the power supply
side, the IEEE 112-bus system is modified with consideration

Fig. 4. The training process of DDPG, RDDPG and RLS based DDPG.

of three objectives, which include economic cost, emission
rate and SVSI issue, and related details can be seen in
the literature [23], [24], [27]. The entire time period is set
to 24 timeslots, that is, 24 hours a day. Considering the
complexity of the system simulation, the load demand curve of
the CU is obtained according to SDG&E, Wholesale electricity
prices are based on online data provided by ComEd on June
22, 2017, which can be seen in literature [11]. Some learning
parameters can be set as follows: The mini-batch size is set as
20, the forgetting factor γQ is set as 0.8, the discount factor
λQ is set as 0.65, the number of hidden neurons in critic
network is set as 10. In the upper-layer model optimization,
it mainly presents the wholesale price and retail price results
to control load demand and load consumption to maximize
the total benefit. In the lower-layer model optimization, four
test cases of multi-objective optimization results are presented
as: 1) Case 1: Optimization of economic cost and emission
rate; 2) Case 2: Optimization of economic cost and SVSI; 3)
Case 3: Optimization of emission rate and SVSI; 4) Case 4:
Optimization of economic cost, emission rate and SVSI.

A. Upper-Layer Model Optimization With Improved DDPG
Approach

Since the relationship between electricity price and system
load is unknown, an improved DRL approach is utilized to
learn its relationship function to seek minimum economic cost
or maximum profit. The learning process of the proposed
DRL method is presented in Fig.4, where it can be seen
that the proposed DRL converges with nearly 300 samples.
In comparison to DDPG and rule based DDPG (RDDPG)
in literature [28], the proposed RLS based DDPG performs
better for dealing with the training task. The details about
relationship between electricity price and total system load
can also be found in literature [28]. The optimal price and
controllable load are shown in Fig.5, it can be seen that the
load peak appears mainly at the 17-20th period, the retail price
is always higher than wholesale price, and the peak value
appears mainly at nearly load-peak period.

After the price incentive strategy, the system load before
adjustment and after adjustment are presented in Fig.6, sys-
tem load after adjustment has a more flat demand curve in
comparison to that before adjustment, which can be better
satisfied by power assignment from the power generation side.
Moreover, the comparison of the obtained results with DDPG
and RDDPG are also provided in Table.I, weight parameter w
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Fig. 5. The obtained load process and retail price by dynamic pricing DR.

TABLE I
THE COMPARISON OF DRL RESULTS ON DYNAMIC PRICING DR MODEL

Fig. 6. The load before adjustment and load after adjustment.

is set as 0.9, and total benefit can be calculated by service
benefit and service cost, and peak-valley deviation is well
controlled within 12MW, which is less than that of DDPG and
RDDPG. Combined with the computational time results, it can
be found that the proposed method can obtain larger benefit
as well as less economic cost within less computational time.

B. Lower-Layer Model Optimization With Probabilistic PBI
Based Multi-Objective Optimization Approach

After load control of the dynamic pricing DR model, the
remaining task is to assign power output to different generators
to satisfy system load on the demand side under the stochastic
environment. Stochastic scenarios are generated to simulate
the operation process, the PDF of each scenario can be
calculated with the PDF of wind power in literature [24].
To optimize economic cost, emission rate and SVSI simul-
taneously, a PBI framework based multi-objective particle
swarm optimization is utilized to obtain the optimal Pareto
fronts. Here, the test case consists of four test cases, and
it generates 20 Pareto optimal schemes for each test case.
(1) Case 1: The economic cost and emission rate are taken
as two objectives, those obtained Pareto optimal solutions
are shown in Fig.7 (a) and the economic cost and emission
rate value are presented in Fig.6 (b). It can be seen that the
proposed method can obtain Pareto fronts with both better con-
vergence and diversity distribution in comparison to NSGA-II

Fig. 7. The obtained schemes in case 1.

Fig. 8. The obtained schemes in case 2.

Fig. 9. The obtained schemes in case 3.

and MOPSO in literature [29]. Those obtained 20 Pareto
optimal values by proposed method are listed in Fig 7 (b),
it also reveals that economic cost and emission rate are two
conflicting objectives in this optimization model. (2) Case 2:
The obtained Pareto optimal solutions of economic cost and
SVSI are presented in Fig.8, where the proposed method can
obtain Pareto optimal fronts with better convergence and diver-
sity distribution than other alternatives when economic cost
and SVSI conflict with each other. (3) Case 3: The obtained
results of optimizing emission rate and SVSI are presented
in Fig.9, it can be seen that these two objectives conflict
with each other, and the proposed method can obtain better
Pareto fronts. (4) Case 4: The economic cost, emission rate
and SVSI are optimized simultaneously, those obtained Pareto
optimal solutions are presented in Fig.10. According to Fig.10,
it can be seen that the obtained Pareto front by the proposed
method converge better than that of the MOPSO algorithm
and NSGA-II, and it also has better diversity distribution
than other alternatives. In addition, it can be found that these
three objectives are contradictory in the optimization model
according to parallel axis plot results in Fig.11.

For further analysis on the obtained optimal scheme, scheme
(10) is taken as the compromise scheme (which is labeled
in Fig.10), its comparison results with other alternatives are
presented in Table.II, where it can see that the proposed
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Fig. 10. The obtained Pareto fronts in case 4.

Fig. 11. The parallel axis plot of 3 objective values.

TABLE II
THE COMPARISON OF MULTI-OBJECTIVE OPTIMIZATION

RESULT AND EFFICIENCY

multi-objective optimization can obtain less economic cost and
emission rate at a safer security level, the average voltage
deviation (VD) is 0.031, which is more stable than other two
alternatives. The above result analysis reveals that the proposed
method can be a viable alternative for energy management
of power system with dynamic pricing DR in a stochastic
environment.

VI. CONCLUSION

According to methodology analysis, some merits can be
concluded as follows: (1) The proposed RLS based DDPG
can accelerate on-line learning efficiency with a recursive
least square approach and forgetting factors, which can deal
with two-level dynamic pricing DR well. (2) The developed
multi-objective optimization algorithm under a probabilistic
PBI framework can optimize different objectives simulta-
neously, as well as reduce computational complexity in
a stochastic environment. While smart energy management
requires further dynamic coordination between load demand
and power generation, the future work is to focus on the
power-load dynamic coordination strategy.
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