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population affinity, where the estimation of population affin-
ity is considered possible as skeletal variation has been cor-
related to socially constructed populations around the world 
[1]. However, the relationship between skeletal morphology 
and social race is complicated and is important to acknowl-
edge [3]. This inherent complexity should be considered in 
all aspects of research, including terminology and method 
design, and in drawing conclusions when attempting to 
quantify population variation from the skeleton [4]. Foren-
sic anthropologists are attempting to be more cognizant of 
this fact and aim to enact transformation in how population 
variation is described and explored in the discipline.

The cranium is often considered the most accurate skel-
etal element for the evaluation of population affinity, with 
craniometry elected as the preferred approach. Numerous 
studies have assessed craniometric variation among South 
Africans [e.g., 5–4]. The use of standard craniometric vari-
ables have been found to produce satisfactory results when 
estimating population affinity with correct classifications up 
to 73% [7]. However, standard linear measurements mainly 

Introduction

The parameters of the biological profile consist of estima-
tions of age-at-death, stature, sex and population affinity, 
and require knowledge of skeletal variation within and 
between populations to be accurately established. Popu-
lations are groups with diverse histories influenced by 
numerous factors, all of which contribute to the patterned 
distribution of human variation [1, 2]. The quantification 
of skeletal variation among populations forms the basis of 
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Abstract
To date South African forensic anthropologists are only able to successfully apply a metric approach to estimate population 
affinity when constructing a biological profile from skeletal remains. While a non-metric, or macromorphoscopic approach 
exists, limited research has been conducted to explore its use in a South African population. This study aimed to explore 17 
cranial macromorphoscopic traits to develop improved methodology for the estimation of population affinity among black, 
white and coloured South Africans and for the method to be compliant with standards of best practice. The trait frequency 
distributions revealed substantial group variation and overlap, and not a single trait can be considered characteristic of any 
one population group. Kruskal-Wallis and Dunn’s tests demonstrated significant population differences for 13 of the 17 
traits. Random forest modelling was used to develop classification models to assess the reliability and accuracy of the traits 
in identifying population affinity. Overall, the model including all traits obtained a classification accuracy of 79% when 
assessing population affinity, which is comparable to current craniometric methods. The variable importance indicates 
that all the traits contributed some information to the model, with the inferior nasal margin, nasal bone contour, and nasal 
aperture shape ranked the most useful for classification. Thus, this study validates the use of macromorphoscopic traits 
in a South African sample, and the population-specific data from this study can potentially be incorporated into forensic 
casework and skeletal analyses in South Africa to improve population affinity estimates.

Keywords  Forensic anthropology · Population affinity · Ancestry · Random forest · Variable importance

Received: 13 February 2024 / Accepted: 3 April 2024 / Published online: 16 April 2024
© The Author(s) 2024

Exploring cranial macromorphoscopic variation and classification 
accuracy in a South African sample

Leandi Liebenberg1,2  · Ericka N. L’Abbé1  · Kyra E. Stull1,3

1 3

http://orcid.org/0000-0003-4310-5489
http://orcid.org/0000-0002-6722-8814
http://orcid.org/0000-0002-4541-6777
http://crossmark.crossref.org/dialog/?doi=10.1007/s00414-024-03230-2&domain=pdf&date_stamp=2024-4-15


International Journal of Legal Medicine (2024) 138:2081–2092

quantify size and are frequently unable to effectively capture 
the shape variation observable in the craniofacial complex. 
The use of alternative metric methods, such as geometric 
morphometrics, has gained greater popularity amid anthro-
pological research [10]. Geometric morphometrics entails 
recording landmark coordinates of complex objects in a 
three-dimensional space which then produces statistical and 
graphical outputs primarily using shape information. Shape 
differences among specimens can be observed as displace-
ment of individual landmarks within the total configuration 
of the object being assessed [11]. Researchers have noted 
coordinate-based analyses achieve greater classification 
accuracies than standard linear metrics, with approximately 
89% correct classifications among three modern South Afri-
can groups [8]. Thus, shape variation is of great importance 
when exploring craniofacial morphology and its use in 
assessing population affinity. The application of non-metric 
visual assessment is an alternative to quantify cranial size 
as well as shape in instances where geometric morphomet-
ric techniques are not a feasible option, as the method does 
not require any equipment and is not time consuming. How-
ever, the use of non-metrics is associated with numerous 
methodological issues and is known for perpetuating racial 
typological thinking in the assessment and understanding 
of human variation [12, 13]. As such, emerging research 
around the world has attempted to challenge and to improve 
the non-metric approach, now referred to as the macromor-
phoscopic (MMS) method, inclusive of adding definitions 
and comparative drawings, employing robust statistical 
tests, and gauging the accuracy of the method in different 
populations [12–15]. Greater emphasis has also been placed 
on exploring observer agreement and trait score variation 
when employing the traits [16, 17].

To date the MMS method has yet to undergo the same 
level of application and rigorous scientific testing in South 
Africa. While the frequency of some of the traits have been 
assessed, its application in classification models for the pur-
pose of forensic analyses has been very limited [18, 19]. 
With a lack of population-specific standards, South African 
practitioners may rely on North American standards, which 
is not recommended as differences have been shown to exist 
between North Americans and South Africans [18, 20–22]. 
This requires for additional work to be done to ensure the 
method meets international standards for best scientific 
practice [23]. The purpose of this study was to explore the 
MMS cranial variation among black, white and coloured 

South Africans to improve the methodology employed to 
estimate population affinity.

Materials and methods

The sample consisted of 660 crania of black, white and 
coloured South Africans (Table 1). The South African popu-
lation is diverse and consists of four major groups: South 
African blacks (81.0%), whites (7.7%) and coloureds (8.8%) 
make up the majority of the population; the remaining 2.6% 
of the population consists of individuals classified as Asian 
and Indian [24] (Statistics South Africa, 2022). Each group 
has a unique history within the country leading to the vast 
heterogeneity observed within and among the groups. Black 
South Africans descend from Bantu-speaking groups that 
migrated throughout sub-Saharan Africa from western-
central Africa approximately 3000 to 5000 years ago [25]. 
Further divisions among the southern Bantu-speakers based 
on factors associated with kinship, religion and language 
resulted in the numerous subgroups residing in southern 
Africa today [26]. Colonization of the Cape during the 17th 
century introduced European settlers to South Africa, shap-
ing the heritage of white South Africans. The settlers were 
mainly of Dutch origin, with additional contributions from 
French Huguenots and Germans that arrived in the 18th cen-
tury. Late in the 18th century South Africa was also colo-
nized by the English [27]. Coloured South African refers to 
a self-identified group unique to South Africa. The group is 
a result of the complex history of South Africa with genetic 
contributions from Khoe-San (considered indigenous South 
Africans), Bantu-speakers, Europeans, as well as Indians 
and other Asian groups that were brought to South Africa as 
slaves to maintain the Cape colony. The complex population 
structure and history of the coloured South Africans mani-
fests as a genetically and skeletally heterogeneous group 
with substantial variation [8]. While the varying origins of 
each group resulted in a uniquely heterogeneous popula-
tion with distinct structures, the group differences employed 
to attempt population affinity estimations persisted as a 
result of socio-political boundaries. Sociocultural identity 
in South Africa is based on the categorizations assigned to 
individuals during the Apartheid era, which contributed to 
widespread endogamy among groups [28].

The crania were sampled from the Pretoria Bone Col-
lection (University of Pretoria) and the Kirsten Collection 
(Stellenbosch University) in South Africa. The remains 
accessioned into the collections are of documented sex, age 
at death, and peer-reported population affinity [29, 30]. Eth-
ical approval (770/2018) to conduct the study was obtained 
from the Faculty of Health Sciences Research Ethics Com-
mittee at the University of Pretoria.

Table 1  Sample distribution
Population Males Females Total
Black SA 110 110 220
White SA 110 110 220
Coloured SA 110 110 220
Total 330 330 660
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A total of 17 MMS traits were visually assessed and 
scored following the methodology described by Hefner [12] 
and Plemons and Hefner [13] as used in the Macromor-
phoscopic Traits collection module (MMS version 1.6.1) 
(Table 2). The MMS module was used to capture the scores 
for each individual. Where traits are bilaterally expressed, 
only the left side was recorded. If the left side was not avail-
able, the right side was used.

All statistical analyses were completed using the soft-
ware R version 4.1.0 [31], and included assessments of 
observer agreement, exploratory analyses, and the creation 
of classification models. Ten crania were randomly selected 
to test observer agreement. Two observers scored the crania; 
both observers are experienced with skeletal analyses, but 
only one observer has extensive experience with the traits. 
The observers discussed the trait definitions and methodol-
ogy prior to collecting the scores for analysis. The repeat-
ability of the traits was assessed with Cohen’s kappa using 
the irr package in R; different weights were given to the 
scores depending on the data structure of the trait. Standard, 
unweighted kappa was used for the ordinal scores where 
the different trait states are unranked. For the ranked scores 
(i.e., ANS, INA, MT, NAW, and PZT), a quadratic weighted 
kappa was employed. Calculated kappa values can range 
from − 1 to 1, where values closer to 1 indicate greater 
agreement. No universally accepted cut-off point for satis-
factory observer agreement currently exists. However, to be 
consistent with nomenclature when describing the strength 
of agreement associated with kappa statistics, the param-
eters proposed by Landis and Koch [32] was used.

The MMS scores were used to create frequency distri-
butions to assess the occurrence of each trait per group. 
Kruskal-Wallis tests were used to identify if any traits dem-
onstrated significant differences among the populations. 
Kruskal-Wallis is a non-parametric test used to compare 
three or more groups which operates under the assumptions 
of independence of scores but is not bound by assumptions 
of normality or homogeneity of variance [33]. Addition-
ally, a post-hoc Dunn’s multiple comparisons test (with a 
Holm’s adjustment) was used to further explore differences 
in the trait frequencies among the populations. The Holm’s 

adjustment counteracts the effects of multiple comparisons 
and prevents increased probability of Type I errors occur-
ring [34]. More specifically, where Kruskal-Wallis indicates 
the presence of significant differences, the Dunn’s test indi-
cates which groups in a multiple comparison differ from one 
another to better interpret group overlap.

Random forest models (RFM) were created to classify 
the crania according to population affinity, as well as pop-
ulation affinity and sex concurrently. RFM is a non-para-
metric machine learning method that was introduced as an 
improvement upon decision trees [35]. Decision trees are 
a type of classification model that uses sequential splitting 
values (such as MMS traits) to predict the probability of an 
unknown belonging to a certain class (i.e., population affin-
ity) to separate a dataset into groups [36]. Within each data 
split, known as “nodes” in the tree, the variable that is most 
strongly associated with the response variable (a specific 
group) is selected for the next split until a stopping condi-
tion is met. In the case of the current study, the stopping 
condition is an overall population estimate based on the 
ensemble of multivariate trees. The overall population esti-
mate is reached by combining the most likely response from 
all of the nodes, or in the case of RFM, all of the trees in the 
ensemble. This is achieved by means of voting in classifica-
tion; simply put, the population group that receives the most 
“votes” from the trees is returned as the overall prediction 
[35]. A total of 2500 classification trees were used for each 
model with four variables at each split. Furthermore, RFM 
ranks the importance of each variable included in the clas-
sification ensemble, giving an indication of which variables 
are most discriminatory in the model and which variables 
do not contribute to the classification [14]. Two measures 
of variable importance were employed, namely the mean 
decrease in the Gini index, and the mean decrease in the 
permutation accuracy. The Gini index measures how much 
each predictor variable contributes to the overall reduction 
in node impurity achieved by splitting the data on each 
variable across all trees in the forest. The mean decrease is 
calculated for each variable by averaging the reduction in 
the Gini index across all nodes where that specific variable 
is used for splitting. The Gini criterion has been shown to 
favour variables that have many categories (or trait states) 
and can be influenced by highly correlated variables; thus, 
the Gini index should not be used as the only indicator of 
variable importance [37]. The mean decrease in the per-
mutation accuracy was also assessed, where the relative 
importance of each predictor variables is calculated by mea-
suring the decrease in model accuracy across all trees upon 
removal of the variable. With both measures of variable 
importance, the higher the value, the more a variable con-
tributes to the classification (i.e. the more important a vari-
ables is to the model). Finally, out-of-bag observations can 

Table 2  Macromorphoscopic traits and abbreviations
Anterior nasal spine ANS Nasofrontal suture NFS
Inferior nasal 
aperture

INA Orbital shape OS

Interorbital breadth IOB Post-bregmatic depression PBD
Malar tubercle MT Posterior zygomatic tubercle PZT
Nasal aperture shape NAS Supranasal suture SPS
Nasal aperture width NAW Transverse palatine suture TPS
Nasal bone contour NBC Palate shape PS
Nasal bone shape NBS Zygomaticomaxillary suture ZS
Nasal overgrowth NO
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Results

The intra-observer agreement ranged from 0.41 (moderate) 
to 1.00 (perfect), with nasal overgrowth (NO) and transverse 
palatine suture (TPS) performing the worst and best, respec-
tively (Table  3). Following the descriptions proposed by 
Landis and Koch [32] eight out of the seventeen traits dem-
onstrated substantial agreement, while six were observed to 
be almost perfect. The inter-observer agreement was overall 
lower, ranging between 0.11 (slight) and 0.91 (almost per-
fect). The traits that performed poorly varied between the 
observers. Since all of the data was collected by the first 
author (LL), the repeatability was considered acceptable, 
and all traits were retained for further analyses.

Table 4 presents the frequencies for the MMS traits. The 
sample size varies for each trait because of the presence of 
post-mortem damage, ante-mortem trauma, and tooth loss. 
A substantial amount of group overlap was observed for the 
traits, and not a single trait can be considered characteristic 
of a population. Kruskal-Wallis tests were used to identify 
potential population group differences (Table 5). Overall, 13 
out of the 17 traits were noted to differ significantly among 
the population groups (p < 0.05). The nasal bone shape 
(NBS), supra-nasal suture (SPS), transverse palatine suture 
(TPS), and palate shape (PS) did not differ significantly 
between the groups. Since Kruskal-Wallis only indicates if 
there are any differences, a post-hoc Dunn’s test was then 
used to further explore the variation among the three popu-
lations (see Table 6 for a breakdown of the group overlap). 
Five traits demonstrate no significant overlap among any of 
the groups; this includes the inferior nasal margin (INA), 
malar tubercle (MT), nasal aperture shape (NAS), nasal 
bone contour (NBC), and zygomaticomaxillary suture (ZS). 
The remainder of the traits demonstrated overlap between 
at least two of the groups. Black and coloured South Afri-
cans were observed to overlap more frequently, with some 
traits also presenting with overlap between coloured South 
Africans and white South Africans. However, none of the 
traits indicate significant overlap between black South Afri-
cans and white South Africans, suggesting the two groups 
are most dissimilar from one another. While coloured South 
Africans often overlapped with black South Africans, the 
coloured group more frequently yielded intermediate scores 
rather than extreme scores. Seven of the traits also demon-
strated significant differences between the sexes (Table 5).

All of the traits were combined into a multivariate clas-
sification model and the positive predictive performance 
was assessed using RFM. Given the substantial amount of 
missing data, palate shape (PS) was omitted from further 
analyses. Overall, the MMS traits yielded an accuracy of 
78.7% when assessing population affinity. Table 7 presents 
the training accuracies, with a breakdown of the predictive 

be used to gauge the external prediction accuracy of the tree 
(comparable to leave-one-out cross-validation commonly 
used with discriminant analysis). The original training data 
is randomly sampled with replacement for each tree, which 
generates a smaller subset of data for each tree; essentially 
this is the training data. The observations excluded from the 
training data, or the out-of-bag observations, are a random 
subset of data that is essentially an internal test sample. The 
tree will then be used to classify the test sample to obtain 
a more realistic classification accuracy [38]. In the case of 
missing data, the mode was calculated for each trait per each 
sex and population group separately. The mode was used as 
an imputation value specifically because it appears the most 
in a set of values which in this case, is a population and sex 
group, most individuals are likely to depict that value. Data 
imputation was only performed when variables had less than 
10% of the observations missing. For variables where more 
than 10% of the observations would have to be replaced, the 
variable was omitted from the model. After the missing data 
were imputed, the sample was divided so that 75% was used 
as the training set to create the model, and the remaining 
25% was the holdout set to test the accuracy of the model 
on an independent set of crania. The randomForest package 
was used to generate the RFM classifications [39].

Table 3  Kappa values for inter- and intra-observer agreement. Bold 
indicates substantial agreement or higher following Landis and Koch 
[32]

Intra-observer agreement Inter-observer agreement
ANS 0.82 0.66
INA 0.47 0.86
IOB 0.83 0.91
MT 0.72 0.59
NAS 0.62 0.24
NAW 0.91 0.91
NBC 0.64 0.13
NBS 0.43 0.44
NO 0.41 0.78
NFS 0.83 0.67
OS 0.80 0.57
PBD 0.74 0.29
PZT 0.69 0.72
SPS 0.81 0.11
TPS 1.00 0.47
PS 0.71 0.18
ZS 0.74 1.00
Mean 0.72 0.56
Min 0.41 0.11
Max 1.00 0.91
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Population group
Black Coloured White

Trait scores n % n % n %
ANS (N = 220) (N = 212) (N = 207)
1 143 65.0 115 54.2 25 12.1
2 66 30.0 85 40.1 79 38.2
3 11 5.0 12 5.7 103 49.7
INA (N = 220) (N = 219) (N = 220)
1 53 24.1 7 3.2 0 0.0
2 79 35.9 36 16.4 3 1.4
3 74 33.6 118 56.5 38 17.3
4 9 4.1 47 21.5 107 48.6
5 5 2.3 11 5.0 72 32.7
IOB (N = 220) (N = 219) (N = 220)
1 23 10.5 33 15.1 134 60.9
2 99 45.0 99 45.2 77 35.0
3 98 44.5 87 39.7 9 4.1
MT (N = 218) (N = 214) (N = 220)
0 2 1.0 0 0.0 16 7.3
1 116 53.2 151 70.6 167 75.9
2 75 34.4 59 27.6 34 15.5
3 25 11.5 4 1.9 3 1.4
NAS (N = 220) (N = 218) (N = 220)
1 28 12.7 65 29.8 183 83.2
2 36 16.4 17 7.8 28 12.7
3 156 70.9 136 62.4 9 4.1
NAW (N = 220) (N = 219) (N = 220)
1 5 2.3 6 2.7 80 36.4
2 67 30.5 74 33.8 113 51.4
3 148 67.3 139 63.5 27 12.2
NBC (N = 194) (N = 187) (N = 202)
0 116 59.8 70 37.4 0 0.0
1 44 22.7 87 46.5 39 19.3
2 7 3.6 7 3.7 79 39.1
3 9 4.6 14 7.5 78 38.6
4 18 9.3 9 4.8 6 3.0
NBS (N = 213) (N = 204) (N = 214)
1 58 27.2 25 12.3 32 15.0
2 107 50.2 153 75.4 167 78.0
3 26 12.2 7 3.4 12 5.6
4 22 10.3 18 8.9 3 1.4
NO (N = 208) (N = 186) (N = 205)
0 202 97.1 186 100.0 168 82.0
1 6 2.9 0 0.0 37 18.0
NFS (N = 202) (N = 200) (N = 214)
1 73 36.1 96 48.0 123 57.5
2 71 35.1 58 29.0 38 17.8
3 17 8.4 16 8.0 23 10.7
4 41 20.3 30 15.0 30 14.0
OS (N = 219) (N = 218) (N = 220)
1 118 53.9 159 72.9 150 68.2
2 89 40.6 44 20.2 49 22.3
3 12 5.5 15 6.9 21 9.5
PBD (N = 218) (N = 214) (N = 217)
0 144 65.1 155 72.4 176 81.1

Table 4  Trait frequencies for the three population groups. Refer to Table 2 for trait abbreviations
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resulting in the highest group accuracy (89.7%). The testing 
model (which serves as an independent validation) yielded 
an overall accuracy of 81.8%.

The variable importance was calculated to assess the 
amount of discriminatory power each trait contributes to 

performance of each population group and group overlap. 
The greatest overlap (and subsequent misclassification) 
was observed between black and coloured South Afri-
cans. White South Africans demonstrated the least overlap, 

Table 5  Kruskal-Wallis test comparing trait score frequencies among 
the populations and between the sexes. Bold indicates significant dif-
ferences
Trait Population Sex
ANS < 0.05 0.08
INA < 0.05 < 0.05
IOB < 0.05 < 0.05
MT < 0.05 < 0.05
NAS < 0.05 0.76
NAW < 0.05 < 0.05
NBC < 0.05 0.05
NBS 0.28 0.24
NO < 0.05 0.33
NFS < 0.05 0.33
OS < 0.05 0.18
PBD < 0.05 0.07
PZT < 0.05 < 0.05
SPS 0.92 < 0.05
TPS 0.19 0.93
PS 0.06 < 0.05
ZS < 0.05 0.99

Table 6  Break down of group overlap for trait scores based on the 
Kruskal-Wallis and Dunn’s tests
No groups 
overlap

All groups 
overlap

B and C 
overlap

B and W 
overlap

W and C 
overlap

INA NBS ANS - NFS
MT SPS IOB OS
NAS TPS NAW PBD
NBC PS NO
ZS PBD

PZT

Table 7  Confusion matrix showing patterns of overlap and misclassi-
fication among the groups for the training model employing the MMS 
traits

Classifies into: % Correct
B W C

Group: B 127 5 33 77.0
W 3 148 14 89.7
C 32 18 115 69.7

Total: 78.7

Population group
Black Coloured White

Trait scores n % n % n %
1 74 33.9 59 27.6 41 18.9
PZT (N = 218) (N = 217) (N = 220)
0 14 6.4 6 2.8 25 11.4
1 77 35.3 65 30.0 104 47.3
2 72 33.0 91 41.9 63 28.6
3 55 25.2 55 25.3 28 12.7
SPS (N = 219) (N = 220) (N = 220)
0 69 31.5 29 13.2 23 10.5
1 19 8.7 85 38.6 89 40.5
2 131 59.8 106 48.2 108 49.0
TPS (N = 213) (N = 211) (N = 215)
1 53 24.9 54 25.6 59 27.4
2 110 51.6 119 56.4 126 58.6
3 23 10.8 15 7.1 14 6.5
4 27 12.7 23 10.9 16 7.5
PS (N = 168) (N = 116) (N = 53)
1 50 29.8 31 26.7 25 47.2
2 29 17.3 18 15.5 9 17.0
3 54 32.1 55 47.4 11 20.8
4 35 20.8 12 10.3 8 15.1
ZS (N = 210) (N = 209) (N = 215)
0 153 72.9 84 40.2 75 34.9
1 45 21.4 123 58.8 112 52.1
2 12 5.7 2 1.0 28 13.0

Table 4  (continued) 
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of 57.7% (Table  9), while the testing model yielded and 
accuracy of 61.7%. Overall, the individuals were frequently 
classified into the correct population groups, but misclas-
sified more frequently according to sex. Coloured females 
presented with the lowest group accuracy (47.0%), with 
increased instances of misclassification into the incorrect 
population group as well as the incorrect sex.

the model and overall correct classification. Ultimately all 
traits contributed some information to the model. The mean 
decrease in the Gini index ranged from 2.7 to 56.0, with the 
mean decrease in the permutation accuracy ranging between 
0.0 and 12.9% (Table 8). Figure 1 graphically demonstrates 
the contribution of each trait to the model based on the Gini 
index. The highest ranked traits for both measures of vari-
able importance include the inferior nasal margin (INA), 
nasal bone contour (NBC), and nasal aperture shape (NAS) 
– i.e., variables in the nasal region. The lowest ranked traits 
include nasal overgrowth (NO) and post-bregmatic depres-
sion (PBD). Additional models were created where the 
number of traits were systematically reduced; more specifi-
cally, traits with poor repeatability as noted with Cohen’s 
kappa, any trait that did not yield significant differences with 
Kruskal-Wallis, and any trait with low variable importance 
were removed and the models were run again. A reduction 
in the number of traits in the model consistently yielded 
decreased classification accuracies, suggesting that all traits 
be retained in analyses for optimal results.

Since a number of traits also indicated a significant rela-
tionship with sex, RFM was used to assess the accuracy 
with which both population affinity and sex can be classified 
concurrently. With classification among six groups (black 
males and females, white males and females, and coloured 
males and females), the training model yielded an accuracy 

Table 8  RFM variable importance for MMS model assessing popula-
tion affinity
Trait Mean Gini decrease Mean accuracy decrease (%)
INA 56.0 12.9
NBC 50.0 11.7
NAS 33.8 6.3
ANS 23.3 2.6
ZS 19.9 1.9
IOB 19.6 2.2
NAW 16.2 1.8
SPS 15.9 3.6
PZT 14.7 1.2
NBS 14.4 1.4
MT 13.3 1.2
NFS 12.8 1.2
TPS 12.7 1.6
OS 10.7 2.2
PBD 6.9 0.6
NO 2.7 0.0

Fig. 1  Variable importance (based on the mean decrease in the Gini index) for the multivariate model assessing population affinity employing all 
MMS traits
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reference samples. The current study externally validates 
the MMS traits as a potential tool to estimate population 
affinity in South African anthropological analyses by pro-
viding population-specific data combined with robust quan-
titative analyses yielding high accuracies.

The variation observed among the three South African 
population groups has previously been discussed in terms 
of their population histories, which were significantly influ-
enced by migration, colonization, and institutionalized rac-
ism [26, 28]. The current study revealed substantial group 
overlap in the crania of modern black, white and coloured 
South Africans. The MMS data demonstrate similar pat-
terns of misclassification among the groups as documented 
in previous studies, where coloured South Africans misclas-
sify nearly equal with both black and white South Africans 
[7, 8, 18]. In contrast, black and white South Africans rarely 
misclassified as one another. Coloured South Africans are 
typically reported to exhibit the lowest classification accu-
racy when compared to black and white South Africans, 
particularly in cranial analyses. This increased misclassifi-
cation has been linked to their complex genetic composition 
[40], and the intermediacy in terms of cranial morphology 
relative to the other groups. Coloured South Africans have 
been shown to share similarities with white South Africans 
in cranial size but display greater similarities with black 
South Africans in terms of cranial shape [26, 28]. Despite 
the substantial overlap, various MMS traits demonstrated 
significant differences across all three groups, implying the 
potential for group differentiation when employed in mul-
tivariate analyses. The findings of the current study con-
firm the premise that the midface, and specifically the nasal 

Similar patterns of overlap were observed when sex-
specific analyses were conducted (i.e., comparing popula-
tion groups but with the sexes separated) (Table 10). The 
sex-specific analysis comparing males yielded a greater 
accuracy (83.5%) than the model with the sexes pooled 
(78.7%), while the female sex-specific analysis yielded 
a slightly lower accuracy (76.7%). Although the coloured 
females still demonstrate the lowest classification accuracy 
among all the groups (68.9%), the percentage classified 
correctly is greater with the sexes separated than when the 
sexes are pooled. The testing accuracy for the male analy-
sis demonstrate a notable decrease at 70.4%. One potential 
explanation is that the males in the testing sample may be 
more variable than the males in the training sample. Thus, 
the male-specific model is less proficient in generalizing to 
individuals that were not used to train the model, leading 
to increased misclassification. In particular, the coloured 
males in the testing model were observed to misclassify 
more frequently than was observed with the training model.

Discussion

Now more than ever, methods exploring population affinity 
need to be re-evaluated to ensure that valid methodology 
is employed, and that population variation is investigated 
and described in a scientifically meaningful way that offers 
valuable contributions to the community. As recommended 
by international standards of best practice, the estimation of 
population affinity should be based on peer-reviewed, pub-
lished, and validated methods that make use of appropriate 

Table 9  Confusion matrix showing patterns of overlap and misclassification among the groups and sexes for the training model employing the 
MMS traits

Classifies into: % Correct
BM BF WM WF CM CF

Group: BM 45 15 2 0 13 8 54.2
BF 19 45 1 2 4 12 54.2
WM 1 0 58 20 3 1 69.9
WF 0 0 22 50 1 10 60.2
CM 10 2 5 1 49 19 59.1
CF 9 12 0 7 16 39 47.0

Total: 57.7

Table 10  Confusion matrix showing patterns of overlap and misclassification among the groups and sexes for the training model employing the 
MMS traits when separate sex-specific analyses are conducted

Males Females
Classifies into: % Correct Classifies into: % Correct

Group: BM WM CM Group: BF WF CF
BM 65 1 17 78.3 BF 61 3 19 73.5
WM 3 77 3 92.8 WF 1 73 9 88.0
CM 8 9 66 79.5 CF 19 7 57 68.9

Total: 83.5 Total: 76.7
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to have a significant impact on inter-orbital breadth (IOB) in 
a South African population [18]. Similarly, the current study 
observed significant sex differences for several traits, includ-
ing the inferior nasal margin (INA), inter-orbital breadth 
(IOB), malar tubercle (MT), nasal aperture width (NAW), 
posterior zygomatic tubercle (PZT), and supra-nasal suture 
(SPS). The current study also observed a tendency for the 
crania to misclassify according to sex, which was somewhat 
mitigated with the sex-specific analyses. Prior knowledge 
of sex has been shown to enhance classification accuracy in 
a South African sample by allowing classification models 
to focus solely on assessing differences related to popula-
tion affinity, thereby reducing group overlap and facilitating 
more effective group separation [54]. Sexual dimorphism 
should be considered when exploring population variation, 
as the concepts of sexual dimorphism and population affin-
ity are intricately linked.

This study supports previous research in stating the great 
potential of RFM as a classification method [45–47, 55]. As 
RFM is non-parametric, the method does not rely on statisti-
cal assumptions like normality, which are rarely met in real-
world data. The method is capable of combining different 
types of data, and includes internal validation functionality 
which eliminates the need for additional independent sam-
ples to test the model validity. Finally, RFM is not prone to 
overfitting and the curse of dimensionality, which is a well-
known issue encountered with discriminant analysis [56]. 
With discriminant analysis the inclusion of a greater number 
of measurements is typically recognized to allow more dif-
ferences to be detected among groups. However, a decrease 
in classification accuracy will often be noted as more vari-
ables are added [57]. Essentially, redundant and highly 
correlated variables introduce statistical “noise”, which 
adversely affects the predictive performance of a model. 
The solution to this problem is to reduce the number of vari-
ables (typically done with stepwise variable selection) so 
that only the most discriminatory variables are retained [56, 
57]. RFMs are capable of handling large numbers of vari-
ables, and it has been recommended that as many variables 
as possible be included and the model be allowed to run 
with them [14, 55]. Navega and colleagues [55] specifically 
caution against removing variables, even if they exhibit 
low measures of variable importance. Variable importance 
reflects the contribution of a specific trait or measurement to 
the overall ensemble of trees used in the model. However, 
each individual tree employs a random subset of variables 
at each split. Consequently, the overall contribution to the 
model may appear small, but the variable importance does 
not necessarily reflect how discriminative a variable can be 
for certain individual trees within the ensemble [55]. The 
current study demonstrated that the removal of even a sin-
gle variable led to decreased accuracy. A notable strength 

region, plays a pivotal role in population affinity estimation. 
The midfacial variables not only demonstrated significant 
differences, with many showing marked differences among 
all three groups assessed, but also proved to be crucial within 
the classification models with the greatest values of vari-
able importance. The MMS model outperformed measure-
ment models from previously studies for the classification 
of the South African groups using standard craniometrics 
with discriminant analysis [7]. This is likely because much 
of the variation associated with the cranium is not quanti-
fied effectively when applying linear distances to measure 
a round object. The insights provided by the MMS traits 
regarding classification and relationships among population 
groups appear to be quite similar to those provided by cra-
niometric data. Craniometric data has been demonstrated to 
be reliable proxies for neutral genetic information and pop-
ulation history, leading to greater confidence and acceptance 
of its use to estimate population affinity [41, 42]. Indeed, 
further research is needed to better understand the expres-
sion, ontogeny, and development of the MMS traits, as well 
as their relationship and covariation with craniometric data 
[43]. However, the results of this study challenge the notion 
that MMS traits should be excluded from population affin-
ity estimation in forensic analyses [44]. Many authors have 
documented the superior results attainable through mixed 
models incorporating both metric and morphoscopic data 
[e.g., 45–47]. This approach warrants further investigation, 
not only to enhance the refinement of the MMS method but 
also to improve our comprehension of cranial variation.

Although the current study focused on large-scale pop-
ulation differences, the effects of sex on the classification 
of population affinity was also assessed. Although cranial 
sexual dimorphism of South Africans have been previously 
explored for the purpose of sex estimation [e.g., 48–51], few 
studies have compared sexual dimorphism among multiple 
different population groups simultaneously. Thus, there is a 
paucity of research that comprehensively assess the interac-
tion of sex and population affinity on cranial morphology 
and its effects on the positive predictive performance of the 
cranium in correctly assigning sex and population affinity. 
In a morphoscopic study, Krüger et al. [52] identified sig-
nificant differences between black and white South Africans 
using the Walker [53] traits, and thus supported the need for 
population-specific standards to estimate sex. L’Abbé and 
colleagues [7] simultaneously considered sex and popula-
tion among South Africans when attempting to estimate 
population affinity with craniometrics and observed indi-
viduals more frequently misclassified as the incorrect sex 
rather than misclassifying as an incorrect population group. 
Concerning the MMS traits, Hefner [12] reported no signifi-
cant sex differences, suggesting that the sexes be pooled for 
further analyses. However, sex has previously been shown 
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