
International Journal of Mathematical, Engineering and Management Sciences 

Vol. 9, No. 3, 451-471, 2024 

https://doi.org/10.33889/IJMEMS.2024.9.3.024 
 

 

451 | https://www.ijmems.in 

A Lot Sizing Model for a Deteriorating Product with Shifting Production 

Rates, Freshness, Price, and Stock-Dependent Demand with Price Discounting 

 
Kapya Tshinangi 

Department of Industrial and Systems Engineering, 

University of Pretoria, Pretoria, Gauteng, South Africa. 

Corresponding author: kapyatshinagi@gmail.com 

 

Olufemi Adetunji 
Department of Industrial and Systems Engineering, 

University of Pretoria, Pretoria, Gauteng, South Africa. 

E-mail: olufemi.adetunji@up.ac.za 

 

Sarma Yadavalli 
Department of Industrial and Systems Engineering, 

University of Pretoria, Pretoria, Gauteng, South Africa. 

E-mail: sarma.yadavalli@up.ac.za 

 
(Received on October 24, 2023; Revised on January 12, 2024 & February 13, 2024; Accepted on March 5, 2024) 

 

 

 

Abstract 

Many production systems need to be able to change the rate at which they manufacture products for various reasons, hence, the 

need to find the optimal lot size under these multiple levels of production. This research addresses the need for optimizing inventory 

in a system with a shifting production rate and other challenging product characteristics such as product deterioration with limited 

life span, and product demand that is dependent on the stock level, the state of freshness of the product, and the selling price. The 

product also needs to be discounted as it gets close to the expiry date in order to boost demand and prevent wastage beyond its life 

span. Our objective is to maximize profit by determining the optimal selling price and inventory cycle time by deriving the relevant 

equations for these decision variables. The Newton-Raphson method was used to numerically solve for the optimal values of these 

variables. Sensitivity analyses were performed to derive useful insights for managerial decision-making. 

 

Keywords- Economic production quantity, Inventory management, Deteriorating product, Product freshness, Variable production 

rate. 

 

 

 

1. Introduction 
The manufacturing industry is constantly striving to enhance its profitability and operational efficiency, 

and inventory management is an important practice for such. However, traditional approaches often fall 

short in promptly adapting to market dynamics and optimizing decision-making. In the complex world of 

supply chain, managing production systems has become increasingly crucial for industries aiming to 

enhance their flexibility, adaptability and agility. The classical Economic Order Quantity (EPQ) model 

assumes that the demand rate is constant, the production rate is constant, and the product is of perfect 

quality. Companies, however, frequently stimulate demand by offering attractive prices to customers. Also, 

the state of the machine may affect the production rate, the quality of the products, and the efficiency of the 

manufacturing process. Unlike traditional production models that assume fixed production rates, flexibility 

in production systems is essential for improving responsiveness, particularly in industries where 

adaptability and efficiency are paramount. As industries continue to transition towards more agile and 

adaptable production systems, this research recognizes the growing need to accommodate dynamic 

production rates. It acknowledges the specific challenges presented by perishable products that require a 
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responsive approach to production. Companies must, therefore, have a well-crafted production and 

inventory strategy that maximizes the overall profit by balancing the need to sell the products in volumes 

against the risk of having unsold inventory that may need to be discarded. Various characteristics of the 

production-inventory system have been investigated by many authors, and this is discussed next, starting 

with recent works in product deterioration. 

 

Effective management of deteriorating inventory items is critical for manufacturers and retailers. Due to 

the perishable nature of these items, stock holders monitor the levels of inventory to prevent losses due to 

spoilage. Careful evaluation of costs associated with deterioration stands out as a defining characteristic of 

these inventory systems. Managing such products has resulted in significant research within the area of 

inventory control. Pal et al. (2015) presented an inventory model for deteriorating items experiencing 

fluctuating demand in a fuzzy environment and incorporated the impact of inflation and shortages in the 

model. Wu et al. (2016) developed models for deteriorating items having a lifespan within a supplier-

retailer-customer chain. Viji and Karthikeyan (2018) proposed a production-inventory model for 

deteriorating items with three levels of production where the rate of deterioration follows a two-parameter 

Weibull distribution. Sepehri et al. (2021) proposed a sustainable inventory model for deteriorating products 

with both quality and environmental concerns. Duary et al. (2022) discussed an inventory problem for 

deteriorating items that integrates the concepts of advance and delay payment. The model also incorporated 

the impact of advertisements on product and partial backlog. Lu et al. (2022) examined the implications of 

various carbon emission policies on the optimal production-inventory decisions for deteriorating items. 

Salas-Navarro et al. (2023) proposed a vendor managed inventory model for deteriorating items with a 

three-layer supply chain. Tiwari et al. (2022) explored how the inventory of imperfect quality items is 

affected by deterioration and trade credit policy. Mahlangu et al. (2023) presented a model for two 

deteriorating mutually complementary items with time dependent demand. 

 

Apart from deterioration, price is another key factor that affects lot sizing decisions as it significantly 

influences a consumer's willingness to consume a product or service, hence the demand, and several 

researchers have investigated the dependence of demand on price. Chen et al. (2019) presented an inventory 

model for a product with short life cycle that deteriorates in a finite horizon, multi-period setting, stock-

level-dependence, with time- and price-dependent deterministic demand. Khan et al. (2020) presented two 

inventory models for perishable items with linearly time-dependent increasing holding costs, and demand 

that depends on its selling price and the frequency of advertisement. Halim et al. (2021) discussed an EPQ 

model with nonlinear price structure and stock dependent demand, while also accounting for the possibility 

of overtime production opportunities. Torkaman et al. (2022) introduced a Mixed-Integer Nonlinear 

Program (MINLP) to address the Production-Routing Problem with Price-Dependent demand (PRP-PD). 

Akhtar et al. (2023) presented an inventory model with price dependent demand that maximizes the 

retailer's total profit over a finite time horizon. 

 

The freshness condition of products is another factor that significantly impacts the economic prospects of 

manufacturers and retailers. Freshness of products such as meat, tomatoes, or vegetables, is a crucial factor 

in determining their quality and safety for consumption. Consumers prefer fresh products due to their better 

taste, texture, and nutritional value. People typically do not buy products when they are close to their expiry 

date for several reasons. Firstly, expired products are potential health hazards due to the growth of harmful 

bacteria or the breakdown of active ingredients. This can be particularly concerning in the food industry. 

Secondly, some expired products like pharmaceutical products may lose their effectiveness or become 

unsafe to consume, leading to health risks and waste of money. Thirdly, the perception of expiring products 

being of lower quality or value may also deter consumers from purchasing them. This can be particularly 

true for products that have a short shelf-life. As a result, manufacturers and retailers may be forced to 
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discount or dispose of them, leading to financial losses and waste. Food and pharmaceutical safety 

regulations are in place to ensure that products are safe for consumption, and freshness is a key factor in 

determining the safety of the products consumed. Fujiwara and Perera (1993) were the first to investigate 

the impact of utility deterioration, specifically declining freshness, on inventory management for perishable 

products. They used an exponential penalty cost function to model the deterioration. Cardello and Schutz 

(2002) conducted an analysis of the various factors associated with the freshness condition of food products 

and its significance in the food industry. Bai and Kendall (2008) presented a model that manages a 

deteriorating inventory and shelf space of fresh produce in a single period, assuming that the demand rate 

is deterministic and dependent on the level of inventory displayed and the freshness condition of the item. 

Piramuthu and Zhou (2013) extended Bai and Kendall’s by linking the demand directly to the amount of 

shelf-space allotted to the specific item and its current quality, using auto-identification technology like 

Radio Frequency Identification (RFID), which includes the necessary sensors that generate information on 

an item. Sebatjane and Adetunji (2020) presented a multi-echelon lot sizing model of a growing item, where 

the demand is dependent on the price and freshness condition of the item. Banerjee and Agrawal (2017) 

proposed an inventory model that considers the demand for deteriorating items, which initially depends 

only on its selling price but later also on its freshness condition. 

 

In addition to acknowledging the critical role of price and freshness, it is equally important for companies 

to consider the impact of stock levels on demand. The interplay between these factors, along with the shelf 

life of products, can significantly influence the demand patterns and the overall inventory management 

strategies of companies. Önal et al. (2016) presented an EOQ model that incorporates product assortment, 

pricing, and storage capacity (shelf-space and backroom) for perishable products, where the demand rate is 

dependent on the selling price and the level of stock displayed. Li and Teng (2018) presented an integrated 

pricing and lot-sizing model for deteriorating products. The model considers various factors such as the 

selling price, reference price, freshness, and the level of stock displayed, all of which influence the demand 

for the products. Sebatjane and Adetunji (2022) also considered a coordinated multi-echelon system for a 

growing item inventory system with product expiration. Alakan et al. (2019) proposed a three-level supply 

chain model to analyse the dynamics and interactions within an interconnected supply chain structure under 

finite production rates and stock dependent demand. Agi and Soni (2020) proposed a model that jointly 

optimizes the price and lot size for perishable products considering both physical deterioration and 

freshness degradation, where the demand is influenced by factors such as the product's age, the price and 

the stock level. Priyan and Mala (2020) presented a game theoretic approach for managing an inventory 

system for materials having varying quality characteristics both as a raw material and finished products in 

a pharmaceutical supply chain. The study also assumed that the finished product’s demand is age and 

freshness dependent. Vahdani and Sazvar (2022) examined the coordinated dynamic pricing and inventory 

control for online retailers while considering social learning and the Expiration Date-Based Pricing (EDBP) 

policy. 

 

Thus far, the discussion has been around the product characteristics related to its demand, price, stock level 

and deterioration as key factors in managing the production-inventory system. However, it is crucial to 

acknowledge that the nature of the manufacturing process itself is important. The manufacturing process 

plays a significant role in shaping the overall efficiency and effectiveness of the production-inventory 

system. In many production systems, different machines or processes within the system can operate at 

varying rates, usually called the multi-state mode of production. This capability provides the system with 

the flexibility needed to adjust production levels, optimize resource utilization, and improve responsiveness 

to changing market conditions. Manufacturing plants often make the decision to scale production up or 

down due to a variety of factors. One significant reason for scaling the production and operating in a 

multistage mode is the fluctuation in the demand for their products; when the demand changes, like seasonal 
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variations, it becomes necessary to align the production output with the market requirements. By doing so, 

businesses can prevent the negative consequences of high holding costs due to a rapid inventory buildup. 

Another key factor that may influence many organizations to scale the production is the need to flexibly 

allocate their resources effectively, leading to a more efficient utilization of operational expenses, including 

labor costs, energy consumption, and raw material usage. This allows them to better manage their inventory 

levels and avoid unnecessary expenses. Power consumption may be a good reason to scale the production 

rate in some other production system and shift between production levels. In situations where there is a 

shortage or limited availability of power supply, companies may need to scale down their production rate 

to ensure they operate within the existing energy constraint imposed by the power utilities. Another 

motivation for scaling production is the focus on quality control and process improvements. Gupta and 

Arora (2010) examined a production inventory system that considers alternating production rates caused 

by market fluctuations and other relevant constraints to satisfy various demand patterns. Bhowmick and 

Samanta (2011) presented a continuous production control inventory model with variable production rates, 

allowing for a switch between production rates during the production process to maintain a certain level of 

manufactured items at the initial stages. Sivashankari and Panayappan (2015) considered a production 

inventory model that considers deteriorating items and utilizes two different production rates to avoid 

excessive inventory and enhance consumer satisfaction while maximizing profit. Mishra (2018) presented 

a production-inventory model that incorporates three different rates and focuses on deteriorating products. 

In this model, the demand rate is influenced by both the advertising cost and selling price. The production 

rates, which are assumed to be finite, are directly proportional to the demand rate. To address production 

challenges similar to those experienced during the Covid-19 pandemic, Malumfashi et al. (2022) proposed 

a model for delayed deteriorating items having a two-phase production period, and a holding cost function 

that is linearly increasing with time. 

 

While fluctuating demand, seasonality, or power consumption have been presented as common reasons for 

companies to scale the production output, another factor that can influence the decision to shift between 

production levels is the state of the manufacturing equipment, especially for systems that operate with 

degrading or deteriorating machines. This is because even when demand remains stable and power supply 

is consistent, a variety of issues can arise with the equipment used in the production process. During 

manufacturing, a production process may deteriorate when a machine fails to function properly or stops 

working altogether, and this may be caused by many factors including a lack of maintenance, wear and tear 

on equipment, human errors, overuse, aging and condition of the equipment, improper use, poor quality 

materials, environmental factors, and unforeseen circumstances or randomness. This is usually referred to 

as process deterioration. Deterioration of a process can be a major challenge for manufacturing operations, 

causing production delays and downtime that can lead to missed deadlines, decrease in product quality, 

increased waste, lost business opportunities, increased costs, and decreased efficiency. Numerous 

researchers have explored the impacts of manufacturing efficiency, reliability, process availability and 

preventive maintenance in recent years (Rahim and Ben-Daya, 2001; Llaurens, 2011). While there are tools 

such as predictive maintenance techniques that can help to identify potential issues before they occur, there 

is no foolproof method to predict when a breakdown will happen. When machines are not functioning 

optimally, it may become necessary to shift to a lower production rate and avoid further damage or 

unplanned repairs. By shifting to lower production rates, manufacturing plants can dedicate more attention 

and resources to identifying and rectifying any issues that may arise within their production lines, thereby 

ensuring efficient use of resources. Khouja and Mehrez (1994) presented an extension of the EPQ model 

that incorporates situations where the production rate becomes a decision variable, and also accounts for 

degradation in the quality of the production process that occurs as the production rate increases. Kenne and 

Nkeungoue (2008) proposed a homogenous Markov process that incorporates the hedging point policy for 

machines experiencing both failures and repairs. This model takes into account the age-dependent nature 
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of the machine, which affects the occurrence of failures and subsequent repairs. Ben-Daya et al. (2008) 

studied an EPQ model with a shifting production rate under stoppages due to speed losses. They 

demonstrated that process deterioration could be the result of minor stoppages and speed losses, which in 

practice may affect the efficiency of the process. Tshinangi et al. (2022) conducted a study focusing on a 

degrading production system that incorporates shifting production rates, imperfect quality, and partial 

backlogging of demand along with lost sales to understand the impact of these factors on system 

performance, such as inventory levels, cycle time, shortage levels and overall cost incurred. 

 

1.1 Research Contribution 
The research gap addressed in this study is presented in Table 1. The table lists inventory models from 

various previous authors, highlighting the different factors considered and what this paper contributes to 

the research on lot sizing models with varying production rates. Current literature review indicates the need 

for a model for deteriorating inventory items that considered imperfect systems with shifting production 

rates, freshness, price and stock-dependent demand, as well as price discounting. 

 
Table 1. Analysis of related literature. 

 

Characteristics of the inventory models 

Authors EOQ/EPQ 

models 

Production Imperfect 

quality 

Deterioration Demand Discount Freshness 

Ben-Daya et al. (2008) EPQ Variable No No Constant No No 

Bhowmich & Samanta 

(2011) 

EPQ Variable No Exponential  Constant No No 

Banerjee and Agrawal 

(2017) 

EOQ No No Weibull and 

Exponential functions 

Price dependent  Yes Yes 

Viji and Karthikeyan 
(2018) 

EPQ Variable No Weibull  Constant No No 

Agi and Soni (2020) EOQ No No Constant Age, stock, and 

price dependent 

No Yes 

Tshinangi et al. (2022) EPQ Variable Yes Exponential  Constant No No 

Salas-Navarro et al. 
(2023) 

EPQ Constant No Constant Time dependent No No 

This paper EPQ Variable Yes Exponential  Price and stock 

dependent 

Yes Yes 

 
 

This paper introduces an extended inventory model for deteriorating items that specifically incorporates the 

influence of product freshness on demand. The model builds upon the work of Tshinangi et al. (2022) and 

extends this research by considering the dynamic relationship between the concept of shifting production 

rates in a deteriorating process and both freshness condition and deterioration of products, guided by 

Banerjee and Agrawal (2017). Initially, the demand for the product (e.g., meat) is determined solely by its 

selling price and its displayed stock level when it is fresh. As freshness declines, demand then depends on 

the product's freshness condition. Also, there is a shift in production rate as production continues. Since 

fresher products are more attractive to buyers than those that appear stale, discounts are applied once the 

freshness has declined over a certain period. Our contribution to the existing literature is the development 

of an EPQ model for a multi-state production system with imperfect quality of manufactured product, that 

accounts for the impact of the freshness of products on its demand, where deterioration of both the product 

and the process are allowed. The model also considers using sales discounts to drive demand as the product 

gets close to its expiry date in such manner that the net profit is maximized over the entire cycle length. It 

can be seen from Table 1 that currently, there is no model that has been proposed, that considers all these 

characteristics of a product over its life cycle, and where the items could be manufactured in more than one 

state of operation of the resource. The model can find application in the food processing environment, like 

food canning. 
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The structure of the remainder of this paper is now discussed. In section 2, the notations necessary for the 

development of the inventory model are outlined. Section 3 focuses on the formulation of the inventory 

model, considering the shift in production, freshness-, stock- and price-dependent demand, and the 

inclusion of deterioration, discount and imperfect production. In section 4, numerical examples are solved 

to provide practical illustrations. A sensitivity analysis is conducted and observations are discussed in 

section 5. Finally, sections 6 and 7 offer managerial insights and conclusions respectively, followed by the 

discussion of potential opportunities for future research. 

 

2. Notations and Assumptions 
The following notations are utilized in this paper as shown in Table 2. 

 
Table 2. Notations adopted in the model. 

 

Symbols Description 

𝐶𝑑 Deterioration cost per unit item 

𝐶𝑑𝑝 Disposal cost per unit item 

𝑑1,2 Proportion of defective units produced 

𝐷(𝑆𝑝, 𝐼(𝑡), 𝑡) The demand for the product at time t 

ℎ𝑝 The inventory carrying cost per unit item per time 

𝐼(𝑡) Instantaneous inventory level  

𝑘1,2 Initial production rate at the start of the cycle, and production rate following the shift respectively 

𝑝𝑐1,𝑝𝑐2  The unit production cost at the start and after the machine’s production rate has been scaled down respectively 

𝑄∗ Optimal batch size 

𝑄𝐷𝑃 Quantity of deteriorated products 

𝑆𝐶  The fixed setup cost 

𝑆𝑝 The market selling price of the product.  

𝑇 Duration of the cycle 

𝑇𝐶 Total cost 

𝑡1 The time during the cycle when the production rate shifts from 𝑘1 to 𝑘2 

𝑡2 The total production time per cycle  

𝑡3 The time from which the deterioration of the product begins 

𝑡4 The time from which price discount is offered 

𝜃(𝑡) Deterioration rate  

𝛾 The parameter indicating the sensitivity of demand to the instantaneous level of inventory 

 𝜌1, 𝜌2 Aggregation parameters for some known variables 

𝐴 Demand parameter 

𝑏 The elasticity of the unit selling price 

𝛽 The freshness parameter 

𝛼 Discount percentage offered on selling price 

𝑛 The shelf-life of the product  

 
 

Our model is based on the following assumptions: 

• The inventory procedure is for a single product. 

• At the start of the process, a production rate of 𝑘1 is employed. After a time, 𝑡1, the decision maker 

switches to a lower production rate of 𝑘2.  
• Some manufactured products are accidentally damaged (or contaminated) and have to be discarded as 

scrap during each of the two production phases at constant rates 𝑑𝑖 with 𝑖 ∈ {1,2} . 

• The manufactured product is subject to deterioration. The deterioration function is of the form: 

𝜃(𝑡) = {
𝜃𝑒−𝜃𝑡, for 𝑡 ≥ 𝑡3

0         , otherwise
                                                                                                                            (1) 

 

with 𝜃 ≥ 0. 
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• The product has a maximum shelf-life, 𝑛, beyond which its perceived value is lost.  

 

The freshness decreases linearly from a particular time, 𝑡3 < 𝑛, following the function, 𝜑(𝑡), similar to 

the model proposed by Banerjee and Agrawal (2017), where, 

𝜑(𝑡) {
= 1                                  if  𝑡 < 𝑡3

=
[𝑛−𝛽(𝑡−𝑡2)]

𝑛
                 if  𝑡 ≥ 𝑡3

                                                                                                         (2) 

 

This implies that while production ends at 𝑡2, products are still considered fresh for a length of time until 

time 𝑡3, from when its freshness starts to decline until when it is considered unacceptable after the shelf 

life is reached. There has been no decline in quality up until 𝑡3, and the freshness function 𝜑(𝑡) will be 

equal to 1 for 𝑡 ∈ [0,  𝑡3]. 
 

Demand for the product is price-, stock-, and freshness-dependent and is represented as follows: 

𝐷 (𝑆𝑝, 𝐼(𝑡), 𝜑(𝑡)) {

𝐴 − 𝑏𝑆𝑝 + 𝛾𝐼(𝑡)                                 0 < 𝑡 ≤ 𝑡3

(𝐴 − 𝑏𝑆𝑝)𝜑(𝑡)                                  𝑡3 < 𝑡 ≤ 𝑡4

[𝐴 − 𝑏(1 − 𝛼)𝑆𝑝]𝜑(𝑡)                    𝑡4 < 𝑡 ≤ 𝑇

                                                              (3) 

with 𝐴, 𝑏, and 𝛾 ≠ 0. 

 

 

3. Process Description and Model Formulation 
Figure 1 illustrates the changes in inventory level throughout the cycle.  

 

 
 

Figure 1. Inventory profile with a shift in production rate. 
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At the beginning of the production cycle, the product is manufactured at a production rate 𝑘1, and inventory 

is built up until when it reaches the level 𝐼1 at time 𝑡1. During the interval [0, 𝑡1], the product is considered 

completely fresh, and the inventory is withdrawn solely due to demand. The demand itself is influenced by 

two main factors: the level of stock displayed to customers and the selling price of the product. In the 

interval [0, 𝑡1], it is assumed that some manufactured products are damaged and taken away at a rate 𝑑1. At 

time 𝑡1, the operator scales down the machine and continues the production at a rate 𝑘2 until time 𝑡2, during 

which the inventory reaches its maximum level, 𝐼2 . In the interval [𝑡1, 𝑡2], inventory continues to be 

withdrawn due to demand, which still depends on both the stock level and the selling price of the product, 

while the damaged are taken away at the rate 𝑑2. At time 𝑡2, the system stops production. 
 

During the interval [𝑡2, 𝑡3], the inventory continues to deplete due to demand. After 𝑡3, the freshness of the 

product begins to decline, product deterioration starts, and inventory depletion occurs due to both demand 

and deterioration. The demand function now depends on both the selling price and the freshness of the 

product, but no longer on the level of stock displayed. To stimulate demand, a fixed discount of 𝛼% is 

offered on the selling price starting from time 𝑡4. The inventory level hits zero at time 𝑇. The differential 

equations that govern the inventory situations in the interval [0, 𝑇] are as follows: 
𝑑𝐼(𝑡)

𝑑𝑡
=  (1 − 𝑑1)𝑘1 − [𝐴 − 𝑏𝑆𝑝 + 𝛾𝐼(𝑡)]                          0 ≤ 𝑡 ≤ 𝑡1                                                            (4) 

𝑑𝐼(𝑡)

𝑑𝑡
=  (1 − 𝑑2)𝑘2 − [𝐴 − 𝑏𝑆𝑝 + 𝛾𝐼(𝑡)]                         𝑡1 ≤ 𝑡 ≤ 𝑡2                                                         (5) 

𝑑𝐼(𝑡)

𝑑𝑡
=  −[𝐴 − 𝑏𝑆𝑝 + 𝛾𝐼(𝑡)]                                                 𝑡2 ≤ 𝑡 ≤ 𝑡3                                                         (6) 

𝑑𝐼(𝑡)

𝑑𝑡
+  𝜃𝐼(𝑡) =  −[𝐴 − 𝑏𝑆𝑝]𝜑(𝑡)                                       𝑡3 ≤ 𝑡 ≤ 𝑡4                                                         (7) 

𝑑𝐼(𝑡)

𝑑𝑡
+  𝜃𝐼(𝑡) =  −[𝐴 − 𝑏(1 − 𝛼)𝑆𝑝]𝜑(𝑡)                         𝑡4 ≤ 𝑡 ≤ 𝑇                                                          (8) 

 

Solving Equation (4), we obtain: 

𝐼(𝑡) =   
[(1−𝑑1)𝑘1−𝐴+𝑏𝑆𝑝]

𝛾
+ 𝐿1𝑒−𝛾𝑡                                                                                                              (9) 

 

From Equation (9) under the boundary condition, 𝐼(0) = 0 we obtain:  

𝐿1 = −
[(1−𝑑1)𝑘1−𝐴+𝑏𝑆𝑝]

𝛾
                                                                                                                             (10) 

 

Substituting Equation (10) into Equation (9) results in: 

𝐼(𝑡) =  
𝜌1

𝛾
[1 − 𝑒−𝛾𝑡]                                                                0 ≤ 𝑡 ≤ 𝑡1                                                        (11) 

 

with 
(1 − 𝑑1)𝑘1 − 𝐴 + 𝑏𝑆𝑝 = 𝜌1                                                                                                                      (12) 

 

Linearizing the exponential terms containing 𝑡 in Equation (11) by using Taylor’s series expansion for 𝑒−𝛾𝑡 

leads to the following: 

𝑒−𝛾𝑡 = ∑
(−1)𝑚𝛾𝑚𝑡𝑚

𝑚!
∞
𝑚=1 = 1 −

𝛾𝑡

1
+

𝛾2𝑡2

2!
−

𝛾3𝑡3

3!
+

𝛾4𝑡4

4!
≈ 1 − 𝛾𝑡                                                            (13) 

 

Substituting Equation (13) into Equation (11) yields, 

𝐼(𝑡) =  𝜌1𝑡                                                                                   0 ≤ 𝑡 ≤ 𝑡1                                                       (14) 
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Solving differential Equation (5) yields: 

𝐼(𝑡) =   
[(1−𝑑2)𝑘2−𝐴+𝑏𝑆𝑝]

𝛾
+ 𝐿2𝑒−𝛾𝑡                                                                                                            (15) 

 

From Equation (15) under the boundary condition, 𝐼(𝑡1) = 𝐼1, we obtain:  

𝐿2 = [𝐼1 −
(1−𝑑2)𝑘2−𝐴+𝑏𝑆𝑝

𝛾
] 𝑒𝛾𝑡1                                                                                                                (16) 

 

By substituting Equation (16) into Equation (15), we derive: 

𝐼(𝑡) =  
𝜌2

𝛾
+ [𝐼1 −  

𝜌2

𝛾
] 𝑒−𝛾(𝑡−𝑡1)                                             𝑡1 ≤ 𝑡 ≤ 𝑡2                                                      (17) 

 

with 

(1 − 𝑑2)𝑘2 − (𝐴 − 𝑏𝑆𝑝) = 𝜌2                                                                                                                  (18) 

 

Utilizing Taylor's series expansion for 𝑒−𝛾(𝑡−𝑡1) to linearize the exponential terms near 𝑡 = 𝑡1 in Equation 

(17) yields: 

𝐼(𝑡) =  𝐼1 − (𝛾𝐼1 − 𝜌2)(𝑡 − 𝑡1)                                              𝑡1 ≤ 𝑡 ≤ 𝑡2                                                      (19) 

 

The solution of the differential Equation (6) is: 

𝐼(𝑡) = −
(𝐴−𝑏𝑆𝑝)

𝛾
+ 𝐿3𝑒−𝛾𝑡                                                                                                                        (20) 

 

From Equation (20) under the boundary condition, 𝐼(𝑡2) = 𝐼2, we obtain: 

𝐿3 = [𝐼2 +
𝐴−𝑏𝑆𝑝

𝛾
] 𝑒−𝛾𝑡2                                                                                                                             (21) 

 

Substituting Equation (21) into Equation (20) leads to: 

𝐼(𝑡) = −
𝐴−𝑏𝑆𝑝

𝛾
 + [𝐼2 +

𝐴−𝑏𝑆𝑝

𝛾
] 𝑒−𝛾(𝑡−𝑡2)                             𝑡2 ≤ 𝑡 ≤ 𝑡3                                                     (22) 

 

Again, linearizing the exponential term 𝑒−𝛾(𝑡−𝑡2) to near 𝑡 = 𝑡2 in Equation (22) utilizing Taylor's series 

expansion yields: 

𝐼(𝑡) = 𝐼2 − (𝛾𝐼2 + 𝐴 − 𝑏𝑆𝑝)(𝑡 − 𝑡2)                                   𝑡2 ≤ 𝑡 ≤ 𝑡3                                                     (23) 

 

The solution to differential Equation (7) is obtained as follows: 

𝐼(𝑡) =  −(𝐴 − 𝑏𝑆𝑝) [
[𝑛−𝛽(𝑡−𝑡2)]

𝑛𝜃
+

𝛽

𝑛𝜃2] + 𝐿4𝑒−𝜃𝑡                                                                                   (24) 

 

On solving Equation (24) under the boundary condition 𝐼(𝑡3) = 𝐼3, we obtain the following: 

𝐿4 = {𝐼3 + (𝐴 − 𝑏𝑆𝑝) [
[𝑛−𝛽(𝑡3−𝑡2)]

𝑛𝜃
+

𝛽

𝑛𝜃2]} 𝑒𝜃𝑡3                                                                                     (25) 

 

Substituting Equation (25) back into Equation (24) leads to: 

𝐼(𝑡) =  −(𝐴 − 𝑏𝑆𝑝) [
𝜑(𝑡)

𝜃
+

𝛽

𝑛𝜃2] + [𝐼3 + (𝐴 − 𝑏𝑆𝑝) [
𝜑(𝑡3)

𝜃
+

𝛽

𝑛𝜃2]] 𝑒−𝜃(𝑡−𝑡3)       𝑡3 ≤ 𝑡 ≤  𝑡4              (26) 

 

with 
[𝑛−𝛽(𝑡3−𝑡2)]

𝑛
= 𝜑(𝑡3)                                                                                                                                   (27) 
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Linearizing the exponential terms 𝑒−𝜃(𝑡−𝑡3) in Equation (27) by applying Taylor's series expansion near 

𝑡 = 𝑡3, results in the following: 

𝐼(𝑡) = 𝐼3 − 𝜃{𝐼3 + (𝐴 − 𝑏𝑆𝑝)𝜑(𝑡3) }(𝑡 − 𝑡3)                                              𝑡3 ≤ 𝑡 ≤  𝑡4                              (28) 

 

The solution to differential Equation (8) is: 

𝐼(𝑡) =  −[𝐴 − 𝑏(1 − 𝛼)𝑆𝑝] [
[𝑛−𝛽(𝑡−𝑡2)]

𝑛𝜃
+

𝛽

𝑛𝜃2] + 𝐿5𝑒−𝜃𝑡                        𝑡4 ≤ 𝑡 ≤  𝑇                               (29) 

 

Using the boundary condition, 𝐼(𝑡4) = 𝐼4 in Equation (29), we obtain 𝐿5 as follows: 

𝐿5 =  [𝐼4 + [𝐴 − 𝑏(1 − 𝛼)𝑆𝑝] [
𝜑(𝑡4)

𝜃
+

𝛽

𝑛𝜃2]] 𝑒𝜃𝑡4                                                                                     (30) 

 

Substituting Equation (30) back into Equation (29) leads to: 

𝐼(𝑡) =  −[𝐴 − 𝑏(1 − 𝛼)𝑆𝑝] [
[𝑛−𝛽(𝑡−𝑡2)]

𝑛𝜃
+

𝛽

𝑛𝜃2] + [𝐼4 + [𝐴 − 𝑏(1 − 𝛼)𝑆𝑝] [
𝜑(𝑡4)

𝜃
+

𝛽

𝑛𝜃2]] 𝑒−𝜃(𝑡−𝑡4)                        𝑡4 ≤ 𝑡 ≤  𝑇                                                                                                    (31) 

 

Linearizing the exponential term 𝑒−𝛾(𝑡−𝑡4)  to near 𝑡 = 𝑡4  in equation (31) utilizing Taylor's series 

expansion yields: 

𝐼(𝑡) =  𝐼4 − 𝜃{𝐼4 + [𝐴 − 𝑏(1 − 𝛼)𝑆𝑝] 𝜑(𝑡4)}(𝑡 − 𝑡4)                                𝑡4 ≤ 𝑡 ≤ 𝑇                               (32) 

 

3.1 Set Up Cost (TSC) 
The total set up cost is given by the following function 

𝑆𝐶 =  ∑ 𝑆𝑐𝑖
2
𝑖=1                                                                                                                                             (33) 

 

3.2 Holding Cost (THC) 
We can express the total holding cost using the following function: 

𝑇𝐻𝐶 = ℎ𝑃 [∫ 𝐼(𝑡)𝑑𝑡
𝑡1

0
+ ∫ 𝐼(𝑡)𝑑𝑡

𝑡2

𝑡1
+  ∫ 𝐼(𝑡)𝑑𝑡

𝑡3

𝑡2
+ ∫ 𝐼(𝑡)𝑑𝑡

𝑡4

𝑡3
+  ∫ 𝐼(𝑡)𝑑𝑡

𝑇

𝑡4
]                                        (34) 

𝑇𝐻𝐶 =
1

2
ℎ𝑃[ 𝐼1𝑡2 +  𝐼2(𝑡3 −  𝑡1) + 𝐼3(𝑡4 −  𝑡2) +  𝐼4(𝑇 − 𝑡3)]                                                               (35) 

 

3.3 Cost of Deterioration (TCD) 
The cost of deterioration during the entire cycle is 

𝑇𝐶𝐷 =  𝐶𝑑𝜃 [∫ 𝐼(𝑡)𝑑𝑡
𝑡4

𝑡3
+ ∫ 𝐼(𝑡)𝑑𝑡

𝑇

𝑡4
]                                                                                                       (36) 

𝑇𝐶𝐷 = 𝐶𝑑𝜃 [
1

2
[𝐼3 + 𝐼3 − 𝜃[𝐼3 + (𝐴 − 𝑏𝑆𝑝)𝜑(𝑡3) ](𝑡4 − 𝑡3)](𝑡4 − 𝑡3) +

1

2
𝐼4(𝑇 − 𝑡4) +

1

2
[𝐼4 − 𝜃[𝐼4 +

[𝐴 − 𝑏(1 − 𝛼)𝑆𝑝] 𝜑(𝑡4)](𝑇 − 𝑡4)](𝑇 − 𝑡4)]                                                                                            (37) 

𝑇𝐶𝐷 ≈ 𝐶𝑑𝜃 [
1

2
𝐼3(𝑡4 − 𝑡3) +

1

2
(𝑇 − 𝑡3)𝐼4]                                                                                                (38) 

 

3.4 Production Cost (PC) 
The production cost incurred throughout the entire cycle [0, T] is: 

𝑃𝐶 = 𝑝𝑐1𝑘1𝑡1 + 𝑝𝑐2𝑘2(𝑡2 − 𝑡1)                                                                                                               (39) 
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3.5 Disposal Cost (DSC) 
The disposal cost is given by: 

𝐷𝑆𝐶 = 𝑐𝑑𝑝[𝑑1𝑘1𝑡1 + 𝑑2𝑘2(𝑡2 − 𝑡1)]                                                                                                       (40) 

 

3.6 Total Cost (TC) 
The total cost incurred per time is expressed as follows: 

𝑇𝐶 =
1

𝑇
{∑ 𝑆𝑐𝑖

2
𝑖=1 +

1

2
ℎ𝑃[ 𝐼1𝑡2 +  𝐼2(𝑡3 − 𝑡1) + 𝐼3(𝑡4 −  𝑡2) +  𝐼4(𝑇 − 𝑡3)] + 𝐶𝑑𝜃 [

1

2
𝐼3(𝑡4 − 𝑡3) +

1

2
(𝑇 −

𝑡3)𝐼4] + [𝑝𝑐1 + 𝑑1𝑐𝑑𝑝]𝑘1𝑡1 + [𝑝𝑐2 + 𝑑2𝑐𝑑𝑝]𝑘2(𝑡2 − 𝑡1)}                                                                       (41) 

 

3.7 Total Revenue (TR) 
The average total revenue earned during the interval [0, 𝑇] is: 

𝑇𝑅 =
𝑆𝑝

𝑇
{∫  [𝐴 − 𝑏𝑆𝑝 + 𝛾𝐼(𝑡)]𝑑𝑡

𝑡1

0
+ ∫  [𝐴 − 𝑏𝑆𝑝 + 𝛾𝐼(𝑡)]𝑑𝑡

𝑡2

𝑡1
+ ∫  [𝐴 − 𝑏𝑆𝑝 + 𝛾𝐼(𝑡)]𝑑𝑡

𝑡3

𝑡2
+ ∫  [𝐴 −

𝑡4

𝑡3

𝑏𝑆𝑝]𝜑(𝑡)𝑑𝑡 + (1 − 𝛼) ∫  [𝐴 − 𝑏(1 − 𝛼)𝑆𝑝]𝜑(𝑡)𝑑𝑡
𝑇

𝑡4
}                                                                             (42) 

 

𝑇𝑅 =
𝑆𝑝

𝑇
[[(𝐴 − 𝑏𝑆𝑝) +

1

2
𝛾𝐼1] 𝑡1 + [(𝐴 − 𝑏𝑆𝑝) +

1

2
𝛾(𝐼1 + 𝐼2)] (𝑡2 − 𝑡1) + [1 −

1

2
𝛾(𝑡3 − 𝑡2)] (𝐴 − 𝑏𝑆𝑝 +

𝛾𝐼2)(𝑡3 − 𝑡2) + [
2𝑛−𝛽(𝑡4+𝑡3)+2𝛽𝑡2

2𝑛
] (𝑡4 − 𝑡3)(𝐴 − 𝑏𝑆𝑝) + (1 − 𝛼) [

2𝑛−𝛽(𝑇+𝑡4)+2𝛽𝑡2

2𝑛
] (𝑇 − 𝑡4)[𝐴 − 𝑏(1 −

𝛼)𝑆𝑝]]                                                                                                                                                         (43) 

 

Thus, the net profit earned per cycle is: 

𝑁𝑃(𝑆𝑝, 𝑇) = 𝑇𝑅 − 𝑇𝐶                                                                                                                              (44) 
 

𝑁𝑃(𝑆𝑝, 𝑇) =
𝑆𝑝

𝑇
[[(𝐴 − 𝑏𝑆𝑝) +

1

2
𝛾𝐼1] 𝑡1 + [(𝐴 − 𝑏𝑆𝑝) +

1

2
𝛾(𝐼1 + 𝐼2)] (𝑡2 − 𝑡1) + [1 −

1

2
𝛾(𝑡3 −

𝑡2)] (𝐴 − 𝑏𝑆𝑝 + 𝛾𝐼2)(𝑡3 − 𝑡2) + [
2𝑛−𝛽(𝑡4+𝑡3)+2𝛽𝑡2

2𝑛
] (𝑡4 − 𝑡3)(𝐴 − 𝑏𝑆𝑝) + (1 −

𝛼) [
2𝑛−𝛽(𝑇+𝑡4)+2𝛽𝑡2

2𝑛
] (𝑇 − 𝑡4)[𝐴 − 𝑏(1 − 𝛼)𝑆𝑝]] −

1

𝑇
[∑ 𝑆𝑐𝑖

2
𝑖=1 +

1

2
ℎ𝑃[ 𝐼1𝑡2 + 𝐼2(𝑡3 −  𝑡1) + 𝐼3(𝑡4 −

 𝑡2) + 𝐼4(𝑇 − 𝑡3)] + 𝐶𝑑𝜃 [
1

2
𝐼3(𝑡4 − 𝑡3) +

1

2
(𝑇 − 𝑡3)𝐼4] + [𝑝𝑐1 + 𝑑1𝑐𝑑𝑝]𝑘1𝑡1 + [𝑝𝑐2 + 𝑑2𝑐𝑑𝑝]𝑘2(𝑡2 −

𝑡1)]                                                                                                                                                              (45) 

 
The decision variables in this problem are the cycle time, 𝑇, and selling price, 𝑆𝑝, hence the optimization 

problem becomes: 

𝑀𝑎𝑥𝑆𝑝
∗, 𝑇∗𝑁𝑃(𝑆𝑝, 𝑇)                                                                                                                                 (46) 

 
This problem can be solved by solving the grad functions: 
𝜕𝑁𝑃(𝑆𝑝,𝑇)

𝜕𝑇
=

𝑆𝑝

𝑇
[−

𝛽

2𝑛
(1 − 𝛼)(𝑇 − 𝑡4)[𝐴 − 𝑏(1 − 𝛼)𝑆𝑝] + (1 − 𝛼) [

2𝑛−𝛽(𝑇+𝑡4)+2𝛽𝑡2

2𝑛
] [𝐴 − 𝑏(1 −

𝛼)𝑆𝑝]] −
1

𝑇
[

1

2
ℎ𝑃𝐼4 +

1

2
𝐶𝑑𝜃𝐼4] −

1

𝑇
𝑁𝑃(𝑆𝑝, 𝑇)                                                                                           (47) 
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𝜕𝑁𝑃(𝑆𝑝 ,𝑇)

𝜕𝑆𝑝
=

1

𝑇
[[(𝐴 − 𝑏𝑆𝑝) +

1

2
𝛾𝐼1] 𝑡1 + [(𝐴 − 𝑏𝑆𝑝) +

1

2
𝛾(𝐼1 + 𝐼2)] (𝑡2 − 𝑡1) + [1 −

1

2
𝛾(𝑡3 − 𝑡2)] (𝐴 − 𝑏𝑆𝑝 +

𝛾𝐼2)(𝑡3 − 𝑡2) + [
2𝑛−𝛽(𝑡4+𝑡3)+2𝛽𝑡2

2𝑛
] (𝑡4 − 𝑡3)(𝐴 − 𝑏𝑆𝑝) + (1 − 𝛼) [

2𝑛−𝛽(𝑇+𝑡4)+2𝛽𝑡2

2𝑛
] (𝑇 − 𝑡4)[𝐴 − 𝑏(1 − 𝛼)𝑆𝑝]] +

𝑆𝑝

𝑇
[[−𝑏 +

1

2
𝛾

𝜕𝐼1

𝜕𝑆𝑝
] 𝑡1 + [−𝑏 +

1

2
𝛾 (

𝜕𝐼1

𝜕𝑆𝑝
+

𝜕𝐼2

𝜕𝑆𝑝
)] (𝑡2 − 𝑡1) + [1 −

1

2
𝛾(𝑡3 − 𝑡2)] (−𝑏 + 𝛾

𝜕𝐼2

𝜕𝑆𝑝
) (𝑡3 − 𝑡2) −

𝑏 [
2𝑛−𝛽(𝑡4+𝑡3)+2𝛽𝑡2

2𝑛
] (𝑡4 − 𝑡3) − 𝑏(1 − 𝛼)(1 − 𝛼) [

2𝑛−𝛽(𝑇+𝑡4)+2𝛽𝑡2

2𝑛
] (𝑇 − 𝑡4)] −

1

2𝑇
[ℎ𝑃 [ 

𝜕𝐼1

𝜕𝑆𝑝
𝑡2 +  

𝜕𝐼2

𝜕𝑆𝑝
(𝑡3 −  𝑡1) +

𝜕𝐼3

𝜕𝑆𝑝
(𝑡4 − 𝑡2) + 

𝜕𝐼4

𝜕𝑆𝑝
(𝑇 − 𝑡3)] + 𝐶𝑑𝜃 [

𝜕𝐼3

𝜕𝑆𝑝
(𝑡4 −  𝑡3) +  

𝜕𝐼4

𝜕𝑆𝑝
(𝑇 − 𝑡3)]]                                                               (48) 

 

The functions in Equations (47) and (48) are highly nonlinear, making it challenging to derive a closed-

form analytical proof. Nonetheless, it is possible to numerically demonstrate the concavity of the profit 

function by establishing its positive (semi)definiteness using the Hessian matrix presented in Equation (49) 

while also satisfying the conditions presented in Equation (50): 
 

𝐻𝑀 = [

𝜕2𝑁𝑃(𝑆𝑝,𝑇)

𝜕𝑆𝑝
2

𝜕2𝑁𝑃(𝑆𝑝,𝑇)

𝜕𝑆𝑝𝜕𝑇

𝜕2𝑁𝑃(𝑆𝑝,𝑇)

𝜕𝑇𝜕𝑆𝑝

𝜕2𝑁𝑃(𝑆𝑝,𝑇)

𝜕𝑇2

] ≥ 0                                                                                                           (49) 

 
𝜕2𝑁𝑃(𝑆𝑝,𝑇)

𝜕𝑆𝑝
2 ≤ 0,

𝜕2𝑁𝑃(𝑆𝑝,𝑇)

𝜕𝑇2 ≤ 0                                                                                                                    (50) 

 

Taking the second-order derivatives of 𝑁𝑃(𝑆𝑝, 𝑇) in (45) with respect to 𝑆𝑝 and 𝑇, we found the expression 

of the Hessian as 
 

𝜕2𝑁𝑃(𝑆𝑝,𝑇)

𝜕𝑆𝑝
2 =

2

𝑇
[[−𝑏 +

1

2
𝛾

𝜕𝐼1

𝜕𝑆𝑝
] 𝑡1 + [−𝑏 +

1

2
𝛾 (

𝜕𝐼1

𝜕𝑆𝑝
+

𝜕𝐼2

𝜕𝑆𝑝
)] (𝑡2 − 𝑡1) + [1 −

1

2
𝛾(𝑡3 − 𝑡2)] (−𝑏 +

𝛾
𝜕𝐼2

𝜕𝑆𝑝
) (𝑡3 − 𝑡2) − 𝑏 [

2𝑛−𝛽(𝑡4+𝑡3)+2𝛽𝑡2

2𝑛
] (𝑡4 − 𝑡3) − 𝑏(1 − 𝛼)2 [

2𝑛−𝛽(𝑇+𝑡4)+2𝛽𝑡2

2𝑛
] (𝑇 − 𝑡4)]                  (51) 

 
𝜕2𝑁𝑃(𝑆𝑝,𝑇)

𝜕𝑆𝑝𝜕𝑇
=

𝜕2𝑁𝑃(𝑆𝑝,𝑇)

𝜕𝑇𝜕𝑆𝑝
=

1

𝑇
[−

𝛽

2𝑛
(1 − 𝛼)(𝑇 − 𝑡4)[𝐴 − 𝑏(1 − 𝛼)𝑆𝑝] + (1 − 𝛼) [

2𝑛−𝛽(𝑇+𝑡4)+2𝛽𝑡2

2𝑛
] [𝐴 −

𝑏(1 − 𝛼)𝑆𝑝]] +
𝑆𝑝

𝑇
[

𝛽

2𝑛
𝑏(1 − 𝛼)2(𝑇 − 𝑡4) − 𝑏(1 − 𝛼)2 [

2𝑛−𝛽(𝑇+𝑡4)+2𝛽𝑡2

2𝑛
]] −

1

𝑇
{

1

2
ℎ𝑃  

𝜕𝐼4

𝜕𝑆𝑝
+

1

2
𝐶𝑑𝜃

𝜕𝐼4

𝜕𝑆𝑝
} −

1

𝑇

𝜕𝑁𝑃(𝑆𝑝,𝑇)

𝜕𝑆𝑝
                                                                                                                                                   (52) 

 
𝜕2𝑁𝑃(𝑆𝑝,𝑇)

𝜕𝑇2 = −
𝛽

𝑛𝑇
[𝑆𝑝(1 − 𝛼)][𝐴 − 𝑏(1 − 𝛼)𝑆𝑝] −

2

𝑇

𝜕𝑁𝑃(𝑆𝑝,𝑇)

𝜕𝑇
                                                                (53) 

 

4. Numerical Example 
A numerical experiment was conducted to demonstrate the application of the proposed model. The 

parameter values chosen for this illustration were based on recommendations and values adopted from 

previous models and examples found in the existing literature. 
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A = 40  units/day, b =  0.2 , cd  = $0.8 /unit, cdp  = $0.5 /unit, d1  =  8% , d2  =  10% , hp  =

 $0.092 /unit/day k1  =  150 units/day, k2  =  130 units/day, n =  40 days, pc1  =  $0.54 /unit, pc2  =
 $0.7/unit, SC1  =  $657 /setup, SC2  =  $947 /setup, α =  20% , β =  0.6 , θ =  0.004 , γ =  0.8 , t1  =
 1day, t2  =  2days,t3  =  3days, t4  =  6days. 

 

 

Figure 2. Graph representing a concave NP with respect to Sp. 

 

 

 

 

Figure 3. Graphical observation of NP against Sp and T. 
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Due to the complexity of the equations, the optimization is performed using the Newton-Raphson method, 

implemented using the MATLAB software. Solving Equations (47) and (48), we obtained the optimal 

values for the product's price Sp
∗ =  $167.6/unit, and the optimal length of the cycle  T∗ = 21.5days. 

Subsequently, we calculated the average total profit NP(Sp
∗ , T∗) = $2977  per day. Using numerical 

calculus and values of 𝑆p ranging from 20 to 300, it is evident from Figure 2 that the profit function per 

unit time, NP(𝑆p, T), is strictly concave versus the selling price. The concavity of the profit function can 

be observed in Figure 3 for the values of the selling price ranging between 30 and 310 and the cycle time 

ranging between 14 and 28 days. 
 

5. Sensitivity Analysis 
Sensitivity analysis was conducted to analyze the response of the model’s objective (the profit function) 

and the key decision variables (the unit selling price, cycle time) to the model’s parameters, by changing 

the values of the parameters one at a time, while keeping the other parameters constant. The parameter 

values were varied within the range of -20% to +60% of the values used in the previous numerical example 

at intervals of 20%, and the changes in the optimal values of the cycle time, selling price and net profit are 

summarized in Tables 3, 4 and 5, and Figures 4, 5 and 6 respectively. This helps to understand how the key 

response variables are robust to the parameter values, and understand which of the parameters should be 

monitored more closely by decision makers for possible review when the model is applied in practice. 

 
Table 3. Influence of proposed model parameters on 𝑇∗. 

 
Change in 𝑻∗ (%) 

Change in 

parameter 
b 𝑪𝒅 𝑪𝒅𝒑 𝒉𝒑 𝒌𝟏 𝒌𝟐 𝒑𝒄𝟏  𝒑𝒄𝟐  𝑺𝑪𝟏 𝑺𝑪𝟐 𝒅𝟏 𝒅𝟐 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝜽 𝜸 𝜶 𝜷 𝒏 

-20 41.7 0.0 0.1 0.5 -14.5 -10.6 1 1.1 9.6 14.8 0.9 1.4 -6.1 -21.9 21.7 4.3 -0.2 -13.44 -1.17 -2.38 7.9 

+20 
-

16.6 
0.0 -0.2 -0.6 14.9 10.6 -1.1 -1.2 -7.5 -10.3 -1.4 -1.4 10.5 11.9 4 -4 0.2 12.67 4.48 6.5 -1.8 

+40 
-

27.9 
0.0 -0.4 -1.2 30.3 21.2 -2.1 -2.3 -13.6 -18.1 -2.3 -2.9 24.4 14.3 -13.3 -7.7 0.2 19.58 7.38 12.75 -3.9 

+60 
-

35.8 
0.0 -0.5 -1.8 46.4 31.8 -3.0 -3.4 -18.7 * -4.3 -4.2 40.8 * -51.3 -11 0.3 22.54 10.28 21.45 -5.4 

 

 

The cycle time 𝑇∗ is highly sensitive to changes in the shape parameters 𝑏, γ and 𝛽; the production rates 

𝑘1and 𝑘2; the setup cost parameters 𝑆𝑐1, 𝑆𝑐2; the time parameters 𝑡1, 𝑡2, 𝑡3, 𝑡4; and the discount rate 𝛼. It is 

moderately sensitive to changes in the unit production costs 𝑝𝑐1, 𝑝𝑐2 ; the inventory holding cost ℎ𝑝; the 

defective rates 𝑑1, 𝑑2; and the shelf-life period 𝑛. It seems rather insensitive to changes in the disposal cost 

𝐶𝑑𝑝; the deteriorating cost 𝐶𝑑 and the deterioration rate 𝜃. As the values of 𝑏, ℎ𝑝, 𝑝𝑐1, 𝑝𝑐2 ,  𝑆𝑐1, 𝑆𝑐2, 𝑡3, 𝑡4 

and 𝑛 get higher, the optimal value of the cycle time, 𝑇∗, tends to decrease. On the other hand, for higher 

production rates 𝑘1and 𝑘2, time parameter 𝑡1, shape parameters γ and 𝛽 and the discount rate 𝛼, the model 

suggests increasing values for the optimal cycle time, 𝑇∗. 

 

The selling price 𝑆𝑝
∗ is highly sensitive with respect to the shape parameter 𝑏, the time parameter 𝑡3 and the 

discount rate 𝛼 . It is moderately sensitive to the production rates, 𝑘1,  𝑘2 , the unit production costs 

𝑝𝑐1 and 𝑝𝑐2 , the setup cost parameters 𝑆𝑐1, and 𝑆𝑐2, and the time parameters 𝑡1, 𝑡2 and 𝑡4. Changes in 𝐶𝑑, 

𝐶𝑑𝑝, ℎ𝑝, 𝜃, 𝛾, 𝛽, 𝑑1, 𝑑2, and 𝑛, however, tend to have relatively minor impact on the unit selling price 𝑆𝑝
∗, 

compared to the other response variables. As the values of the parameters 𝑘1𝑘2, 𝑝𝑐1, 𝑝𝑐2, 𝑆𝑐1, 𝑆𝑐2, 𝑡1, 𝑡2, 𝑡3, 

and the discount rate 𝛼 increase, the model suggests corresponding increase in the optimal selling price, 𝑆𝑝
∗. 

The discount parameter, 𝛼, and time the time from which deterioration starts, 𝑡3, have the greatest impact 

on the optimal selling price 𝑆𝑝
∗. On the other hand, as the shape parameter of demand 𝑏, and the time from 

which price discount is offered 𝑡4 increase, the optimal selling price determined by the model decreases. 

The shape parameter, 𝑏, has the greatest effect on the value of the optimal selling price.  
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Figure 4. Effect of changing parameters on 𝑇∗. 

 

 

Table 4. Influence of proposed model parameters on 𝑆𝑝
∗. 

 
Change in 𝑺𝒑

∗  (%) 

Change in 

parameter 
b 𝑪𝒅 𝑪𝒅𝒑 𝒉𝒑 𝒌𝟏 𝒌𝟐 𝒑𝒄𝟏  𝒑𝒄𝟐  𝑺𝑪𝟏 𝑺𝑪𝟐 𝒅𝟏 𝒅𝟐 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝜽 𝜸 𝜶 𝜷 𝒏 

-20 17.8 0 0.3 0.2 0.1% 0.0 0.1 0.1 -1.5 -2.4 0.0 0.0 0.2 -0.6 -1.7 1.7 0 -0.7 -3.6 0.1 -0.1 

+20 -12.8 0 0.4 0.5 0.6 0.7 0.6 0.6 2.1 2.8 0.0 0.0 0.6 1.6 1.2 -1.1 0 0.3 3.9 -0.1 0.1 

+40 -22.3 0 0.4 0.6 1 1.1 0.8 0.8 3.7 5.1 0.1 0.0 1.1 2.8 5.5 -2.5 0 0.4 8.1 -0.2 0.1 

+60 -29.6 0 0.4 0.7 1.4 1.5 1 1.1 5.3 * 0.1 0.0 1.6 * 13.5 -4 0. 0.5 12.6 -0.3 0.2 

 

 

 
 

Figure 5. Effect of changing parameters on 𝑆𝑝
∗. 
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The total profit per unit time, 𝑁𝑃∗ , is highly sensitive with respect to changes in setup cost 

parameters,  𝑆𝑐1, 𝑆𝑐2, the shape parameter, 𝛽, and the shelf-life period, 𝑛. The total profit per unit time, 

𝑁𝑃∗, is moderately sensitive to changes in parameter γ, disposal cost 𝐶𝑑𝑝, inventory holding cost ℎ𝑝; unit 

production costs 𝑝𝑐1, 𝑝𝑐2 , time parameters 𝑡1, 𝑡2, 𝑡3 and 𝑡4. The total profit per unit time 𝑁𝑃∗ exhibits a 

strong positive sensitivity to changes in setup cost parameters 𝑆𝑐1, 𝑆𝑐2, disposal cost 𝐶𝑑𝑝, inventory holding 

cost ℎ𝑝; unit production costs 𝑝𝑐1, 𝑝𝑐2 , time parameters 𝑡2, 𝑡4, and the shelf-life period 𝑛. Among these 

parameters, the set-up cost parameters, the shelf live period 𝑛 and time parameter 𝑡4  have the greatest 

impact on the optimal profit. 𝑁𝑃∗ is highly sensitive in a negative to changes in shape parameters 𝑏, γ and 

𝛽, production rates 𝑘1, 𝑘2, time 𝑡1 and 𝑡3. Among these parameters, shape parameters γ and 𝛽, and time 

parameter t1 have the greatest impact on the optimal profit per cycle. The change in 𝐶𝑑, 𝛼, and 𝜃 has a 

minimal effect on the net profit 𝑁𝑃∗, indicating that these parameters have relatively insignificant influence 

on revenue when compared to other factors that affect profitability. 

 

 
Table 5. Influence of proposed model parameters on 𝑁𝑃∗. 

 
Change in 𝑵𝑷∗ (%) 

Change in 

parameter 
b 𝑪𝒅 𝑪𝒅𝒑 𝒉𝒑 𝒌𝟏 𝒌𝟐 𝒑𝒄𝟏  𝒑𝒄𝟐  𝑺𝑪𝟏 𝑺𝑪𝟐 𝒅𝟏 𝒅𝟐 𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒 𝜽 𝜸 𝜶 𝜷 𝒏 

-20 3.7 0 0.9 0.7 2.7 2 0.4 0.3 -4 -6.6 -0.3 -0.2 2 1.9 5.4 -0.4 0 3.4 -0.2 3.9 -5.6 

+20 -6.6 0 1.1 1.3 -0.9 0 1.6 1.7 5.6 7.5 0.2 0.2 -0.8 1.9 -2.9 2.2 0 -2.7 0.2 -4.4 3.23 

+40 -12.6 0 1.2 1.7 -2.9 -1 2.2 2.3 9.8 13.4 0.5 0.5 -3.2 4.5 -3 3.4 0 -4.6 0.3 -9.5 5.4 

+60 -17.8 0 1.3 2 -5 -2.1 2.7 3 13.8 * 0.7 0.7 -5.9 * -4.5 4.5 0 -5.6 0.5 -15.7 7 

 

 

 
 

Figure 6. Effect of changing parameters on 𝑁𝑃∗. 

 

 

6. Managerial Implications 
The findings from the sensitivity analysis provide valuable suggestions to managers and decision-makers 

for enhancing the total profit. These suggestions aim to optimize various factors and improve the overall 

profitability. 
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1) It is important to note that the demand elasticity factor, 𝑏, is an important parameter in determining the 

net profit, the selling price, and the cycle time. This may provide the managers with the necessary alternative 

optima, especially in situations where there may be operating constraints on possible practical values. For 

instance, market forces may impose limitations on the achievable cycle time, necessitating managers to 

operate within specific range of values. It can be observed from Figure 4 from the changes in the gradients 

that the changes in cycle time is more sensitive to decrease in demand elasticity than its increase, hence, 

the manager may appear to have some leeway in allowing increase in this value. However, seeing the 

implications on the net profit function in Figure 6 discourages this assumption. 

 

2) The setup cost parameters,  𝑆𝑐1 and 𝑆𝑐2, are important parameters in determining the cycle time and the 

net profit. Analysis of the provided tables reveals a notable decrease in cycle time, which proves to be 

beneficial in optimizing the revenue. This reduction in cycle time helps mitigate holding costs, particularly 

in production systems where storage costs, deterioration, or obsolescence of inventory are significant 

concerns. With this increase in setup cost, it can be seen that the model recommended small increase in 

selling price, which may account for increase in profit. This must, however, be carefully done as the effect 

of demand sensitivity to price needs to be factored in, else the profit may start dropping more quickly. 

 

3) The sensitivity analysis shows that an increase in the time from which price discount is offered, 𝑡4, results 

in moderate decrease in the cycle time. The model then suggests a moderate increase in selling price, to 

result in a moderate increase in the optimal Net profit 𝑁𝑃∗. At first glance, this behavior seems peculiar. 

This suggests that as the combined effects of both product deterioration and the freshness function kick in, 

the demand starts to drop, and spoilage starts to increase, and there is the need to promptly introduce demand 

stimulant, especially because of the impact of the freshness function. The extra sale will then compress the 

cycle time since the quantity produced is already fixed, and this can mitigate the overall effect of the holding 

cost and deteriorated quantity, amongst other, thereby rising profit. 

 

4) Based on an observation derived from sensitivity analysis, it has been noted that any change in the 

freshness parameter (𝛽) necessitates careful consideration to strike a balance between cycle time 𝑇∗ and 

the total profit 𝑁𝑃∗. As 𝛽 increases, the product freshness drops, and the demand drops correspondingly. 

Consequently, since products are already made, the cycle time lengthens, which increases the quantity that 

deteriorated, makes the time the discounted product is sold longer, increases the holding cost, and 

subsequently depletes the profit. It can be seen from Figure 6 that this factor has one of the greatest impacts 

on profit, and as the cycle time increases further, comparing its slope to that of the demand elasticity factor, 

it can easily become the most important cause of profitability decline. 

 

5) It is interesting to see that changes in the shelf life, n, does not have significant impact on the optimal 

cycle time, or on the optimal selling price. For instance, 60% increase in the product life, decreases the 

cycle time by just about 5 percent, and the selling price by less by less than 0.5 percent. However, it 

increases the profit moderately, by up to seven percent. This may be because longer shelf life dampens the 

effect of declining freshness (which reduces demand), decreases the cycle time (shortens the length of 

discount period on fresh products, since t4 is fixed), hence, improving profit. 

 

7. Conclusion 
Companies are actively seeking effective inventory strategies for deteriorating products. While deteriorated 

products are unsellable, products that gradually lose freshness experience a decrease in demand as they age, 

although they can still be sold. Many previous models on inventory models for deteriorating products often 

assume that the demand remains unchanged regardless of the freshness level of the product. In reality, 

demand is affected by freshness. Another assumption is that the production rate is constant in a 
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manufacturing system. This can be problematic as it doesn't consider the variability in and the complexity 

of manufacturing processes. In reality, production shifts from one rate to another due to a variety of factors 

such as variability of demand, machine breakdowns, material shortages, energy constraints, and quality 

issues. To effectively respond to changes in demand or unforeseen disruptions in the production process, 

many organizations implement flexible production systems for better efficiencies and profitability.  

 

This study examined an EPQ model with alternating production rates and price-dependent demand while 

employing price discounting as a strategy to optimize profit. Additionally, we modified the inventory model 

to incorporate deteriorating products, where demand is not only influenced by the unit selling price but also 

by factors such as the level of stock displayed, and the freshness condition of the product. The primary 

objective is to determine both the selling price and the inventory cycle time that maximize the profit. The 

objective function of this model is highly non-linear, making it challenging to find an analytical solution, 

hence, solved numerically. We presented a numerical example and then conducted sensitivity analyses to 

gain managerial insights based on changes in parameter values. It is not always economically viable for the 

decision maker to sell products at the regular price, particularly when the production costs per unit or the 

set-up costs increase. In such cases, decision-makers can reduce their cycle time as much as possible and 

increase their unit selling price to protect their profit. Furthermore, when faced with an increase in discount, 

the analysis suggests that in such situations, the decision maker may respond by increasing their price and 

cycle time to maintain the profit. However, it is important for managers to consider market dynamics and 

customer behavior when contemplating cycle time and price adjustments. Adjustments in cycle time or 

price may be more effective in preserving profitability without compromising the overall profitability of 

the production system. 

Future research can expand this model in several ways, such as considering non-linear shortages, inflation, 

incremental discount facilities, prepayment installment on pricing, and other factors. A potential extension 

of this work includes treating 𝑡1, 𝑡2, 𝑡3 and 𝑡4 as decision variables in the model, as opposed to fixed values, 

to determine how these variables may impact the model. Furthermore, one could explore models with 

demand dependent on advertisement and selling price, nonlinear stock dependent holding cost, non-

instantaneous deterioration, and preservation technology, as well as introducing various credit policies 

(single level, two-level, partial, credit risk customers, etc.). The model can also be extended to stochastic, 

or fuzzy models. 
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