Semi-empirical supported, Ab Initio derived Thermodynamic properties for ClO₂ and its sub and extended species, applied in water treatment cycles

Natasha Misheer^{1, 2}, Patrick G. Ndungu¹, and Jan A Pretorius^{1,3}

¹Chemistry Department, University of Pretoria. Private Bag X20, Hatfield, Zip Code 0028, South

Africa

²ESKOM Research and Innovation Centre, Rosherville, Private Bag 40157, Cleveland,

Johannesburg, South Africa, 2022

³Centre for the Advancement of Scholarship, University of Pretoria, Private Bag X20, Hatfield,

Zip Code 0028, South Africa

Corresponding author: Jannie.Pretorius@up.ac.za

Supplementary Information

Symbols	Descriptors
c	- generic sp3 carbon
0	- generic sp3 oxygen in alcohol, ether, or acid group
h	- generic hydrogen
oh	- oxygen bonded to hydrogen
ho	- hydrogen bonded to oxygen
h*	- hydrogen bonded to fluorine, nitrogen, oxygen
cl	– chlorine atom
cl4	– chlorine in ClO ₄ ⁻ anion
o_1r	– oxygen in ClO ₄ ⁻ anion
р	– general phosphorous atom
s2	– sulphur in SO ₂
o1	– oxygen in NO ₂

Table S 1: Force Field Atom types defined for the PCFF+ force field parameterisation for chlorine oxide

Table S 2: Equivalence parameters

Туре	NonB	Bond	Angle	Torsion	OOP	Force field reference
cl4	cl4	cl4	cl4	cl4	cl4	cvff file
o_1r	o_1r	o_1r	o_1r	o_1r	o_1r	cvff file
oh	oh	oh	oh	oh	oh	This work
ho	ho	ho	ho	Но	ho	This work
h*	h*	h*	h*	h*	h*	This work

S1. Bond Increments parameters

Bond increments describe the charge formed during the bonding of two atoms. The assignment of the atomic charges of a molecule into bond increments, creates a set of general rules, based on the type of atoms in the bond [1]. I and J are the atom types of the bonded atoms. Delta IJ and Delta JI (presented as partial atomic charges measured in elementary charge unit e) refers to the change in atomic charges depending on the direction of the charge i.e., I to J or from J to I. Bond increments parameters are presented in Table S3.

Table S 3: Bond Increment parameters

т	т	Dalta II	Dalta II	force field
1	J	Della-IJ	Dena-JI	Reference
cl4	o_1r	0.3864	-0.6364	pcff file
cl	0	0.3864	-0.6364	This work
h*	0	0.4100	-0.4100	<i>pcff</i> file
cl	o_1r	0.3864	-0.6364	This work

Entries for bond increments: cl [o] and cl [o_1r] parameters were borrowed from CVFF for: cl4 [o_1r]. No other parameters have been published to support this study. Bond lengths for cl [o] = 1.7 Å, cl4 [o_1r] = 1.4 Å and cl [o_1r] = 1.6 Å were taken from the reference [2].

S2. Quartic bond parameters

The quartic bond-stretching potential is presented by:

$$E = K2 * (R - R0)^2 + K3 * (R - R0)^3 + K4 * (R - R0)^4$$

where:

• R is the current bond length and R0 the reference bond length in angstroms.

 K2, K3 and K4 are the coefficients for the quadratic, cubic and quartic terms in units of kcal/mol Å⁻², kcal/mol Å⁻³ and kcal/mol Å⁻⁴ respectively.

Table S4 presents the Quartic bond parameters used, and in the table I and J are the atom types of the bonded atoms.

Ι	J	R 0	K2	K3	K4	force field Reference
cl	0	1.6500	307.0632	0.0	0.0	cvff file
h	0	0.9600	493.8480	0.0	0.0	<i>cvff</i> file
cl4	o_1r	1,4523	419.3650	-838.7299	978.5182	cvff file
cl	o_1r	1.679	419.3650	-838.7299	978.5182	This work
cl4	oh	1.641	419.3650	-838.7299	978.5182	This work
0	0	1.2080	833.6868	0,.00	0.00	<i>cvff</i> file
0	o_1r	1.3603	833.6868	0,.00	0.00	This work
o_1r	o_1r	1.3227	833.6868	0,.00	0.00	This work

 Table S 4: Quartic bond parameters

The entries for the **cl** $[o_1r]$ and **cl4** [oh] parameters were extracted from the **cl4** $[o_1r]$ entry in PCFF+. The relevant bond lengths (R0) were obtained from literature [2]. The entries for the **o** $[o_1r]$ and **o_1r** $[o_1r]$ parameters were extracted from the **o** - **o** entry in PCFF+. The relevant bond lengths (R0) were obtained from literature [3].

S3. Quartic angle parameters

The quartic angle is defined as follows in PCFF+:

$$\Delta = \boldsymbol{\theta} - \boldsymbol{\theta}_0$$
$$\mathbf{E} = \mathbf{K}\mathbf{2} * \Delta^2 + \mathbf{K}\mathbf{3} * \Delta^4$$
$$\Delta^3 + \mathbf{K}\mathbf{4} * \Delta^4$$

where:

- \triangle represents Delta which is the change in angle value
- θ_0 is the equilibrium value of the angle.
- Theta (θ) is the current bond angle, Theta0 (θ₀) is the reference bond angle in degrees.
- The usual half factor is included in K [6].

• K_2 , K_3 and K_4 are quadratic force constants in units of: kcal/mol rad⁻².

a 11

• *i*, *j*, *k* are the atom types involved in the angle.

Table S5 presents the quartic angle parameters used in this study.

Ι	J	K	Theta0	K2	K3	K4	force field Reference
o1=	s2=	o1=	119.300	115.2627	-35.6278	-26.1261	<i>cvff</i> file
0	cl	0	115.400	115.2627	-35.6278	-26.1261	This work
*	р	*	109.5000	45.0000	0.0	0.0	pcff file
0	cl	oh	109.5000	45.0000	0.0	0.0	This work
*	0	*	109.5	60.000	0.0	0.0	<i>pcff</i> file
cl	o_1r	cl4	111,9	60.000	0.0	0.0	This work
cl4	o_1r	o_1r	110,3	60.000	0.0	0.0	This work
cl4	o_1r	0	110.4700	60.000	0.0	0.0	This work
cl	0	o_1r	111,74	60.000	0.0	0.0	This work
cl4	o_1r	cl4	119,11	60.000	0.0	0.0	This work
cl4	oh	ho	105	60.000	0.0	0.0	This work
o_1r	cl4	o_1r	112.2363	108.1226	-24.1496	-23.3346	<i>pcff</i> file
o_1r	cl4	oh	104,2	108.1226	-24.1496	-23.3346	This work
0	cl	o_1r	104,6	108.1226	-24.1496	-23.3346	This work

Table S 5: Quartic angle parameters

Parameters from the SO₂ (*cvff* file) entry were borrowed for the **o-cl-o** quartic angle. The actual quartic angle from literature [2] was substituted for Theta0. Parameters and Theta0 from the * [p] * entry were borrowed for the **o** – **cl** – **oh** quartic angle. The cl was substituted for 'p'. 'o' and 'oh' were substituted for *.

Parameters from the * [o] * entry were borrowed for the following quartic angle entries:

- cl [o 1r] cl4
 o 1r was substituted for 'o'. cl and cl4 were substituted for *
- cl4 [o 1r] cl4 o 1r was substituted for 'o'. cl4 and cl4 were substituted for *
- cl4 [o_1r] o_1r o_1r was substituted for 'o'. cl4 and o_1r were substituted for *
- cl4 [o_1r] o o_1r was substituted for 'o'. cl4 and o were substituted for *
- cl [o] o-1r
 cl and o_1r were substituted for *
- cl [oh] ho
 oh was substituted for 'o'. cl was substituted for *
- cl [o_1r] cl4: The quartic angle for cl o cl bond was extracted from literature [2] and was substituted for theta0

- cl4 [o_1r] o_1r: The quartic angle for cl o o bond was extracted from literature [4] and was substituted for theta0
- cl4 [o_1r] o: The quartic angle for cl o o bond was extracted from literature [3] and was substituted for *θ*₀
- cl [o] o-1r: The quartic angle for cl o o bond was extracted from literature [3] and was substituted for *θ*₀
- cl [oh] ho: The quartic angle for cl -o h bond was extracted from literature [2] and was substituted for *θ*₀

Parameters from the o_1r [cl4] o_1r entry were borrowed for the following Quartic angles:

a) o [1r - cl4] oh ! oh was substituted for 'o_1r'
b) o [cl] o_1r ! o was substituted for 'o_1r'
c) o_1r [cl4] oh ! Quartic angle was extracted from literature [2] and was substituted for θ₀
d) o [cl - o] 1r ! Quartic angle was extracted from literature [3] was substituted for θ₀

S4. Wilson out of plane parameters

The Wilson out-of-plane potential is defined according to the angle between one bond from the central atom and the plane defined by the other two bonds. The format of the out-of-plane potential (Wilson definition) section is:

 $E = K * (Chi - Chi0)^2$

where I, J, K and L are the atom types of the four atoms involved in the out-of-plane term, j being the central atom: Chi ($\chi 0$) is the reference angle in degrees.

· · ·	ii neen eu	er prane pe					
	Ι	J	K	L	K-Chi	Chi0	force field Reference
	*	р	*	*	0.000	0.000	<i>cvff</i> file
	0	cl	0	0	0.000	0.000	This work
	0	cl	0	oh	0.000	0.000	This work
	0	cl	0	h	0.000	0.000	This work
	0	cl	0	cl	0.000	0.000	This work
	cl4	o_1r	o_1r	cl4	0.000	0.000	This work
	o_1r	cl4	o_1r	cl4	0.000	0.000	This work
	cl	0	o 1r	cl4	0.000	0.000	This work

Table S 6: Wilson out of plane parameters

Parameters from entry * -p- * - * were used for all Wilson out of plane entries, cl was substituted for p. The relevant atoms were substituted for *.

S5. Torsion parameters

The three-term cosine expansion of the torsion potential is:

$$E = \sum (n=1,3) \{V(n) * [1 - \cos(n*Phi - Phi0(n))]\}$$

where V1, V2 and V3 are the barrier heights in kcal/mol and Phi (ϕ) is the current torsion angle.

 $\phi 01$, $\phi 02$ and $\phi 03$ are the reference torsion angles in degrees. The reference angles are usually 0° or 180°.

The atoms are bonded to each other in the order I-J-K-L.

Ι	J	К	L	V(1)	Phi1(0)	V(2)	Phi2(0)	V(3)	Phi3(0)	force field
										Reference
*	c	0	*	0	0	0	0	0,13	0	<i>cvff</i> file
0	cl	0	0	0	0	0	0	0,13	0	This work
0	cl	0	h	0	0	0	0	0,13	0	This work
0	cl	oh	ho	0	0	0	0	0,13	0	This work
o_1r	cl4	o_1r	cl	0	0	0	0	0,13	0	This work
o_1r	cl4	o_1r	cl4	0	0	0	0	0,13	0	This work
o_1r	cl4	o_1r	0	0	0	0	0	0,13	0	This work
o_1r	cl4	oh	ho	0	0	0	0	0,13	0	This work
0	cl	o_1r	cl4	0	0	0	0	0,13	0	This work
0	cl	0	oh	0	0	0	0	0,13	0	This work
0	cl	oh	0	0	0	0	0	0,13	0	This work
0	cl	0	cl	0	0	0	0	0,13	0	This work
0	cl	0	o_1r	0	0	0	0	0,13	0	This work
o_1r	cl4	o_1r	o_1r	0	0	0	0	0,13	0	This work
*	0	0	*	0	0	0	0	1	0	<i>cvff</i> file
cl4	o_1r	o_1r	cl4	0	0	0	0	1	0	This work
cl	0	o_1r	cl4	0	0	0	0	1	0	This work

 Table S 7:
 Torsion parameters

S6. DFT and Ab Initio structure refinement

Computational conditions applied for Gaussian-16 analyses, are presented in Table S8

Gaussian execution conditions	Selection
Optimization Conditions:	OPT selected plus FREQUENCY
Temperature:	298.15K
Pressure:	1 Atm
Spin polarization: Restricted Open Shell HF	ROHF: Charged and Radical Species
Spin polarization: Unrestricted Hartree Fock	UHF: Open shell, Radical, Charged species
Spin polarization: Restricted Hartree Fock	RHF: Neutral Species
Theory:	CCSD
Theory:	Hartree Fock
basis set:	cc-pv5z
Charge:	To specify for charged species
Theory:	DFT
Functional:	B3LYP, CCSD
basis set:	cc-pv5z
Spin:	Selected

 Table S 8: Parameters applied for Gaussian analysis

 Counseing execution conditions

The steps used (equations S1 - S5) to extract Energies of Formation, derived from Gaussian-16 applying B3LYP theory were adapted from the reference [5], and the results are presented in Table S $10 - S \, 11$.

The initial step involved calculating the enthalpy of formation ($\Delta_f H (M, 0 K)$) for each molecule using the following equations [5]:

$$\Delta_{f}H(M, 0K) = \sum_{atoms} x\Delta_{f}H(X, 0K) - \sum_{n} D_{0}(M)$$
Equation S1
$$\Delta_{f}H(M, 0K) = \sum_{atoms} x\Delta_{f}H(X, 0K) - \left[\sum_{n} x\varepsilon_{0}(X) - \varepsilon_{0}(M) - \varepsilon_{ZPE}(M)\right]$$
Equation S2
$$= \sum_{atoms} x\Delta_{f}H(X, 0K) - \left[627.51\sum_{n} x\varepsilon_{0}(X) - \varepsilon_{0}(M) - \varepsilon_{ZPE}(M)\right]$$

Where the equation parameters are defined as follows:

$$\begin{split} M &= \text{Molecule} \\ X &= \text{Elements which make up M} \\ \chi &= \text{Number of atoms of X in M} \\ \sum D_0(M) &= \text{Atomization energy of the molecule} \\ \epsilon_{\text{ZPE}}(M) &= \text{Zero Point energy of the species} \\ \epsilon_0(M) &= \text{Total energy of the species} \\ \text{H_corr} &= \text{Thermal correction to Enthalpy} \\ \text{E_tot} &= \text{Total electronic energy} \\ \text{G_corr} &= \text{Correction to the Gibbs Free Energy} \\ \text{Multiply by 627.51} &= \text{Conversion (Hartree to kcal)} \end{split}$$

To calculate the enthalpy of formation at 298 K (Δ_f H (M, 298 K) for each molecule, the following equation from the reference [5] were used:

$$\Delta_f H(M, 298K) = \Delta_f H(M, 0K) + [H_M^0(298K) - H_M^0(0K)] - \sum_{atoms} x [H_x^0(298K) - H_x^0(0K)]$$
Equation S3

The Gibbs free energy of formations was determined using the following [5]:

$$\Delta_f G(M, 298K) = \Delta_f H(298K) - 298.15 \left[\sum S_{(X,298K)} - S_{(M,298K)} \right]$$
 Equation S4

$$= \Delta_f H(298K) - 298.15 \left[\sum S_{(X,298K)} - 627.51 (\text{H_corrM} - \text{G_corrM})/298.15 \right]$$
Equation S5

The elemental entropy values used with equation S4 are provided in Table S9.

 Table S 9: Elemental Entropu values used with equation S4.

 Element
 S298K (Kcal/mol · K)

 Cl
 39 481

Element	S _{298K} (Kcal/mol · K)
Cl	39.481
Н	27.418
0	38.494
С	37.787

Table S 10: Gaussian Electronic energies from a B3LYP calculation

B3LYP	OCIO	0	Cl	Н	Units
ϵ_0	-610.583	-75.1005	-460.181573	-0.50243	hartree
\mathcal{E}_{ZPE}	0.005783	0.00	0.00	0.00	hartree
E_tot	0.00894	0.0014	0.0014	0.0014	hartree
H_corr	0.009884	0.0024	0.00236	0.00236	hartree
G_corr	-0.01926	-0.0135	-0.013508	-0.01065	hartree

Forn	nation (kcal/	mol)				٨н	٨н	
Species	E0	EZPE	E_tot	H_corr	G_corr	(OK)	(298K)	(298K)
O # (Singlet)	-75.1005	0	0.001416	0.00236	-0.01495	58.99	60.03	
Cl # (Doubet)	-460.182	0	0.001416	0.00236	-0.01568	28.59	52.64	
H # (Doublet)	-0.50243	0	0.001416	0.00236	-0.01065	51.63	29.69	
C # (Singlet)	-37.1984	0	0.001416	0.00236	-0.01455	169.98	170.23	
O ##	-74.9899	0	0.001416	0.00236	-0.01392			
Cl ##	-460.168	0	0.001416	0.00236	-0.01568			
Н ##	-0.50226	0	0.001416	0.00236	-0.01065			
C ##	-37.7925	0	0.001416	0.00236	-0.01351			
ClO	-535.377	0.002787	0.005163	0.006107	-0.01876	29.772	29.72	22.07
[ClO] ⁻	-535.461	0.001987	0.004407	0.005351	-0.01909	-23.431	-23.46	-31.37
$[ClO]^+$	-534.98	0.001753	0.004201	0.005145	-0.02037	278.19	278.18	270.94
ClOO	-610.586	0.004618	0.008553	0.009497	-0.02252	21.62	21.50	6.87
[ClOO] ⁻	-610.707	0.004176	0.007997	0.008941	-0.02321	-54.57	-54.76	-69.30
$[ClOO]^+$	-610.142	0.003875	0.00745	0.008394	-0.0227	300.13	299.79	284.57
ClOCl	-995.618	0.003612	0.007145	0.00809	-0.02235	21.46	21.03	5.11
[ClOCl] ⁻	-995.706	0.001233	0.005028	0.005973	-0.02604	-34.99	-35.26	-50.19
[ClOCl] ⁺	-995.223	0.003982	0.007396	0.00834	-0.02244	269.53	269.03	253.32
Cl ₂ O	-995.597	0.00385	0.007412	0.008357	-0.02282	35.05	34.64	19.19
[Cl ₂ O] ⁻ *	-995.645	0.002096	0.005615	0.006559	-0.02461	-53.42	-54.10	-69.56
$[Cl_2O]^+$	-995.212	0.002828	0.006574	0.007518	-0.0246	276.12	275.83	260.96
ClClO ₂	-1070.79	0.009595	0.013771	0.014715	-0.01835	37.86	36.80	11.044
Clooo	-685.709	0.007877	0.012692	0.013636	-0.02123	68.41	67.80	43.48
[ClOOO] ⁻	-685.851	0.007116	0.0108	0.011744	-0.02128	-20.62	-21.95	-47.90
$Cl(O)O_2$	-685.707	0.00776	0.01308	0.014024	-0.02311	69.75	69.46	46.56
$[Cl(O)O_2]^-$	-685.851	0.007469	0.011147	0.012091	-0.02004	-20.63	-21.95	-47.99
ClO ₃	-685.743	0.010472	0.014074	0.015018	-0.01666	49.16	47.80	21.47
[ClO ₃] ⁻	-685.875	0.009585	0.013418	0.014362	-0.01711	-34.08	-35.31	-61.76
$[ClO_3]^+$	-685.292	0.00839	0.012558	0.013502	-0.01801	330.74	329.73	303.30
ClO ₄ *	-760.893	0.01041	0.014433	0.015377	-0.01675	76.79	74.64	37.12
$[ClO_4]^-$	-761.083	0.014186	0.018493	0.019438	-0.01244	-40.15	-42.11	-79.79
ClOClO	-1070.76	0.00723	0.01139	0.012334	-0.02099	56.06	54.99	29.40
ClOOCl	-1070.79	0.006504	0.011388	0.012332	-0.02238	39.29	38.67	13.96
ClOClO ₂	-1145.97	0.010652	0.015435	0.01638	-0.01879	50.56	48.83	12.93
ClOClO ₃	-1221.14	0.016573	0.022351	0.023295	-0.0144	67.92	65.77	19.98
ClO ₂ ClO ₂	-1221.13	0.0143	0.018233	0.019177	-0.01505	73.08	69.78	21.80
ClO ₂ .O-ClO ₂	-1296.31	0.018927	0.024792	0.025736	-0.01268	84.34	81.21	24.39
ClO ₂ -O-ClO ₃	-1371.51	0.027295	0.032621	0.033565	-0.00339	89.75	85.25	16.03

 Table S 11: Gaussian DFT/B3LYP/cc-pv5z/6311G output energies (Hartree) and associated Heats of Formation (kcal/mol)

Table-S11 continued

Species	E ₀	EZPE	E_tot	H_corr	G_corr	ΔН (ОК)	∆H (298K)	∆G (298K)
ClOOClO ₃	-1296.33	0.01996	0.026008	0.026952	-0.01163	75.18	72.17	15.45
ClO ₃ -O-ClO ₃	-1446.7	0.030374	0.038703	0.039647	-0.00473	93.30	89.64	13.61
ClO ₂ -O-ClO ₂	-1371.47	0.023365	0.031038	0.031982	-0.00977	107.20	104.17	37.96
ClO ₃₋ O-O-ClO ₃	-1521.85	0.037317	0.044028	0.044972	0.004479	124.17	118.45	28.50
[ClO ₃ -ClO ₃] ⁻²	-1371.47	0.028141	0.033538	0.034483	-0.00186	110.20	105.74	36.14
OClO	-610.583	0.005783	0.00894	0.009884	-0.01926	24.50	23.89	7.45
[OClO] ⁻	-610.645	0.003267	0.006849	0.007793	-0.02175	-15.96	-16.30	-32.49
[OClO] ⁺	-610.178	0.006108	0.009185	0.010129	-0.01822	278.90	278.24	261.30
OClOO	-685.733	0.004705	0.010421	0.011365	-0.02806	51.673	51.63	30.17
[OClOO] ⁻	-685.829	0.00475	0.008655	0.009599	-0.02582	-8.70	-9.88	-33.85
OCICIO ₂	-1145.81	0.005881	0.012201	0.013145	-0.02631	147.45	146.67	113.48
$[ClOH_2]^+$	-536.291	0.025091	0.028046	0.028991	0.002482	204.10	202.38	179.42
HOCl	-536.045	0.013162	0.016105	0.017049	-0.00978	-15.73	-16.44	-31.03
[HOC1] ⁻	-535.926	0.006934	0.010224	0.011168	-0.01455	54.74	54.25	38.96
$[HOC1]^+$	-535.637	0.012962	0.01592	0.016864	-0.01055	239.76	239.06	224.84
HOCIO	-611.193	0.015261	0.018722	0.019666	-0.01037	14.44	13.01	-11.04
[HOClO]- *	-611.066	0.011127	0.014348	0.015292	-0.01570	-55.76	-57.33	-80.78
$[HOClO]^+$	-610.834	0.015946	0.019318	0.020262	-0.01012	240.42	238.94	215.10
HOClO ₂	-686.393	0.019286	0.023362	0.024307	-0.00765	13.26	11.18	-23.15
HOClO ₃	-761.593	0.027229	0.031957	0.032902	-0.00083	14.84	12.13	-32.56
$[HOClO_3]^+$	-761.084	0.016512	0.022501	0.023446	-0.01494	327.65	325.73	283.97
HOOCl*	-611.212	0.017467	0.020866	0.02181	-0.00805	4.06	2.60	-21.57
[HOOC1] ⁻	-611.228	0.011698	0.016318	0.017262	-0.0168	-9.90	-10.60	-32.12
$[HOOC1]^+$	-610.812	0.016787	0.020038	0.020982	-0.00924	254.85	253.29	229.36
HOOCIO	-686.369	0.020306	0.024864	0.025809	-0.00746	29.56	27.78	-5.719
HOOClO ₂	-761.551	0.024822	0.029341	0.030285	-0.00357	40.10	37.26	-7.35
HOOOCI	-686.37	0.021388	0.025538	0.026482	-0.00608	29.47	27.44	-6.5
HOOOOCl	-761.564	0.022424	0.028236	0.02918	-0.00723	30.21	28.18	-14.83
HClO	-535.961	0.009811	0.012762	0.013706	-0.01325	34.60	33.90	19.39
HClO ₂	-611.137	0.015657	0.018874	0.019818	-0.00952	49.88	48.31	23.82
HClO ₃	-686.341	0.022859	0.026355	0.027299	-0.00356	48.51	46.07	11.05

basis set: B3LYP (cc-pv5z)

basis set: B3LYP (6-311++G/(3d2f,3p2d))

Basis sets applied:

DFT/B3LYP (cc-pv5z) DFT/B3LYP (6-311++G/(3d2f,3p2d) DFT/B3LYP (aug-cc-pv5z) (Predominantly applied)

* **

S7 MOPAC-2016 – (Semi-empirical Ab Initio structure refinement and Heats of Formation)

In this study, the Heats of Formation of the selected single species and ensembles of the various chlorine species was computed using MOPAC-2016 (Version: 20.302W). Computational steps are presented in Table S 12.

MOPAC execution conditions					
Hamiltonians applied:	AM1/MNDO/MNDOD				
	PM3/PM6/RM1/PM7				
SCF convergence:	0.01 kcal/mol				
Structure Optimize:	Normal				
Wave function:	Automatic				
Periodic Cell:	Optimize				
Starting Hessian:	Automatic				
Convergence:	Normal				
Iterations:	10 000				
Initial Temp:	50K				
Final Temp:	300K				

Table S 12: MOPAC conditions applied for analysis

Energies of Formation (ΔH_f) of single species selected for this study derived with Gaussian, MOPAC and VASP are presented in Table S 13.

	Literature Reference	<i>Gaussian- 16</i> (DFT B3LYP, cc- pV5Z)	MOPAC-2016 (derived)	MOPAC- 2016 (derived)	MOPAC- 2016 (derived)
Species	ΔH_f (298K)	ΔH_f (298K)	ΔH_f (298K)	S (kJ/mol)	Cp (kJ/mol)
ClO	24.31 [6]	29.71	25.47	215.09	30.78
[ClO] ⁻	-28.26 [6]	-23.46	-24	215.64	31.01
$[ClO]^+$	274.84 [6]	278.18	276.94	213.25	21.66
ClOO	24.56 [6]	21.5	23.28	256.64	40.54
[ClOO] ⁻	-59.28 [6]	-54.75 #	-53.36	265.18	46.01
$[ClOO]^+$	286.71 [6]	299.79	293.61	258.75	35.69
ClOCl	18.62 [6]	21.03	19.45	264.16	43.33
[ClOCl] ⁻	-35.28 [6]	-35.26	-36.72	279.21	48.37
[ClOCl] ⁺	269.14 [6]	269.03	261.74	262.36	42.76
ClClO	31.81 [6]	34.64	37.8	272.67	45.19
[ClClO] ⁻	-44.11 [6]	-54.10 #	-43.69	293.01	49.86
$[ClClO]^+$	270.09 [6]	275.83	271.85	275.27	47.94
[ClClO ₂]	29.16 [6]	36.79	28.96	296.4	61.96
ClOOO	53.29 [6]	67.8	45.51	297.01	52.81
[ClOOO] ⁻	-25.00 [6]	-21.93	-25.06	286.06	56.29
$[Cl(O)O_2]$	63.37 [6]	69.46	63.47	323.26	63.22
$[Cl(O)O_2]^-$	-25.22 [6]	-21.95	-35.34	300.27	62.35
ClO ₃	44.46 [6]	47.79	39.31	280.33	62.65
[ClO ₃] ⁻	-50.83 [6]]	-35.31	-55.19	264.82	56.18
$[ClO_3]^+$	297.67 [6]	329.73	300.82	273.42	35.56
$[ClO_4]$	57.60 [6]	74.64	46.14	308.9	79.68
[ClO ₄] ⁻	-64.98 [6]	-42.11	-72.83	265.7	63.11
ClOClO	41.80 [6]	54.98	38.19	302.4	62.52
Cloocl	31.37 [7]	38.67	33.69	289.38	57.09
ClOClO ₂	37.80 [8]	48.86 **	38.45	308.11	69.63
ClOClO ₃	37.40 [9]	65.77	49.52	335.93	86.6
ClO ₂ ClO ₂	N/R	69.78	50.72	340.46	96.51
ClO ₂ -O-ClO ₂	N/R	81.21	41.27	332.84	99.84
ClOOClO ₃	69 [9]	72.17	73.94	359.09	102.89
ClO ₂ -O-ClO ₃	72.4 [9]	85.24 *	47.01	367.43	111.22
ClO ₃ -O-ClO ₃	86.2 [9]	89.64 *	76.7	369.09	126.94
ClO ₂ -O-O-ClO ₂	N/R	104.17 **	79.42	403.86	129.85
ClO ₃ -O-O-ClO ₃	111.40 [3] ^{\$}	118.45	108.37	471.17	164.93

Table S 13: Energies of Formation (ΔH_f) of single species derived with Gaussian, MOPAC and VASP are listed. Models exposed to VASP calculations were confined to periodic cell environments with a Space Group symmetry constraint of P1(1). (Energies displaying severe deviation from Reference entries appear in bold). Thermodynamic S and Cp entries have been derived from the MOPAC ensemble energies

	Literature Reference	Gaussian-16 (DFT B3LYP, cc-pV5Z)	MOPAC-2016 (derived)	MOPAC- 2016 (derived)	MOPAC- 2016 (derived)
Species	$\Delta H_f(298 \mathrm{K})$	$\Delta H_f(298\mathrm{K})$	$\Delta H_f(298\mathrm{K})$	S (kJ/mol)	Cp (kJ/mol)
[ClO ₃ -ClO ₃] ⁻²	N/R	105.74	106.06	403.99	126.56
OClO	24.36 [6]	23.89	25.47	250.18	38.97
[OClO] ⁻	-25.74 [6]	-16.29	-23.14	253.39	42.54
$[OClO]^+$	262.13 [6]	278.24	266.34	272.24	32.61
OClOO	54.31 [6]	51.63	44.72	368.09	67.23
[OClOO] ⁻	-8.19 [6]	-9.89	-12.15	302.31	65.09
OClClO ₂	46.2 [26]	146.67 #	50.13	340.18	77.86
$[ClOH_2]^+$	194.66 [6]	202.38	197.1	246.18	27.56
HOC1	-18.36 [6]	-16.43 *	-17.81	236.16	36.05
[HOC1] ⁻	47.38 [6]	54.25	-9.02 **	240.37	40.12
$[HOC1]^+$	237.86 [6]	239.06	244.01	235.35	35.61
HOCIO	4.94 [6]	13.01	6.77	263.6	47.48
[HOClO] ⁻	-37.31 [6]	-57.33 #	-34.19	283.68	57.8
$[HOClO]^+$	236.82 [6]	238.93	233.62	271.55	52.3
HOClO ₂	10.90 [30]	11.18 **	-3.27	288.18	62.57
HOClO ₃	0.43 [6]	12.13 **	3.71	307.07	74.37
$[HOClO_3]^+$	282.36 [6]	325.73 #	273.23	312.33	80.74
HOOCI	-0.32 [6]	2.60 *	-0.68	263.45	49.09
[HOOC1]-	-8.12 [6]	-10.6	-39.22	270.3	52.15
[HOOC1] ⁺	244.70 [6]	253.27 #	244.23	266.73	51.32
HOOCIO	27.30 [10]	27.78 *	23.08	293.57	65.99
HOOClO ₂	16.55 [6]	37.26 **	19.25	322.75	82.36
HOOOCl	14.00 [10]	27.44 *	11.88	286.64	58.79
HOOOOCl	22.70 [11]	28.18	24.78	329.09	84.55
HClO	33.24 [6]	33.89 *	30.45	237.13	38.579
HClO ₂	45.65 [6]	48.31 *	49.06	253.22	47.44
HClO ₃	57.1 [10]	46.07 *	45.7	264.06	50.98

Table S 13 continued...

N/R - not reported

* Restricted: DFT/B3LYP/cc-pv5z

**Restricted open shell. DFT/B3LYP/cc-pv5z

Unrestricted: DFT/B3LYP/6-311++G(3d2f,3p2d)

\$ Indicates that the Δ Hf (298K) of ClO3-O-O-ClO3 is

calculated from Energies published by Beltran et al., 1999 [5].

Ensemble models were processed in periodic space, extracted from the GIBBS GCMC simulations, and the heats of formation calculated using MOPAC are presented in Table S 14, and compared to literature values.

		ΔH_f (calculated)				
Ensemble Models	MODEL Space	MOPAC Hamiltonian	∆ <i>H_f</i> kJ/mol)	Reference ΔH_f (kJ/mol)		
	Single	PM6	106.56	-		
ClO	Ensemble	MNDOD	91.50	101 71 [6]		
010	Single	MNDOD	97.40	1011/1 [0]		
ClOO	Ensemble	MNDO	101.17	102.76 [6]		
	Single	AM1	81.38			
ClOCl	Ensemble	AM1	82.55	77.91 [6]		
010 01	Single	MNDOD	119.83	,,,,,,,,[0]		
C1C10	Ensemble	RM1	143.97	31.84 [6]		
	Single	PM6	121.17	• • • • [•]		
C1C1O ₂	Ensemble	MNDOD	93.47	122.00 [6]		
010102	Single	MNDO	190.54	122:000 [0]		
C1000	Ensemble	MNDOD	209.20	222.97 [6]		
01000	Single	MNDOD	263.59	; [0]		
$Cl(O)O_2$	Ensemble	MNDOD	276.73	265.14 [6]		
(-)-2	Single	PM6	164.47			
ClO ₃	Ensemble	RM1	173.72	185.35 [6]		
	Single	PM3	211.46	100.000 [0]		
ClO ₄	Ensemble	PM7	204.68	241.00 [6]		
	Single	PM6	159.79	[0]		
ClOClO	Ensemble	AM1	161.00	174.90 [6]		
	Single	AM1	140.96	1,, 0 [0]		
Clooc1	Ensemble	AM1	127.53	131.25 [12]		
	Single	MNDOD	160.87			
ClOClO ₂	Ensemble	MNDOD	164.22	158.15 [9]		
-	Single	PM7	207.19	· · [,]		
ClOClO ₃	Ensemble	PM6	163.18	156.49 [9]		
-	Single	MNDOD	431.62	r. 1		
ClO ₂ ClO ₂	Ensemble	AM1	278.45	Not reported		
	Single	RM1	211.50	1		
ClO ₂ -O-ClO ₂	Ensemble	RM1	210.96	Not reported		
	Single	PM7	289.66	*		
ClOOClO ₃	Ensemble	PM7	275.47	288.69 [9]		
	Single	MNDOD	196.52			
ClO_2 -O- ClO_3	Ensemble	PM6	281.50	302.92 [9]		

Table S 14: Heats of Formation of ENSEMBLE models (GEMC derived) calculated with MOPAC

	ΔH_f (calculated)			Literature
Ensemble Models	MODEL	MODELMOPAC ΔH_f		Reference
	Space	Hamiltonian	(kJ/mol)	ΔH_f (kJ/mol)
	Single	PM6	324.93	
ClO3-O-ClO3	Ensemble	PM6	330.28	345.59 [9]
	Single	PM6	332.29	
$C\ell O_2$ -O-O- $C\ell O_2$	Ensemble	AM1	439.19	Not reported
	Single	PM6	453.42	
ClO3-O-O-ClO3	Ensemble	PM6	449.57	466.09 [3] ^{\$}
	Single	MNDOD	106.57	
ΟCℓΟ	Ensemble	MNDOD	84.22	101.92 [6]
	Single	PM6	111.67	
OClOO	Ensemble	MNDOD	224.81	227.19 [6]
	Single	RM1	209.74	
$OC\ell C\ell O_2$	Ensemble	RM1	207.99	193.30 [6]
	Single	PM6	-74.52	
HOCℓ	Ensemble	PM6	-77.66	-76.81 [6]
	Single	PM7	0.92	
HOCℓO	Ensemble	PM7	27.15	20.66 [6]
	Single	MNDOD	-13.31	
$HOC\ell O_2$	Ensemble	MNDOD	-11.80	-4.6 [6]
	Single	MNDOD	15.52	
HOCℓO ₃	Ensemble	MNDOD	13.26	1.79 [6]
	Single	RM1	-2.85	
HOOCℓ	Ensemble	AM1	-3.68	-1.34 [6]
	Single	RM1	92.26	
HOOCℓO	Ensemble	MNDOD	94.98	90.12 [6]
	Single	PM6	80.63	
HOOCℓO ₂	Ensemble	MNDOD	80.88	69.24 [6]
	Single	MNDOD	49.71	
HOOOCℓ	Ensemble	AM1	44.69	42.30 [10]
	Single	PM6	103.68	
HOOOOCℓ	Ensemble	PM6	90.29	94.98 [10]

Table-S14 continued

\$ Indicates that the Δ Hf (298K) of ClO3-O-O-ClO3 is calculated from Energies published by Beltran et al. [3]

	$\Delta \mathbf{H}_{f}$	$\Delta \mathbf{H}_{f}$	$\Delta \mathbf{G}_{f}$		$\Delta \mathbf{H}_{f}$	$\Delta \mathbf{H}_{f}$	$\Delta \mathbf{G}_{f}$ (298K)
Species	(0K)	(298K)	(298K)	Species	(0K)	(298K)	J X
	(kJ/mol)	(kJ/mol)	(kJ/mol)		(kJ/mol)	(kJ/mol)	(kJ/mol)
ClO	124.64	124.41	92.40	OClO	102.58	100.02	31.19
[ClO] ⁻	-98.10	-98.22	-131.34	[OClO] ⁻	-66.82	-68.24	-135.99
[ClO] ⁺	1164.73	1164.68	1134.37	[OClO] ⁺	1167.70	1164.93	1094.05
ClOO	90.52	90.02	28.76	OClOO	216.33	216.16	126.32
[ClOO] ⁻	-228.47	-229.23	-290.15	[OClOO] ⁻	-36.43	-41.32	-141.72
$[ClOO]^+$	1256.58	1255.16	1191.44	OClClO ₂	617.34	614.08	475.08
ClOCl	89.85	88.05	21.39	$[ClOH_2]^+$	854.48	847.32	751.20
[ClOCl] ⁻	-146.50	-147.63	-210.14	HOCl	-65.86	-68.83	-129.87
[ClOCl] ⁺	1128.47	1126.37	1060.60	[HOC1] ⁻	229.19	227.13	163.12
ClClO	146.75	145.03	80.30	[HOC1] ⁺	1003.83	1000.90	941.36
[ClClO] ⁻	-223.66	-226.51	-291.23	HOCIO	60.46	54.47	-46.22
[ClClO] ⁺	1156.06	1154.84	1092.59	[HOClO] ⁻	-233.46	-240.03	-338.21
ClClO ₂	158.51	154.03	46.22	[HOClO] ⁺	1006.59	1000.35	900.58
Clooo	286.42	283.86	182.04	HOClO ₂	55.52	46.77	-96.92
[ClOOO] ⁻	-86.33	-91.86	-200.92	HOClO ₃	62.13	50.79	-136.32
$Cl(O)O_2$	292.03	290.81	194.94	$[HOClO_3]^+$	1371.80	1363.77	1188.93
$[Cl(O)O_2]^{-}$	-86.33	-91.86	-200.92	HOOCI	17.00	10.89	-90.31
ClO ₃	205.82	200.09	89.89	[HOOC1] ⁻	-41.45	-44.38	-134.48
$[ClO_3]^-$	-142.69	-147.84	-258.58	[HOOCl] ⁺	1067.01	1060.47	960.28
$[ClO_3]^+$	1384.74	1380.51	1269.86	HOOCIO	123.76	116.31	-23.95
ClO ₄	321.46	312.50	155.41	HOOClO ₂	167.89	156.00	-30.77
[ClO ₄] ⁻	-168.10	-176.31	-334.06	HOOOCI	123.38	114.89	-27.21
ClOClO	234.71	230.19	123.09	HOOOOCI	126.48	117.98	-62.09
Cloocl	164.50	161.90	58.45	HClO	144.86	141.89	81.18
ClOClO ₂	211.68	204.44	54.14	HClO ₂	208.84	202.22	99.73
ClOClO ₃	284.37	275.37	83.65	HClO ₃	203.10	192.89	46.26
ClO ₂ ClO ₂	305.97	292.15	91.27	H_2O	-208.34	-211.18	-271.43
ClO ₂ -O-ClO ₂	353.11	340.01	102.12	CO_2	-1717.30	-1716.67	-1786,8
ClOOClO ₃	314.76	302.16	64.69	C_2H_6	102.58	100.02	356.67
ClO ₂ -O-ClO ₃	375.77	356.92	67.11	OH ⁻ (g)			-138.79 [33]
ClO ₂ -O-O-ClO ₂	448.82	436.14	158.93	HCl			292.66 [43]
ClO ₃ -O-O-ClO ₃	519.87	495.93	119.32	[HOO] ⁻			1547.02 [43]
[ClO ₃ ClO ₃] ⁻²	461.39	442.71	151.31	Cl-			-549.31 [33]

Table S 15: Calculated Gibbs Free Energies of Formation, obtained with Gaussian-16, applying DFTB3LYP/cc-pv5z

References

- 1. Yesselman, J.D., et al., *MATCH: An atom-typing toolset for molecular mechanics force fields.* Journal of Computational Chemistry, 2012. **33**(2): p. 189-202.
- 2. Casper, B., et al., *Molecular Structures of Perchloric Acid and Halogen Perchlorates CloClO3 and FOClO3*. The Journal of Physical Chemistry, 1994. **98**(34): p. 8339-8342.
- 3. Beltrán, A., et al., *Structure and Bonding of Chlorine Oxides and Peroxides: ClOx, ClOx- (x* = 1-4), and Cl2Ox (x = 1-8). The Journal of Physical Chemistry A, 1999. **103**(16): p. 3078-3088.
- 4. Boese, A.D. and J.M.L. Martin, *Anharmonic force fields of perchloric acid, HClO4, and perchloric anhydride, Cl2O7. An extreme case of inner polarization.* Journal of Molecular Structure, 2006. **780-781**: p. 310-316.
- 5. Ochterski, J.W. *Thermochemistry in Gaussian*. 2000 [cited 2019 8 June 2019]; Available from: https://gaussian.com/thermo/.
- 6. Bross, B.R.D.H.n.d. *ATcT Thermochemical Values ver. 1.122.*; Available from: https://atct.anl.gov/Thermochemical%20Data/version%201.122/#ref_5.
- 7. Klobas, J.E. and D.M. Wilmouth, UV spectroscopic determination of the chlorine monoxide (ClO) / chlorine peroxide (ClOOCl) thermal equilibrium constant. Atmos. Chem. Phys., 2019. **19**(9): p. 6205-6215.
- 8. Burkholder, J.B., et al., *Temperature dependence of the HNO3 UV absorption cross sections*. Journal of Geophysical Research: Atmospheres, 1993. **98**(D12): p. 22937-22948.
- 9. Sicre, J.E. and C.J. Cobos, *Thermochemistry of the higher chlorine oxides ClOx* (x=3, 4) and *Cl2Ox* (x=3-7) \dagger . Journal of Molecular Structure: THEOCHEM, 2003. **620**(2): p. 215-226.
- 10. Francisco, J.S. and S.P. Sander, *Existence of a Chlorine Oxide and Water (ClO.cntdot.H2O) Radical Complex.* Journal of the American Chemical Society, 1995. **117**(39): p. 9917-9918.
- 11. Clark, J. and J.S. Francisco, *Study of the Stability of Cl2O3 Using ab Initio Methods*. The Journal of Physical Chemistry A, 1997. **101**(38): p. 7145-7153.
- 12. Thorn, R.P., et al., *Ionization Energy of Cl2O and ClO, Appearance Energy of ClO+ (Cl2O), and Heat of Formation of Cl2O.* The Journal of Physical Chemistry, 1996. **100**(33): p. 14178-14183.