
Eur. Phys. J. C (2024) 84:263
https://doi.org/10.1140/epjc/s10052-024-12614-y

Regular Article - Theoretical Physics

Moduli space of logarithmic states in critical massive gravities

Yannick Mvondo-Shea

Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa

Received: 1 December 2023 / Accepted: 25 February 2024 / Published online: 12 March 2024
© The Author(s) 2024

Abstract We take new algebraic and geometric perspec-
tives on the combinatorial results recently obtained on the
partition functions of critical massive gravities conjectured
to be dual to Logarithmic CFTs through the AdS3/LCFT2

correspondence. We show that the partition functions of log-
arithmic states can be expressed in terms of Schur polyno-
mials. Subsequently, we show that the moduli space of the
logarithmic states is the symmetric product Sn

(
C

2
)
. As the

quotient of an affine space by the symmetric group, this orb-
ifold space is shown to be described by Hilbert series that
have palindromic numerators. The palindromic properties of
the Hilbert series indicate that the orbifolds are Calabi-Yau,
and allow for a new interpretation of the logarithmic state
spaces in critical massive gravities as Calabi-Yau singular
spaces.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Partition functions of critical massive gravities . . . 3
3 A representation theoretic aperçu of Z log(ν; q, q̄) . . 4

3.1 Preliminaries . . . . . . . . . . . . . . . . . . 5
3.1.1 Permutations and cycles of the Symmetric

Group Sn . . . . . . . . . . . . . . . . . 5
3.1.2 Partitions . . . . . . . . . . . . . . . . . 5
3.1.3 Young diagrams . . . . . . . . . . . . . . 5
3.1.4 Symmetry and the cycle index . . . . . . 5

3.2 Z log (ν; q, q̄) as the generating function of 1-
part Schur polynomials . . . . . . . . . . . . . 6

3.3 Interpretation . . . . . . . . . . . . . . . . . . 7
4 Moduli space of logarithmic states . . . . . . . . . . 7

4.1 Hilbert schemes of points on surfaces and sym-
metric products . . . . . . . . . . . . . . . . . 8

4.2 The nth symmetric product of C2 . . . . . . . . 9

a e-mail: vondosh7@gmail.com (corresponding author)

4.3 Differential operators on orbifolds . . . . . . . 10
5 Moduli space of logarithmic states and Calabi-Yau

orbifolds . . . . . . . . . . . . . . . . . . . . . . . 11
6 Discussion . . . . . . . . . . . . . . . . . . . . . . 13
7 Conclusion and outlook . . . . . . . . . . . . . . . 14
Appendix A: Derivations of plethystic exponential and

Bell polynomial forms of Zlog(ν, q, q̄;C2) . . . . . 14
Appendix B: Cycle index of the symmetric group . . . 15
Appendix C: Some properties of Schur polynomials and

Young diagrams . . . . . . . . . . . . . . . . . . . 16
C.1 Schur polynomials in S2 . . . . . . . . . . . . . 16
C.2 Schur polynomials in S3 . . . . . . . . . . . . . 16

Appendix D: Invariant theory . . . . . . . . . . . . . . 17
D.1 Ring of polynomials . . . . . . . . . . . . . . . 17
D.2 Invariant rings of the symmetric group . . . . . 17
D.3 Counting the number of invariants . . . . . . . 17
D.4 Rings of differential operator . . . . . . . . . . 18

Appendix E: Determinantal form of Bell polynomials . 18
Appendix F: Palindromic numerators of Zn(q, q̄;C2) . 19
References . . . . . . . . . . . . . . . . . . . . . . . . 19

1 Introduction

Gravity in three dimensions has for some time now been an
interesting model to test theories of – classical and quantum
– gravity, and a consistent non-trivial theory would bring
the prospect of clarifying many intricate aspects of gravity.
A fundamental breakthrough was made in the study of the
asymptotics, revealing the emergence of a Virasoro algebra at
the boundary [1]. One can thus expect a dual 2d CFT descrip-
tion, and this discovery can be thought of as a precursor of
the AdS/CFT correspondence. However, pure Einstein grav-
ity in three dimensions is locally trivial at the classical level
and does not exhibit propagating degrees of freedom. Hence
there was a need to modify it.
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One way of deforming pure Einstein gravity is by intro-
ducing a negative cosmological constant, leading to a theory
with black hole solutions [2]. Another possibility of deforma-
tion is to add gravitational Chern–Simons term. In that case
the theory is called topologically massive gravity (TMG), and
contains a massive graviton [3,4]. When both cosmological
and Chern–Simons terms are included in a theory, it yields
cosmological topologically massive gravity (CTMG). Such
theory features both gravitons and black holes.

Following Witten’s proposal in 2007 to find a CFT dual
to Einstein gravity [5], the graviton 1-loop partition function
was calculated in [6]. However, discrepancies were found in
the results. In particular, the left- and right-contributions did
not factorize, therefore clashing with the proposal of [5].

Soon after, a non-trivial slightly modified version of Wit-
ten’s construct was proposed by Li et al. [7]. Their theory,
in which Einstein gravity was replaced by chiral gravity can
be viewed as a special case of topologically massive gravity
[3,4], at a specific tuning of the couplings, and is asymp-
totically defined with AdS3 boundary conditions, according
to Fefferman–Graham–Brown–Henneaux [1]. A particular
feature of the theory was that one of the two central charges
vanishes, whilst the other one can have a non-zero value. This
gave an indication that the partition function could factorize.

Shortly after the proposal of [7], Grumiller et al. noticed
that relaxing the Brown–Henneaux boundary conditions
allowed for the presence of a massive mode that forms a
Jordan cell with the massless graviton, leading to a degener-
acy at the critical point [8]. In addition, it was observed that
the presence of the massive mode spoils the chirality of the
theory, as well as its unitarity. Based on these results, the dual
CFT of critical cosmological topologically massive gravity
(cTMG) was conjectured to be logarithmic, and the mas-
sive mode was called the logarithmic partner of the gravi-
ton. Indeed, Jordan cell structures are a noticeable feature of
logarithmic CFTs, that are non unitary theories (see [9] as
well as the very nice introductory notes [10,11]). The corre-
spondence distinguishes itself on the conjectured dual LCFT
side by a left-moving energy-momentum tensor T that has a
logarithmic partner state t with identical conformal weight,
forming the following Jordan cell

L0

(|T 〉
|t〉
)

=
(

2 0
1 2

)(|T 〉
|t〉
)

. (1)

A major achievement towards the formulation of the cor-
respondence was the calculation of correlation functions in
TMG [12,13], which confirmed the existence of logarith-
mic correlators of the type 〈T (x)t (y)〉 = bL/(x − y)4 that
arise in LCFT, with bL commonly referred as the logarithmic
anomaly. Subsequently, the 1-loop graviton partition func-
tion of cTMG on the thermal AdS3 background was calcu-

lated in [14], resulting in the following expression

ZcTMG(q, q̄) =
∞∏

n=2

1

|1 − qn|2
∞∏

m=2

∞∏

m̄=0

1

1 − qmq̄m̄
, (2)

where the first product can be identified as the three-
dimensional gravity partition function Z0,1 in [6], and is
therefore not modular invariant. The double product is the
partition function of the logarithmic single and multi particle
logarithmic states, and will be the central object of this work.

The corresponding expression of the partition function on
the CFT side was derived in [14] and given the form

ZLCFT(q, q̄) = Z0
LCFT(q, q̄) +

∑

h,h̄

Nh,h̄qhq̄ h̄
∞∏

n=1

1

|1 − qn|2 ,

(3)

with

Z0
LCFT(q, q̄) = Z� + Zt =

∞∏

n=2

1

|1 − qn|2
(

1 + q2

|1 − q|2
)

,

(4)

where � is the vacuum of the holomorphic sector, and t
denotes the logarithmic partner of the energy momentum
tensor T .

As pointed out in [15], a better understanding of the parti-
tion function from the CFT side is desirable, in particular how
to precisely match the combinatorics of multi particle loga-
rithmic states on the gravity side to states on the CFT side.
Motivated by that, the partition function was reformulated in
[16], and recast in terms of Bell polynomials. Furthermore,
it was shown that the partition function could be rewritten
using the more usual language of Hilbert series, leading to
an identity between the generating function of Bell polyno-
mials and the celebrated plethystic exponential. In addition,
the Bell polynomials formalism showed an interesting use in
revealing hidden symmetry actions on the n-particle terms
of the partition function (this point will be given an interpre-
tation in this work).

Despite the aforementioned achievements made since the
conjecture of the AdS3/LCFT2 in 2008, it is fair to say that
very little is known about the nature of the logarithmic states.
In this paper, we try to deal with this issue by exploiting the
results of [16] to study the moduli space of the logarithmic
sector. The concept of moduli space originates from alge-
braic geometry. The behaviour of certain geometric objects
such as collections of n distinct ordered points on a given
topological space can be understood by finding a space X
which parametrizes these objects, i.e a space whose points
are in bijection with equivalence classes of these objects. A
space X with such a correspondence is called a moduli space,
and it parametrizes the types of objects of interest, which in
our case will be the logarithmic states. The geometry of mod-
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uli spaces can be encoded in their generating functions. We
take advantage of that fact to give a symmetric group inter-
pretation of the results obtained in [16], and to show that as
the symmetric product Sn(C2), the moduli space of the log-
arithmic states described by palindromic Hilbert series is a
Calabi-Yau singular space.

This paper is organized as follows. In Sect. 2, we give
a brief description of partition functions in critical massive
gravities. In particular, we recall how some infinite products
can usefully be rewritten as generating functions of Bell poly-
nomials. This is an interesting application of Bell polynomi-
als in theoretical physics. In Sect. 3, we discuss the symmetric
product structure that appears from the sub-partition function
of the logarithmic sector. We start by showing that the count-
ing in the latter expressed in terms of Bell polynomials, is
related to the cycle index of the symmetric group, i.e a poly-
nomial in several variables that counts objects that are invari-
ant under the action of the symmetric group. A symmetric
group interpretation of the counting of the logarithmic states
is then given by showing that the partition function of those
states is the generating function of the 1-part Schur polyno-
mials. Then in Sect. 4, we show that the moduli space of
the logarithmic states is the nth symmetric product of C2, by
showing that the partition function of the logarithmic states
is the generating function of Molien series. We also give
an interpretation of some of the results from [16], in which
differential operators acting on the Bell polynomials were
constructed, as differential operators acting on orbifolds. In
section 5, using properties of Bell polynomials, we show that
the Hilbert series of the moduli space Sn

(
C

2
)

have a very
interesting palindromic property. Such property has already
been discussed in the physics literature, for instance in the
context of Hilbert series for moduli spaces of supersymmet-
ric vacua of gauge theories [17,18], or again in [19,20], and
more recently in the context of primary fields in dimension
four free CFT [21,22]. According to a beautiful theorem by
Stanley [23], the palindromic property of Hilbert series asso-
ciated to the counting of the logarithmic states indicates that
the moduli space is Calabi-Yau. Finally, a brief discussion is
given in Sect. 6, then we conclude and give some research
prospects for the future in Sect. 7.

2 Partition functions of critical massive gravities

The graviton 1-loop partition function of cosmological topo-
logically massive gravity and new massive gravity both at the
critical point were calculated in [14]. In the case of topolog-
ically massive gravity, the computation was given the form

ZcTMG(q, q̄) =
∞∏

n=2

1

|1 − qn|2
∞∏

m=2

∞∏

m̄=0

1

1 − qmq̄m̄
, (5)

and for new massive gravity, the partition function was
derived as

ZcNMG(q, q̄) =
∞∏

n=2

1

|1 − qn|2
∞∏

m=2

∞∏

m̄=0

× 1

1 − qmq̄m̄

∞∏

l=2

∞∏

l̄=0

1

1 − ql q̄l̄
. (6)

Shortly after these results, topologically massive gravity
was generalized to higher spins in [24], and the 1-loop par-
tition function for topologically massive higher spin gravity
(cTMHSG) for arbitrary spin was calculated in [25]. A spe-
cial attention was given to spin-3 case for which the partition
function was expressed as

Z(3)
cTMHSG(q, q̄) =

∞∏

n=2

1

|1 − qn|2
∞∏

m=2

∞∏

m̄=0

1

1 − qmq̄m̄

×
[ ∞∏

n=3

1

|1 − qn|2
∞∏

m=3

∞∏

m̄=0

1

1 − qmq̄m̄

×
∞∏

m=4

∞∏

m̄=3

1

1 − qmq̄m̄

]

. (7)

Recently, motivated by the desire for a better understand-
ing of the combinatorics of the logarithmic excitations in the
partition function of these critical massive gravities, and with
the eventual goal of having a more concrete grasp of their
conjectured holographic (L)CFT duals, the partition func-
tions were shown to be usefully expressed in terms of Bell
polynomials [16].

Bell polynomials are very useful in many areas of math-
ematics and have enjoyed many applications in physics as
well. For instance, recently expressions of canonical and
grand canonical partition functions of interacting quantum
gases of Statistical Mechanics systems were rederived in
terms of Bell Polynomials by the authors of [26], in which the
Bell polynomials are the Mayer (cluster) expansion. Also, in
[27–30] and references therein, the use of Bell polynomials
is discussed for partition functions, suggesting some interac-
tion of particles in the theories concerned.

Bell polynomials have also appeared in the study of par-
tition functions of BPS bosonic operators. Following [31], if
we consider such partition functions at finite N , and denote
them Zk( �β; N ) where �β = (β1, . . . , βk) is a set of k chem-
ical potentials conjugate to ni , the quantum numbers of the
various conserved charges in the superconformal theory in
question, and N the rank of the gauge group, then these par-
tition functions typically take the following expression

Zk( �β, p) =
∞∏

n1,n2,...,nk≥0

1

1 − p exp (− �β · �n)
, (8)
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where the infinite product converges if |p| < 1 and �(βi ) >

0. Furthermore, the infinite product is the generating function
for Zk( �β; N ) expressed as

Zk( �β, p) =
∞∑

N=0

Zk( �β; N )pN . (9)

Equation (9) is the grand canonical partition function for
bosons in a k-dimensional harmonic oscillator potential with
p as the fugacity, defined as the chemical potential that keeps
track of particle number N . These partition functions corre-
spond for instance to 1

2 -BPS or 1
4 -BPS states in N = 4 SYM

when k = 1, 2 respectively, or to 1
8 -BPS states in the M2-

brane world-volume for k = 4 and to 1
4 -BPS states in the

M5-brane world-volume for k = 2 (the (2, 0) SCFT in six
dimensions) [31].

In [16], it was shown that the partition functions of critical
gravities can be expressed in terms of Bell polynomials. In
the specific case of critical cosmological TMG, writing Eq.
(2) as

ZcTMG(q, q̄) = Zgravity(q, q̄) · Z log(q, q̄), (10)

where

Zgravity(q, q̄) =
∞∏

n=2

1

|1 − qn|2 , and

Z log(q, q̄) =
∞∏

m=2

∞∏

m̄=0

1

1 − qmq̄m̄
, (11)

it was shown that Z log(q, q̄) is the generating function of Bell
polynomials

Z log(q, q̄) =
∞∑

n=0

Yn

n!
(

q2
)n

. (12)

In Eq. (12), Yn is the (complete) Bell polynomial with vari-
ables g1, g2, . . . , gn such that

Yn(g1, g2, . . . , gn) =
∑

�k�n

n!
k1! · · · kn !

n∏

j=1

(
g j

j !
)k j

, (13)

with

�k � n = {�k = (k1, k2, . . . , kn) | k1

+2k2 + 3k3 + · · · + nkn = n}, (14)

and

gn = (n − 1)!
∑

m≥0,m̄≥0

qnmq̄nm̄ = (n − 1)! 1

|1 − qn|2 . (15)

Similarly, Eq. (6) takes the form

ZcNMG(q, q̄) = Zgravity(q, q̄) · Z log(q, q̄) · Z̄ log(q, q̄)

(16a)

=
∞∏

n=2

1

|1 − qn|2
( ∞∑

m=0

Ym

m!
(

q2
)m
)( ∞∑

l=0

Yl

l!
(

q̄2
)l
)

,

(16b)

while Eq. (7) can be written as

Z(3)
cTMHSG(q, q̄) = χ0(W3) × χ̄0(W3)

( ∞∑

m=0

Ym

m!
(

q2
)m
)

×
( ∞∑

l=0

Yl

l!
(

q3
)l
)( ∞∑

k=0

Yk

k!
(

q4q̄3
)k
)

,

(17)

with χ0(W3) and χ̄0(W3) as the holomorphic and antiholo-
morphic W3 vacuum characters.

The logarithmic partition function can therefore be given
a general form that reads

Z log(ν; q, q̄) =
∞∏

m=0

∞∏

m̄=0

1

1 − νqmq̄m̄
=

∞∑

n=0

Yn

n! ν
n, (18)

where the variable ν represents a monomial in (highest)
weight that can be holomorphic denoted by qh or antiholo-
morphic denoted by q̄ h̄ , with h and h̄ as the conformal
weights of holomorphic and antiholomorphic logarithmic
partner states.

Since the conjecture of critical topologically massive grav-
ity as the dual of a logarithmic conformal field theory, it is
fair to say that little work has been done in the description of
the logarithmic states. In the next section, we would like to
make a few steps in that direction by using results recently
obtained from the partition function of critical massive grav-
ities to extract information about the moduli space of the
logarithmic states.

3 A representation theoretic aperçu of Zlog(ν; q, q̄)

In this section, we give a representation theoretic interpreta-
tion of the results obtained in [16]. We start by giving some
preliminaries intended to give grounds for the transition from
the combinatorial description summarized in the previous
section to the representation theoretic language that will be
used in this section.
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3.1 Preliminaries

3.1.1 Permutations and cycles of the Symmetric Group Sn

Consider a finite set denoted by S = {1, . . . , n}. A permu-
tation of S is a one-to-one mapping of S onto itself. The
symmetric group Sn is the group of all permutations of the
n elements of S. The order |Sn| of the group, i.e the number
of elements of Sn is equal to n!. An effective way of describ-
ing permutations is by using the language of cycles. Indeed,
given a permutation π , S can be split into cycles, which are
subsets of S subject to cyclic permutation by π . As a result,
every permutation of the elements of S can be written as a
product of disjoint cycles. For example, the symmetric group
S3 consists of the 3! = 6 permutation elements

1 = identical permutation, (19a)

1 → 2 → 1 and 3 → 3, (19b)

2 → 3 → 2 and 1 → 1, (19c)

3 → 1 → 3 and 2 → 2, (19d)

1 → 2 → 3 → 1, (19e)

1 → 3 → 2 → 1, (19f)

which can be expressed in cycle notation as

S3 = {1, (12), (23), (31), (123), (132)} , (20)

where (123) and (132) are cycles of length 3, (12),(23) and
(31) are cycles of length 2, and 1 has length 1.

A permutation can be assigned the cycle symbol

1m(1)2m(2) · · · nm(n), (21)

if its disjoint cycle product contains m(k) number of k-cycles,
with 1 ≤ k ≤ n. The number m(k) is called the multiplicity
of k-cycles in the disjoint cycle product of the given permu-
tation. For instance, the permutation
(

1 2 3 4 5 6 7 8 9
2 3 1 5 4 6 8 7 9

)
= (6)(9)(45)(78)(123), (22)

has the cycle symbol 122231.

3.1.2 Partitions

The cycle structure of group elements in Sn can be repre-
sented by partitions of n. A partition is a sequence

λ = (λ1, λ2, . . . , λk, . . .) (23)

of non-negative integers in non-increasing order

λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · (24)

that contains a finite number of non-zero terms. λk is called
the parts of λ. The length l(λ) is the number of parts of λ.

The weight |λ| is the sum of the parts, and a partition with
weight |λ| = n is a partition of n denoted λ � n.

A partition |λ| of n can conveniently be expressed using a
notation that indicates the number of times m(k) an integer
k occurs as a part

λ =
(

1m(1)2m(2) · · · km(k) · · ·
)

. (25)

Equation (25) is very similar to the cycle symbol of a per-
mutation seen in Eq. (21). This is because partitions of n are
in one to one correspondence with the cycle structure of Sn .
As an example, the partitions of 5 are ordered as

(5), (41), (32), (312), (221), (213), (15). (26)

3.1.3 Young diagrams

Partitions can be graphically represented by Young diagrams.
They are are denoted by R � n and consist of diagrams
with n boxes arranged in left-justified rows stacked in such
a way that the order of the row lengths is weakly decreasing.
Given this convention, in the partition λ of n the kth part
λk corresponds to the kth row of the frame, consisting of λk

boxes. The partitions of 5 in Eq. (26) can for instance be
expressed in terms of Young diagrams as follows

(5) (41) (32) (311) (221)

(2111) (11111)

The relationship between partitions, Young diagrams and
disjoint cycles representing elements of the symmetric group
can be illustrated for n = 2 and n = 3 in Tables 1 and 2.

3.1.4 Symmetry and the cycle index

We close the preliminaries by make the first connection
between the combinatorial results obtained in [16] with the
representation theory of the Symmetric Group.

In combinatorics, only few formulae can be applied sys-
tematically in all cases of a given problem. Pólya theory
is one such example, as it enables to count the number of
items under specific constraints, such as number of colors
or more generally symmetry. From a group theory perspec-
tive, counting objects such as states “up to symmetry” means
counting the orbits of some group of symmetries on the set
of states that are being counted. A standard procedure to
solve this problem is to use the orbit-counting (Burnside’s)
lemma [32]. Alternatively, the counting can be made sys-
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Table 1 Young diagrams for
the symmetric group S2

Partition Young diagram Disjoint cycle product

2 = 2 (12) 21

2 = 1 + 1 (1)(2) 12

Table 2 Young diagrams for
the symmetric group S3

Partition Young diagram Disjoint cycle product

3 = 3 (123), (132) 31

3 = 2 + 1 (12)(3), (23)(1), (31)(2) 2111

3 = 1 + 1 + 1 (1)(2)(3) 111111

tematic by using a multivariate polynomial associated with a
permutation group, called the cycle index. Before discussing
the latter point further, we make the following observations.
Looking at Table 1, in the case of S2, reexpressing the only
cycle 21 by a variable g2 and the two disjoint cycle prod-
ucts (1)(2) with group theoretic notation 12 by g2

1, we see
that the function Y2 = g2

1 + g2 counts all cycle products of
S2. Similarly, changing the notations 31, 2111 and 111111 in
Table 2 by g1

3, g1
2 g1

1 and g1g1g1 = g3
1 respectively, we see

that Y3 = g3
1 + 3g2g1 + g3 counts all cycle products of S3.

These observations illustrate the notion of cycle index, which
will now be defined.

Consider G as the group whose elements g are the per-
mutations of S, and let ZG(g1, g2, . . . , gn) be the polyno-
mial in n variables g1, g2, . . . , gn such that for each g ∈ G,
the type of g is given by the product zg(g1, g2, . . . , gn) =
gm(1)

1 g(m(2)
2 · · · gm(n)

n as the partition of n of part λ =(
1m(1)2m(2) · · · nm(n)

)
, and such that n = 1·m(1)+2·m(2)+

· · · + n · m(n). Then, the polynomial

ZG(g1, g2, . . . , gn) = 1

|G|
∑

g∈G

zg(g1, g2, . . . , gn) (27a)

= 1

|G|
∑

f

f (m(1), . . . , m(n)) · gm(1)
1 gm(2)

2 · · · gm(n)
n

(27b)

is defined as the cycle index of G, with f (m(1), . . . , m(n))

representing the number of permutations of type (1m(1)2m(2)

· · · nm(n)). The formula above is reminiscent of Burnside’s
lemma, except that here, one distinguishes the cycles of dif-
ferent lengths, and specifies the number of cycles there are.

In the present case, we are interested in the cycle index
of the symmetric group Sn , which is defined by the formula
[32]

Z (Sn) =
∑

c1+2c2+...+lcl=n

1
∏n

k=1 kck ck !
n∏

k=1

xck
k . (28)

It is well known that the cycle index of the symmetric group
Sn can be expressed in terms of (complete) Bell polynomials
as follows

Z(Sn) = Yn(0!a1, 1!a2, . . . , (n − 1)!an)

n! . (29)

Then, setting an = 1
|1−qn |2 , we can immediately identify

the arguments in the above equation with the term gn =
(n − 1)! 1

|1−qn |2 . Zlog (q, q̄) can therefore be rewritten as

Z log (ν; q, q̄) =
∑

n=0

Z (Sn) (ν)n . (30)

Equation (30) is the first indication that Z log (ν; q, q̄)

counts a collection of spaces under the action of the symmet-
ric group. This preliminary result will be made more precise
in the next part of this section from a representation theoretic
point of view.

3.2 Z log (ν; q, q̄) as the generating function of 1-part Schur
polynomials

From a mathematics point of view, partitions are directly
related to the representation theory of permutation groups.
Indeed, the number of irreducible representations of a per-
mutation group is equal to the number of orbits (or disjoint
cycles) of the permutation group with respect to inner auto-
morphism, or in other words to the number of conjugacy
classes, which is equal to the number of partitions of the
group order. As we have seen above, graphically this is rep-
resented by the number of Young diagrams. Physically, par-
titions play a important role in describing multi-particle sys-
tems. We make use of the theoretical results mentioned earlier
to show that Z log (ν; q, q̄) is the generating function of the 1-
part Schur polynomial. This result allows for a more explicit
description of the multi-particle system under investigation.

LetC be the field of complex numbers, andMATn the set
of all n × n matrices with entries in C. The complex general
linear group of degree n denoted GLn is then the group of
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all X = (xi, j
)

n×n ∈ MATn , and the group homomorphism
X : G → GLn is a matrix representation of a group G. Let
V be a vector space and GL(V ) the set of all invertible linear
transformations of V to itself. If dim V = n (say for instance
if V is the vector space C

n given a matrix representation X
of degree n), then the group GL(V ) is isomorphic to GLn ,
and it is possible to define the group homomorphism ρ :
G → GL(V ). In other words, the vector space V carries a
representation of G. As we will see now, the decomposition of
tensor products of the representation V plays a crucial role in
the interpretation of the counting organised in Zlog (ν; q, q̄).

Let V be a representation of G, and let ρ be the associ-
ated group homomorphism ρ : G → GL(V ). By tensor-
ing n copies of V , one gets the space V ⊗n . If v1, . . . , vd

is a basis of V , then a basis of V ⊗n is the collection of
vectors vk1 , . . . , vkn , where the indexes k1, . . . , kn range
over {1 · · · d}n , so that V ⊗n has dimension dn . We take G
to be the symmetric group Sn . V ⊗n admits an action of
Sn by permutation of the factors of V with V ⊗n . In other
words, re-expressing the vector basis of V ⊗n in braket nota-
tion as |i1i2 · · · in〉, the permutation π ∈ Sn is the map
π : V ⊗n → V ⊗n which acts on the basis as

π |i1i2 · · · in〉 → |iπ(1)iπ(2) · · · iπ(n)〉. (31)

The matrix elements of π have the form

π I
J = 〈i1i2 · · · in|π |iπ(1)iπ(2) · · · iπ(n)〉, (32)

where I and J stand for i1i2 · · · in and j1 j2 · · · jn respec-
tively.

The action of Sn on V ⊗n is reducible, however we can
introduce the projection operators

PR = 1

n!
∑

π∈Sn

χR(π)π ⇐⇒

(PR)I
J = 1

n!
∑

π∈Sn

χR(π) (π)I
J , (33)

where R is a Young diagram with n rows and χR(π) is the
character of the matrix representing π in the irreducible rep-
resentation R, such that (PR)I

J act on V ⊗n projecting onto
the irreducible representations contained in V ⊗n .

Let us now consider the complex matrix X ∈ GL(V ). By
tensoring n copies of X , one gets an operator X⊗n that acts
on the space V ⊗n . Denoting the matrix elements by

(
X⊗n)I

J = Xi1
j1

Xi2
j2

· · · Xin
jn
, (34)

it is possible to write

χR(X) = (PR)I
J

(
X⊗n)J

I = tr
(
PR X⊗n) = 1

n!
∑

π∈Sn

χR(π) · tr
(
π X⊗n) , (35)

where Eq. (35) defines the Schur polynomials χR(X). Schur
polynomials are very effective in the description of multi-
trace structures. Indeed, tr

(
π X⊗n

)
is a single trace structure

in the space V ⊗n . However, specifying π and contracting the
indices in the matrix elements

(
X⊗n
)I

J produce a multi-trace
structure. Appendix C shows the properties of Schur poly-
nomials and Young diagrams for S2 and S3. In general, any
multi-trace structure involving n X matrices may be obtained
from a single trace of an Sn permutation acting on X⊗n in
V ⊗n . In particular, by writing

(
tr Xn) = 1

(1 − qn) (1 − q̄n)
, (36)

it is possible to identify the first three 1-part Schur polyno-
mials as

χ = (tr X), (37a)

χ = 1

2!
(
(tr X)2 +

(
tr X2
))

, (37b)

χ = 1

3!
(
(tr X)3 + 3 (tr X)

(
tr X2
)

+ 2
(

tr X3
))

,

(37c)

At last, it appears that Zlog (ν; q, q̄) is the generating function
of 1-part Schur polynomials expressed as

Zlog (ν; q, q̄) =
∞∑

n=0

χ · · ·︸ ︷︷ ︸
n

· (ν)n . (38)

3.3 Interpretation

We close this section by giving a symmetric group interpre-
tation of the results obtained in [16], and discussed above. A
large part of the combinatorial work interpreted from a repre-
sentation theoretic perspective describes the implementation
of a bosonic statistics to obtain the multiparticle contribu-
tion from the single particle one. The space of single particle
is being tensored n-times and only the symmetric part of
the product is being retained. The projectors PR onto the
symmetric part give rise to Schur polynomials labelled by
Young diagrams with a single row as apparent in Eq. (38),
indicating that Zlog (ν; q, q̄) is the generating function of the
(single row) 1-part Schur polynomials. In the next section,
we discuss this interpretation using a well known theorem of
invariant theory, that will allow us to give a novel descrip-
tion of the moduli space of the logarithmic states in critical
massive gravities.

4 Moduli space of logarithmic states

In Sect. 3, we made use of the expression of Z log (ν; q, q̄) in
terms of Bell polynomials to show how it encodes informa-
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tion about spaces invariant under the action of the symmetric
group. From a different perspective, the Bell polynomial for-
mulation will also be useful (Sect. 4.3) in the combinatorial
description of a Fock space created by the action of gen-
erators of the Heisenberg–Weyl algebra. In this section, we
use the fact that Z log (ν; q, q̄) can also be expressed as the
generating function of Hilbert series to show the symmetric
product orbifold structure of the moduli space of the loga-
rithmic states.

Also called Molien or Poincaré function, the Hilbert series
is a generating function familiar in algebraic geometry for
counting the dimension of graded components of the coordi-
nate ring (see Appendix D). Its approach has been developed
and extensively used in theoretical physics with for instance
the work of [33], and notably with several applications under
the so-called Plethystic Program initiated in [34,35]. In con-
nection with the Plethystic Program, the Hilbert series have
been the essential instrument of a systematic method that
yields the generating function of multi-trace operators in
gauge theory from the generating function of single-trace
operators at large N. This formalism was shown to hold in
the present setting of a function generating multi particle
states from single particle ones. Indeed, we recall from [16]
that the multivariate Hilbert series

G1(q, q̄) =
∞∑

m≥0,m̄≥0

qmq̄m̄ = 1

|1 − q|2 = 1

(1 − q)(1 − q̄)
,

(39)

that counts the single particle contribution, can be acted upon
by the bosonic plethystic exponential P EB to generate new
partition functions such that

Z log (ν; q, q̄) = P EB [G1(q, q̄)]

= exp

( ∞∑

n=1

(ν)n

n
G1
(
qn, q̄n)

)

, (40)

with

G1
(
qn, q̄n) = 1

|1 − qn|2 = 1

(1 − qn)(1 − q̄n)
. (41)

The connection between the plethystic exponential in Eq.
(40) and the cycle index discussion of Sect. 3 in terms of Bell
polynomials can be made clear by noting that a1 in Eq. (29)
can be identified with the functionG1 (q, q̄), and accordingly,
an ≡ an (q, q̄) = G1 (qn, q̄n). In analogy with the aforemen-
tioned applications, this shows that the Hilbert seriesG1(q, q̄)

counts single particle states, while the plethystic exponential
P EB [G1(q, q̄)] counts multi-particle states.

The formalism of Hilbert series acted upon by the plethys-
tic exponential is well known for its use in describing alge-
braic and geometric aspects of moduli space. We will draw
from that knowledge to study the configuration space of log-
arithmic states. Essential to this will be a discussion of sym-

metric products in the spirit of Hilbert schemes of points on
surfaces [36].

4.1 Hilbert schemes of points on surfaces and symmetric
products

The Hilbert scheme X [n] of points on a surface is a simple
example of a moduli space. It consists in the description of
the configuration space of n points on X , i.e the space of
unordered n-tuples of points of X [36].

Formally, the Hilbert scheme of points can be defined as

X [n] : = {I|I is an ideal of X [x1, . . . , xn]
with dim(X [x1, . . . , xn]/I ) = n}, (42)

where X [x1, . . . , xn] is the coordinate ring of X . In the above
definition, X [n] is considered as a set. It can be defined in a
more geometric flavor as

X [n]:= {Q Z |Q Z is a quotient ring of Xwith dim (Q Z )=n} .

(43)

The algebra-geometry correspondence is expressed as

0 → I → X → Q Z → 0, (44)

where Z is the 0-dimensional subscheme of X , and Q Z is the
coordinate ring of Z , and allows for flexibility of terminology
between schemes and ideals.

The construction of a moduli space such as the Hilbert
scheme can be accomplished by taking the quotient of X by
a group acting on it. In that endeavor, it is sensible to consider
the quotient by the action of the symmetric group, since we
do not distinguish between points. This gives the symmetric
product

Sn X = X × X × · · · × X︸ ︷︷ ︸
n times

/Sn . (45)

However, the symmetric product Sn X (also denoted X (n)) is
singular. Indeed, if for instance we consider the case n = 2,
the group action is not free along the diagonal D ⊂ X × X ,
which yields a singular locus along the diagonal in S2 X .
More precisely, approaching the diagonal corresponds in X2

to the two points approaching each other, and eventually
overlapping. At that stage, the system has lost one degree
of freedom. A possible resolution of the problem would be
to keep track of the direction the two points approach each
other along. That is in fact the difference between X [n] and
Sn X : The Hilbert scheme X [n] is a resolution of singularities
of the symmetric product Sn X . When there exist n distinct
points p1, . . . , pn in X , each point defines both a point in
X [n] and a point in Sn X [37], and setting the ideal of Eq.
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(42) to

I := { f ∈ X [x1, . . . , xn] | f (p1) = · · · = f (pn) = 0} ,

(46)

I is indeed an ideal with dim(X [x1, . . . , xn]/I )=n. This is
the case when dimX = 1 (i.e n = 1): the Hilbert scheme
X [n] is isomorphic to the nth symmetric product Sn X and
we have

X [n] � Sn X. (47)

A different situation is when some points collide. Looking
at the case n = 2, two types of ideals must be taken into
account in X [2]. One can either consider an ideal given by
two distinct points p1 and p2, or the ideal

I = { f | f (p) = 0, d fP (v) = 0} , (48)

where p is a point of X and v is a vector in the tangent
space Tp X . The information of the direction in which p1

approaches p2 is remembered in this ideal. In the symmetric
product, this information is lost and one just has 2p. When
n > 2, more complicated ideals appear.

4.2 The nth symmetric product of C2

In the spirit of the Hilbert scheme of points on surfaces briefly
discussed above, we consider the case when X = C

2. More
precisely, we consider the family

Sn(C2) � C [x1, y1; x2, y2; . . . ; xn, yn] /Sn, (49)

where (x, y) are the coordinates of C2 and Sn permutes the
n-tuple of variables (xi , yi ). The computation of the Hilbert
series of the invariant ring Sn(C2) then amounts to extending
Molien’s Theorem to the bi-graded case. Such extension has
already been studied [38,39]. We now show that in our case,
Zlog(ν; q, q̄) is the generating function of a ν-inserted bi-
graded Molien series of the symmetric group and can be
expressed as

Zlog(ν; q, q̄) ≡ Zlog(ν, q, q̄;C2)

=
∑

n=0

Zn

(
q, q̄;C2

)
(ν)n . (50)

We start by looking at the cases when S2 and S3 act on the
standard basis of C2 and C

3, respectively.
The symmetric group on two objects can be presented as

S2 =< e, σ >, where e is the identity element and σ can be
expressed in cycle notation as σ = (12). If we consider the
action of S2 on 2 × 2 matrices by permuting coordinates q,
we have
(

q 0
0 q

)
π(e)−−→
(

q 0
0 q

)
and

(
q 0
0 q

)
π(σ)−−→
(

0 q
q 0

)
. (51)

Then

det (I − qπ(e)) = det

[(
1 0
0 1

)
−
(

q 0
0 q

)]
(52a)

= det

(
1 − q 0

0 1 − q

)
(52b)

= (1 − q)2 , (52c)

and

det (I − qπ(σ)) = det

[(
1 0
0 1

)
−
(

0 q
q 0

)]
(53a)

= det

(
1 −q

−q 1

)
(53b)

=
(

1 − q2
)

. (53c)

In the same way, the action of S2 on 2×2 matrices by the per-
muting coordinates q̄ allows us to write det (I − q̄π(e)) =
(1 − q̄)2 and det (I − q̄π(σ)) = (1 − q̄2

)
. From there, we

have

Z2

(
q, q̄;C2

)
= 1

2!
[
G1 (q, q̄)2 + G1

(
q2, q̄2

)]
(54a)

= 1

2!
[

1

(1 − q)2(1 − q̄)2 + 1

(1 − q2)(1 − q̄2)

]
(54b)

= 1

2!
[

1

det (I − qe) det (I − q̄e)
+ 1

det (I − qσ) det (I − q̄σ)

]
.

(54c)

Next we consider the symmetric group S3 =< e, σ, τ >,
where the elements correspond respectively to the iden-
tity, the three-element conjugacy class that consists of
swaping two coordinates, and the two-element conjugacy
class of cyclic permutations. Using cycle notations, σ =
{(12), (13), (23)} and τ = {(123), (132)}. The action of S3

on 3 × 3 matrices by permuting coordinates q would yield
the following. Starting from the identity

det

⎛

⎝
1 − q 0 0

0 1 − q 0
0 0 1 − q

⎞

⎠ = (1 − q)3. (55)

Then, taking one of the three terms consisting of swaps of
two coordinates, say σ = (12) identically results into

det

⎛

⎝
1 −q 0

−q 1 0
0 0 1 − q

⎞

⎠ = (1 − q)(1 − q2). (56)

Finally, taking one of the two cyclic permutation terms, say
τ = (132), identically yields

det

⎛

⎝
1 −q 0
0 1 −q

−q 0 1

⎞

⎠ = (1 − q3). (57)
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Acting in the same way on coordinates q̄ allows us to even-
tually write

Z3
(
q, q̄;C2) = 1

3!
[G1 (q, q̄)3

+3G1 (q, q̄)G1
(
q2, q̄2)+ 2G1

(
q3, q̄3)] (58a)

= 1

3!
[

1

(1 − q)3(1 − q̄)3 + 3

(1 − q)(1 − q2)(1 − q̄)(1 − q̄2)

+ 2

(1 − q3)(1 − q̄3)

]
(58b)

= 1

3!
[

1

det (I − qπ(e)) det (I − q̄π(e))

+ 3

det (I − qπ(σ)) det (I − q̄π(σ))

+ 2

det (I − qπ(τ)) det (I − q̄π(τ))

]
. (58c)

We can generalize the above procedure for all permuta-
tions π of the elements g ∈ Sn as follows. We recall
that the cycle type of a permutation π is the integer vector
m(π) = (m(1), m(2), . . . , m(n)), where m(k) are the mul-
tiplicities that count the number of cycles of length k in the
cycle decomposition of π . Then, applying the above discus-
sion to Sn acting on the space (C × C)n by permuting the q-
and q̄-coordinates, if π is the permutation of Sn with cycle
type m(π) = (m(1), m(2), . . . , m(n)), the standard bases of
(C × C)n decomposes into cycles of length k such that

det (In − qπ) det (In − q̄π) =
n∏

k=1

[(
1 − qk

) (
1 − q̄k

)]m(k)

.

(59)

As a result

1

det (In − qπ) det (In − q̄π)
=

n∏

k=1

[
G1

(
qk, q̄k

)]m(k)

,

(60)

and finally

Zlog(ν; q, q̄) ≡ Zlog(ν, q, q̄;C2)

=
∞∑

n=0

1

|Sn|
∑

g∈Sn

(ν)n

det (I − qπ(g)) det (I − q̄π(g))
. (61)

Zlog(ν, q, q̄;C2) is therefore the generating function of a (ν-
inserted) bi-graded Molien series of Sn , and of Hilbert series
of the ring of invariants Sn(C2).

Closer to our previous discussion on Hilbert schemes of
points on surfaces, generating functions taking the exponen-
tial form of Zlog(ν, q, q̄;C2) were considered in [40] and in

[35]. Using our notation, we can then write

Zlog(ν, q, q̄;C2) = P EB
[

1

(1 − q)(1 − q̄)

]

= exp

( ∞∑

n=1

(ν)n

n(1 − qn)(1 − q̄n)

)

. (62)

In the simplest case of CCTMG for instance, i.e when ν =
q2, one can write

Zlog(q
2; q, q̄;C2) = P EB

[
1

(1 − q)(1 − q̄)

]

= exp

( ∞∑

n=1

(
q2
)n

n(1 − qn)(1 − q̄n)

)

. (63)

Sn(C2) is an orbifold locally isomorphic to an open set of the
Euclidean space quotiented by the action of the symmetric
group [37,40]. The above analysis therefore brings forth the
orbifold structure of the moduli space of logarithmic partners
states in critical massive gravities.

4.3 Differential operators on orbifolds

In this section, using an invariant theoretic language, we
revisit some of the work done in [16], and give an inter-
pretation to the hidden structures found in the study of
Zlog(ν; q, q̄;C2).

Fock spaces were designed as an algebraic framework to
construct many-particle states in quantum mechanics. They
typically represent the state space of an indefinite number
of identical particles (an electron gas, photons, etc...). These
particles can be classified in two types, bosons and fermions,
and their Fock spaces look quite different. The reason why
a Fock space are of great interest is that several important
algebras can naturally act on it. Fermionic Fock spaces are
naturally representations of a Clifford algebra, where the gen-
erators correspond to adding or removing a particle in a given
energy state. In a similar way, bosonic Fock space is naturally
a representation of a Weyl algebra.

Returning to the discussion on Hilbert schemes, for the
non-compact space C

2, a connection between the theory of
Hilbert schemes of points on surfaces and the infinite dimen-
sional Heisenberg algebra was made through the construc-
tion of a representation of the Heisenberg algebra on the
homology group of the Hilbert scheme, turning the homol-
ogy group into a Fock space [41]. The construction showed
that the Fock space representation on the polynomial ring of
infinitely many variables is an important representation of
the Heisenberg algebra. In the present case, with an interest
on the bosonic Fock space, we discuss the construction of a
combinatorial model of creation and annihilation operators
that are generators of a Heisenberg–Weyl algebra and that
act on the bosonic Fock space.
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In general, a Fock space is considered on a Hilbert space,
but in the simplest case and for the purpose of our discus-
sion, the bosonic vector space is obtained by considering
a complex vector space C. Then, the bosonic Fock space
as a vector space is essentially a space of polynomials of
infinitely many variables. A typical basis can be constructed
using Schur symmetric functions. In our case, we consider
a space of Bell polynomials Yn of infinitely many variables
g1, g2, · · · , gn .

Given the n-dimensional polynomial ring C[x1, . . . , xn],
a subring of invariant polynomials denoted C[x1, . . . , xn]Sn

can be constructed from invariants g1, . . . , gn ∈ C[x1, . . . ,

xn]. The polynomials of the invariant ring C[x1, . . . , xn]Sn

can take the form of Bell polynomials Yn with coordi-
nates g1, . . . , gn such thatC[x1, . . . , xn]Sn � C[g1, . . . , gn].
From the ring of differential operators

D (C[g1, . . . , gn]) = C < g1, . . . , gn, ∂g1 , . . . , ∂gn >, (64)

we construct the multiplication operator X̂ = g1+∑∞
k=1 gk+1

∂
∂gk

and the derivative operator D̂ = ∂
∂g1

such that they satisfy

the Heisenberg–Weyl algebra
[

X̂ , D̂
]

= 1. Then, defining

the Hilbert series

Z
(
C[x1, . . . , xn]Sn

)
≡ Z
(
Sn(C)

) = Yn(g1, . . . , gn)

n! , (65)

these operators act as ladder operators on the Hilbert series
Z
(
C[x1, . . . , xn]Sn

)
at each n level in the following way.

Proposition 4.1 Let Z (Sn(C)) be defined in terms of Bell
polynomials Yn as

Z
(
Sn(C)

) = Yn(g1, . . . , gn)

n! . (66)

The set of operators

X̂ = g1 +
∞∑

k=1

gk+1
∂

∂gk
; D̂ = ∂

∂g1
,

generating the Heisenberg–Weyl algebra [D̂, X̂ ] = 1,
[D̂, 1] = [X̂ , 1] = 0 acts on Z (Sn(C)) as

X̂ Z
(
Sn(C)

) = (n + 1)Z
(

Sn+1(C)
)

(67a)

D̂Z
(
Sn(C)

) = Z
(

Sn−1(C)
)

(67b)

X̂ D̂Z
(
Sn(C)

) = nZ
(
Sn(C)

)
. (67c)

Proof From [16], it is known that

X̂Yn = Yn+1, (68a)

D̂Yn = nYn−1, (68b)

X̂ D̂Yn = nYn . (68c)

Hence we can write

X̂
[
n!Z (Sn(C)

)] = (n + 1)!Z
(

Sn+1(C)
)

(69a)

⇒ X̂
(
Z
(
Sn(C)

)) = (n + 1)Z
(

Sn+1(C)
)

. (69b)

Similarly

D̂
[
n!Z (Sn(C)

)] = n
[
(n − 1)!Z

(
Sn−1(C)

)]
(70a)

⇒ D̂
(
Z
(
Sn(C)

)) = Z
(

Sn−1(C)
)

, (70b)

and

X̂ D̂
[
Z
(
Sn(C)

)] = n
[
Z
(
Sn(C)

)]
(71a)

⇒ X̂ D̂Z
(
Sn(C)

) = nZ
(
Sn(C)

)
. (71b)

��

5 Moduli space of logarithmic states and Calabi-Yau
orbifolds

In the previous section, we used insights from the plethystic
program and Molien’s theorem to show that the moduli space
of the logarithmic states is given by the symmetric product
Sn(C2). In this section, we take a further geometric perspec-
tive, by establishing that the moduli space is a Calabi-Yau
space.

The context of the moduli space of the logarithmic states is
one in which as seen earlier, the Bell polynomials with coor-
dinates g1, g2, . . . , gn form a ring on the space Sn(C2). The
Hilbert series of the polynomial ring has a very interesting
palindromic property, which can be stated as follows.

Proposition 5.1 Let the generating function

Zlog

(
ν; q, q̄;C2

)
=

∞∑

n=0

Zn

(
q, q̄;C2

)
(ν)n . (72)

The numerator of the Hilbert series Zn
(
q, q̄;C2

)
is palin-

dromic, i.e it can be written in the form of a degree m, m̄
polynomial in q, q̄

Pm,m̄(q, q̄) =
m∑

k=0

m̄∑

k̄=0

ak,k̄qk q̄ k̄, (73)

with symmetric coefficients am−k,m̄−k̄ = ak,k̄ , and Pm,m̄(1, 1)

�= 0.

Proof We make use of a theorem by Stanley [23] to show
that if the numerator of the Hilbert series Zn

(
q, q̄;C2

)
is

palindromic, then the Hilbert series Zn
(
q, q̄;C2

)
enjoys the

following transformation property

Zn

(
1

q
,

1

q̄

)
= (qq̄)n Zn (q, q̄) . (74)
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In order to show that the above equation holds, given that
Zn
(
q, q̄;C2

) = Yn
n! it suffices to show that by introducing

the variable

g̃n = g

(
1

qn
,

1

q̄n

)
, (75)

then

Yn (g̃1, g̃2, . . . , g̃n) = (qq̄)n Yn (g1, g2, . . . , gn) . (76)

We start by writing g̃n in terms of gn

g̃n = g

(
1

qn
,

1

q̄n

)
= 1

1 − 1
qn

1

1 − 1
q̄n

= (qq̄)n g(qn, q̄n) = (qq̄)n gn . (77)

Next, we use the determinantal form of the Bell polynomial
[42]

Yn(g1, . . . , gn) = det

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

(
n − 1

0

)
g1

(
n − 1

1

)
g2

(
n − 1

2

)
g3 · · ·

(
n − 1
n − 2

)
gn−1

(
n − 1
n − 1

)
gn

−1

(
n − 2

0

)
g1

(
n − 2

1

)
g2 · · ·

(
n − 2
n − 3

)
gn−2

(
n − 2
n − 2

)
gn−1

0 −1

(
n − 3

0

)
g1 · · ·

(
n − 3
n − 4

)
gn−3

(
n − 3
n − 3

)
gn−2

...
...

...
...

...

0 0 0 · · ·
(

1
0

)
g1

(
1
1

)
g2

0 0 0 · · · −1

(
0
0

)
g1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

, (78)

and prove Eq. (76) by induction.
For n = 1, using Eq. (77) we write

Y1 (g̃1) = g̃1 = (qq̄)1 g1 = (qq̄)1 Y1, (79)

showing that Eq. (76) holds at level one.
We assume that the identity holds at any level n, and show
that if it holds at level n, it also holds at level n + 1.
The determinantal form of the Bell polynomials at level n+1
can be expressed as [42]

Yn+1(g1, . . . , gn+1) = det

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

(
n
0

)
g1

(
n
1

)
g2

(
n
2

)
g3 · · ·

(
n

n − 1

)
gn

(
n
n

)
gn+1

−1

(
n − 1

0

)
g1

(
n − 1

1

)
g2 · · ·

(
n − 1
n − 2

)
gn−1

(
n − 1
n − 1

)
gn

0 −1

(
n − 2

0

)
g1 · · ·

(
n − 2
n − 3

)
gn−2

(
n − 2
n − 2

)
gn−1

...
...

...
...

...

0 0 0 · · ·
(

1
0

)
g1

(
1
1

)
g2

0 0 0 · · · −1

(
0
0

)
g1

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

, (80)

and from the determinantal forms of the Bell polynomials
at levels n and n + 1, it is possible to extract the recurrence
relation

Yn+1 = g1Yn +
n∑

i=1

(
n
i

)
gi+1Yn−i . (81)

Appendix E expands the recurrence relation given in Eq.
(81) up to level 4, showing en passant that Eq. (76) holds at
those levels. Now for simplicity, using the expression Ỹn =
Y (g̃1, g̃2, . . . , g̃n) while keeping the standard notation Yn =
Y (g1, g2, . . . , gn), we obtain
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Ỹn+1 = g̃1Ỹn +
n∑

i=1

(
n
i

)
g̃i+1Ỹn−i (82a)

= [(qq̄) g1]
[
(qq̄)n Yn

]

+
n∑

i=1

(
n
i

)[
(qq̄)i+1 gi+1

] [
(qq̄)n−i Yn−i

]
(82b)

= (qq̄)n+1 [g1Yn] +
n∑

i=1

(
n
i

)
(qq̄)i+1+n−i [gi+1Yn−i

]

(82c)

= (qq̄)n+1 [g1Yn] +
n∑

i=1

(
n
i

)
(qq̄)n+1 [gi+1Yn−i

]

(82d)

= (qq̄)n+1 [g1Yn] + (qq̄)n+1
n∑

i=1

(
n
i

) [
gi+1Yn−i

]

(82e)

= (qq̄)n+1

[

g1Yn +
n∑

i=1

(
n
i

)
gi+1Yn−i

]

(82f)

= (qq̄)n+1 Yn+1. (82g)

��
After proving that the numerator of the Hilbert series

Zn
(
q, q̄;C2

)
is palindromic, we make a more precise state-

ment about the Hilbert series by writing its general formula
as

Zn
(
q, q̄;C2) =

[
n∏

i=1

G1

(
qi , q̄ i

)
]

Pm,m̄(q, q̄)

= Pm,m̄(q, q̄)
∏n

i=1

(
1 − qi

) (
1 − q̄ i

) =
∑m

k=0
∑m̄

k̄=0 ak,k̄qk q̄ k̄

∏n
i=1

(
1 − qi

) (
1 − q̄ i

) .

(83)

Appendix F gives the expressions of the Hilbert series as in
Eq. (83) up to order four, showing that at each of those levels,
the numerators are indeed palindromic, while the denomina-
tors are formed from products of the G1

(
qi , q̄i

)
functions.

These results allow us to extract an interesting geometric
property of the moduli space. Due to the Hochster-Roberts
theorem [43] in commutative algebra, the coordinate ring giv-
ing the description of the moduli space is Cohen–Macaulay.
Indeed, the fundamental theorem of Hochster and Roberts
asserts that the invariant ring of a reductive group, i.e a type
of linear algebraic group over a field, is Cohen–Macaulay.
Among the reductive groups is the general linear group GLn

of invertible matrices. A maximal torus of GLn is the sub-
group of invertible diagonal matrices, whose normalizer is
the generalized permutation matrices. The quotient of the
normalizer of a maximal torus by the torus is called the Weyl
group of a reductive group. In the case of GLn , the Weyl

group is the symmetric group Sn . Since Sn may be considered
as a subgroup of GLn , Sn is a reductive group and the invari-
ant ring Sn

(
C

2
)

is therefore Cohen–Macaulay. Furthermore,
Stanley’s theorem [23] states that a Cohen–Macaulay ring
that has a palindromic Hilbert series is a Gorenstein ring. The
numerator of the Hilbert series Zn

(
q, q̄;C2

)
proved to be

palindromic shows that the invariant ring Sn
(
C

2
)

is Goren-
stein. The importance of this statement is that in the case of
affine spaces, Gorenstein means Calabi-Yau. Since our rings
are defined over an affine space, we reach the important con-
clusion that the moduli space is in fact an affine Calabi-Yau
orbifold space. In other words, the log sector of the theory
lives in the geometry of the n-symmetric product of a generic
non-compact Calabi-Yau manifold, the two-fold C

2 which
has two complex dimensions. The Calabi-Yau orbifold con-
structed from the gauging of the smooth complex spaceC2 by
the symmetric group Sn is a conical singular space, as it con-
tains a singularity at the branch point μl = 1, the fixed point
of the set of elements of Sn acting on C

2. The n-symmetric
product of surface C

2 thus constructed plays an important
role in understanding the structure of the logarithmic sector
of critical massive gravity theories in terms of holomorphic
(Riemann) surfaces parametrized in the Calabi-Yau manifold
as (covering maps) of CP1 spaces.

6 Discussion

In the sections above, we delved quite intensively into
algebro-geometric and invariant theoretic issues that had not
yet been addressed in the context of critical massive gravities
present in the AdS3/LCFT2 correspondence. In this section,
we come to the point where we would like to make some
final comments about the logarithmic states and their space
geometries.

Firstly, we would like to mention the following about the
“characters” generated by the log-partition Zlog(ν, q, q̄;C2).
From the above analysis, these objects are linear combina-
tions of the variables g1, g2, . . . , gn multiplied by a factor
(ν)n . However, Zlog(ν, q, q̄;C2) also seem to describe the
symmetric tensor product of the characters of sl(2,R) high-
est weight representations

χ
sl(2,R)
h = qh

1 − q
, χ̄

sl(2,R)

h̄
= q̄ h̄

1 − q̄
. (84)

Taking h = 2, h̄ = 0 for instance, it is easy to see
that χ

sl(2,R)
h=2 and χ̄

sl(2,R)

h̄=0
are respectively the single parti-

cle holomorphic and antiholomorphic characters from which
Zlog(q2, q, q̄;C2) yields symmetric tensor product (multi-
particle) characters. Yet, if really there were a holomorphic
and an antiholomorphic character, the numerator of the anti-
holomorphic character of CCTMG should not be constant
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since the antiholomorphic central charge is not nul. In other
words, there should systematically be a (ν̄) appear in the
logarithmic partition functions. This argument show that the
logarithmic highest weight states have descendants that are
both holomorphic and antiholomorphic, just as in the c = 0
non-unitary LCFT theory [44].

In the extension of holography to the present non-unitary
case, critical massive gravities present in the AdS3/LCFT2

correspondence are considered as non-unitary AdS3 holo-
graphic duals of two dimensional non-unitary CFTs that are
known to exist. We would like to argue that in this setting, the
logarithmic states of the critical massive gravities are points
on affine Calabi-Yau cones. The idea that conical spaces
could play a role in non-unitary holography was recently
mentioned in [45], and from the present work, it is quite
natural to interpret the conical spaces as affine Calabi-Yau
cones.

7 Conclusion and outlook

In this work, we used the partition function derived in [14]
and reformulated in [16] to extract information about the
moduli space of the logarithmic sector in critical massive
gravities. Using the relation between the cycle index of the
symmetric group and Bell polynomials, we first showed that
the partition function of the logarithmic states is the generat-
ing function of polynomials counting objects invariant under
the action of the symmetric group Sn . We also showed that the
partition function could be expressed as a generating func-
tion of 1-part Schur polynomials. It was then shown that the
configuration space of the logarithmic states is the symmetric
product Sn(C2), by showing that the partition function of the
logarithmic states Zlog(ν, q, q̄) is the generating function of
a bi-graded Molien series. As the quotient of an affine space
by the reductive group Sn , the space Sn(C2) has the structure
of an orbifold, and Zlog(ν, q, q̄;C2) is then the generating
function of an Sn(C2) orbifold space. Then, the construction
of differential operators on orbifolds was discussed. The ring
of polynomials on the symmetric product was shown to cor-
respond to bosonic wavefunctions of an n-particle system on
C

2, that can be mapped tp a Fock space obtained by acting
on the Hilbert series with the generators of a Heisenberg–
Weyl algebra. Finally, it was proved that the Hilbert series of
the polynomial ring have interesting palindromic properties,
indicating that the moduli space of the logarithmic states is
a Calabi-Yau singular space. Based on this work, we argued
that the logarithmic states of the critical massive gravities are
points on affine Calabi-Yau cones.

On its own right, the logarithmic sector of these critical
massive gravities looks like an interesting topic of study, and
much more seemingly remains to be unraveled from it. For
example, it would be interesting to study the modular prop-

erties of Zlog(ν, q, q̄;C2), and how the study contributes to
the modular properties of ZTMG. This is the object of current
investigation. It was also observed that the counting in the
multi particle sector of Zlog(ν, q, q̄;C2) can only be done
correctly on the account of quantum groupoid (Hopf alge-
broid) coproducts [46]. This matter will be discussed in an
upcoming publication.

Lastly, the author would like to mention that the realiza-
tion that the partition functions of critical massive gravities
could be recast in terms of Bell polynomials must be cred-
ited to [47,48]. Therefore, inspired by ideas from [47–50]
where partition functions expressed in terms of Bell polyno-
mials and recast into infinite products eventually lead to the
construction of quantum group, knots and link invariants, it
would be interesting to investigate how Zlog(ν, q, q̄;C2) can
be useful in the construction of topological invariants.
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Appendix A: Derivations of plethystic exponential and
Bell polynomial forms of Zlog(ν, q, q̄;C2)

In this appendix, we recall the derivation of Zlog(ν, q, q̄;C2)

as a plethystic exponential and in a Bell polynomial form
[46].

Starting from

Zlog(ν, q, q̄;C2) =
∞∏

m=0

∞∏

m̄=0

1

1 − νqmq̄m̄
, (A.1)
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we first compute the logarithmic function of Zlog(ν, q, q̄;C2)

as

log
[

Zlog(ν, q, q̄;C2)
]

= −
∑

m,m̄≥0

log(1 − νqmq̄m̄). (A.2)

Using the well know Maclaurin series

log(1 − x) = −
∞∑

x=1

xn

n
, (A.3)

we write

log
[

Zlog(ν, q, q̄;C2)
]

=
∑

m,m̄≥0

∞∑

n=1

νn

n
qnmq̄nm̄ . (A.4)

Then, using the Maclaurin series of geometric series

1

1 − x
=

∞∑

x=0

xn, (A.5)

we write

log
[

Zlog(ν, q, q̄;C2)
]

=
∑

m,m̄≥0

∞∑

n=1

νn

n
qnmq̄nm̄ (A.6a)

=
∞∑

n=1

νn

n

∑

m,m̄≥0

qnmq̄nm̄ (A.6b)

=
∞∑

n=1

νn

n

1

1 − qn

1

1 − q̄n
. (A.6c)

Finally, exponentiating the above equation yields the plethys-
tic exponential form of Zlog(ν, q, q̄;C2)

Zlog(ν, q, q̄;C2) = P EB
[

1

(1 − q)(1 − q̄)

]

= exp

( ∞∑

n=1

(ν)n

n(1 − qn)(1 − q̄n)

)

. (A.7)

To obtain the Bell polynomial version of Zlog(ν, q, q̄;C2),
it suffices to continue from Eq. (A.6c) as follows

log
[

Zlog(ν, q, q̄;C2)
]

=
∞∑

n=1

νn

n

1

1 − qn

1

1 − q̄n
(A.8a)

=
∞∑

n=1

νn

n

1

|1 − qn| (A.8b)

=
∞∑

n=1

νn

n! (n − 1)! 1

|1 − qn| . (A.8c)

Introducing the function gn such that

gn = (n − 1)! 1

|1 − qn| , (A.9)

we get

log
[

Zlog(ν, q, q̄;C2)
]

=
∞∑

n=1

νn

n! gn . (A.10)

Finally, exponentiation the above logarithmic function gives

Zlog(ν, q, q̄;C2) = exp

( ∞∑

n=1

νn

n! gn

)

(A.11a)

=
∞∑

n=0

Yn

n! ν
n, (A.11b)

where in Eq. (A.11b), Zlog(ν, q, q̄;C2) is the generating
function of the Bell polynomials Yn .

Appendix B: Cycle index of the symmetric group

In this appendix, the notion of cycle index applied to the
symmetric group is reviewed.

Definition B.1 The symmetric group Sn defined over a finite
set X of n objects, is the group of bijective functions from X
to X under the operation of composition, which consists of
permutations the n objects.

The permutations of Sn can be expressed in terms of cycles.
For instance, considering the set X = 1, 2, 3, 4, 5, 6, the
permutation π = (124)(35)(6) tells us that π maps 1 to 2,
2 to 4, 3 to 5, and 6 to itself. In this case, π consists of 3
disjoint cycles.

Definition B.2 A k-cycle, or cycle of length k, is a cycle
containing k elements.

Looking back at the example considered above, π =
(124)(35)(6) contains a 3-cycle, a 2-cycle, and a 1-cycle.

In group theory, the elements of any group may be parti-
tioned into conjugacy classes.

Definition B.3 In any group G, the elements g and h are
conjugates if

g = khk−1

for k ∈ G. The set of all elements conjugate to a given g is
called the conjugacy class of g.

Hence, when Sn acts on a set X , the cycle decomposition
of each π ∈ Sn as product of disjoint cycles is associated
to the partitions of the objects in the set. For example, if
one considers S4, the partitions of 4 and the corresponding
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conjugacy classes are

(1, 1, 1, 1) → {(e)} (B.1a)
(2, 1, 1) → {(12), (13), (14), (23), (24), (34)} (B.1b)

(2, 2) → {(12)(34), (13)(24), (14)(23)} (B.1c)
(3, 1) → {(123), (132), (124), (142), (134), (143), (234), (243)}

(B.1d)

(4) → {(1234), (1432), (1423), (1324), (1342), (1243)}
(B.1e)

To keep track of the cycle decomposition of the elements
of S4, one can use the cycle index polynomial. Representing
each object of the set by a coordinate, i.e 1 by g1, 2 by g2, 3
by g3 and 4 by g4, the cycle index of S4 reads

Z(S4) = 1

24!
(

g4
1 + 6g2

1 g2 + 3g2
2 + 8g1g3 + 6g4

)
. (B.2)

The coefficients before the monomials (the products of coor-
dinates) count the number of elements in a given conjugacy
class, the powers on the monomials indicate the number of
times the object appears in a given partition, and the denom-
inator 24! is the order of S4, i.e the total number of elements
in S4. As such, the cycle index is simply the average of the
number of elements in X , that are left invariant by the action
of π ∈ S4.

Appendix C: Some properties of Schur polynomials and
Young diagrams

We show how to obtain the Schur polynomials in S2 and S3.
We start by defining the Schur polynomial as

χR(X) = 1

n!
∑

π∈Sn

χR(π) · tr
(
π X⊗n)

= 1

n!
∑

π∈Sn

χR(π) · Xi1
iπ(1)

Xi2
iπ(2)

· · · Xin
iπ(n)

. (C.1)

The label R is a Young diagram of n boxes, in one-to-
one correspondence with irreducible representations of the
symmetric group Sn , indicating that Schur polynomials have
the property of being associated with a particular irreducible
representation of Sn . The factor χR(π) is the character of
π ∈ Sn in the irreducible representation R, or in other words
the trace of the associated matrix representing π in the irre-
ducible representation R. π(i) represents the integer i that is
permuted under the action of the permutation π .

All group elements with a particular cycle structure
belongs to the same conjugacy class, and have the same char-
acter for a given irreducible representation. Furthermore, all
multi-trace factors are equal for group elements belonging to
a particular conjugacy class. Therefore, all permutations of
the same cycle structure give the same multi-trace factor.

For example, if we consider n = 4, and take π =
(12)(3)(4), then we obtain

tr ((12)(3)(4)) = Xi1
i2

Xi2
i1

Xi3
i3

Xi4
i4

= tr
(

X2
)

· tr(X)2.

(C.2)

C.1 Schur polynomials in S2

The character table for S2 is

Representation Partition Class

(12) (2)

(2) 1 1
(1,1) 1 -1

R = is known as the symmetric representation, R =
as the antisymmetric representation. The construction of χ

and χ is done using the character table and Eq. (C.1).

χ (X) = 1

2!
∑

π∈S2

χR(π) · Xi1
iπ(1)

Xi2
iπ(2)

(C.3a)

= 1

2!
(
χR(1)Xi1

i1
Xi2

i2
+ χR(12)Xi1

i2
Xi2

i1

)
(C.3b)

= 1

2!
(
(tr X)2 + tr(X2)

)
. (C.3c)

Similarly

χ (X) = 1

2!
∑

π∈S2

χR(π) · Xi1
iπ(1)

Xi2
iπ(2)

(C.4a)

= 1

2!
(
χR(1)Xi1

i1
Xi2

i2
+ χR(12)Xi1

i2
Xi2

i1

)
(C.4b)

= 1

2!
(
(tr X)2 − tr(X2)

)
. (C.4c)

C.2 Schur polynomials in S3

The character table for S3 is

Representation Partition Class

(13) (12) (3)

(3) 1 1 1
(2,1) 2 0 -1

(1,1,1) 1 -1 1

Here, R = is the symmetric representation, R = the

antisymmetric representation, and R = the mixed repre-
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sentation. Again, using the character table and Eq. (C.1), we
obtain the construction of χ as follows

χ (X) = 1

3!
∑

π∈S3

χR(π) · Xi1
iπ(1)

Xi2
iπ(2)

Xi3
iπ(3)

(C.5a)

= 1

3!
(
χR(1)Xi1

i1
Xi2

i2
Xi3

i3
+ χR(12)Xi1

i2
Xi2

i1
Xi3

i3
+ χR(13)Xi1

i3
Xi2

i2
Xi3

i1

(C.5b)

+ χR(23)Xi1
i1

Xi2
3 Xi3

i2
+ χR(123)Xi1

i2
Xi2

i3
Xi3

i1
+ χR(132)Xi1

i3
Xi2

i1
Xi3

i2

)

(C.5c)

= 1

3!
(
χR(1)(tr X)3 + 3χR(12)(tr X)(tr X2) + 2χR(123)(tr X3)

)

(C.5d)

= 1

3!
(
(tr X)3 + 3(tr X)(tr X2) + 2(tr X3)

)
. (C.5e)

Similarly,

χ = 1

3!
(
χR(1)(tr X)3 + 3χR(12)(tr X)(tr X2) + 2χR(123)(tr X3)

)

(C.6a)

= 1

3!
(
2(tr X)3 − 2(tr X3)

)
, (C.6b)

and

χ = 1

3!
(
χR(1)(tr X)3 + 3χR(12)(tr X)(tr X2) + 2χR(123)(tr X3)

)

(C.7a)

= 1

3!
(
(tr X)3 − 3(tr X)(tr X2) + 2(tr X3)

)
. (C.7b)

Appendix D: Invariant theory

Invariant theory appears in the description of moduli spaces
whose points parametrize spaces of interest, and is also use-
ful in the construction of Hilbert schemes with associated
Hilbert polynomials. In this appendix, we review some basic
concepts of invariant theory (a good reference on this topic
can be found in [51]).

D.1 Ring of polynomials

Definition D.1 Let V be a complex vector space, and denote
the dual vector space by V*= { f : V → C}. The coordinate
ring R(V ) of V is the algebra of functions F: V → C gener-
ated by the elements of V*. The elements of R(V ) are called
polynomial functions on V.

For a fixed basis e1, e2, . . . , en of V , a dual basis of V ∗
can be expressed by the coordinates x1, x2, . . . , xn such that
xi (c1e1 + · · · + cnen) = ci . The coordinate ring R(V )

obtained is C [x1, x2, . . . , xn], the ring of polynomials in n
variables f (x1, x2, · · · , xn) with complex coefficients.

D.2 Invariant rings of the symmetric group

The fundamental question at the heart of invariant theory is
to ask whether the orbits of a group G that acts on a space V
can form a space in their own right. In what follows we will
consider the case where G = Sn .

Let the symmetry group Sn act on the n-dimensional com-
plex vector space V . The action of Sn on V translates into an
action of Sn on the polynomial ring C[x1, . . . , xn] := C[x].
The objective is then to describe the subring of invariant
polynomials, which in the present case is denoted C[x]Sn .
According to a theorem of Hilbert, C[x]Sn is finitely gen-
erated as an algebra. This means that there exist invariants
I1, . . . , In ∈ C[x] such that C[x]Sn consists exactly of poly-
nomials of the invariant ring C[g] = C[I1, . . . , In].

We can summarize the results of section ?? in the fol-
lowing way. The polynomials invariant under action of Sn

are precisely the Bell polynomials Y with coordinates g =
(g1, . . . , gn). In particular, Y (g) ∈ C[x]Sn are uniquely writ-
ten as polynomial in the g1, . . . , gn such that we have the
isomorphism

C[x]Sn ∼ C[g]. (D.1)

D.3 Counting the number of invariants

In this subappendix, we are interested in counting the poly-
nomials that remain invariant under the action of the sym-
metric group. The treatment of this enumerative problem can
be made systematic by keeping track of the degrees in which
these invariants occur.

Let C[x]Sn
d be the set of all homogeneous invariants of

degree d. The invariant ring C[x]Sn = ⊕∞
d=0 C[x]Sn

d is the

direct sum of the finite dimensional C-vector spaces C[x]Sn
d .

The Hilbert series (or Poincaré series) of the graded algebra
C[x]Sn is the formal power series in t defined by

H
(
C[x]Sn , t

)
=

∞∑

d=0

dim
(
C[x]Sn

d

)
td , (D.2)

which encodes in a convenient way the dimensions of the
C[x]Sn

d -vector space of degree d.
In 1897, Molien proved that for any group finite group

G acting on C[x]G , it is possible to compute H
(
C[x]G, t

)

without first computing C[x]G . This is captured in the beau-
tiful theorem below

Theorem D.1 (Molien’s theorem) Let ρ : G → GL(V) be
a representation of a finite group G of order |G|. If G acts on
C[V ] = C[x], then the Hilbert series of the invariant ring

123
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C[x]G can be expressed as

H
(
C[x]G , t

)
= 1

|G|
∑

g∈G

1

det (I − ρ(g)t)
. (D.3)

We refer the reader to [51] for a very readable proof. In the
case of the symmetric group, one simply writes the Hilbert
series (D.2) as

H
(
C[x]Sn , t

)
= 1

|Sn|
∑

g∈Sn

1

det (I − ρ(g)t)
. (D.4)

D.4 Rings of differential operator

As the algebra of differential operators on affine n-spaces,
the Weyl algebra is perhaps the most important ring of dif-
ferential operator. It is denoted

D (C[x1, . . . , xn]) = C < x1, . . . , xn, ∂x1 , . . . , ∂xn >,

(D.5)

where the variables xi commute with each other, the variables
∂x j = ∂

∂x j
commute with each other, and the two sets of

variables interact via the product rule ∂ j xi = xi∂ j +δi j [39].

Appendix E: Determinantal form of Bell polynomials

We compute the determinantal form of Bell polynomials at
levels 2, 3 and 4, and show from these expressions how the
recurrence relation in Eq. (81) can be seen.
At level 2

Y2 (g1, g2) =
∣∣
∣∣

g1 g2

−1 g1

∣∣
∣∣ = g2

1 + g2 = g1Y1 + g2Y0. (E.1)

At level 3

Y3 (g1, g2, g3) =
∣∣∣∣
∣∣

g1 2g2 g3

−1 g1 g2

0 −1 g1

∣∣∣∣
∣∣

(E.2a)

= g1

∣∣∣
∣

g1 g2

−1 g1

∣∣∣
∣− 2g2

∣∣∣
∣
−1 g2

0 g1

∣∣∣
∣+ g3

∣∣∣
∣
−1 g1

0 −1

∣∣∣
∣ (E.2b)

= g1

(
g2

1 + g2

)
+ 2g2 (g1) + g3(1) (E.2c)

= g1Y2 + 2g2Y1 + g2Y0. (E.2d)

At level 4

Y4 (g1, g2, g3, g4) =

∣∣
∣∣∣
∣∣∣

g1 3g2 3g3 g4

−1 g1 2g2 g3

0 −1 g1 g2

0 0 −1 g1

∣∣
∣∣∣
∣∣∣

(E.3a)

= g1

∣∣
∣∣∣∣

g1 2g2 g3

−1 g1 g2

0 −1 g1

∣∣
∣∣∣∣
+
∣∣
∣∣∣∣

3g2 3g3 g4

−1 g1 g2

0 −1 g1

∣∣
∣∣∣∣

(E.3b)

= g1
[
g1
(
g2

1 + g2
)+ (2g2g1 + g3)

]

+ [3g2
(
g2

1 + g2
)+ 3g3g1 + g4

]
(E.3c)

= g1
(
g3

1 + 3g1g2 + g3)+ 3g2
(
g2

1 + g2
)+ 3g3 (g1) + g4(1)

(E.3d)

= g1Y3 + 3g2Y2 + 3g3Y1 + g4Y0. (E.3e)

In what follows, we show from the above determinantal
forms that the transformation property in Eq. (76) holds at
levels 2,3 and 4.
At level 2

Ỹ2 = g̃1Ỹ1 + g̃2Ỹ0 (E.4a)

= [(qq̄) g1] [(qq̄) Y1] +
[
(qq̄)2 g2

]
[Y0] (E.4b)

= (qq̄)2 [g1Y1 + g2Y0] (E.4c)

= (qq̄)2 Y2. (E.4d)

At level 3

Ỹ3 = g̃1Ỹ2 + 2g̃2Y1 + g̃3Ỹ0 (E.5a)

= [(qq̄) g1]
[
(qq̄)2 Y2

]
+ 2
[
(qq̄)2 g2

]
[(qq̄) Y1]

+
[
(qq̄)3 g3

]
[Y0] (E.5b)

= (qq̄)3 [g1Y2 + 2g2Y1 + g3Y0] (E.5c)

= (qq̄)3 Y3. (E.5d)

At level 4

Ỹ4 = g̃1Ỹ3 + 3g̃2Ỹ2 + 3g̃3Ỹ1 + g̃4Ỹ0 (E.6a)

= [(qq̄) g1]
[
(qq̄)3 Y3

]
+ 3
[
(qq̄)2 g2

] [
(qq̄)2 Y2

]

+ 3
[
(qq̄)3 g3

]
[(qq̄) Y1] +

[
(qq̄)4 g4

]
[Y0] (E.6b)

= (qq̄)4 [g1Y3 + 3g2Y2 + 3g3Y1 + g4Y0] (E.6c)

= (qq̄)4 Y4. (E.6d)
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Appendix F: Palindromic numerators of Zn(q, q̄;C2)

We give expressions of Zn
(
q, q̄;C2

)
up to n = 4 showing

that the numerators are palindromic.

Z2

(
q, q̄;C2

)
= 1

2!

[
1

|1 − q|2 + 1
∣∣1 − q2

∣∣

]

(F.1a)

= 1

2!
[

1

|1 − q| |1 − q| + 1

|1 − q| |1 + q|
]

(F.1b)

= 1

2!
[ |1 − q| + |1 + q|
|1 − q| |1 − q| |1 + q|

]
(F.1c)

= 1

2!

[
2 + 2qq̄

|1 − q| ∣∣1 − q2
∣∣

]

(F.1d)

= 1 + qq̄
∏2

i=1

(
1 − qi

) (
1 − q̄ i

) . (F.1e)

Z3
(
q, q̄;C2) = 1

3!

[
1

|1 − q|3 + 3
1

|1 − q|
1

∣
∣1 − q2

∣
∣ + 2

1
∣
∣1 − q3

∣
∣

]

(F.2a)

= 1

3!

[
|1 − q| ∣∣1 − q2

∣
∣
∣
∣1 − q3

∣
∣+ 3 |1 − q|2 ∣∣1 − q3

∣
∣+ 2 |1 − q|3 ∣∣1 − q2

∣
∣

|1 − q|3 ∣∣1 − q2
∣
∣
∣
∣1 − q3

∣
∣

]

(F.2b)

= 1

3!

[
|1 + q| ∣∣1 − q3

∣
∣+ 3
∣
∣1 − q3

∣
∣+ 2 |1 − q|2 |1 + q|

|1 − q| ∣∣1 − q2
∣∣ ∣∣1 − q3

∣∣

]

(F.2c)

= 1

3!

[
6 + 6q1q̄1 + 6q2q̄1 + 6q1q̄2 + 6q2q̄2 + 6q3q̄3

|1 − q| ∣∣1 − q2
∣
∣
∣
∣1 − q3

∣
∣

]

(F.2d)

= 1 + q1q̄1 + q2q̄1 + q1q̄2 + q2q̄2 + q3q̄3

∏3
i=1

(
1 − qi

) (
1 − q̄ i

) . (F.2e)

The palindromic aspect of the numerator can be seen by
rewriting Z2

(
q, q̄;C2

)
and Z3

(
q, q̄;C2

)
in the following

way

Z2
(
q, q̄;C2

) =

1 q1q̄1

0 q1q̄0 0 q0q̄1

1 q0q̄0
∏2

1=1(1−qi)(1−q̄i)
,

Z3
(
q, q̄;C2

) =

1 q3q̄3

1 q2q̄2

1 q2q̄1 1 q1q̄2

1 q1q̄1

1 q0q̄0
∏3

k=1|1−qk | .

Then, focusing on the coefficients, we have

Z2
(
q, q̄;C2

) =

1
0 0

1
∏2

k=1|1−qk | ,

Z3
(
q, q̄;C2

) =

1
0 1 0

0 1 0 1 0
0 1 0

1
∏3

k=1|1−qk| ,

and we see the symmetry corresponding to a point reflection
through the center. Finally, at level n = 4, we have
Z4
(
q, q̄;C2

)

=

1 q6q̄6

1 q5q̄5

1 q5q̄4 1 q4q̄5

1 q5q̄3 2 q4q̄4 1 q3q̄5

1 q4q̄3 1 q3q̄4

1 q4q̄2 2 q3q̄3 1 q2q̄4

1 q3q̄2 1 q2q̄3

1 q3q̄1 2 q2q̄2 1 q1q̄3

1 q2q̄1 1 q1q̄2

1 q1q̄1

1 q0q̄0

4∏

k=1
|1−qk |

,

and taking a closer look at the coefficients by writing
Z4
(
q, q̄;C2

)

=

1
0 1 0

0 1 0 1 0
0 1 0 2 0 1 0

0 0 0 1 0 1 0 0 0
0 0 0 1 0 2 0 1 0 0 0

0 0 0 1 0 1 0 0 0
0 1 0 2 0 1 0

0 1 0 1 0
0 1 0

1
4∏

k=1
|1−qk |

, allows

us to see the point reflection symmetry through the center.
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