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There is remarkable interest worldwide on the use of targeted alpha therapy on several cancers 
such as brain tumors, bladder cancer, neuroendocrine tumors, leukemia, and prostate cancer 
[1]. This rapidly increasing use of alpha-emitting radionuclides is based on the advantages over 
other forms of radiation due to the shorter path length and high linear energy transfer (LET) of 
alpha radiation that also leads to the strongly reduced dependency of a damaging effect on 
oxygenation [1, 2]. 

The high-LET radiation’s biological efficacy causes complex multiple clusters and double-
strand DNA breaks, reactive oxygen species (ROS), and the abscopal effect via the immune 
system [1, 3]. This process makes the α-particles highly potent and specific with potential to 
overcome radio-resistance, while the limited range can reduce the radiation effects on the 
healthy tissue. 

Whereas the cytotoxic effect on the target lesions is appreciated, the recoil effect and the exact 
impact of off-target and daughter redistribution on a clinical effect might depend on the 
pharmacokinetic details of the carrier, its individual variation, and the extent of internalization 
upon cell binding [4,5,6], effects that should be well understood going forward. 

The potency and the potential recoil effects make the half-life, the stable binding to a chelating 
system, the particle energy, the possible decay chain properties, and the kinetics of the 
daughters, as well as the costs and availability very essential in the choice of alpha-particle–
emitting radionuclides. The currently available alpha-particle–emitting radionuclides that are 
suitable, include thorium-227, actinium-225, radium-223/-224, bismuth-212/-213, lead-212, 
astatine-211, and terbium-149 [1, 7, 8]. 

The ongoing studies that capture the potential of TAT therapeutic options for patients who are 
resistant to conventional therapies, especially/such as the commercially available radium-223 
dichloride (223Ra), 225Ac-PSMA for prostate cancer, 225Ac-labeled somatostatin analogs for 
Neuroendocrine tumors (NETs), and 212Pb-labeled somatostatin analogs for NET, pose 
enormous opportunities [9,10,11,12,13,14]. 

Yet there are still gaps due to limited clinical experience with α-particles to date with unknown 
maximum tolerable doses in humans, including the chronic effects of these radiations. Hence 
dosimetry optimization, radiobiology and synthetic lethality tracers, combination therapies, 
and patient/tumor selection will play fundamental roles going forward with α-particle emitters 
[9, 15]. 

Therefore, this collection aims to comprehensively present current preclinical and clinical 
studies, including the development of radiotracers, interesting results from new tracers, new 
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methods for data analysis, and new approaches regarding alpha-emitting therapies. We invite 
researchers to submit original research articles, case series, or reviews for this collection issue. 
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