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Abstract
This study investigated the molecular characteristics of urinary carbapenemase-producing Klebsiella pneumoniae isolates 
(n = 194) in Gauteng, South Africa, using simple, cost-effective PCR methodologies. Extensively drug resistant (XDR) 
ST307 with blaOXA-181 on IncX3 plasmids was endemic in Gauteng community hospitals leaving limited options for treat-
ing in- and outpatient urinary tract infections. High-level ceftazidime/avibactam resistance was detected among isolates 
harbouring blaOXA-48-like including blaOXA-181. These findings highlighted the need for genomic methodologies suitable for 
lower- and middle-income countries to track XDR clones and plasmids in community hospitals. Such results will aid with 
treatment and stewardship strategies.
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Introduction

The spread of antimicrobial resistance (AMR) genes within 
or between bacterial populations, is due to the persistence 
of successful multidrug resistant (MDR) clones and/or the 
movement of AMR genes within and between diverse strains 
[1]. Successful clones (also known as “high-risk” clones) are 
found among various bacterial pathogens especially within 
Pseudomonas aeruginosa, and the Enterobacterales [2]. 
Klebsiella pneumoniae has a panmictic population structure 

that consists of certain successful clones among non-MDR 
populations (e.g. sequence type (ST)-23, ST86), while 
different high-risk clones are found within MDR populations 
(e.g. ST147, ST258, and ST307) [3].

Carbapenemases inactivate most available β-lactam anti-
microbials [4]. They belong to the Ambler classes A, B and 
D. Class A and D are serine β-lactamases (i.e. KPCs, OXA-
48-like), while class B are metallo-β-lactamases (MBLs) i.e. 
NDMs, VIMs and IMPs [5].

A previous South African study showed high frequency 
of ST307 among carbapenemase-producing K. pneumoniae 
in a tertiary care center [6]. We determined the prevalence 
and molecular characteristics of urinary carbapenemase-
producing K. pneumoniae isolates obtained from 
community hospitals in Gauteng, South Africa, using 
simple, cost-effective PCR methodologies. Our results 
showed the high prevalence of extensively drug resistant 
(XDR) ST307 with blaOXA-181 on IncX3 plasmids that will 
aid with treatment and control strategies of patients within 
community hospitals.
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Materials and methods

Non-duplicate carbapenem (i.e. ertapenem, and/or mero-
penem, and/or imipenem) resistant K. pneumoniae urinary 
isolates (n = 194) were collected from 71 community hos-
pitals in Gauteng, South Africa between Feb 2021, and 
May 2022. Isolates were identified using matrix assisted 
laser desorption ionization-time of flight mass spectrom-
etry [MALDI-TOF MS, Bruker Daltonics, United States] 
and antimicrobial susceptibility testing was performed by 
disk diffusion method using the European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) guide-
lines [7]. Standard definitions were used for MDR, XDR, 
and pandrug resistant (PDR) bacteria [8].

Carbapenemase genes (i.e. blaIMP, blaKPC, blaNDM, 
blaOXA-48-like, blaVIM) were detected using PCR as previ-
ously described [9, 10]. PCRs for ST307, IncX3 plasmids, 
OXA-181-IS3000 and OXA-48-IS1999 were performed 
as previously described [11]. The rapid polymyxin Nord-
mann/Poirel test was used to screen for polymyxin resist-
ance [12] and colistin microbroth dilution were performed 
on positive isolates, using EUCAST guidelines [13]. PCR 
for plasmid-mediated colistin resistant (mcr) genes was 
performed on colistin resistant isolates using previously 
published methods [14–16].

Patients’ data were processed using SPSS statistical 
software version 28.0.0 (SPSS Incorporation, Chicago, 
IL, US). Fisher’s exact test was used for comparison of 
categorical data. One-sample proportion test was used to 
estimate the proportions of ST307 and non-ST307 among 
inpatient and outpatient populations. Two-sample propor-
tion test was used to compare the molecular profiles of 
ST307 and non-ST307. Results were considered as statis-
tically significant if p < 0.05 was achieved at a 95% con-
fident interval.

Results

Carbapenem-resistant K. pneumoniae were collected from 
inpatients (n = 166) and outpatients (n = 28) throughout the 
Gauteng province. The study population comprised of 101 
(52%) male patients and 93 (48%) female patients with a 
mean age of 61 ± 17 years (range 21 days and 98 years) 
(Table 1). Most of the isolates (84%) were XDR followed by 
MDR (12%) and PDR (4%) (Table 1). Resistance to colistin 
and ceftazidime/avibactam were 7% and 19% respectively. 
Colistin resistant isolates (n = 14) were negative for mcr 
genes. Some ceftazidime/avibactam resistant isolates (20/37 
[54%]) contained MBLs. Of interest was that 16/37 (43%) 
of ceftazidime/avibactam resistant isolates were positive 

for blaOXA-48-like including two (5%) blaOXA-181. In addition, 
one (3%) ceftazidime/avibactam resistant isolate harboured 
blaKPC. More detail in supplementary File S1:Table 1.

All the carbapenem-resistant K. pneumoniae harboured 
carbapenemase genes (Table 1): most (n = 96) contained 
blaOXA-181 followed by blaOXA-48 (n = 91), blaNDM (n = 27), 
blaKPC (n = 4), and blaVIM (n = 2). Twenty-six isolates 
were positive for two carbapenemases e.g. n = 10 with 
blaOXA-181 + blaNDM, n = 14 with blaOXA-48 + blaNDM, one each 
with blaOXA-181 + blaKPC and blaOXA-181 + blaVIM respectively.

Nearly half of carbapenemase-producing K. pneumoniae 
(i.e. 49% (95/194) belonged to ST307 (Table 1). Most of 
urines with ST307 were submitted from inpatients (n = 81), 
while 14 urines were submitted from outpatients (Table 1). 
There were  statistically significant differences between 
ST307 and non-ST307 K. pneumoniae with patient char-
acteristics but no significance observed with AMR profiles 
(Table 1). OXA-181 genes with IS3000, and IncX3 plasmids 
were significantly more common among ST307 than non-
ST307 K. pneumoniae, while blaNDM and blaOXA-48 were 
more common among non-ST307 isolates (Table 1). Two 
carbapenemases in the same isolate were detected in ST307 
(n = 9) and non-ST307 (n = 17) (Table 1).

Discussion

Lower- and middle-income countries (LMICs) bear consid-
erable AMR burden but lack adequate genomic diagnostic 
tools to identify and track such bacteria including high-risk 
MDR clones [17]. LMIC genomic methodologies should 
be simple, user-friendly, and accordant with local economic 
constraints [17]. The identification of high-risk clones and 
AMR plasmids often requires sequencing, which is expen-
sive and time consuming and not available in most LMICs 
[17]. This study used simple, cost-effective PCR methodolo-
gies to identify K. pneumoniae ST307 and IncX3 plasmids 
in the LMIC setting. Our results are especially suitable for 
endemic regions within LMICs with a high prevalences of 
ST307 for tracking the movement of this MDR clone across 
different health care systems [17].

There has been a global increase in ST307, and South 
Africa has been recognised as an endemic country with high 
prevalences (> 70%) among carbapenemase-producing iso-
lates during hospital outbreaks [3, 6, 11]. Recently reported 
global rates among hospital carbapenemase-producing K. 
pneumoniae included Italy (29%; 27/94), Russia (29%; 
46/159), Spain (22%; 82/377) and South Korea (27%; 12/45) 
[18–21]. In our study, a high prevalence of ST307 of nearly 
50% was observed among carbapenemase-producing K. 
pneumoniae showing that this MDR clone is endemic in 
Gauteng community hospitals. Of concern is that over 80% 
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of ST307 and non-ST307 from inpatients tested XDR leav-
ing limited options for treating patients with urinary tract 
infections (UTIs).

A study from Panama included outpatients and detected 
six ST307 isolates among 11 (55%) carbapenem-resistant 
K. pneumoniae [22]. The frequency of ST307 among outpa-
tient urines in our study was similar (14/28 [50%]). Few oral 

options were available to treat patients with community-onset 
UTIs due to K. pneumoniae ST307 and non-ST307 in the 
Gauteng region. This will complicate the treatment of out-
patient UTIs in the Gauteng region since oral antimicrobials 
are the only cost-effective options available [23]. The high 
resistance rates among patients might be due to the excessive 
use of broad-spectrum antimicrobials such as ciprofloxacin 

Table 1   Characteristics of 
urinary carbapenemase-
producing Klebsiella 
pneumoniae isolates from 
community hospital, Gauteng, 
South Africa

*Statistically significant p-value = 0.05  or lower. Multidrug resistant (MDR), Extensively drug resist-
ant (XDR), Pan-drug resistant (PDR) Ampicillin (AMP), Amoxicillin/Clavulanate (AMC), Piperacillin/
tazobactam (TZP), Cefuroxime (CXM), Ceftriaxone (CRO), Ceftazidime (CAZ), Ceftazidime/Avibactam 
(CZA), Cefepime (FEP), Ertapenem (ETP), Imipenem (IPM), Meropenem (MEM), Amikacin (AMK), 
Gentamicin (GEN), Ciprofloxacin (CIP), Co-trimoxazole (SXT), Colistin (CST)

Characteristics ST307 (n = 95) Non-ST307 (n = 99) Total (n = 194) p-value

Patient details:
  Mean age 61 yrs 61 yrs - 0.951
  Female 45 (47%) 48 (48%) 93 (48%) 0.014*
  Male 50 (53%) 51 (52%) 101 (52%) -
  Inpatient 81 (85%) 85 (86%) 166 (86%) 0.007*
  Outpatient 14 (15%) 14 (14%) 28 (14%) 0.007*

Not susceptible (intermediate 
or resistant):
  IMP 61 (64%) 64 (65%) 125 (64%) -
  ETP 94 (99%) 98 (99%) 192 (99%) -
  MEM 79 (83%) 66 (67%) 145 (75%) -
  TZP 95 (100%) 99 (100%) 194 (100%) -
  CXM 95 (100%) 99 (100%) 194 (100%) -
  AMC 95 (100%) 99 (100%) 194 (100%) -
  CRO 95 (100%) 97 (98%) 192 (99%) -
  CAZ 94 (99%) 96 (97%) 190 (98%) -
  CZA 10 (11%) 27 (27%) 37 (19%) -
  FEP 93 (98%) 92 (93%) 185 (95%) -
  GEN 78 (82%) 84 (85%) 162 (84%) -
  AMK 55 (58%) 61 (62%) 116 (60%) -
  CIP 94 (99%) 93 (94%) 187 (96%) -
  SXT 92 (97%) 88 (89%) 180 (93%) -
  CST 8 (8%) 6 (6%) 14 (7%) 0.587

Resistance profiles: 0.259
  MDR 12 (13%) 12 (12%) 24 (12%) -
  XDR 78 (82%) 85 (86%) 163 (84%) -
  PDR 5 (5%) 2 (2%) 7 (4%) -

Carbapenemase genes:
  OXA-181 only 58 (61%) 38 (38%) 96 (49%) 0.002*
  OXA-48 only 36 (38%) 55 (58%) 91 (47%) 0.369
  NDM only 0 (0%) 3 (20%) 3 (2%) 0.012*
  KPC only 2 (2%) 2 (2%) 4 (2%) 1.000
  VIM only 1 (1%) 1 (1%) 2 (1%) 1.000
  OXA-181 + NDM 4 (4%) 6 (6%) 10 (5%) -
  OXA-181 + KPC 1 (1%) 0 (0%) 1 (0.5%) -
  OXA-181 + VIM 1 (1%) 0 (0%) 1 (0.5%) -
  OXA-48 + NDM 3 (3%) 11 (11%) 14 (7%) -

IncX3 plasmids 60 (63%) 39 (39%) 99 (51%) 0.001*
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for treating UTIs in South Africa [24]. Urgent stewardship 
intervention is required to improve compliance with treatment 
recommendations based on standard treatment guidelines for 
selecting suitable antimicrobials to treat UTIs [24].

South African antimicrobial stewardship (AMS) treat-
ment guidelines recommended the use of colistin in com-
bination with rifampicin or carbapenems for treating severe 
infections due to carbapenem-resistant K. pneumoniae [25]. 
Ceftazidime/avibactam and ceftolozane/tazobactam are last-
resort antimicrobials and empirical use is discouraged for 
UTIs [26]. The resistance to ceftazidime/avibactam in this 
study was partly due to the lack of activity against MBL iso-
lates [27]. Of special concern, was the high ceftazidime/avi-
bactam resistance detected among non-MBL isolates (with 
blaOXA-48-like including blaOXA-181), as recently reported from 
Egypt and India [28, 29].

High-risk MDR Gram-negative clones are not directly 
responsible for the movement of AMR genes but act as 
“hoarders and spreaders” of such genes [30]. This was 
illustrated by a previous study from a tertiary care centre in 
Gauteng [6]. Klebsiella pneumoniae ST307 with blaOXA-181 
harboured on 51kb IncX3 plasmids, was introduced during 
September 2015 [6]. The ST307 spread throughout the hos-
pital causing severe nosocomial outbreaks during 2015. The 
authors showed that IncX3 plasmids containing blaOXA-181 
was introduced by ST307 and then transferred to other K. 
pneumoniae STs over time [6]. Nearly 40% of non-ST307 
K. pneumoniae with carbapenemases in our study contained 
IncX3 plasmids with blaOXA-181, suggesting that IncX3 plas-
mids with blaOXA-181 have also found their way to non-ST307 
K. pneumoniae isolates in community hospitals.

The laboratory detection of Enterobacterales with 
OXA-48-like carbapenemases remains challenging for 
some clinical laboratories [31]. The OXA-48-like produc-
ing bacteria can test sensitive to carbapenems, especially 
among isolates without extended-spectrum β-lactamases or 
AmpC β-lactamases [32, 33]. As single screening agents, 
meropenem provides the best balance between sensitivity 
and specificity; ertapenem has a high sensitivity but lacks 
specificity, while imipenem does not reliably distinguish 
between wild-type isolates in species such as Proteus spp., 
Providencia spp., and Morganella morganii [31]. Over 95% 
of K. pneumoniae from this study tested not susceptible to 
ertapenem, while 75% tested not susceptible to meropenem 
and only 64% to imipenem. This suggest that clinical labo-
ratories in endemic regions should as a minimum include 
ertapenem as a screening agent for Enterobacterales with 
OXA-48-like carbapenemases.

In summary, the K. pneumoniae XDR high-risk clone 
ST307 is endemic in Gauteng community hospitals and 
was the main driver of several carbapenemase genes, par-
ticularly blaOXA-181. The blaOXA-181 is present on epidemic 

IncX3 plasmids that were prevalent among the K. pneumoniae 
isolates (ST307 and non-ST307) circulating among different 
patient groups in Gauteng, South Africa. High-level ceftazi-
dime/avibactam resistance was detected among isolates with 
blaOXA-48-like including blaOXA-181. These findings highlighted 
the need for genomic surveillance of carbapenem-resistant K. 
pneumoniae high-risk clones and associated plasmids using 
methodologies suitable for LMICs to track XDR clones and 
plasmids in community hospitals. Such results will aid with 
treatment and stewardship strategies in LMICs that will ulti-
mately improves outcomes of patients with UTIs.
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