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ABSTRACT
Validation studies of global Digital Elevation Models (DEMs) in the existing literature are limited 
by the diversity and spread of landscapes, terrain types considered and sparseness of ground-
truth. Moreover, there are knowledge gaps on the accuracy variations in rugged and complex 
landscapes, and previous studies have often not relied on robust internal and external valida-
tion measures. Thus, there is still only partial understanding and limited perspective of the 
reliability and adequacy of global DEMs for several applications. In this study, we utilize a dense 
spread of LiDAR groundtruth to assess the vertical accuracies of four medium-resolution, 
readily available, free-access and global coverage 1 arc-second (30 m) DEMs: NASADEM, 
ASTER GDEM, Copernicus GLO-30, and ALOS World 3D (AW3D). The assessment is carried out 
at landscapes spread across Cape Town, Southern Africa (urban/industrial, agricultural, moun-
tain, peninsula and grassland/shrubland) and forested national parks in Gabon, Central Africa 
(low-relief tropical rainforest and high-relief tropical rainforest). The statistical analysis is based 
on robust accuracy metrics that cater for normal and non-normal elevation error distribution, 
and error ranking. In Cape Town, Copernicus DEM generally had the least vertical error with an 
overall Mean Error (ME) of 0.82 m and Root Mean Square Error (RMSE) of 2.34 m while ASTER 
DEM had the poorest performance. However, ASTER GDEM and NASADEM performed better in 
the low-relief and high-relief tropical forests of Gabon. Generally, the DEM errors have 
a moderate to high positive correlation in forests, and a low to moderate positive correlation 
in mountains and urban areas. Copernicus DEM showed superior vertical accuracy in forests 
with less than 40% tree cover, while ASTER and NASADEM performed better in denser forests 
with tree cover greater than 70%. This study is a robust regional assessment of these global 
DEMs.
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1. Introduction

The periodic release of open-access global Digital 
Elevation Models (DEMs) has given rise to numerous 
calibration and validation studies devoted to under-
standing their qualities and performance limitations 
(e.g. Ebinne et al. 2022; Nwilo et al. 2022). This knowl-
edge is important for precise application of global 
DEMs in different fields of endeavor. Moreover, global 
DEMs have varying spatial resolutions and temporal 
coverages, and are the result of different acquisition 
techniques. This leads to inconsistencies in their qua-
lities including geometric characteristics, accuracy 
levels and hydro-geomorphological characteristics. 
The concept of quality is much broader, but is most 
often assimilated to the vertical accuracy of the DEM 
(Mesa-Mingorance and Ariza-López 2020). Despite 

the growing body of knowledge on DEM validation, 
numerous assessments have been limited by the diver-
sity and spread of groundtruth particularly in challen-
ging or inaccessible environments such as dense 
forests and mountainous terrain (Oliveira, Paradella, 
and Silva 2011). The consequence of this is a limited 
perspective of the vertical accuracies of global DEMs 
for applications such as hydrological, environmental 
and topographic modeling. Thus, there is a necessity 
for more studies on the vertical accuracy and perfor-
mance limitations of global DEMs in different 
landscapes.

More than two decades ago, the National 
Aeronautics and Space Administration (NASA) and 
other global partners commenced the data acquisition 
for two of the foremost global DEMs, which were 
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subsequently released to worldwide users. These two 
DEMs are the Shuttle Radar Topography Mission 
(SRTM) DEM (C-band and X-band radar) and the 
Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) DEM (Abrams, 
Crippen, and Fujisada 2020; Rabus et al. 2003). 
Recently, the original SRTM radar measurements 
have been reprocessed by NASA to generate an 
updated version referred to as NASADEM version 1 
which was released in 2020, whereas the most recent 
version of ASTER (version 3) was released in 2019. 
Although both SRTM and ASTER have undergone 
several developmental phases, their data acquisition 
periods may be several years behind newer global 
DEMs such as the Advanced Land Observing 
Satellite (ALOS) World 3D DEM (AW3D) (initially 
released in 2019) and the Copernicus GLO-30 DEM 
(released in 2020). It is important to note that 
NASADEM, ASTER, Copernicus and AW3D are sur-
face models i.e. they are representative of both the 
“bare ground” surface and above-ground features 
(e.g. buildings and trees).

The accuracy of DEMs is key to a myriad of appli-
cations including climate change (Bove et al. 2020), 
flood and sea level rise modeling (Gesch 2018; Hooijer 
and Vernimmen 2021; McClean, Dawson, and Kilsby 
2020; Muthusamy et al. 2021; Xu et al. 2021), glacier 
mass balance and volume change assessment (Barrand 
et al. 2009; Chen et al. 2022; Friedt et al. 2012; McNabb 
et al. 2019; Yan, Wang, and Shao 2022), assessment of 
volcanic flows (Sánchez et al. 2022; Stevens, Manville, 
and Heron 2003), monitoring rockfalls and landslides 
(Kakavas and Nikolakopoulos 2021; Rabby, Ishtiaque, 
and Rahman 2020), mapping of geological lineaments 
(Florinsky 2008), groundwater modeling (Ishola et al. 
2023), crustal deformation monitoring (Epuh et al. 
2022), hydrological and hydrographic analysis (e.g. 
HydroSHEDS; Lehner, Verdin, and Jarvis 2008) and 
geomorphometric analysis (Banerjee, Santhosh 
Kumar, and Tilak 2022; Kasi et al. 2020; Nwilo et al. 
2021). A literature survey shows a plethora of accuracy 
assessment studies comparing global DEMs. For 
example, Uuemaa et al. (2020) examined the accuracy 
of several global DEMs including ASTER GDEM v2, 
AW3D30 and NASADEM in regions with different 
topography and land cover. After several tests, they 
concluded that AW3D30 displayed the most stable 
performance. However, their study was limited 
because of the use of a 100 m global land cover dataset 
which is lower than the resolution of the analyzed 
DEMs. In another study covering vegetated and 
“high-relief” terrain, Guth and Geoffroy (2021) eval-
uated the height distribution of NASADEM, ASTER, 
Copernicus and AW3D. They asserted the superiority 
of Copernicus DEM in tests against both LiDAR and 
Ice, Cloud, and land Elevation Satellite (ICESat-2) 
data. Li et al. (2022) investigated the accuracy of the 

30 m Copernicus, NASADEM and AW3D30 in 
selected terrains of China, using high-quality ICESat- 
2 validation points. Their results indicated the three 
DEMs had similar overall vertical accuracy, with Root 
Mean Square Error (RMSE) of 6.73 m (Copernicus), 
6.59 m (NASA) and 6.63 m (AW3D30). NASADEM 
and AW3D30 performed better in steep areas while 
Copernicus DEM performed better in low-relief areas.

Nonetheless, systematic external accuracy assess-
ments of the most recent versions of all four global 
DEMs (i.e. NASADEM v001, ASTER GDEM v3, 
Copernicus GLO-30 and AW3D v3.2) in landscapes 
with variable topography (e.g. high-relief, low-relief) 
and land cover (urban and industrial areas, grasslands, 
shrublands and dense thickets, tropical forests, agri-
cultural fields) are still required. Also, often-over-
looked internal validation methods such as visual 
inspection are required for a well-rounded analysis. 
Lastly, due to their recent release, accuracy assess-
ments of NASADEM and Copernicus DEM are still 
limited. Scientists, researchers and the global commu-
nity of end-users are still in need of a comprehensive 
and multi-perspective analysis of these frontline global 
DEMs, i.e. NASADEM, ASTER GDEM, Copernicus 
and AW3D. This study addresses the following 
research questions:

● What are the vertical accuracies of the most 
recent versions of NASADEM, ASTER, 
Copernicus and AW3D DEMs, based on very 
accurate reference data?

● How does the vertical accuracy of these DEMs 
differ in urban/industrial, agricultural, mountai-
nous, peninsula, grassland/shrubland and 
forested landscapes?

● How does DEM accuracy vary in relation to 
percentage tree cover?

● How do terrain parameters (slope and aspect) 
influence the vertical accuracy of the selected 
DEMs?

To answer these questions, we combine qualitative 
and quantitative analytical approaches for assessing 
the vertical accuracy of the four DEMs using two 
high-resolution airborne LiDAR datasets from the 
City of Cape Town (2023) and the AfriSAR Land 
Vegetation and Ice Sensor Level 2 Geolocated 
Surface Elevation Product for Gabon (Fatoyinbo 
et al. 2021). The error assessment is conducted at 
seven sites located in Cape Town (South Africa), 
Akanda National Park (North-west Gabon) and Lopé 
National Park (Central Gabon).

2 Methodology

The vertical accuracy of DEMs is influenced by several 
factors such as the nature of the terrain. An adequate 
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accuracy assessment of DEMs should consider several 
factors including the spatial distribution of ground 
control points, DEMs of difference and terrain deri-
vatives (Carrera-Hernández 2021; Höhle and Höhle 
2009). Figure 1 presents a workflow diagram of the 
methodology.

2.1. Study area

Seven landscapes (shown in Figures 2 and 3) were 
selected for the study. The sites are exceptionally 
diverse in terms of land cover and topography, pro-
viding a wide spectrum of geomorphological contexts 
well suited for the presented study. Table 1 lists the site 
descriptions. We chose sites where LiDAR data was 
available and where different terrain conditions (e.g. 
mountainous, peninsula, flat) coexisted with various 
land cover types (e.g. agricultural land, urban/indus-
trial, forests).

2.1.1. Cape Town, South Africa
Cape Town is South Africa’s most south-western city, 
with a land cover area of about 400 km2 (Orimoloye 
et al. 2019). It is situated on the south-western coast of 
the Western Cape Province. The coastline varies from 
sandy to rocky, to steep and mountainous. Cape Town 
has a high landscape-level diversity (Goodness and 
Anderson 2013).

2.1.2. Akanda and Lopé National Parks, Gabon
Equatorial rain forests cover approximately 85% of 
Gabon (Hille 2016; WRM 2013). The country is phy-
sically characterized by a narrow coastal plain and 
a hilly interior. It has a total area coverage of 
267,667 km2 (Goldstein et al. 2017) whereby 257,667  
km2 is land area and 10,000 km2 is water area. Two 

forested national parks, Akanda (North-west Gabon) 
and Lopé (Central Gabon) were selected for this study.

2.2. Datasets

The 1 arc-second (30 m spatial resolution) DEMs 
assessed in this study are presented together with 
their characteristics in Table 2. These DEMs were 
derived using either Synthetic Aperture Radar inter-
ferometry (InSAR) or stereo-photogrammetry (opti-
cal), each with its own merits and limitations. The 
reference DEMs adopted are the airborne LiDAR 
DEM of Cape Town City, and the AfriSAR Land 
Vegetation and Ice Sensor (LVIS) Level 2 Geolocated 
Surface Elevation Product. The specific tile IDs used 
are shown in Table 3.

2.2.1. NASADEM v001
NASADEM is an update of the DEM and associated 
products generated from the SRTM data (Buckley 
et al. 2020). SRTM was a joint venture between 
NASA, the National Geospatial-Intelligence Agency 
(NGA), the German Aerospace Centre (DLR) and 
the Italian Space Agency (ASI). The original SRTM 
raw signal radar data was reprocessed using improved 
algorithms, and further improvements were made 
through the incorporation of additional data from 
ASTER and ICESat – Geoscience Laser Altimeter 
System (GLAS) instruments. Through improvements 
in phase unwrapping and the use of ICESat GLAS data 
for control, a significant reduction in voids was 
achieved in NASADEM (Buckley et al. 2020).

2.2.2. ASTER GDEM v3
The ASTER Global DEM is the result of 
a collaboration between NASA and the Ministry 

Figure 1. Workflow diagram of the assessment methodology.
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of Economy, Trade and Industry (METI) of Japan. 
ASTER GDEM was produced using imagery 
acquired from the NASA Terra mission (Altunel, 
Okolie, and Kurtipek 2022). The DEM was gener-
ated from stereo images of the ASTER optical 
sensor onboard the Terra satellite. ASTER GDEM 
version 1 was released at 1 arc-second postings in 

2009. Improved versions of the GDEM were later 
released: version 2 in 2011 and version 3 in 2019.

2.2.3. Copernicus DEM (GLO-30)
Copernicus DEM was released in 2020, and is derived 
from the WorldDEM data. The WorldDEM data pro-
duct is based on the radar satellite data which was 

Figure 2. Maps showing the selected test sites for the vertical accuracy assessment – (a) Akanda and Lopé National Parks in North- 
west and Central Gabon respectively (b) Cape Town, located in the Western Cape Province of South Africa.
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acquired during the TanDEM-X mission (Airbus 
2020a). The primary objective of the TanDEM-X mis-
sion was the generation of a global coverage DEM 
based on InSAR in HRTI-3 standards. The duration 
of the TanDEM-X data acquisition was between 
December 2010 and January 2015. The Copernicus 
GLO-30 dataset has a grid spacing of 1 arc-second 

(30 m) and is available at a standardized extent of 1�
x 1�. The DEM is available in two different formats, 
DGED and DTED. For this study, the floating point 
DGED format was adopted. The Copernicus DEM has 
been assessed with ICESat-2 measurements, which 
indicate absolute vertical uncertainties of ∼1–3 m 
(Airbus 2020a, 2020b).

Figure 3. Pictorial views of the different landscapes considered – (a) Urban/industrial (b) Agricultural (c) Mountain (d) Peninsula (e) 
Grassland/shrubland (f) Tropical rainforest, coastal (g) Tropical rainforest, highland. Sources: author’s compilation; Google Earth; 
Ngangorica (2014).

Table 1. General characteristics and description of landscapes assessed in this study.
Test area Landscape Description

Cape Town, South Africa Whole area Mixture of landscapes.
Urban/Industrial Densely built-up residential, commercial and industrial areas in Cape Town Municipality.
Agricultural land Cultivated fields and few farm settlements. Meeting point of the Diep River and Mosselbank 

River.
Grassland/shrubland/dense 

bush
Light vegetation, shrubs, open grassland and dense bushes, southeast of Grotto Bay.

Mountainous Flat-topped Table Mountain National Park, with the adjoining Camps Bay and Happy Valley.
Peninsula Low-lying and gently sloping section of the Cape Peninsula, in the general vicinity of 

Olifantsbos Beach, Miller’s Point and Partridge Point. Plant formations in the Cape 
Peninsula include shrublands, grasslands, forest and thicket.

Akanda and Lopé 
National Parks, Gabon

Whole area Mixture of forests.
Akanda National Park 

(Tropical rainforest, coastal)
Mangrove forests and tidal beaches of Akanda National Park, along the bay of Mondah.

Lopé National Park (Tropical 
rainforest, highland)

Dense gallery forest of the Lopé National Park in the Central highlands of Gabon. River 
Ogooué runs through the north of Lopé.
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2.2.4. ALOS World 3D DEM v3.2
In 2016, the Japan Aerospace Exploration Agency 
(JAXA) released the 30 m Advanced Land Observing 
Satellite World 3D (ALOS World 3D – AW3D30) 
DEM. AW3D30 was generated from the earlier 
ALOS DEM which was produced at a spatial resolu-
tion of 5 m with an accuracy of 5 m (standard devia-
tion) (JAXA 2023). AW3D30 has undergone several 
developmental phases including void filling and 
reduction in absolute offsets (JAXA 2019; Okolie and 
Arungwa 2022). The most recently available version 
3.2 was adopted in this study.

2.2.5. City of Cape Town airborne LiDAR DEM
The City of Cape Town (CCT) airborne LiDAR 
DEM was acquired from the Information and 
Knowledge Management Department of the City of 
Cape Town (CCT 2023). The 2 m DEM is generated 
from the LiDAR point cloud, at a maintenance cycle 
of 3 years. For data acquired prior to 2021, the point 
density is 2–3 points/m2, but this has been upgraded 
to 10 points/m2 post-2021. The height accuracy of 
the point cloud is 0.15 m. The data acquisition for 

the dataset used in this study was conducted in 
phases between 2018 and 2021. The gridded format 
is derived through the processing of the ground- 
classified LiDAR point clouds using triangulation 
in LP360, an advanced desktop LiDAR software 
package (LP360 2022). The DEM is spatially refer-
enced to the Hartebeesthoek94 horizontal coordi-
nate system. The height reference used is South 
Africa Land Levelling Datum (SAGEOID2010) 
(Chandler and Merry 2010).

2.2.6. AfriSAR LVIS L2 geolocated surface elevation 
products
The Land Vegetation and Ice Sensor is an airborne, 
medium-altitude scanning laser altimeter designed 
and developed by the Laser Remote Sensing 
Laboratory at NASA’s Goddard Space Flight Centre 
to measure sub-canopy ground elevation, vegetation 
structure and topography of ice sheets and glaciers 
(Blair, Rabine, and Hofton 1999; Fatoyinbo et al. 
2021; Sun et al. 2008). Between February – 
March 2016, LVIS was flown over selected sites in 
Gabon, Africa, as part of the AfriSAR Campaign 

Table 2. Characteristics of the datasets used.

Dataset
Sensor 

(Source) Coverage Horizontal datum Vertical datum
Height 
system Precision

Data 
acquisition 

period

Release date 
of most 

recent version

NASADEM C-band radar 
(NASA)

56°S − 60°N WGS84 EGM96 Orthometric Integer 2000 2020

ASTER GDEM Optical/stereo 
NIR imagery 
(NASA/JAXA)

83°S − 83°N WGS84 EGM96 Orthometric Integer 2000–2013 2019

Copernicus GLO-30 X band radar 
(ESA/Airbus)

Entire Earth WGS84 EGM2008 Orthometric Floating 
point

2010–2015 2021

ALOS World 3D Optical/stereo 
pan imagery 
(JAXA)

82°S − 82°N WGS84 EGM96 Orthometric Integer 2006–2011 2022

City of Cape Town 
(CCT) aerial 
LiDAR

Information and 
Knowledge 
Management 
Division, 
City of Cape 
Town

Cape  
Town 
Municipality

Hartebeesthoek94 SAGEOID10 
(Land Levelling 

Datum, LLD)

Orthometric Floating 
point

2018–2021 –

LVIS AfriSAR NASA Land 
Vegetation 
and Ice Sensor

AfriSAR 
coverage 
area, Gabon

WGS84 WGS84 Ellipsoidal Floating 
point

2016 –

Sources: Author’s compilation; Takaku et al. (2015), Guth and Geoffroy (2021), Hawker et al. (2019), Purinton and Bookhagen (2021), and Airbus (2020a, 2020b)

Table 3. Tile IDs of datasets used in this study.
Dataset Cape Town Akanda and Lopé National Parks

NASADEM s34e018 
s35e018

n00e009 
s01e011 
s02e011

ASTER ASTGTMV003_S34E018 
ASTGTMV003_S35E018

ASTGTMV003_N00E009 
ASTGTMV003_S01E011 
ASTGTMV003_S02E011

Copernicus Copernicus_DSM_10_S34_00_E018 
Copernicus_DSM_10_S35_00_E018

Copernicus_DSM_10_N00_00_E009 
Copernicus_DSM_10_S01_00_E011 
Copernicus_DSM_10_S02_00_E011

AW3D ALPSMLC30_S034E018 
ALPSMLC30_S035E018

ALPSMLC30_N000E009 
ALPSMLC30_S001E011 
ALPSMLC30_S002E011

AfriSAR LVIS – LVIS2_Gabon2016_0308_R1808_045612 
LVIS2_Gabon2016_0222_R1808_044757
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(Fatoyinbo et al. 2021; NASA 2020). The goal of the 
campaign was to collect ground, airborne SAR and 
airborne LiDAR data for the development and evalua-
tion of forest structure and biomass retrieval algo-
rithms (Fatoyinbo et al. 2017). AfriSAR provided 
overlapping along track footprints with a nominal 
footprint diameter of 22 m with 9 m separations 
(Blair and Hofton 2018; Blair, Rabine, and Hofton 
1999; Fatoyinbo et al. 2021). For this study, the Level 
2 Geolocated Surface Elevation Product, version 1 
(Blair and Hofton 2018) which contains the canopy 
top and ground elevations were downloaded in ASCII 
format from the archive of the National Snow and Ice 
Data Centre (NSIDC). The vertical datum of the 
AfriSAR data is the WGS84 ellipsoid.

2.3. Harmonisation of datums and spatial 
reference systems

2.3.1. Horizontal datum transformation
The global DEMs and AfriSAR LVIS data were all 
transformed from the geographic to the Universal 
Transverse Mercator (UTM) projection in WGS84. 
Similarly, the Cape Town LiDAR DEM was trans-
formed from Hartebeesthoek94 to UTM WGS84. The 
transformations were carried out using the projection 
tool within ArcGIS software. It is generally understood 
that map projections incur some level of distortion 
during the process of transforming 3D spherical coor-
dinates onto a plane (Laurini and Thompson 1992). 
However, UTM minimizes projection distortions and 
is recommended for areas between latitudes 84°N to 80° 
S (Emery and Camps 2017; Jain and Singh 2003).

2.3.2. Vertical datum transformation
The vertical datum of the AfriSAR data is WGS84 (i.e. 
the data are referenced horizontally and vertically to 
the WGS84 ellipsoidal, global reference system) 
(Hofton et al. 2006, 2002; Ni, Sun, and Ranson 2013, 
2014a, 2014b). Consequently, the LVIS data were con-
verted to orthometric heights, with respect to the 
EGM2008 geoid. The difference between the ellipsoi-
dal height (h) and the geoid height/undulation (N) 
gives the orthometric height (H), that is: 

There are significant differences between EGM96 and 
EGM2008 vertical datums. The development of 
EGM2008 followed a more rigorous approach and bet-
ter algorithms that resulted in a more accurate model 
(Roman, Wang, and Saleh 2010). Compared to EGM96, 
EGM2008 offers a significant improvement in the esti-
mation of topographical heights (Pavlis et al. 2012; 
Üstün, Abbak, and Öztürk 2016). In a numerical inves-
tigation in Turkey, Üstün et al. (2016) showed that 
a possible transformation from EGM96 to EGM2008 
could yield more accurate heights with an improvement 

of up to 2.5 m. In external validations of EGM2008 over 
parts of Africa, e.g. South Africa (Merry 2009) and 
Algeria (Benahmed Daho 2009) it provided a better 
agreement than EGM96 when compared to Global 
Positioning System (GPS)/leveling data. The review of 
previous studies favors the adoption of EGM2008 as 
a common vertical datum for the DEMs in this study. 
Moreover, the use of EGM2008 in topographic map-
ping projects has been encouraged (e.g. Rao et al. 2012).

The EGM96 and EGM2008 geoid models were 
downloaded from the website of the International 
Centre for Global Earth Models (Sinem Ince et al. 
2019). The parameters defined for retrieving the geoid 
models through ICGEM online are shown in 
Supplementary Table S1. The geoid heights were down-
loaded in plain text format at a grid spacing of 0.0005�. 
The grids were converted to raster surfaces through 
Inverse Distance Weighted (IDW) interpolation in 
ArcGIS 10.8 (shown in Supplementary Figures S1–S4), 
and the differences in the geoid heights were calculated. 
Thereafter, the vertical datum conversion from EGM96 
to EGM2008 was carried out within the ArcGIS raster 
calculator, using the equation by Üstün et al. (2016). 

where,
HEGM96 is the elevation of DEM based on EGM96 

model.
HEGM08 is the elevation of DEM based on EGM2008 

model.
NEGM96 is the geoid height based on EGM96 model.
NEGM08 is the geoid height based on EGM2008 

model.
δN is the geoid height difference between EGM96 

and EGM2008.
It was also required to transform the CCT LiDAR 

DEM to EGM2008. The SAGEOID10 geoid model was 
acquired from the national mapping agency of South 
Africa (Chief Directorate: National Geo-spatial 
Information). The data is in the form of an ASCII 
data file, on a 2.5’ grid compatible with EGM2008 
data. The SAGEOID10 and EGM2008 grids were 
interpolated to raster surfaces with the same cell size 
as the LiDAR DEM. Thereafter, the vertical datum 
conversion to EGM2008 was conducted. 

where,
HSAGEOID10 is the elevation of LiDAR DEM based 

on SAGEOID10 model.
HEGM08 is the elevation of LiDAR DEM based on 

EGM2008 model.
NSAGEOID10 is the geoid height based on 

SAGEOID10 model.
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NEGM08 is the geoid height based on EGM2008 
model.

δN is the geoid height difference between 
SAGEOID10 and EGM08.

2.4. Data preparation

To obtain reliable accuracy measures, the sample size 
(number of checkpoints) should be sufficiently large. 
Two separate grids of points were created, 2,760,581 
data points for Cape Town and 709,868 data points for 
Gabon. Using the “extract multi values to points” tool 
in ArcGIS, the corresponding elevations from LiDAR, 
NASADEM, ASTER, Copernicus and AW3D that 
intersected the points were extracted and recorded 
within the attribute tables of the data points.

2.5. Outlier filtering and screening of water pixels

The elevation errors (ΔH) were calculated by subtract-
ing the LiDAR elevations from the corresponding 
elevations of each global DEM. This was followed by 
cleaning and outlier filtering carried out in three 
stages. In the first stage, all DEMs were checked and 
negative elevation values were removed (this is advi-
sable because of inconsistencies in water body flatten-
ing among global DEMs). After this first stage of 
cleaning, we applied the Three-sigma rule (Wessel 
et al. 2018) for outlier filtering. Values outside the 
mean height difference (Δhmean) plus/minus three 
times the standard deviation (Δh>Δhmean þ 3 � SD, 
Δh<Δhmean � 3 � SD) were eliminated. The third 

stage involved the removal of elevation points occur-
ring on water bodies. There is some uncertainty 
regarding the accuracy of DEMs over water bodies. 
Moreover, specular reflection and temporal decorrela-
tion in interferometric SAR acquisition and processing 
could cause smooth water bodies to appear as rough 
surfaces in InSAR DEMs (Ettritch et al. 2018; Huber 
et al. 2021). Consequently, elevation points within the 
boundaries of natural and artificial water bodies, 
including dams in Cape Town (identified from 
Google Earth imagery and the Cape Town waterbodies 
dataset) were removed. This resulted in a final set of 
2,570,126 (Cape Town) and 625,647 (Gabon) points 
for validation of the DEMs.

2.6. Accuracy assessment

Qualitative (visual) and quantitative analysis are among 
the standard and advanced checks described in Gesch 
et al. (2014) and Cenci et al. (2021) as quality assess-
ment criteria for DEMs. Visual analysis is a basic and 
powerful approach that can quickly reveal the existence 
of problems in DEMs (Mesa-Mingorance and Ariza- 
López 2020). The absolute vertical accuracy is assessed 
by calculating the difference between the satellite DEMs 
and the reference DEM (LiDAR) (Cenci et al. 2021). 
The elevation values from the airborne LiDAR and 
satellite DEMs were extracted wherever they intersected 
with points in the grid. This analysis of the elevation 
difference (ΔH) enables the detection of possible ran-
dom errors and systematic bias (Cenci et al. 2021).

Figure 4. Graphical representation of the variations in elevation error, extracted from the raw data before three-sigma outlier 
filtering – urban/industrial landscape.
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The elevation errors or differences (ΔH) between 
the DEMs and reference LiDAR were calculated as 
follows: 

where,
HRefDEM = elevation from LiDAR.
HGlobalDEM = individual elevations from 

NASADEM, ASTER, Copernicus and AW3D.
Correlation analysis enabled the analysis of the inter- 

relationships between the elevation errors. Using the 
statistical populations of the ΔH and/or |ΔH|, several 
accuracy metrics were computed as follows: Mean 
Error (ME), Standard Deviation (SD), Root Mean 
Square Error, Mean Absolute Error (MAE), Median 
Absolute Deviation (MAD), Normalised Median 
Absolute Deviation (NMAD), and Linear Error at 95% 
(LE95) confidence level respectively. The ME indicates 
the presence of bias in the data, the MAE represents the 
average magnitude of the elevation errors, but without 
considering their direction, while the RMSE penalizes 
large errors (Carrera-Hernández 2021). However, the 
RMSE also has limitations as an accuracy measure. For 
example, it does not distinguish between random errors, 
systematic errors or blunders; and the errors in a DEM 
do not always follow a normal distribution (Carrera- 
Hernández 2021; Höhle and Höhle 2009; Wise 2000). 
The MAD and NMAD overcome these limitations due 
to their robustness and distribution free approach to 
handling data outliers (Carrera-Hernández 2021; Höhle 
and Höhle 2009; Willmott and Matsuura 2005).

The equations are given as follows: 

where,
ΔH = mean of the height differences.
The MAD and NMAD were calculated as follows. 

(Höhle and Höhle 2009; Wessel et al. 2018): 

The NMAD is more resilient to outliers in the dataset 
(Höhle and Höhle 2009). At confidence level of 95%, 
the LE is calculated as given below: 

In the above equations, n is the number of points 
under consideration, MD represents the median of 
a set of elevation data, while MDΔHi represents the 
median of the elevation differences or the 50% quartile 
(Grohmann 2018). The descriptive statistics were 
summarized using SPSS (IBM 2023) and Microsoft 
Excel (Microsoft 2023), while statistical visualizations 
were generated with R (R Project 2022) software.

2.6.1. Height error maps
Height Error Maps (HEMs) were generated by subtract-
ing the LiDAR DEM from the global DEMs, as a visual 
estimation of the height error in different landscapes 
(Gdulová, Marešová, and Moudrý 2020). According to 
Hawker et al. (2019), such maps are useful for visualiz-
ing the spatial distribution of elevation errors and 
enable an indication of the error sources.

2.6.2. Error ranking
Using the calculated accuracy measures, we computed 
the relative ranks of the DEMs to gain a better under-
standing of their performance. The ranking method 
adopted in this study was proposed by Poudel and Cao 
(2013) and defined as follows: 

where Ri is the relative rank of the DEMs (i = 1, 
2, . . . , m), Si is the basis of error values produced 
by each DEM, Smin is the minimum value of Si, Smax 
is the maximum value Si, and m is the number of 
DEMs. With this ranking system, the most accurate 
and the least accurate DEMs have relative ranks of 1 
and m, respectively, while the ranks of the other 
DEMs are expressed as real numbers between 1 
and m. This ranking approach has already been 
adopted in similar studies (e.g. Altunel, Okolie, and 
Kurtipek 2022).

2.6.3. Influence of tree cover on vertical accuracy
Using the global tree cover dataset from the Global 
Land Analysis And Discovery (GLAD 2023), the varia-
tion in DEM accuracy based on percentage tree cover 
was assessed. The global tree cover data (treecover2010) 
provides estimates of circa 2010 % maximum (peak of 
growing season) tree canopy cover derived from 
Landsat 7 ETM+ imagery. It represents the estimated 
maximum tree canopy cover (1–100% for the year 2010 
in integer values ranging from 1–100) (GLAD 2023). In 
the Landsat analysis for treecover2010 which was car-
ried out in Earth Engine, trees were defined as all 
vegetation taller than 5 m, and the methodology is 
extensively discussed in Hansen et al. (2013).
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2.6.4. Relationship with slope and aspect
The next analysis involved an assessment of the rela-
tionship between vertical error and two primary topo-
graphic parameters, slope and aspect. These 
parameters often display noticeable uncertainties due 
to the vertical errors in DEMs. The vertical error of 
DEMs and their derived parameters are of great 
importance since the vertical errors can be propagated 
to the parameters (e.g. Altunel2021; Nwilo et al. 2022). 
The slope and aspect maps were generated from 
LiDAR using QGIS software. Subsequently, the eleva-
tion errors from the global DEMs were categorized 
into different slope and aspect classes for further 
analysis.

3. Results and discussion

3.1. Height error distribution and analysis

Table 4 shows the range of values (minimum and 
maximum) and mean elevations of the DEMs. In 
Cape Town, the elevation ranges from 0 to 1590 m, 
while the mean elevation ranges from 116–124 m with 
the lowest mean occurring in ASTER GDEM. Some of 
the highest points in Cape Town are in the eastern 

suburbs around the Lourensford dam, on the Table 
Mountain and on Chapmans Peak. In densely forested 
Gabon, the elevation ranges from 0–846 m, while the 
mean elevation ranges from 330–354 m.

For a preliminary exploration, Figures 4–10 show 
graphical representations of the elevation error, before 
applying the Three-sigma rule for outlier filtering. 
Within the urban/industrial area (Figure 4), most errors 
occur within an elevation range of 23–60 m. Although 
buildings are known to inhibit the penetration of radar 
signals on land surfaces (Olajubu et al. 2021), 
Copernicus DEM shows the least error dispersion in 
this urban area, unlike ASTER and AW3D. Similarly, in 
the agricultural lands (Figure 5), the errors in ASTER 
and AW3D are more widely dispersed, whereas the two 
SAR DEMs (NASADEM and Copernicus) display 
a narrower error dispersion. As the elevation increases, 
the number of height points decrease. According to 
Hoja et al. (2006), the quality of a DEM derived from 
one source is influenced by land cover type and the 
steepness of the terrain. The Table Mountain slopes 
downward into the adjoining Camps Bay, and this 
might explain the gradual increase in the height errors 
between 0–400 m, where the error range is approxi-
mately between − 50 to 50 m, and the progressive 

Table 4. Summary of the elevation ranges.
Cape Town, South Africa Akanda and Lopé National Parks, Gabon

DEM Min (m) Max (m) Mean (m) Min (m) Max (m) Mean (m)

LiDAR 2 m 0.00 1589.18 120.60 0.02 834.98 329.86
NASADEM 30 m 0.00 1590.51 121.46 0.97 828.21 347.91
ASTER 30 m 0.00 1578.51 116.04 1.92 837.21 347.26
Copernicus 30 m 0.00 1586.96 121.42 0.00 846.14 353.05
AW3D 30 m 0.00 1586.51 123.52 0.92 839.21 353.82

Figure 5. Graphical representation of the variations in elevation error, extracted from the raw data before three-sigma outlier 
filtering – agricultural land.
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error escalation at higher altitudes (Figure 6). The high-
est positive offsets in the mountainous area occur in 
NASADEM and ASTER, while the highest negative 
offset is by Copernicus DEM. Generally, the errors 
range from − 185 to 230 m in the mountainous area.

The elevation error distribution after outlier filtering 
is visualized with histograms of the sampled errors in 
Figure 11 (Cape Town) and Figure 12 (Akanda and 
Lopé). These histograms are superimposed with curves 
for the normal distribution. Because outliers were 

filtered from the data, the estimated curves are expected 
to match better with the data. Elevation errors that are 
positive indicate that the global DEMs overestimate the 
surface elevation while negative errors indicate areas 
where the surface elevation was underestimated. For 
Cape Town, there is a greater range of errors in the 
ASTER GDEM (−53.9 m to 18.6 m; Figure 11(b)). 
A narrower spread of errors is observed in Copernicus 
(−12.20 m to 14.70 m; Figure 11(c)) and AW3D (−9.6 m 
to 15.6 m; Figure 11(d)).

Figure 6. Graphical representation of the variations in elevation error, extracted from the raw data before three-sigma outlier 
filtering – mountain.

Figure 7. Graphical representation of the variations in elevation error, extracted from the raw data before three-sigma outlier 
filtering – peninsula.
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For better diagnosis of the distribution, quantile-quan-
tile (Q-Q) plots for the same data distribution of ΔH in 
Cape Town and Gabon are shown in Supplementary 
Figures S5 and S6 respectively. Generally, the Q-Q plots 
show some agreement with a normal distribution. 
However, in Cape Town, there is some moderate skew-
ness and this is characteristic of the varied landscape 
consisting of natural and man-made features. For exam-
ple, buildings, paved surfaces and artificial lakes could 
alter the random pattern of height errors on the 

landscape. The Q-Q plots for ΔH in Gabon indicate 
a closer alignment with normality. The natural forest 
landscape has spatial patterns and vertical structures 
that may not have been significantly altered by human 
activities.

3.2 Visual and qualitative analysis

Figures 13 and 14 present a visualization of the DEMs 
in the urban/industrial and agricultural landscapes in 

Figure 8. Graphical representation of the variations in elevation error, extracted from the raw data before three-sigma outlier 
filtering – grassland/shrublands.

Figure 9. Graphical representation of the variations in elevation error, extracted from the raw data before three-sigma outlier 
filtering – tropical rainforest (coastal).

GEO-SPATIAL INFORMATION SCIENCE 1373



Cape Town. This visual analysis enhances the under-
standing of differences in terrain characterization 
when using medium-resolution satellite-derived 
DEMs. The most detailed terrain representation and 
conditioning are achieved by LiDAR followed by 
Copernicus and AW3D. For example, in the 

agricultural lands, the narrow channel of the Diep 
River and several tributaries are visible in both 
Copernicus (Figure 14(d)) and AW3D (Figure 14(e)), 
but poorly distinguishable in NASADEM 
(Figure 14(b)) and ASTER (Figure 14(c)). At 30 m 
pixel spacing, ASTER and NASADEM show a very 

Figure 10. Graphical representation of the variations in elevation error, extracted from the raw data before three-sigma outlier 
filtering – tropical rainforest (highland).

Figure 11. Histograms for the distribution of ΔH in Cape Town, South Africa, (a) NASADEM (b) ASTER (c) Copernicus (d) AW3D, after 
outlier filtering.

1374 C. J. OKOLIE ET AL.



coarse surface characterization and terrain variability. 
Copernicus and AW3D show finer hydrological 
details in the agricultural lands (e.g. the narrow chan-
nel of River Diep is identifiable, and the dendritic 
drainage pattern is clearly discernible. The height var-
iation in the urban/industrial area shows that moder-
ate heights are associated with residential areas while 
the higher areas are associated with the industrial 
districts (e.g. Parow Industrial area). Building edges 
and outlines are better detected in Copernicus 
(Figure 13(d)) and AW3D (Figure 13(e)) but are 
diminished in NASADEM (Figure 13(b)) and ASTER 
(Figure 13(c)).

Figure 15 shows the height error maps (or DEMs of 
difference) generated for Copernicus DEM at sites in 
Cape Town. Positive offsets indicate areas where the 
elevation is overestimated by the DEMs and vice versa. 
The regions with the highest offsets are the urban center 
and industrial areas (Figure 15(a)), and the sloping edges 
of Table Mountain (Figure 15(c)) and Cape Peninsula 
(Figure 15(d)). Very high offsets are present along the 
slopes of the Table Mountain as seen in the saturated 
values (e.g. above 50 m). This pattern of increasing height 
errors in built-up areas and mountainous regions is not 
uncommon, and could be exacerbated by single or 

double bounce scatter during SAR data acquisition 
(Nwilo et al. 2022; Schlaffer et al. 2015; Tsyganskaya 
et al. 2016). The problem of SAR measurements in 
steep slopes or mountains due to shadow, layover and 
foreshortening have also been well documented in the 
literature (e.g. Wessel et al. 2018). However, the flat top 
of the Table Mountain appears smoother and less 
affected by the SAR measurement errors. This is corro-
borated by Wessel et al. (2018). In their accuracy assess-
ment of the global TanDEM-X DEM where the Table 
Mountain featured among the test sites, there were no 
height offsets on the flat-top level of the mountain.

These offsets are worse in ASTER and NASADEM, 
and lowest in Copernicus and AW3D. The errors are 
easily distinguished to show that the higher positive 
offsets occur in industrial areas while higher negative 
offsets occur in the residential areas. Similarly, in the 
agricultural lands, higher positive offsets occur along 
the Diep River channel while higher negative offsets 
occur elsewhere along the floodplains.

In Gabon, the presented LiDAR maps (Figure 16(a,j)) 
were interpolated at 30 m spacing from the LVIS LiDAR 
points using the IDW method. The penetrative ability of 
LiDAR in thick forests is evident in the elevation range of 
0.5–32.8 m at the Akanda site, which is far below the 

Figure 12. Histograms for the distribution of ΔH in Akanda and Lopé National Parks, Gabon, (a) NASADEM (b) ASTER (c) Copernicus 
(d) AW3D, after outlier filtering.
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satellite DEMs which are higher than 70 m in some areas. 
ASTER tends towards a higher negative bias in both 
forested areas (Figures 16(g,p)) as corroborated by the 
histograms of the height error (Figure 12(b)). In the site 
at Lopé, (Figures 16(j–r)), there is a central hilly region 
that is draped by forests.

3.3. Analysis of vertical accuracy

In the following analysis, positive elevation offsets 
(or differences) indicate points on the ground 
where the satellite DEMs overestimate the ground 
surface elevation, while negative elevation offsets 
indicate areas where the satellite DEMs underesti-
mate the true ground surface elevation. Table 5 

shows the accuracy measures and error ranking of 
the DEMs (the lower the overall rank, the better 
the DEM’s performance and vice versa). In Cape 
Town, NASADEM, Copernicus and AW3D had 
positive mean errors, which indicates that majority 
of their elevation values are systematically higher 
than the ground surface. Conversely, ASTER had 
the highest negative mean error which indicates 
that most of the ASTER values underestimate the 
ground surface. ASTER elevation values were the 
least precise in Cape Town (SD: 5.55 m) and 
Gabon (SD: 13.59 m). This indicates that the eleva-
tion offsets in ASTER have a large variability and 
are the most highly dispersed, as corroborated in 
the histograms.

Figure 13. View of the LiDAR and global DEMs in the urban/industrial landscape.
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AW3D and NASADEM had NMAD values of 1.47  
m and 2.21 m respectively in Cape Town, 
occupying second and third place to Copernicus with 
an NMAD of 1.16 m. In Gabon, NASADEM and 
AW3D had the lowest NMAD values of 9.18 m and 
11.15 m respectively, while Copernicus was placed 
third with an NMAD of 11.38 m.

In Cape Town, Copernicus DEM emerged as the 
most accurate DEM product, having the lowest mean 
error, SD, RMSE, MAE, NMAD, and linear error. 
Intermediately, NASADEM and AW3D occupied 
the second and third place but with no clear distinc-
tion between them. For example, NASADEM had 
a lower mean error, RMSE and MAE compared to 
AW3D. However, AW3D surpassed NASADEM with 
lower SD, NMAD and linear error. However, in terms 

of the overall ranking, NASADEM is ranked higher 
than AW3D. The vertical accuracy of ASTER GDEM 
was the poorest in all the metric evaluations in Cape 
Town. In the overall ranking for Cape Town, 
Copernicus occupied first place and emerged as the 
most accurate DEM. NASADEM is ranked in second 
place followed by AW3D in third place, while ASTER 
GDEM has the lowest rank.

The trend is different in the dense forests of Gabon, 
which are spread over coastal plains and highlands. In 
both landscapes, all four DEMs show a notable ten-
dency to overestimate the true ground surface, as 
evident in the high positive mean errors. AW3D had 
the highest mean error of 23.96 m while ASTER 
GDEM had the lowest mean error of 17.40 m. 
Generally, the elevation accuracy deteriorates due to 

Figure 14. View of the LiDAR and global DEMs in the agricultural landscape.
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the heavy foliage and thick tree canopy cover. The 
summary of the RMSEs shows that NASADEM had 
the lowest RMSE (20.28 m), followed by ASTER 
GDEM (22.08 m), Copernicus (26.13 m) and AW3D 
(26.65 m). Furthermore, NASADEM was consistent in 
its performance with the lowest estimated errors in 
most calculated metrics. ASTER GDEM had the low-
est mean error (17.40 m) and the highest NMAD 
(14.10 m). Based on the ranking results in the forested 
landscape, NASADEM emerged in first place, fol-
lowed by ASTER GDEM, Copernicus and AW3D in 
that order.

The correlations of the elevation errors from the four 
DEMs are presented in Figure 17. Generally, the elevation 

errors from the individual DEMs have a moderate to high 
positive correlation in the forests (Figures 17(f,g)), and 
a low to moderate positive correlation in the mountains 
(Figure 17(c)) and urban areas (Figure 17(a)).

3.4. Vertical accuracy by landscape

In the next stage of analysis, we considered the variation 
in vertical accuracy based on the seven landscapes spread 
across both locations (Table 6 and Figure 18). 
Considering the landscapes could reveal the influence of 
certain terrain peculiarities on the vertical errors. In the 
urban/industrial, agricultural, mountain and peninsula 
landscapes, the lowest mean error, SD, RMSE, MAE, 

Figure 15. Height error maps of the Copernicus DEM at landscapes in Cape Town, (a) urban/industrial (b) agricultural (c) mountain 
(d) peninsula (e) grassland/shrubland.
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Figure 16. View of the AfriSAR LVIS LiDAR coverage, global DEMs and height error maps at the sites in Gabon.
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NMAD and linear error were observed in Copernicus 
DEM. However, in the grassland/shrubland landscape, 
NASADEM had the lowest ME (−0.36 m), RMSE (1.20  
m) and MAE (0.95 m); AW3D had the lowest NMAD of 
0.77 m while Copernicus showed the least error disper-
sion with an SD of 0.81 m. For Copernicus DEM in the 
Cape Town area, the lowest RMSE of 1.36 m was 
observed in the Cape Peninsula, while the highest 

RMSE of 4.42 m was observed in the mountainous 
region. ASTER GDEM is ranked as the poorest DEM in 
Cape Town. This is not surprising as previous accuracy 
assessment studies have proved the unfavorable perfor-
mance of ASTER GDEM in several landscapes around 
the world (e.g. Altunel, Okolie, and Kurtipek 2022; 
Uuemaa et al. 2020). Conversely, some recent studies 
have asserted the high quality of Copernicus DEM in 

Table 5. Vertical error for all points. The ranks are enclosed in brackets, and the lowest vertical errors are highlighted.

Location DEM
ME 
(m)

SD 
(m)

RMSE 
(m)

MAE 
(m)

MAD 
(m)

NMAD 
(m)

LE95 
(m) Total Rank Overall Rank

Cape Town 
(Whole area)

NASADEM 0.86 
(1.03)

3.01 
(1.73)

3.13 
(1.49)

2.20 
(1.49)

1.49 
(1.84)

2.21 
(1.84)

5.89 
(1.73)

11.15 1.59

ASTER −4.56 
(4.00)

5.55 
(4.00)

7.18 
(4.00)

5.94 
(4.00)

3.32 
(4.00)

4.93 
(4.00)

10.87 
(4.00)

28.00 4.00

Copernicus 0.82 
(1.00)

2.19 
(1.00)

2.34 
(1.00)

1.47 
(1.00)

0.78 
(1.00)

1.16 
(1.00)

4.29 
(1.00)

7.00 1.00

AW3D 2.92 
(2.68)

2.31 
(1.10)

3.72 
(1.86)

3.15 
(2.13)

0.99 
(1.25)

1.47 
(1.25)

4.52 
(1.10)

11.38 1.63

Akanda and Lopé 
National Parks, 
(Whole area)

NASADEM 18.05 
(1.30)

9.25 
(1.00)

20.28 
(1.00)

18.13 
(1.00)

6.19 
(1.00)

9.18 
(1.00)

18.13 
(1.00)

7.30 1.00

ASTER 17.40 
(1.00)

13.59 
(4.00)

22.08 
(1.84)

18.34 
(1.11)

9.51 
(4.00)

14.10 
(4.00)

26.63 
(4.00)

19.96 3.63

Copernicus 23.19 
(3.65)

12.06 
(2.94)

26.13 
(3.76)

23.23 
(3.62)

7.67 
(2.34)

11.38 
(2.34)

23.64 
(2.94)

21.59 3.96

AW3D 23.96 
(4.00)

11.68 
(2.68)

26.65 
(4.00)

23.97 
(4.00)

7.52 
(2.20)

11.15 
(2.20)

22.88 
(2.68)

21.76 4.00

Figure 17. Correlations between the elevation errors of the four DEMs, after outlier filtering (a) urban/industrial (b) agricultural (c) 
mountain (d) peninsula (e) grassland/shrubland (f) tropical rainforest – coastal (g) tropical rainforest – highland.
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terms of vertical accuracy, the accuracy of terrain deriva-
tives, landscape representation, and consistency with its 
nominal quality specifications (e.g. Li et al. 2022; 
Purinton and Bookhagen 2021; Valle et al. 2022). In 
summary, Copernicus DEM emerged with the overall 
best performance in all five land and terrain conditions 
within Cape Town.

The trend is different in the densely forested Gabon 
landscape. Surprisingly, ASTER GDEM performed rela-
tively better than the other DEMs in the coastal forests. 
The coastal plains are low-lying wetlands and mixed 
forests straddling the coast. In this landscape, if the 
RMSE is used as a basis of accuracy, then ASTER 

GDEM is the most accurate DEM followed by 
Copernicus, AW3D and NASADEM in that order. 
However, in the forested highlands, NASADEM emerged 
as the most accurate with an RMSE of 19.82 m, followed 
by ASTER (25.76 m), AW3D (30.15 m) and Copernicus 
(30.28 m). In the overall ranking for the coastal forests, 
ASTER GDEM was ranked highest, followed by 
Copernicus, NASADEM and AW3D in that order. In 
the forested highlands, NASADEM was ranked highest 
followed by Copernicus, AW3D and ASTER in that 
order. Hawker et al. (2022) have shown that in forested 
areas with canopy cover >50%, the RMSE of Copernicus 
DEM can exceed 25 m. In another study by Li et al. 

Table 6. Vertical error based on landscape. The ranks are enclosed in brackets, and the lowest vertical errors are highlighted.

Landscape DEM
ME 
(m)

SD 
(m)

RMSE 
(m)

MAE 
(m)

MAD 
(m)

NMAD 
(m)

LE95 
(m) Total Rank Overall Rank

Urban/Industrial NASADEM 1.35 
(1.06)

1.85 
(1.49)

2.29 
(1.31)

1.85 
(1.44)

1.13 
(1.81)

1.67 
(1.81)

3.63  
(1.49)

10.40 1.50

ASTER −3.60 
(3.23)

3.86 
(4.00)

5.28 
(4.00)

4.41 
(4.00)

2.43 
(4.00)

3.60 
(4.00)

7.57 
(4.00)

27.23 4.00

Copernicus 1.29 
(1.00)

1.46 
(1.00)

1.95 
(1.00)

1.41 
(1.00)

0.65 
(1.00)

0.96 
(1.00)

2.86  
(1.00)

7.00 1.00

AW3D 4.39 
(4.00)

1.89 
(1.54)

4.78 
(3.55)

4.40 
(3.99)

0.83 
(1.31)

1.23 
(1.31)

3.71  
(1.54)

17.26 2.52

Agricultural NASADEM 0.51 
(1.14)

2.12 
(1.85)

2.18 
(1.33)

1.59 
(1.37)

1.18 
(2.14)

1.76 
(2.14)

4.15  
(1.85)

11.82 1.69

ASTER −7.45 
(4.00)

3.92 
(4.00)

8.41 
(4.00)

7.63 
(4.00)

2.43 
(4.00)

3.61 
(4.00)

7.67  
(4.00)

28.00 4.00

Copernicus 0.17 
(1.00)

1.41 
(1.00)

1.42 
(1.00)

0.74 
(1.00)

0.42 
(1.00)

0.62 
(1.00)

2.76  
(1.00)

7.00 1.00

AW3D 2.37 
(1.91)

1.53 
(1.15)

2.82 
(1.60)

2.42 
(1.73)

0.78 
(1.54)

1.16 
(1.54)

3.00  
(1.15)

10.62 1.52

Mountain NASADEM 1.57 
(1.46)

5.11 
(1.75)

5.35 
(1.66)

4.19 
(1.72)

3.23 
(2.05)

4.78 
(2.05)

10.02  
(1.75)

12.43 1.78

ASTER −4.01 
(4.00)

7.65 
(4.00)

8.63 
(4.00)

6.67 
(4.00)

4.47 
(4.00)

6.63 
(4.00)

14.99  
(4.00)

28.00 4.00

Copernicus 1.13 
(1.00)

4.27 
(1.00)

4.42 
(1.00)

3.40 
(1.00)

2.56 
(1.00)

3.79 
(1.00)

8.37  
(1.00)

7.00 1.00

AW3D 3.33 
(3.29)

4.33 
(1.05)

5.47 
(1.74)

4.41 
(1.92)

2.59 
(1.04)

3.83 
(1.04)

8.49  
(1.05)

11.15 1.59

Peninsula NASADEM 0.99 
(2.16)

2.03 
(1.58)

2.26 
(1.67)

1.68 
(1.74)

1.07 
(1.72)

1.58 
(1.72)

3.97  
(1.58)

12.17 1.74

ASTER −2.29 
(4.00)

4.85 
(4.00)

5.36 
(4.00)

4.40 
(4.00)

3.01 
(4.00)

4.46 
(4.00)

9.51  
(4.00)

28.00 4.00

Copernicus 0.17 
(1.00)

1.35 
(1.00)

1.36 
(1.00)

0.80 
(1.00)

0.46 
(1.00)

0.68 
(1.00)

2.64  
(1.00)

7.00 1.00

AW3D 2.14 
(3.79)

1.44 
(1.08)

2.58 
(1.92)

2.24 
(2.20)

0.57 
(1.14)

0.85 
(1.14)

2.83  
(1.08)

12.34 1.76

Grassland/Shrubland NASADEM −0.36 
(1.00)

1.15 
(1.42)

1.20 
(1.00)

0.95 
(1.00)

0.76 
(1.48)

1.12 
(1.48)

2.25  
(1.42)

8.81 1.11

ASTER −6.83 
(4.00)

3.21 
(4.00)

7.55 
(4.00)

6.96 
(4.00)

1.99 
(4.00)

2.94 
(4.00)

6.30  
(4.00)

28.00 4.00

Copernicus 1.36 
(1.46)

0.81 
(1.00)

1.58 
(1.18)

1.40 
(1.22)

0.57 
(1.09)

0.84 
(1.09)

1.59  
(1.00)

8.05 1.00

AW3D 4.09 
(2.73)

0.82 
(1.02)

4.17 
(2.40)

4.09 
(2.57)

0.52 
(1.00)

0.77 
(1.00)

1.61  
(1.02)

11.74 1.55

Tropical Rainforest (Coastal) NASADEM 18.46 
(4.00)

10.10 
(1.00)

21.05 
(4.00)

18.47 
(4.00)

7.52 
(2.93)

11.15 
(2.93)

19.80  
(1.00)

19.87 3.04

ASTER 8.96 
(1.00)

10.37 
(1.64)

13.71 
(1.00)

10.71 
(1.00)

6.08 
(1.00)

9.01 
(1.00)

20.33  
(1.64)

8.29 1.00

Copernicus 13.00 
(2.28)

10.83 
(2.74)

16.92 
(2.31)

13.12 
(1.93)

7.95 
(3.51)

11.79 
(3.51)

21.24  
(2.74)

19.03 2.89

AW3D 15.62 
(3.10)

11.36 
(4.00)

19.31 
(3.29)

15.65 
(2.91)

8.31 
(4.00)

12.33 
(4.00)

22.27  
(4.00)

25.30 4.00

Tropical Rainforest (Highland) NASADEM 17.81 
(1.00)

8.70 
(1.41)

19.82 
(1.00)

17.93 
(1.00)

5.33 
(1.33)

7.90 
(1.33)

17.05  
(1.41)

8.47 1.00

ASTER 22.37 
(2.20)

12.78 
(4.00)

25.76 
(2.71)

22.84 
(2.31)

8.28 
(4.00)

12.28 
(4.00)

25.05  
(4.00)

23.22 4.00

Copernicus 29.19 
(4.00)

8.06 
(1.00)

30.28 
(4.00)

29.19 
(4.00)

4.97 
(1.00)

7.37 
(1.00)

15.79  
(1.00)

16.00 2.53

AW3D 28.87 
(3.92)

8.68 
(1.40)

30.15 
(3.96)

28.88 
(3.92)

5.31 
(1.31)

7.87 
(1.31)

17.02  
(1.40)

17.21 2.78
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(2022), NASADEM had the best accuracy in dense forest, 
while Copernicus DEM performed the best in bare land 
and sparse vegetation. Going further, they posited that 
this may be related to the capability of the C-band SAR of 
NASADEM for penetrating deeper into vegetation com-
pared to the X-band of Copernicus DEM and the optical 
band of AW3D30.

3.5. Influence of tree cover on vertical accuracy

Figure 19 shows the percentage tree cover maps for 
Akanda and Lopé in Gabon. Adapting the forest cover 

classification of FRIENVIS (2015) and FSI (2021), the 
percentage tree cover was categorized into the follow-
ing four classes: very dense (70% and above), dense 
(40–70%), moderately dense (10–40%), and light (less 
than 10%). Table 7 shows the calculated accuracy 
measures based on percentage tree cover.

The DEMs perform best in areas with the least 
tree cover (<10%, 10–40%), and this is where 
Copernicus DEM outperforms most DEMs. Using 
the RMSE as a basis, ASTER showed the highest 
vertical accuracy in tree cover between 40–70% 
with the lowest RMSE of 15.10 m. ASTER 

Figure 18. Visualisation of the mean error, SD and RMSE in different landscapes.
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consistently has a negative bias at most sites (as 
seen in Table 6), so its “better” performance in 
dense tree cover is probably due to its overall 
negative bias. NASADEM provides the best esti-
mates in forests with tree cover >70%, with an 
RMSE of 20.79 m. However, in all instances where 
tree cover was greater than 10%, NASADEM 

displayed the highest precision and least dispersion 
(lowest SD) in the elevation errors. Unlike the 
other DEMs, the raw data for NASADEM was 
acquired during a relatively narrow temporal per-
iod (February 11–22, 2000), and this could have 
minimized the influence of vegetation seasonal 
variability on the data accuracy.

Figure 19. Percentage tree cover maps of the forests at Akanda and Lopé, Gabon.

Table 7. Vertical error based on percentage tree cover in Akanda and lopé, Gabon. The lowest vertical errors are 
highlighted.

Tree cover (%) N DEM ME SD RMSE MAE

<10 624 NASADEM 14.13 8.58 16.53 14.13
ASTER 2.15 8.95 9.20 7.31
Copernicus 1.70 4.93 5.21 2.70
AW3D 6.12 8.47 10.44 6.33

10–40 9451 NASADEM 12.05 7.76 14.33 12.08
ASTER 7.31 11.54 13.66 10.19
Copernicus 6.32 11.02 12.70 6.69
AW3D 8.68 10.82 13.87 8.73

40–70 71215 NASADEM 14.50 8.45 16.79 14.53
ASTER 8.61 12.41 15.10 11.21
Copernicus 10.78 12.14 16.23 10.99
AW3D 12.90 11.90 17.54 12.96

>70 544358 NASADEM 18.63 9.23 20.79 18.71
ASTER 18.74 13.25 22.96 19.43
Copernicus 25.13 10.79 27.34 25.14
AW3D 25.69 10.61 27.80 25.70

*No of points.
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3.6. Vertical accuracy by slope and aspect

In this section, the relationship of the vertical error with 
slope and aspect in Cape Town is analyzed. The terrain 
heterogeneity of Cape Town provides ample opportu-
nity to understand the influence of slope on the vertical 
accuracy. Guidance on slope classification is available 
from various sources (e.g. CanSIS 2013; Chesworth 
et al. 2008). Summarily, we grouped the slope and 
aspect maps derived from the LiDAR DEM of Cape 
Town into six slope classes and eight cardinal directions 
respectively (Supplementary Figure S7). Thereafter, the 
elevation errors in the four satellite DEMs were 

grouped according to these classes. The vertical error 
based on slope and aspect are shown in Supplementary 
Tables S2 and S3, and visualized in Figures 20 and 21 
respectively. The highest accuracies for all the DEMs 
occur in flat/gentle areas. As the slope progresses from 
flat/gentle to moderate; the SD, RMSE, and MAE of 
Copernicus DEM almost increases by a factor of two. 
Generally, the DEM accuracies continue to degrade as 
the steepness increases, and are lowest in excessively 
steep slopes. The error of Copernicus is the lowest 
while ASTER is the highest for most slope categories. 
Even in the steep, very steep, extremely and excessively 
steep slopes, the RMSE of Copernicus DEM is better 

Figure 20. Visualisation of the mean error, SD and RMSE based on slope.
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than that of ASTER in the gentle slopes. Similarly, the 
ME, RMSE and MAE of NASADEM and AW3D in 
steep and very steep slopes exhibit superior perfor-
mance to that of ASTER in gentle slopes. Although 
previous studies have proved the poor reliability of 
ASTER, these findings highlight that its accuracy is 
not comparable to counterpart DEMs within the same 

slope category. The general trend shows a degradation 
in DEM accuracy at higher slopes. DEM accuracy is 
associated with aspect (Nwilo et al. 2022). In the ana-
lysis of aspect (Figure 21), the lowest vertical errors 
across all four DEMs are generally in the west direction, 
while some particularly higher errors are spotted in the 
northerly directions (north, northeast, and north-west). 

Figure 21. Visualisation of the mean error, SD and RMSE based on aspect.
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Copernicus emerges as the most accurate with the least 
SD, RMSE and MAE in most directions, while ASTER 
GDEM is the least accurate. The largest mean errors are 
observed in ASTER followed by AW3D.

4. Conclusion and recommendations

The presented study has demonstrated that 
Copernicus GLO-30 is ranked highest in accuracy in 
the urban/industrial, agricultural, mountain, penin-
sula and grasslands/shrubland landscapes. However, 
ASTER GDEM and NASADEM ranked higher in the 
low-relief and high-relief tropical forests, respectively. 
Generally, the height errors from the individual DEMs 
have a moderate to high positive correlation in forests, 
and a low to moderate positive correlation in moun-
tains and urban areas. Judging by already established 
indices for evaluating DEMs, Copernicus DEM clearly 
outperformed all other DEMs at most sites. 
NASADEM and AW3D trail behind Copernicus in 
Cape Town while ASTER GDEM’s performance is 
below expectations, and appears to show considerable 
negative bias. In the heavily forested Akanda and Lopé 
National Parks, the performance of the DEMs are 
quite different. ASTER GDEM’s comparable perfor-
mance with the likes of Copernicus and AW3D in 
dense tropical forest is possibly an artifact of its overall 
negative bias. NASADEM which is ranked second in 
Cape Town, outperformed the other three DEMs in 
the forested highlands.

This study has provided an extensive validation of 
these recent versions of NASADEM, ASTER, 
Copernicus and AW3D DEMs to guide practitioners 
on their respective limitations for numerous applica-
tions. The multi-level analysis goes beyond the reliance 
on global uncertainty measures by analyzing localized 
differences through terrain visualization. The study 
provides a further impetus for national mapping agen-
cies especially in data-sparse regions to implement 
deliberate measures aimed at exploiting global DEMs 
for updating topographic maps and databases. 
Moreover, the assessment methodology is robust and 
easy-to-follow and can be adapted by other researchers 
for performing similar studies. Accuracy assessments 
can be extended to cover other difficult or inaccessible 
regions such as the Arctic. Future directions of research 
include comparative hydrological and geo-morpho-
metric analysis of satellite-derived DEMs, and strate-
gies for enhancing or improving DEM accuracies.
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