Supporting Information

Supporting Information contains the synthesis of BTMSPA-SG, 1-D and 2-D NMR, FTIR and mass spectra of the ligand, Experimental procedure outlining the adsorption method, SEM images, PXRD graphs, BET isotherms, TGA-DTA graphs and effect of volume graphs. Tables reporting the BET, XRF, CHNS, adsorption isotherms and kinetic models as well as the adsorption capacity results are also included.

Scheme S1 Immobilization of bis(3-(*trimethoxysilyl*)-*propyl*)*amine onto silica gel.*

Figure S1 Experimental procedure outlining the batch adsorption of Pt and Pd.

Figure S2 ¹H NMR spectrum of DTMSP-BT in CDCl₃ at 25°C (Note the break in scale between 4.0-7.0 ppm).

*Figure S3 The 2D COSY spectrum of DTMSP-BT in CDCl*₃ *at 25°C.*

Figure S4 The 2D HSQC spectrum of DTMSP-BT in CDCl₃ at 25°C.

Figure S5 The ¹³C spectrum of DTMSP-BT in CDCl₃ at 25°C.

Figure S6 The 2D HMBC spectrum of DTMSP-BT in CDCl₃ at 25°C.

Figure S7 ¹³C DEPT spectrum of DTMSP-BT at 25°C.

Figure S8 FT-IR Spectroscopy spectrum of DTMSP-BT

Figure S9 Mass Spectrometry spectrum of DTMSP-BT.

Figure S10 FT-IR spectra of the unmodified silica gel, DTMSP-BT and DTMSP-BT-SG.

Figure S11 FT-IR Spectroscopy spectrum BTMSPA-SG.

Figure S12 SEM images of: a) Silica gel, b) DTMSP-BT-SG and c) BTMSPA-SG.

Figure S13 a) PXRD patterns and b) BET N_2 adsorption (•) desorption (o) isotherms.

	Pore size	Pore volume	Surface area
	(nm)	$(cm^3 g^{-1})$	$(m^2 g^{-1})$
Silica gel	6.47	0.94	451.25
DTMSP-BT-SG	4.09	0.25	207.62
BTMSPA-SG	6.28	0.29	130.06

Table S1 Textural properties of the unmodified silica gel and modified silica gel.

Figure S14 TGA and DTA graphs of: a) Silica gel, b) DTMSP-BT-SG and c) BTMSPA-SG.

	Silica gel	DTMSP-BT-SG	BTMSPA-SG				
Compounds	Percentage co	Percentage composition (wt.%)					
SiO ₂	89.20	68.59	74.63				
Al_2O_3	0.09	0.08	0.07				
Fe_2O_3	-0.03	-0.03	-0.02				
MnO	0	0	0.01				
MgO	0.02	0	0.02				
CaO	0.07	0.09	0.10				
Na ₂ O	0.07	0.01	0.04				
K ₂ 0	-0.03	-0.03	0				
TiO ₂	0.03	0.02	0.01				
P_2O_5	0.04	0.01	0.01				
Cr_2O_3	-0.01	0	0				
NiO	0	0	0				
Loss of Ignition (LOI)	9.67	30.90	23.74				
TOTAL	99.12	99.61	98.57				

Table S2 The XRF chemical compositions of the unmodified silica gel and modified silica gel.

Table S3 Elemental analysis of the unmodified and modified silica gel and the ligand concentrations.

	С		Н	N		S
Adsorbents	%	mmol/g	%	%	mmol/g	%
Silica gel	0.00		0.86	0.00		0.00
DTMSP-BT-SG	18.02	1.07	2.24	2.89	1.03	2.17
BTMSPA-SG	12.97	1.80	2.89	2.35	1.68	0.00

		Theoretical	Langmuir	a	Ligand	Adsorbent:	Vol for max
		q _{max}	experime	ntal	conc.	metal ratio	adsorption
			q _{max}				
		mg	/g	mn	nol/g		mL
DTMSP-	Pt	201.13	48.52	0.249	1.03	97.04	4.15
BT-SG	Pd	109.72	29.68	0.279	1.03	59.36	3.69
BTMSPA	Pt	329.55	6.63	0.034	1.68	13.26	49.36
-SG	Pd	179.77	12.53	0.118	1.68	25.06	14.24

Table S4 The theoretical and experimental loading capacities of Pt and Pd and volumes of expected maximum adsorption.

Figure S15 Effect of volume (20–50 mL) on the recovery of Pt and Pd (mass= 10 mg, pH= 2, concentration= 5 mg L⁻¹, temp= 25 °C, time= 4 h, n = 2, RSD < 3%).

		DTMSP-BT-SG		BTMSPA-	SG
Isotherms	Parameters	Metals			
		Pt	Pd	Pt	Pd
Langmuir	$q_m (mg g^{-1})$	48.52	29.68	6.63	12.53
	K_L (L mol ⁻¹)	1.85	26.74	0.36	6.82
	R ²	0.99	0.99	0.99	0.96
Freundlich	n	3.31	7.267	3.74	7.08

	$K_{\rm F}(({\rm mg g}^{-1})/({\rm mol } {\rm L}^{-1})^{1/n})$	20.86	22.86	3.28	6.47			
	R ²	0.62	0.94	0.23	0.30			
Table S6 Adsorption capacities of adsorbents used for the removal of Pt and Pd. ⁴⁰								
Adsorbents			q _m (mg/g	Ref.				
			Pt	Pd				
DTMSP-BT-SG			48.52	29.68	This			
BTMSPA-SG			6.63	12.53	work			
Amberlite IRC 718			66.33	58.52	47			
2-Mercaptobenzot	hiazole-bonded silica gel		6.50	18.00	48			
Ethyl-3-(2-aminoe	thylamino)-2-chlorobut-2-ei	noate	126.0	92.0	40			
modified activated	carbon							
Fe ₃ O ₄ nanoparticle	S		13.27	10.96	49			
Bayberry tannin in	nmobilized collagen fibre me	embrane	45.80	33.40	40			
(E,E,E)-1-[(4-meth	ylphenyl)sulfonyl]-6-[(2-		54.62	38.31	50			
trimethylsilyl-ethy	l)-sulfonyl]-11-[(4-							
vinylphenyl)sulfonyl)]-1,6,11-triazacyclo-pentadeca-								
3,8,13-trienefuncti	onalized polystyrene							
Glycine-modified c	hitosan		122.47	120.39	51			
Thiourea-modified	l chitosan		129.87	112.36	41			

Tahle S7 Kinetic model	narameters	for the	adsori	ntion o	f Pt a	nd Po	ł
I UDIE S7 Milletit mouel	purumeters	jui uie	uusoip	nuon 0	jιιu	nuit	1.

		DTMSP-BT-SG		BTMSPA-SG	
Kinetic	Parameters	Metals			
model		Pt	Pd	Pt	Pd
Pseudo-	$q_{e(exp)}$ (mg g ⁻¹)	9.88	9.99	5.75	9.78
first-order	k ₁ (min ⁻¹)	-3.01×10 ⁻⁵	-2.63 × 10 ⁻⁶	-3.26 ×10 ⁻⁷	-1.75×10 ⁻⁵
	$q_{e(cal)} (mg g^{-1})$	0.67	0.16	2.82	4.24
	R ²	0.53	0.52	0.70	0.85
Pseudo-	$q_{e(cal)}$ (mg g ⁻¹)	9.97	9.99	6.40	9.81
second-	k_2 (mg g ⁻¹ min ⁻¹)	0.103	0.460	0.014	0.010
order	R ²	0.99	1.00	0.99	0.99