
Hybrid metaheuristic schemes with different configurations
and feedback mechanisms for optimal clustering applications

Daisy Nkele Molokomme1 • Adeiza James Onumanyi2 • Adnan M. Abu-Mahfouz1,2

Received: 6 December 2023 / Revised: 20 February 2024 / Accepted: 3 March 2024 / Published online: 12 April 2024
� The Author(s) 2024

Abstract
This paper addresses the critical gap in the understanding of the effects of various configurations and feedback mechanisms

on the performance of hybrid metaheuristics (HMs) in unsupervised clustering applications. Despite the widespread use of

HMs due to their ability to leverage multiple optimization methods, the lack of comprehensive studies on their configu-

ration and feedback mechanisms effects often results in sub-optimal clustering performances and premature convergence.

To tackle these issues, we introduce two algorithms for implementing eight distinct HM schemes, focusing on the impacts

of parallel and serial processing models along with different feedback mechanisms. Our approach involves selecting

candidate metaheuristics based on a mix of evolutionary and swarm-based methods, including the k-means algorithm, to

form various HM-based clustering schemes. These schemes were then rigorously evaluated across a range of datasets and

feedback mechanisms, further assessing their efficiency in the deployment of smart grid base stations. Performance

analysis was based on total fitness evaluations, timing capabilities, and clustering accuracy. The results revealed that

parallel HMs with decoupled feedback mechanisms performed best in terms of accuracy but at the cost of slower

convergence rates as compared to serial HMs. Our findings further suggest that serial HMs will be best suited for time-

sensitive applications where a compromise between speed and accuracy is acceptable, while parallel HMs with decoupled

feedback mechanisms are preferable for scenarios where precision is paramount. This research significantly contributes to

the field by providing a detailed analysis of HM performance in varying conditions, thereby guiding the selection of

appropriate HM schemes for specific clustering tasks.

Keywords Data clustering � Edge computing � Ensemble clustering � Localization � Metaheuristics

1 Introduction

Clustering plays a significant role in many application

areas, particularly domains that require the identification of

data groupings without the need for prior training, such as

in smart grids [1], pattern recognition [2], and wireless

communications [3], to name a few. Among the available

clustering algorithms in the literature, metaheuristics are

gaining prominence due to their capacity to approximate

global optimal clustering solutions. They are considered for

their adaptability and robustness in exploring complex

search spaces, a quality highly valuable in clustering,

where conventional optimization methods like k-means

may underperform [4]. Furthermore, metaheuristics excel

in efficiently finding satisfactory solutions for NP-hard

problems, such as clustering, without relying on gradient

information [5]. However, their stochastic nature can lead

to inconsistencies, potentially converging to local optima

Adeiza James Onumanyi and Adnan M. Abu-Mahfouz have

contributed equally to this work.

& Daisy Nkele Molokomme

dmolokomme@csir.co.za

Adeiza James Onumanyi

aonumanyi@csir.co.za

Adnan M. Abu-Mahfouz

a.abumahfouz@ieee.org

1 Department of Electrical, Electronic, and Computer

Engineering, University of Pretoria, Hatfield,

Pretoria 0028, Gauteng, South Africa

2 Next Generation Enterprises and Institutions, Council for

Scientific and Industrial Research (CSIR), Meiring Naude,

Pretoria 0001, Gauteng, South Africa

123

Cluster Computing (2024) 27:8865–8887
https://doi.org/10.1007/s10586-024-04416-4(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04416-4&domain=pdf
https://doi.org/10.1007/s10586-024-04416-4

or necessitating extensive computational time [6]. To

address these limitations, researchers are increasingly

turning to hybrid metaheuristics (HMs), which combine

multiple metaheuristics to strike a balance between

exploration and exploitation. This approach enhances

consistency and reduces the risk of premature convergence.

Concerning the use of HMs in clustering, it is widely

recognized that the selection of the structural configuration

strategy (i.e., how constituent metaheuristics are combined)

is problem-dependent and can be influenced by various

factors, including the characteristics of the optimization

problem, algorithm compatibility, exploration versus

exploitation requirements, and the dynamics of the search

space [4]. For instance, in the context of an optimization

problem in a cloud computing environment, a parallel

execution strategy was advocated [4, 7]. Their decision in

this regard was guided by the presence of multiple com-

puting services typical of cloud computing environments.

In contrast, in other studies [8, 9], authors favored a

sequential strategy when addressing similar clustering

problems. However, insufficient attention to the ramifica-

tions of the chosen structural configuration and feedback

mechanisms leaves a degree of uncertainty regarding when

and how these different HMs strategies should be

deployed. Consequently, this knowledge gap constrains the

effective combination, configuration, and feedback strate-

gies essential for HMs to strike a balance between con-

vergence and diversity while also improving their

processing efficiency.

Consequently, there is a significant need to investigate

the combined effects of various constituent algorithms and

their feedback mechanisms on the performance of HMs.

This is important for a deeper comprehension of their

application, particularly in enhancing clustering perfor-

mance. Thus, the motivation for the present research stems

from the challenges faced in unsupervised clustering

applications, particularly those utilizing HMs. Despite the

popularity of HMs for their ability to leverage the strengths

of multiple optimization methods, there exists a significant

knowledge gap regarding the optimal configurations and

feedback mechanisms for these approaches. This gap often

results in issues like premature convergence and sub-opti-

mal clustering outcomes, hindering the effectiveness of

HMs in practical applications. Consequently, this study

aims to address these challenges by exploring the com-

bined effects of various HM configurations and feedback

mechanisms, with a goal to enhance the performance of

HMs in application areas such as smart grid base station

optimization. Hence, in conducting this research, we make

the following contributions:

1. We propose two innovative algorithms designed to

operationalize eight distinct HM schemes, with a

detailed examination of how serial and parallel

processing models, alongside varied feedback mecha-

nisms, influence their efficiency. Our findings demon-

strate that parallel HMs equipped with decoupled

feedback mechanisms outperform their serial counter-

parts, albeit with a trade-off in convergence speed. This

marks an advancement in the understanding of HM-

based clustering applications, setting a new benchmark

for future research and practical applications.

2. We demonstrate that the proposed HMs match the

computational efficiency of single metaheuristics by

using the total fitness evaluations as the performance

metrics. This critical insight challenges the existing

assumptions that HMs consume more physical com-

putation time than their serial counterparts, while

underscoring the viability of HMs as a potent tool for

clustering applications.

3. We propose the network coverage indicator as a

measure for assessing and optimising the base station

deployment problem in smart grid networks using the

proposed HMs. By employing the network coverage

indicator, a straightforward yet powerful metric that

quantifies the connectivity performance within smart

grids is introduced. Furthermore, we not only validated

the algorithms’ effectiveness but also showcased their

potential to significantly enhance the operational

efficiency of smart grid communications.

The remainder of this paper is organized as follows. Sec-

tion 2 provides a concise overview of the literature on

hybrid schemes for clustering purposes. In Sect. 3, the

entire methodology adopted towards the development of

the different HM schemes are is discussed and in Sect. 4,

we present the application area regarding edge radio

placement in smart grid networks. Section 5 presents and

discusses the obtained results and we conclude in Sect. 6.

2 Related work

The use of HMs for clustering has gained considerable

traction in the literature. These hybrid methods aim to

integrate various clustering processes - either from differ-

ent algorithms or from the same algorithm with varied

approaches [10, 11]. This differs from traditional approa-

ches that employ a single algorithm, often resulting in sub-

optimal clustering outcomes and limited diversity. Given

the large number of metaheuristics in the literature, it is

almost impossible to discuss them all, and thus it is

essential to adopt a systematic approach to select the

candidate algorithms for a hybrid model. Consequently,

minimizing computational complexity, ensuring inter-al-

gorithm compatibility within a hybrid framework, and

8866 Cluster Computing (2024) 27:8865–8887

123

achieving superior solution quality and robustness remains

a major goal in the literature. Furthermore, in building

HMs, there are several proposals in the literature worthy of

mention, which consider the execution of multiple meta-

heuristics that cooperate to explore the search space by

exchanging solutions.

On the one hand, there is the serial hybrid model where

algorithms are executed sequentially, with each subsequent

algorithm refining the solution generated by its predeces-

sor. Thus, the quality of the initial solution exerts a con-

siderable influence on the overall optimization process, as

it can shape the trajectory of subsequent search efforts.

However, should an inferior solution be initially selected, it

could adversely affect the search direction. This model has

been investigated in many studies such as in [8, 9, 12, 13].

Commonly, these works employ the k-means algorithm as

the starting point for subsequent metaheuristics such as the

bee colony optimization (BCO), firefly algorithm (FFA),

and particle swarm optimization (PSO). The primary

rationale for choosing k-means is for its computational

efficiency and near-optimality capability, which are desir-

able qualities that can be further refined to achieve

improved outcomes. Despite the benefits exhibited by this

approach, there are still some limitations that may limit its

applicability to large-scale problems. One of these limita-

tions includes its inability to explore diverse regions of the

solution space simultaneously, which may lead to sub-op-

timal solutions. To address this challenge, an attempt to

integrate the simulated annealing component into their

hybrid scheme termed as SA-PSO-GK?? was presented,

where gaussian estimation distribution (GED) was

employed to refine the solutions achieved by PSO and

K-Means?? [13].

In contrast to sequential execution, the parallel config-

uration has been explored as well, which forms an

ensemble structure, allowing multiple algorithms to operate

independently before aggregating their results through a

combiner. Such approaches are well-documented in exist-

ing literature [14–17]. These parallel hybrid schemes can

be sub-divided into either coupled or decoupled feedback

mechanisms. In coupled mechanisms, each algorithm’s

results undergo a competitive evaluation phase, where

optimal outcomes are recycled into a shared loop for future

iterations across algorithms. Conversely, decoupled

mechanisms allocate distinct loops to each algorithm,

independently cycling their solutions through subsequent

iterations until convergence. In the study by [14], two

equally sized populations operated independently before

their optimal solutions were juxtaposed in a competitive

framework, aiming to discern winners and losers based on

fitness values. Although parallel hybrid methods strive to

cultivate solution diversity among hybrid components, they

may not fully leverage the strengths of disparate search

algorithms, as indicated by [18], due to inconsistencies in

convergence rates and diversity preservation. In [6] a

Cauchy mutation operator was employed in a HM frame-

work based on ant lion optimization (ALO) and ant colony

optimization (ACO) to escape the local optima when

solving the clustering problem. Their main goal was to

minimize the intra-cluster distance. Similarly a parallel

execution was attempted in [19] where the feature selection

method was integrated into the their proposed HM frame-

work to better the performance of the model on a high-

dimensional data.

The literature review highlights the effectiveness of

diverse hybrid schemes in addressing various clustering

problems. Nevertheless, their performance tends to

diminish when applied to extensive and densely clustered

datasets. Despite the thorough exploration in this domain,

uncertainties linger concerning the specific effect that the

deployment configuration and the feedback mechanisms

adopted within these HM frameworks may have on clus-

tering performance. These uncertainties regarding where

and how these HM frameworks should be deployed, poses

a challenge within the current body of research. Conse-

quently, the need for algorithms to implement such studies

served as motivation for the research conducted in the

present paper with an intention to guide where and how

HM schemes should be deployed.

3 Methodology

In this section, we describe the methodology used to

develop and assess the two algorithms proposed for

implementing the serial and parallel HM schemes, incor-

porating both coupled and decoupled feedback mecha-

nisms. Firstly, we describe the objective function used by

the different clustering algorithms for assessing data clus-

tering quality. Then, we describe the chosen constituent

algorithms for the HM schemes, following a selection

process and analysis of the different potential metaheuris-

tics. Subsequently, we describe the two algorithms for

implementing the hybrid configurations under considera-

tion and highlight their different time complexities and

associated termination criteria.

3.1 Objective function

In clustering applications, an objective (or fitness) function

is used to evaluate how well data points are grouped into

clusters, hence, serving as a measure of the quality of

solutions obtained in the clustering problem. In this paper,

we employed the within (or intra) cluster distance, W, as

the objective function in each algorithm because of its

well-known use and effectiveness in the literature.

Cluster Computing (2024) 27:8865–8887 8867

123

Technically, the within cluster distance aims to minimize

the sum distances between the data points and their

respective cluster centroids, which makes it effective for

clustering purposes.

Specifically, we computed W as the sum of the Eucli-

dean distances between each data point and the centroid of

their associated cluster. Mathematically, it can be described

as:

W ¼
Xk

i¼1

X

x2Ci

kx� lik ð1Þ

where k is the number of clusters, Ci is the i-th cluster, x is

a data point in cluster Ci, li is the centroid of cluster Ci,

and k � k denotes the Euclidean distance. In metaheuristics,

the objective function W guides the search process towards

optimal or near-optimal cluster assignments. A lower value

of W indicates better clustering, where data points are

closer to their respective centroids, thus forming more

cohesive clusters. Thus, in order to evaluate (1), the fol-

lowing steps were followed:

1. Cluster centroids: The cluster centroids were initially

selected using the random function:

li ¼ Lþ Uð0; 1Þ � ðU � LÞ ð2Þ

where li denotes the centroid value of cluster Ci, with

li 2 Rd and Rd indicates the d-dimensional real vector

space. Here, Uð0; 1Þ denotes a random number gener-

ated from a uniform distribution over the interval ½0; 1�.
The minimum value of the generator range (i.e. lower

boundary) is denoted as L and the maximum value of

the range as U (i.e. the upper boundary of the solution

space). Therefore, li in (2) can be computed for i ¼
1; 2; . . .; k based on a random number generated uni-

formly within the boundaries L and U. Equation (2) is

able to ensure that cluster centroids are uniformly

distributed based on the use of the random number

drawn from the uniform distribution Uð0; 1Þ. This is

crucial for ensuring that the centroids are distributed

uniformly across the solution space defined by the

lower boundary L and the upper boundary U. The

function Uð0; 1Þ generates a random number with equal

probability within the range 0 and 1. This characteristic

of the uniform distribution renders it appropriate for

the purpose of evenly distributing cluster centroids.

Therefore, when this uniformly distributed random

number is scaled by the difference between U and L,

and then offset by L, the resulting value li is thus

guaranteed to be uniformly distributed within the

defined boundaries. This method allows for the initial

placement of cluster centroids to cover the entire range

of the solution space uniformly, which is essential for

the effective partitioning of the data into clusters.

2. Cluster Assignment: Each data point was then assigned

to the nearest centroid using Euclidean distance as the

measure of assignment as follows:

Ci ¼ fx j kx� lik�kx� ljk; 8j 6¼ ig ð3Þ

Thus, after obtaining li and Ci from (2) and (3), respec-

tively, we evaluated W as defined in (1). The objective was

to identify the set of cluster centroids fl1; l2; . . .; lkg that

minimizes W:

min
l1;l2;...;lk

W ð4Þ

Consequently, it is worth noting that various clustering

algorithms typically optimize (1) using distinct strategies

for updating centroids. For instance, the k-means algorithm

calculates the subsequent centroid for each cluster as the

mean of the data points within the assigned cluster as

follows:

li ¼
1

jCij
X

x2Ci

x ð5Þ

for i ¼ 1; 2; . . .; k. Conversely, metaheuristics would itera-

tively update their centroids according to their unique

search processes and operators. Nevertheless, the overar-

ching goal is to create clusters that are internally cohesive,

thus maximizing the similarity among elements within

each cluster.

3.2 Datasets

In this study, we synthetically generated two distinct

classes of datasets for evaluation purposes, namely com-

pact-isolated and overlapping-intermingled cluster data-

sets. We describe these datasets as follows:

3.2.1 Compact-isolated dataset

Compact-isolated clustered datasets, characterized by high

intra-cluster similarity, serve as an optimal testing envi-

ronment for algorithmic evaluation in simpler scenarios.

These datasets are particularly useful for benchmarking,

offering a robust baseline for algorithmic comparison.

Failure of an algorithm to effectively cluster such ele-

mentary datasets will likely indicate poor performance in

more complex cases. Additionally, the straightforward

nature of the results that can be obtained in this case will

make interpretation much simpler, thus allowing for a more

direct assessment of algorithmic fitness relative to visual

clustering outcomes.

8868 Cluster Computing (2024) 27:8865–8887

123

For our experimental framework, we examined datasets

incorporating cluster distributions of varying complexities

comprising 4, 9, and 16 clusters with node sizes of 400,

900, and 1600 data points, respectively. These experi-

mental datasets are visually represented in Fig. 1a–c.

In order to generate the datasets of Fig. 1a–c, the fol-

lowing mathematical procedure was adopted:

1. Cluster Center Generation For each cluster, a distinct

center ðcxi; cyiÞ was generated in a 2D space. It was

ensured that the distance between any two centers is

sufficiently large to maintain isolation between clus-

ters. This distance was controlled by a parameter dmin,

ensuring that for any two centers ðcxi; cyiÞ and ðcxj; cyjÞ,

the distance

ffi
ðcxi � cxjÞ2 þ ðcyi � cyjÞ2

q
� dmin.

2. Data Point Generation For each cluster, we generated

data points around its center using a Gaussian distri-

bution with a small standard deviation (r). This

ensured that the data points were closely packed

around the center. For a cluster centered at ðcxi; cyiÞ,
each data point (x, y) was generated as x ¼ cxi þ �x and

y ¼ cyi þ �y, where �x; �y �Nð0; r2Þ.
3. Dataset Size and Cluster Proportion We then allocated

the total number of data points (400, 900, 1600) among

the clusters (4, 9, 16) evenly based on the predeter-

mined proportion to mimic real-world data

distributions.

3.2.2 Overlapping-intermingled dataset

We focused on overlapping-intermingled clusters, which

inherently exhibit low cluster purity. This feature serves as

a challenging testbed to evaluate the robustness of various

algorithms in dealing with noise, outliers, and varying

cluster characteristics such as density, shape, and size.

Moreover, these complex datasets more closely mirror real-

world scenarios, suggesting that algorithms effective in this

context may be particularly well-adapted for complex real-

world applications.

Similar to the compact cluster case, we analyzed a 2-D

solution space populated by randomly generated nodes.

The datasets were constructed such that their non-obvious

separation of clusters will necessitate the need for robust

algorithms for accurate cluster identification. The cluster

distributions were varied across 4, 9, and 16 clusters,

maintaining a consistent data size per use-case similar to

the compact-isolated scenario. Visual representations of

these datasets are provided in Fig. 2a–c, respectively. The

procedure used to generate these datasets is described as

follows:

1. Cluster Center Generation Similar to the compact-

isolated datasets, we generated distinct centers for each

cluster. However, for overlapping datasets, we chose a

smaller dmin to allow for closer proximity between

some of the cluster centers, promoting overlap.

2. Data Point Generation with Overlap We then

increased the standard deviation (r) of the Gaussian

distribution used for generating data points. This

allowed for a broader spread of data points around

each center, increasing the likelihood of overlap

between clusters. For clusters intended to overlap

significantly, we further reduced the distance dmin
between their centers.

3.3 Candidate algorithms deployed in the HM
schemes

Prior to developing the HM schemes, we performed an

initial experiment using the simulated datasets detailed in

Sect. 3.2 to identify the specific algorithms to be deployed

in the HM schemes from among a collection of several

candidate metaheuristics. The candidate metaheuristics

Fig. 1 Compact-isolated datasets

Cluster Computing (2024) 27:8865–8887 8869

123

included the covariance matrix adaptation evolution strat-

egy (CMA-ES), cuckoo search optimization (CSO), dif-

ferential evolution (DE), artificial bee colony (ABC),

firefly algorithm (FFA), genetic algorithm (GA), grey wolf

optimization (GWO), particle swarm optimization (PSO),

whale optimization algorithm (WOA), and the established

k-means algorithm. Thereafter, these algorithms were

assessed based on their respective fitness values (using (1))

and their evolutionary trends. The results of these experi-

ments are presented in Sect. 5.2 from which an informed

selection of the k-means, CMA-ES, and DE algorithms was

determined for the HM schemes. In the next subsections,

we present a brief description of these chosen algorithms as

follows:

3.3.1 k-means

The k-means algorithm is a widely-used clustering method

that partitions a dataset into k distinct, non-overlapping

subsets (or clusters) [20]. The aim of the algorithm is to

minimize the within-cluster sum of distance W (see (1)),

effectively finding centroids that are representative of the

categories in a multi-dimensional feature space.

In our study, the k-means algorithm was selected for its

rapid convergence, which was considered particularly

beneficial for use in serial hybrid configurations. The k-

means algorithm was used in the following way: given a

dataset X ¼ fx1; x2; . . .; xng where each xi is a d-dimen-

sional vector, k-means was used to partition the n obser-

vations into k� n sets C ¼ fC1;C2; . . .;Ckg to minimize

equation (1). Then, the algorithm was deployed as follows:

1. Initialization k initial centroids were chosen, one for

each cluster. This was done randomly using (2).

2. Assignment Then, each data point x was assigned to the

nearest centroid li using (3), thus becoming a member

of cluster Ci.

3. Update New centroids (li) were then computed as the

mean of all points x in Ci using (5).

4. Convergence The assignment and update steps were

then repeated until the centroids no longer change

significantly, at which point the algorithm was consid-

ered to have converged, and the final clusters collated.

3.3.2 CMA-ES

The CMA-ES is a stochastic optimization algorithm par-

ticularly effective for solving non-linear, high-dimensional

optimization problems [21]. One of its distinguishing fea-

tures is its ability to adapt the search distribution in a way

that accounts for the underlying structure of the optimiza-

tion landscape. From our findings in Sect. 5.2, the CMA-

ES and DE algorithms demonstrated superior long-term

fitness performance, thus resulting in markedly more

accurate clustering outcomes across all use-cases as com-

pared to the other metaheuristics examined in this study.

Operation-wise, the CMA-ES algorithm operates by

maintaining a population of candidate solutions l (i.e. the

centroids), which are sampled from a multivariate Gaussian

distribution characterized by a mean m and a covariance

matrix C.

li �N ðm;CÞ; i ¼ 1; 2; . . .;P ð6Þ

Here, P is the population size. After evaluation of the

objective function in (1) for each candidate, a selection

mechanism is applied to choose the l best-performing

candidates, denoted lbest;1; lbest;2; . . .;lbest;l.
The mean m and the covariance matrix C are then

updated according to the following equations:

1. Update the mean:

Fig. 2 Overlapping-intermingled datasets

8870 Cluster Computing (2024) 27:8865–8887

123

mnew ¼
Xl

i¼1

wilbest;i ð7Þ

where wi are the weights that sum up to 1, typically

normalized so
Pl

i¼1 wi ¼ 1.

2. Update the covariance matrix:

Cnew ¼ ð1� c1 � clÞCþ c1pcp
T
cþ

cl
Xl

i¼1

wiðlbest;i �mÞðlbest;i �mÞT
ð8Þ

where c1 and cl are the learning rate parameters, and

pc is the evolution path, which accounts for the history

of past updates.

These updated m and C parameters are then used for the

next iteration of the algorithm to sample a new set of

candidate solutions, thus iteratively improving the

optimization.

3.3.3 DE

DE is a stochastic optimization algorithm primarily used

for solving continuous optimization problems [22]. It

belongs to the family of evolutionary algorithms and

operates through a population of candidate solutions. DE

employs mutation, crossover, and selection operations to

evolve the population towards an optimal or near-optimal

solution. It is used in the following algorithmic steps:

1. Initialization It generates an initial population U ¼
fl1; l2; . . .; lPg of centroids using (2), where P is the

population size and each li is a d-dimensional real

vector in the search space.

2. Mutation For each target vector li, a mutant vector vi is

generated using the formula:

vi ¼ lr1 þ F � ðlr2 � lr3Þ ð9Þ

Here, lr1, lr2, and lr3 are randomly selected vectors

from the current population, distinct from each other

and from li, and F is the scaling factor.

3. Crossover The mutant vector vi is then mixed with the

target vector li to create a trial vector ui. This is done

using a crossover operation, typically defined as:

uij ¼
vij if randð0; 1Þ�CR or j ¼ randintð1;DÞ
lij otherwise

(

ð10Þ

Here, CR is the crossover rate, D is the number of

dimensions, and j is the jth dimension.

4.

Selection The trial vector ui then competes against the

target vector li based on a fitness function W in (1). The

one with the better fitness survives into the next

generation:

ltþ1
i ¼

ui if f ðuiÞ� f ðliÞ
li otherwise

�
ð11Þ

5. Termination Repeat steps 2–4 until a termination

criterion (e.g., maximum number of generations or a

satisfactory fitness level) is met.

This iterative process effectively explores and exploits the

search space, thus steering the population towards optimal

or near-optimal solutions.

3.4 Hybrid schemes

In this section, we describe the algorithms proposed for

implementing the HM schemes, building upon the con-

stituent algorithms determined and described in Sect. 3.3.

It should be noted that we limited our schemes to bi-al-

gorithmic hybrids, as increasing the number of constituent

algorithms beyond two algorithms only yields greater

computational and memory overhead without significant

improvements in accuracy [23]. We describe the different

HM schemes as follows:

3.4.1 Serial hybrid scheme

A high-level block representation of the SHS considered in

our study is shown in Fig. 3. The scheme presents an

architecture that employs two serially configured algo-

rithms: the first initializes and partially refines cluster

centroids, forwarding the intermediate solutions to the

second algorithm via a feedforward mechanism. The sec-

ond algorithm finalizes the refinement until a predefined

termination criterion is met, subsequently producing an

output.

Considering Fig. 3, the k-means algorithm was selected

as Algorithm A due to its rapid convergence capabilities,

albeit often to sub-optimal solutions under varying condi-

tions. Algorithm B was implemented using either CMA-ES

or DE, resulting in two distinct SHS configurations:

k-means combined with CMA-ES (denoted as CAKS) and

k-means paired with DE (denoted as DEKS). A detailed

representation of the SHS algorithm is presented in

Algorithm 1.

Cluster Computing (2024) 27:8865–8887 8871

123

Algorithm 1 Serial hybrid scheme (SHS)

Inputs: X: Input data points, K: Number of clusters, N : Number of data points, U and
L: Solution boundaries, TFE: total fitness evaluations, fc: Feedforward percentage, {•}:
All parameters of the CMA-ES and DE algorithms, P : Population size

Outputs: Ubest = {µ1, µ2, ..., µK}: Final cluster centroids, Cbest = {C1, C2, ..., CK}: Final
cluster datapoints

1: FE ← 0
2: Compute the feedforward criteria FFC using (12)

Initialization:
3: for k = 1 to K do
4: µk ← Randomly generate a centroid using (2)
5: end for

Algorithm A: k-means clustering
6: while FE ≤ FFC do
7: for k = 1 to K do
8: Assign data points to their nearest centroid using (3)
9: Save assigned cluster as Ck

10: Update centroid µk using (5)
11: Compute fitness of new centroids Ck using (1)
12: Update fitness evaluation: FE ← FE + 1
13: end for
14: Output of k-means is Ukmeans = {µ1, µ2, ..., µK}
15: end while

Algorithm B: metaheuristics Fine-tuning
16: Generate P − 1 population of centroids UP−1,K using (6)
17: Merge Ukmeans and UP−1,K to form P population
18: while FE ≤ TFE do
19: for i = 1 to P do
20: if Algorithm 2 ← CMA-ES then
21: Update centroids using (7) - (8)
22: Ensure boundary constraints using (13)
23: Evaluate fitness of new centroids using (1)
24: Update fitness evaluation: FE ← FE + 1
25: Save best centroids Ubest

26: Save best clusters Cbest

27: else if Algorithm 2 ← DE then
28: Update centroids using (9) - (11)
29: Ensure boundary constraints using (13)
30: Evaluate fitness of new centroids using (1)
31: Update fitness evaluation: FE ← FE + 1
32: Save best centroids Ubest

33: Save best clusters Cbest

34: end if
35: end for
36: end while
37: return Final clusters are outputted as Cbest and their corresponding centroids as Ubest

The SHS algorithm initializes by specifying the requisite

input parameters, including the input data X, target cluster

count K, solution space boundaries L and U, total fitness

evaluation TFE, and feedforward percentage fc. The algo-

rithm’s initialization phase occurs between steps 3 and 4 of

Algorithm 1, employing a uniform random number gen-

erator to establish K initial centroids.

The subsequent clustering phase leverages k-means

(Algorithm A), using the feedforward criteria (FFC) as its

termination condition. If FFC remains unsatisfied (see step

6), the algorithm clusters data points based on their nearest

centroids and updates these centroids by averaging the

associated data points, as detailed in (5). Following cen-

troid recalculation, their fitness is assessed through the

function given in (1). The algorithm then updates the FE

counter, continuously comparing it to FFC until the con-

dition is met.

8872 Cluster Computing (2024) 27:8865–8887

123

The output of the k-means algorithm serves as input to

the metaheuristics in the second phase (Algorithm B), for

which we employed either DE or CMA-ES. Before initi-

ating Algorithm B, the metaheuristics generates P� 1 new

centroids and combines them with the k-means output to

form a population of size P. The metaheuristics then

evolves centroids and data point assignments following its

inherent search processes, as outlined in Sects. 3.3.2 and

3.3.3 for both DE and CMA-ES, and within steps 20–35 of

Algorithm 1. The CBC method is periodically invoked (see

steps 22 and 29) to confine centroid values within the

feasible search space.

The SHS concludes by outputting the final centroids and

their corresponding data clusters, determined by the TFE

termination criterion. These results are then subsequently

made available for further analytical purposes.

SHS: Time complexity The time complexity (TC) of the

SHS is described as follows. In the initialization phase

denoted by step 3–5 of Algorithm 1, a TC of OðKÞ is

incurred, where K is the number of the cluster centroids

defined in the inputs. The TC of updating the population

denoted in steps 6–15 is OðKÞ, where it involves the iter-

ation of the population until the defined fitness evaluation

number is reached. Steps 18–36 perform fine tuning of the

parameters, which depends on the number of iterations

required until reaching the total fitness evaluations, whose

TC is defined as OðTFE 	 PÞ. Therefore, the overall TC of

the SHS is given as Oð2K þ TFE 	 PÞ, which asymptoti-

cally reduces to OðTFE 	 PÞ since TFE 	 P
 K. This

implies that the SHS scales according the population size

and total number of fitness evaluations.

3.4.2 Parallel hybrid scheme

We considered two variants of the parallel hybrid

scheme (PHS), namely PHS with coupled and decoupled

feedback mechanism as shown in Figs. 4 and 5, respec-

tively. A general description of both variants is given as

follows:

Coupled feedback mechanism As illustrated in Fig. 4,

the PHS with coupled feedback mechanism (PHS-CFM)

employs a common loop that influences the behavior of

both constituent algorithms. This means that both algo-

rithms communicate and adapt based on the performance

and progress of each algorithm. In this case, both algo-

rithms start with their initial solutions or populations. Then

they run concurrently, performing their optimization steps

independently. At regular intervals or after a certain

number of iterations, both algorithms exchange informa-

tion about their best solutions i.e. their fitness values via a

sort and merge process. Therefore, based on the feedback

received from both algorithms, each algorithm then adapts

its search process. For example, if one algorithm discovers

a promising region of the search space, the other may focus

its efforts on exploring that region. Then, both algorithms

continue their respective iterations, incorporating feedback

from each other, and continuous influencing their respec-

tive strategies as the optimization process progresses until

the termination criteria is satisfied.

Decoupled feedback mechanism In the PHS with

decoupled feedback mechanism (PHS-DCFM), both algo-

rithms operate independently without direct communica-

tion or influence from the other algorithm as depicted in

Fig. 5. In this case, each algorithm optimizes its solution or

population without being aware of the progress of the other

algorithm. However, a common termination criteria block

ensures that information collected from each algorithm is

fed through individual and separate feedback mechanisms

to the respective algorithms. This common termination

block thus provides a global view of the optimization

process, hence enabling the scheme to terminate

accordingly.

In examining both PHS variants, we envisaged that the

PHS-CFM model will allow the two algorithms to mutually

steer themselves towards promising solutions, thereby

enhancing the model’s speed of convergence and the

quality of exploration. However, we anticipated that com-

munication and coordination between both algorithms

could introduce weaker solutions, which may not always

lead to improved results. Whereas, in the PHS-DCFM

model, both algorithms operate independently, which can

be advantageous since the behavior of one algorithm

should not influence the other, thus allowing for better

isolation and control. However, the lack of influence

between both algorithms could limit the ability to explore

better regions thus impacting the quality of convergence

and overall fitness performance of the PHS-DCFM. Con-

sequently, a comprehensive analysis of both variants within

the context of clustering was considered pertinent partic-

ularly in the absence of such studies in the literature, thus

motivating the present study.

criteria criteria
A B

Fig. 3 Serial hybrid model

Cluster Computing (2024) 27:8865–8887 8873

123

Algorithm 2 Parallel hybrid scheme (PHS)

Inputs: Same as in Algorithm 1 except fc
Outputs: Ubest = {µ1, ..., µK}; Cbest = {C1, ..., CK}
1: Algorithm A ← k-means
2: Algorithm B ← CMA-ES or DE
3: FE ← 0; Wbest ← ∞; Ubest ← []; Cbest ← []

Initialization
4: for k-means: k = 1 to K do
5: µAlg.A

k ← Randomly generate a centroid using (2)
6: end for
7: for either CMA-ES or DE: i = 1 to P-1 do
8: for k = 1 to K do
9: µAlg.B

k ← Randomly generate a centroid using (2)
10: Compute fitness WAlg.B

k of µAlg.B
k using (1)

11: Update fitness evaluation: FE ← FE + 1
12: Save: Ubest ← µAlg.B

k if WAlg.B
k < Wbest

13: end for
14: end for
15: while FE ≤ TFE do
16: for k-means: k = 1 to K do
17: Assign data points to nearest centroid using (3)
18: Save assigned cluster as Ck

19: Update centroid µAlg.A
k using (5)

20: Evaluate fitness WAlg.A
k of µAlg.A

k using (1)
21: Update fitness evaluation: FE ← FE + 1
22: Ubest ← µAlg.A

k ; Cbest ← Ck if WAlg.A
k < Wbest

23: end for
24: if PHS-CFM then
25: Merge: µAlg.B

k ← µAlg.A
k + µAlg.B

k

26: Sort µAlg.B
k in ascending order

27: Select minimum µAlg.A
k ← min{µAlg.B

k }
28: else if PHS-DCFM then
29: Dont merge: maintain µAlg.A

k and µAlg.B
k

30: end if
31: for either CMA-ES or DE: i = 1 to P do
32: for k = 1 to K do
33: if Algorithm B ← CMA-ES then
34: Update centroid µAlg.B

k using (7) - (8)
35: Apply CBC for µAlg.B

k using (13)
36: else if Algorithm B ← DE then
37: Update centroids µAlg.B

k using (9) - (11)
38: Apply CBC for µAlg.B

k using (13)
39: end if
40: Assign data points to nearest centroid using (3)
41: Save assigned cluster as Ck

42: Evaluate fitness WAlg.B
k of µAlg.B

k using (1)
43: Update fitness evaluation: FE ← FE + 1
44: Ubest ← µAlg.A

k ; Cbest ← Ck if WAlg.A
k < Wbest

45: end for
46: end for
47: end while
48: return Final clusters Cbest and centroids Ubest

8874 Cluster Computing (2024) 27:8865–8887

123

We present the internal procedures of the PHS

scheme in Algorithm 2. While the input parameters largely

mirror those of the SHS, the PHS algorithm uniquely omits

the necessity for a feedforward percentage. In the PHS

framework, Algorithm A is configured as k-means, while

Algorithm B is either CMA-ES or DE. Importantly, the

sequence in which these algorithms are arranged is

inconsequential, as long as they operate based on their

specific search processes.

The PHS begins by initializing the parameters as out-

lined in step 1 of Algorithm 2. The fitness evaluation FE

counter is initialized to zero, and the initial best fitness

value is set to negative infinity due to the minimization

nature of the problem. Thus, a smaller fitness value in (1)

indicates superior clustering performance. Memory allo-

cated for the optimal centroid and the related clustered

datasets is cleared initially. Then the subsequent steps of

Algorithm 2 involve initializing both the k-means algo-

rithm and either CMA-ES or DE by producing random

initial centroids between steps 4 and 13. For k-means, a

single solution representing the K clusters is generated,

with each centroid having d-dimensions. In contrast, for

CMA-ES or DE, a population P of initial centroids is

produced. For the PHS-CFM model, a population size of

P� 1 is generated, as it will be combined with the k-means

solution, resulting in a total population size of P. For the

PHS-DCFM model, a full population size P is generated

because each algorithm operates with its distinct feedback

loop.

The algorithm continually evaluates the solutions gen-

erated by both k-means and either CMA-ES or DE, subject

to the termination criteria specified in step 15. Upon

meeting this criteria, the algorithm ceases execution and

returns the results. This ongoing evaluation is facilitated by

the FE counter at steps 11, 21, and 43 of Algorithm 2.

However, should the constraints remain unviolated, the

algorithm independently advances with k-means compu-

tations in steps 16–23 and CMA-ES or DE in steps 31–45.

Furthermore, between steps 24–30, either the CFM or

DCFM mechanisms are enforced. Then, execution persists

until the termination conditions are met, at which point the

optimal centroids and corresponding clustered data points

are generated in step 48 and outputted. Based on the

described approach for developing the hybrid schemes,

Table 1 summarizes the eight hybrid configurations eval-

uated in this study to enhance clustering performance.

PHS: Time Complexity In contrast to the SHS, the TC of

the PHS is slightly different since the configuration of the

constituent algorithms and the feedback mechanism

employed play an essential role. The TC of PHS with CFM

and DCFM is obtained as follows. In the initialization

phase (steps 4–14), the TC is OððP� 1Þ � KÞ and OðKÞ
for the metaheuristics and k-means, respectively. In steps

24–30, the algorithm performs the selection of the feedback

mechanism, whose TC can be obtained as follows: steps

25–27 perform the sorting and merging operation using

CFM, whose TC after each iteration is increased by

OðK logKÞ, whereas steps 28–30, where DCFM is

employed, the TC remains as without the feedback mech-

anisms since the achieved solution from both constituent

algorithms are maintained separately and no merging

operation is performed. The PHS uses steps 16–47

criteria

A

B

Fig. 4 Parallel hybrid

scheme with Coupled feedback

mechanism

 criteria

A

B

Fig. 5 Parallel hybrid

scheme with Decoupled

feedback mechanism

Cluster Computing (2024) 27:8865–8887 8875

123

(excluding the selection of feedback mechanism in steps

24–30) to update the population, and the TC differs based

on the constituent algorithms employed. For example, the

TC when k-means is employed can be formulated as OðKÞ.
On the contrary, when metaheuristics are employed the TC

is OðP� KÞ. In summary, the overall TC for PHS with

CFM is given as OðK þ ðP� 1Þ � K þ TFE � ðK þ P�
KÞ þ TFE � K logKÞ whereas for PHS with DCFM we

obtain OðK þ ðP� 1Þ � K þ TFE � ðK þ P� KÞÞ, where
K, P, and TFE denote the number of clusters, population

size, and total number of fitness evaluations, respectively.

This clearly demonstrates that the PHS is indeed slower

than the SHS by the additional order of OðK þ P� KÞ in
the DCFM option.

3.4.3 Termination criteria and boundary control method
used in the HMs

a. Termination and feedforward criteria The termination

and feedforward criteria used across the hybrid

schemes is based on the total fitness evaluations (TFE).

The TFE is a stopping criterion widely used in the

literature to control the number of fitness evaluations

performed during an optimization process [24]. The

TFE metric measures the number of fitness function

evaluations required by an algorithm to find the opti-

mal or near-optimal solution. This metric provides

insights into the effectiveness of the algorithm in

exploring the search space and converging to the

optimal solution.

The idea behind using TFE as a stopping criterion

was to limit the computational budget for optimization

and ensure that all the clustering algorithms were ter-

minated fairly and equally after a predefined number of

fitness evaluations. In general, it is accepted that this

approach helps in controlling the optimization process,

especially when the actual fitness landscape or con-

vergence behavior of the problem is unknown [25]. We

computed TFE algorithmically as follows:

1. Initialization We set an initial counter for fitness

evaluations FE to zero (see step 1 in Algorithm 1).

2. Optimization loop In each iteration or generation of

the algorithm, we incremented the FE counter by

the number of fitness evaluations performed in that

iteration (see steps 12, 24, and 30 in Algorithm 1).

3. Termination criteria We then checked whether FE

has reached or exceeded the predefined maximum

number of fitness evaluations, denoted as TFE (see

step 18 in Algorithm). If it has, the optimization

algorithm then terminates. Otherwise, the process

continues.

4. Feedforward criteria Furthermore, the feedforward

criteria (FFC) in the serial hybrid scheme (SHS) is

computed as follows:

FFC ¼ ðTFE � fcÞ=100 ð12Þ

where fc is the percentage of the total number of

TFE that will be consumed by Algorithm 1 (i.e.

k-means) in the SHS. This parameter can be used

to control how long the k-means should be exe-

cuted before outputting its results to Algorithm 2

(i.e DE or CMA-ES) for further refinement.

We note that the choice of TFE depends on various

factors, including the available computational resour-

ces, the complexity of the optimization problem, and

the desired trade-off between exploration and

exploitation. Setting TFE too low may result in pre-

mature convergence, while setting it too high may lead

to excessive computational time. Therefore, tuning this

parameter is an important aspect of using TFE as a

stopping criterion in metaheuristicss.

b. Clipping boundary control method We used the

clipping boundary control (CBC) method to ensure

that candidate solutions generated during the optimiza-

tion process in the different HM schemes remain

within the feasible solution space defined by the

problem’s boundaries. This is to ensure that the

clustering centroids do not drift outside the solution

space. CBC works by checking whether a generated

Table 1 Proposed hybrid

configurations
Hybrid scheme Feedback mechanism Configuration Hybrid acronym

SHS Feedforward k-means CMA-ES CAKS

k-means DE DEKS

PHS CFM k-means CMA-ES CAKP-CFM

k-means DE DEKP-CFM

CMA-ES DE CADEP-CFM

DCFM k-means CMA-ES CAKP-DCFM

k-means DE DEKP-DCFM

CMA-ES DE CADEP-DCFM

8876 Cluster Computing (2024) 27:8865–8887

123

candidate solution (i.e. centroid) violates any of the

problem’s boundary constraints (i.e. L and U). If a

constraint is violated, the method ‘‘clips’’ or adjusts the

solution to bring it back within the valid range while

preserving as much of the solution’s quality as

possible.

In our hybrid schemes, the CBC was implemented

for a single variable as follows [26]:

xi;j ¼
Uj; if ðxi;j [UjÞ
Lj; if ðxi;j\LjÞ
xi;j otherwise.

8
><

>:
ð13Þ

where, xi;j represents the current i th solution (i.e.

centroid) of the j th dimension, and the pair U and

L represent the upper and lower bounds of the j th

dimension, respectively. By using this method, the

hybrid schemes ensure that the generated solutions

remain within the problem’s feasible solution space,

even if the algorithm explores regions outside the

bounds. It helps prevent infeasible solutions and

maintains the integrity of the optimization process.

Next, we describe the SHS algorithm.

4 Application to base station placement
in smart grids

4.1 Problem definition

To demonstrate the use of our proposed hybrid clustering

schemes, we examined the optimal placement of multiple

edge base stations (BSs) within a large-scale smart grid

network, as depicted in Fig. 6. The network spans a sub-

stantial geographic area (potentially a city or province) and

incorporates home controllers (e.g. smart meters) installed

in residential buildings. These home controllers (i.e. nodes)

adopt wireless communication technologies to transmit

data to an edge base station, which subsequently relays the

data to a central edge data center for processing and action,

contingent upon the state of the smart grid.

The objective is to determine the optimal locations for

BSs to maximize network coverage while minimizing

associated costs. We presume that the coordinates of a

given set of home controllers, denoted by P are known a

priori and indexed by i ¼ 1; 2; . . .; jPj.
In contrast, the locations of N BSs remain undeter-

mined. Thus, let pi ¼ ðxi; yiÞ represent the coordinates of

different i home controllers, which are assumed to be

randomly distributed within a given spatial domain.

Although the initial locations of BSs are uncertain, it is

assumed that an optimal position exists within the two-

dimensional region D 2 R2, where the placement of a BS j

can maximize the coverage of controllers. Here, D

demarcates the spatial boundaries of the solution space.

Hence, the location of a BSs is denoted as

nj ¼ ðxj; yjÞ 8j ¼ 1; 2; . . .; n ð14Þ

where j represents the index of a BS and ðxj; yjÞ 2 D the

geographical coordinates of the BS. To mitigate the com-

putational burden of channel estimation, we assume that

each home controller i can associate with at most one BS in

the domain D. Thus, the coverage of a home controller at

location pi by a BS at ðxj; yjÞ is determined using the

association indicator described in [27] as follows:

zij ¼
1; if dðpi; njÞ� rc

0; otherwise.

�
ð15Þ

where the coverage radius of an associated BS is desig-

nated as rc, and dðpi; njÞ represents the Euclidean distance

between them, which can be computed as:

dðpi; njÞ :¼ jjpi; njjj ð16Þ

where k � k denotes the Euclidean distance between home

controller pi and edge BS nj. We note that for controller i to

satisfy coverage criteria as specified in (15), either of two

conditions must be fulfilled:

1. The received signal-to-noise ratio (SNR) from the

associated base station (BS) must be greater than or

equal to the SNR from any other BSs within set D, or

2. The distance dðpi; njÞ must be minimized relative to the

distances to other BSs.

For the first condition, the equation for free-space power

reception at the BS can be used as [28]:

Pr ¼
PtGtGrk

2

Lð4pÞ2d2
ð17Þ

where Pt denotes the transmission power, d represents the

distance between the BS and home controller, k denotes the
wavelength of the transmitted signal, L stands for the path

Fig. 6 Illustration of an edge-enabled smart grid network

Cluster Computing (2024) 27:8865–8887 8877

123

loss, Gt characterizes the antenna gain of the BS, and Gr

refers to the antenna gain of the home controller. However,

in our study, we used the second condition, which is based

on the network coverage indicator described in the next

section.

4.2 Network coverage indicator

For the objective of BS placement, we considered the

coverage performance using the network coverage indica-

tor (NCI) represented by the number of connected nodes

(CN) and non-connected nodes (NCN). The CN represents

the count of nodes within the coverage area of a BS, while

NCN denotes nodes outside this coverage.

NCI calculation We calculated the NCI measures (i.e.

both CN and NCN) algorithmically by first setting the

coverage radius d of each BS (often determined by the

maximum transmit power of the BS), and subsequently

counting the nodes that lie within this radius. This was

achieved as follows: let dj be the coverage radius of a BS j,

and let Dij represent the distance from the BS j to a home

controller i. The home controller i is considered to be

within the coverage area of the BS j and counted into the

set CN if the following condition is met:

Dij � dj ð18Þ

Otherwise, if Dij is greater than dj, the home controller i is

outside the coverage area of the BS j and counted into the

set NCN. Consequently, by using the NCI measure, our

objective is to maximize the network coverage hence

minimizing communication costs, further ensuring that all

nodes (i.e. home controllers) can reliably communicate

their data to the network infrastructure via the BS. This

problem can be addressed using the HM schemes by for-

mulating it as an optimization problem with specific

objective functions and constraints. Below is the mathe-

matical formulation used for solving BS placement prob-

lem using the HM clustering approach:

4.2.1 Placement objective function

The primary objective is to maximize the coverage of each

smart grid home controller, i in the smart grid network. In

this case, the coverage can be defined as the proportion of

nodes within the communication range of at least one base

station, which can be mathematically formulated as

max C ¼ 1

N

XN

i¼1

xi

where N is the total number of nodes, and xi is a binary

variable indicating whether node i is within the commu-

nication range of at least one BS (1 if covered, 0

otherwise). The value of xi is obtained algorithmically

using the NCI approach described above.

4.2.2 Placement constraints

In terms of the BS placement constraints, the following

were considered:

1. Each node i must be within the communication range

of at least one BS j to be considered covered as given

in (18), where dj remains the maximum communica-

tion range of a BS.

2. The number of nodes connected to each BS must not

exceed its capacity:

XN

i¼1

Dij � bj; 8j

where bj is the maximum number of nodes (i.e.

capacity) that can be connected to BS j.

3. The total number of BSs deployed may be limited by

budget or logistical considerations:

XM

j¼1

bj �B

where bj is a binary variable indicating whether BS j is

deployed (1 if deployed, 0 otherwise), and B is the

maximum number of BSs allowed, which corresponds

to the number of cluster centroids inputted into the

clustering method. However, in our study, we set

M ¼ B.

5 Results and discussion

In this section, we report on the performance of the dif-

ferent hybrid schemes for both the clustering and optimal

BS placement problems. First, we enumerate the parame-

ters employed in the different algorithms under consider-

ation. Subsequently, we present our findings from the

algorithm selection phase, in which we examined ten

standalone algorithms (k-means, ABC, CMA-ES, CSO,

DE, FFA, GA, GWO, PSO, and WOA) as detailed in

Sect. 3.3. Evaluation was conducted using the datasets

described in Sect. 3.2. Finally, we report on the compara-

tive results obtained for the various hybrid schemes as well

as in the context of the optimal BS placement problem.

5.1 Parameter settings

We used the grid-search method to determine the param-

eter settings for the individual algorithms considered in our

study. The results from the well-known grid search process

8878 Cluster Computing (2024) 27:8865–8887

123

are reported in Table 2. All methods, including the hybrid

and individual algorithms were implemented in MATLAB

R2022b on a PC with an Intel Core i7 dual processor and

32 GB RAM. The clipping boundary control was used in

all algorithms to ensure that solutions were maintained

within the search space constraints.

From Table 2, the common inputs were determined and

justified as follows: a population size of 5 was chosen to

expedite the computational rates across the various algo-

rithms by drawing a small sample from the population.

This small population size was then compensated for by

using a large TFE value of 10,000, which ensured that

sufficient examination time was given for algorithms to

converge to their global solutions without bias. To ensure a

reasonable number of experimental repetitions without

overwhelming computational resources, the number of

Monte Carlo trials was set at 100.

Regarding the parameters of the individual metaheuris-

tics, the grid search method was used as follows: we

defined a range of values for each parameter, thus creating

a discrete set of options for testing purposes via the grid

search method. This facilitated evaluating every possible

combination within the grid. Subsequently, a series of

experiments were conducted, each testing the metaheuristic

with a different parameter combination from the grid. An

analysis of experimental results was conducted for which

the parameter combination yielding optimal performance

were identifed based on TFE, fitness values, and timing.

The results of the grid search are thus reported in Table 2,

and these values were maintained for the same constituent

algorithms deployed in the different HM schemes.

5.2 Selection of the constituent algorithms

This section presents the outcomes of the selection analysis

described in Sect. 3.3, which aimed to identify suitable al-

gorithms for inclusion in our hybrid schemes. The stan-

dalone algorithms were evaluated using the compact-

isolated and overlapping-intermingled datasets described in

Sect. 3.2.

The results for the compact-isolated datasets character-

ized by 4, 9, and 16 clusters are depicted in Fig. 7a–c,

respectively. The mean fitness values were calculated over

100 Monte Carlo trials for each algorithm, with the total

fitness evaluations (TFE) fixed at 10,000. These analyses

served dual objectives: firstly, to assess the convergence

speed of each algorithm with respect to the TFE, and

secondly, to gauge the accuracy of the final output at

TFE ¼ 10; 000. This dual assessment allows for the iden-

tification of the algorithm that not only converges most

rapidly but also achieves the highest overall fitness at the

conclusion of the trials.

In Fig. 7, the k-means, CMA-ES, and DE algorithms

demonstrated better performance relative to the other

methods for the multiple use-cases comprising 4, 9, and 16

clusters. This better performance is quantified by the lower

mean fitness values, indicative of minimal intra-cluster

distances, achieved by these algorithms in the context of a

minimization clustering problem. Specifically, the k-means

algorithm exhibited rapid convergence, as evidenced by the

horizontal trajectories in the graphs, although it settled at

sub-optimal solutions. This property renders the k-means

algorithm a viable candidate for hybridization with more

proficient algorithms like the CMA-ES and DE algorithms.

Furthermore, both the CMA-ES and DE algorithms

performed better than the k-means in terms of solution

quality across all use-cases for the compact-isolated data-

sets. Moreover, Fig. 7a–c reveals a consistent increase in

the mean fitness values (depicted on the y-axis) as the

number of clusters and data size was progressively

increased. This trend corroborates the increasing com-

plexity of the problem space, indicating that it becomes

more difficult for all the algorithms as the cluster number

and sizes were increased from Fig. 7a–c. This validates the

suitability of our experiments as a benchmark for algo-

rithmic evaluation as considered in our study.

As evidenced in Fig. 8, a comparative analysis of the

various algorithms as applied to the overlapping-inter-

mingled datasets revealed a consistently better perfor-

mance from the k-means, CMA-ES, and DE algorithms.

Although the reasons for such improved performances by

these algorithms remains challenging owing to the

heterogeneity of their respective search mechanisms, nev-

ertheless, our study does elucidate patterns of efficacy

under varying cluster numbers and sizes. Furthermore, we

observed that the k-means algorithm exhibited rapid con-

vergence and robust performance consistently across the

different datasets examined here. Consequently, we can

affirm that across the diverse datasets, the trio of the

k-means, CMA-ES, and DE algorithms all consistently

delivered high-quality clustering results (i.e., low mean

fitness values), hence substantiating their inclusion in our

proposed hybrid schemes.

5.3 Performance of the hybrid schemes

The hybrid configurations outlined in Table 1 were asses-

sed using the benchmark datasets from Sect. 3.2. The

outcomes for each use case can be found in Fig. 9 for

compacted-isolated datasets and Fig. 10 for the overlap-

ping-intermingled datasets.

Upon the analysis of the mean fitness values over 100

Monte Carlo trials, we found no statistically significant

differences in performance for the low cluster number

dataset (i.e. 4 clusters, refer to Fig. 9a). However,

Cluster Computing (2024) 27:8865–8887 8879

123

discernible variations in mean fitness performance across

the various hybrid algorithms began to manifest as the

cluster number was increased, as illustrated in Fig. 9b, c.

However, among the evaluated algorithms, the CADEP-

DCFM, DEKP-DCFM, and DEKS schemes consistently

outperformed other methods across the different datasets. It

is noteworthy that while the CADEP-DCFM scheme con-

verged to optimal mean fitness values eventually, its rate of

convergence was conspicuously slower in the 16-cluster

dataset.

In the compact-isolated scenario of Fig. 9, the hybrid

schemes with decoupled feedback mechanism outper-

formed those with the coupled feedback mechanism. On

the other hand, the serial configurations employing the DE

and k-means algorithms exhibited comparable performance

to their parallel counterparts. Notably, we observed that the

serial configurations consistently demonstrated a lower

variance in fitness values as compared to their parallel

counterparts.

In the analysis of the overlapping-intermingled datasets,

as illustrated in Fig. 10, the CADEP-DCFM

scheme demonstrated robust performance across the varied

datasets. Notably, in scenarios with a high number of

clusters, as shown in Fig. 10c, CADEP-DCFM exhibited

satisfactory results in the long run, albeit at a slower fitness

evaluation rate. In comparison, the DEKS scheme show-

cased competitive performance against its parallel coun-

terparts while surpassing its CAKS analog in most cases.

Furthermore, our analysis reveals that the hybrid parallel

configurations, particularly those incorporating two meta-

heuristicss with the decoupled feedback mechanism,

exhibited the best performance in terms of clustering

accuracy when evaluated over the extended range of the

TFE. However, this configuration lacks in computational

speed (i.e. achieving good clustering results within small

fitness evaluation rates) as compared to the other methods.

Consequently, we argue that for applications prioritizing

execution speed over clustering accuracy, the serial hybrid

configuration employing the k-means and DE algorithm

(a) 4 clusters (b) 9 clusters (c) 16 clusters

Fig. 7 Compact-isolated use-case showing the fitness evolution of the different standalone candidate algorithms

Table 2 Parameters settings across the different algorithms

Common

inputs

Population size = 5, TFE ¼ 10000, Monte Carlo trials = 100, fc ¼ 5, Number of clusters = Data dependent

ABC Abandonment limit = 24, Acceleration coefficient upper bound = 1, Onlooker Bees = population size

CMA-ES Except for the population size, all operational parameters in CMA-ES are internally configured, rendering the method essentially

user-parameter-free.

CSO Discovery of alien eggs = 0.2

DE Crossover probability = 0.2, Lower bound of scaling factor = 0.2, Upper bound of scaling factor = 0.8

FFA Light absorption coefficient = 1, Attraction coefficient base value = 2, Mutation coefficient = 0.2, Mutation coefficient damping

ratio = 0.98

GA Crossover percentage = 0.8, Number of offsprings = 4, Selection rate = 0.8, Selection operator = Roulette wheel, Mutation

percentage = 0.2, Crossover type = Single point crossover, Elitism rate = 0.5

GWO Beyond the standard inputs, the GWO technique is devoid of additional user-defined parameters

PSO Inertia weight (adaptive) = (0.1,1.1), Self adjustment weight = 1.5, Acceleration coefficients = Uniformly distributed (0,1)

random vector, Social adjustment weight = 1.5

WOA Beyond the standard inputs, the GWO technique is devoid of additional user-defined parameters

8880 Cluster Computing (2024) 27:8865–8887

123

should be recommended. Conversely, if accuracy is of

paramount importance, then the CADEP-DCFM algorithm

will be the most suitable choice. It is also noteworthy that

the application of the CMA-ES algorithm generally resul-

ted in slower convergence rates, thereby affecting the

overall efficiency of such hybrid configurations that depend

on it.

Finally, upon comparing the performances of the stan-

dalone methods presented in Figs. 7 and 8 to the hybrid

schemes in Figs. 9 and 10, it is evident that the hybrid

schemes outperformed the standalone methods. This can be

confirmed following the summary statistics presented in

Table 3, which shows the mean and standard deviation of

the fitness values across all the clustering techniques con-

sidered in our study. This results underscore the advantage

of harnessing the individual strengths of the original

methods when constructing hybrid schemes. Further dis-

cussions in the subsequent section will focus on the timing

performances of these methods.

5.4 Physical timing performance

The computational efficiency of the different algorithms

was quantified based on their average execution times, as

reported in Table 4. These results were collated following

simulations conducted on a computer with specifications

mentioned in Sect. 5.1. The values reported were also

calculated based on 100 Monte Carlo simulations per

algorithm, and conducted across all datasets presented in

Sect. 3.2. These timing measurements were equally

benchmarked by terminating all algorithms at TFE ¼
10; 000 and the results obtained are as shown in Table 4.

Our findings demonstrated a positive correlation

between the timing performance of each algorithm and the

data sizes across the types of datasets examined. This

confirms that computational time typically increases with

an increase in the data size, thereby justifying the variety of

datasets considered in the benchmark experiments of this

study.

Furthermore, from Table 4, we observed no significant

timing difference among the methods tested across the

different datasets and cluster configurations. Specifically,

the time difference between the fastest original method (i.e.

WOA) and the slowest hybrid method (i.e. CAKP-DCFM)

is approximately 2 s for the 4-cluster scenario. In the 9 and

16 cluster scenarios, the maximum deviations recorded was

3 and 14 s, respectively. Thus, by using the TFE as the

stopping criterion, we ensured a fair comparison among all

algorithms, thus avoiding any undue advantage. This fur-

ther corroborates the argument in [24], which supports the

efficacy of using TFE to assess both timing and accuracy

performance. In addition, the results of Table 4 further

(a) 4 clusters (b) 9 clusters (c) 16 clusters

Fig. 8 Overlapping-intermingled use-case showing the fitness evolution of the different standalone candidate algorithms

(a) 4 clusters (b) 9 clusters (c) 16 clusters

Fig. 9 Fitness evolution of hybrid schemes for the compact-isolated datasets

Cluster Computing (2024) 27:8865–8887 8881

123

suggest that hybrid approaches can effectively rival origi-

nal methods in terms of execution time as long as they are

controlled using the TFE measure.

5.5 Comparison to state-of-the-art HM schemes

In this section, we discuss the proposed HM schemes in

comparison to existing methods towards highlighting the

advantages of our research and schemes. Firstly, in Table 5

we present the diverse configurations and feedback mech-

anisms utilized by various HM schemes documented in the

literature. Upon reviewing Table 5, it becomes evident that

a majority of existing schemes do not incorporate the

DCFM approach. This observation underscores the absence

of DCFM-based analysis in existing schemes and high-

lights its integration within our proposed schemes.

Furthermore, many existing HM methods typically ini-

tiate clustering with k-means, and then refine the solutions

using other metaheuristics such as the PSO algorithm.

However, as we have demonstrated in Sect. 5.2, both the

PSO, GA, and other approaches yielded unsatisfactory

results across the datasets examined in this study. This

highlights the importance of considering diverse data

characteristics, revealing that algorithms like PSO and GA

often struggle in clustering tasks, potentially due to their

limited ability to explore the problem space effectively.

Consequently, there is a need for enhancing their opera-

tional procedures. Additionally, in many of the HM-based

clustering articles in the literature, most authors often

failed to provide the results of their pre-selection experi-

ments and analyses prior to the development of their HM

schemes. In contrast, such detailed pre-selection experi-

ments were undertaken in our study with sample methods

drawn from across both swarm and evolutionary-based

algorithms. Hence, this enabled us to select the best per-

forming metaheuristics for our HM schemes based on the

characteristics of our diverse datasets.

Consequently, we have investigated the efficacy of the

DE and CMA-ES algorithms based on their noted effi-

ciency and robustness in addressing various clustering

scenarios, as evidenced by the datasets employed in our

research. Within most parallel schemes in Table 5, the

CFM method emerges as a popular choice, likely owing to

its straightforward implementation as compared to the

DCFM. However, our results analysis presented in Table 3

reveals that the PHS-DCFM scheme exhibited superior

performance, particularly in scenarios involving a large

number of clusters. Being a scheme seldom explored by

prior methodologies, as indicated in Table 5, we have

demonstrated a critical advantage of our scheme as well as

other configurations adopted in this research.

5.6 Edge base station placement

The various hybrid algorithms were also employed to

optimally position four base stations (BSs) with the aim of

maximizing network coverage in the clustered settlements

depicted in Fig. 11. The resulting BS locations exhibited

negligible variations, which was attributed to the aggre-

gation of the top-performing outcomes from 100 Monte

Carlo simulations. Consequently, the observed consistency

in results was expected, as our emphasis was on placement

accuracy rather than convergence speed.

Furthermore, we assumed that the datasets outlined in

Sect. 3.2 depicted networks with clustered nodes necessi-

tating optimal BS placement. Subsequently, we employed

all methods considered in our study to determine the

optimal locations of multiple BSs. The outcomes were

analyzed in terms of the connectivity metrics, namely CN

for connected nodes and NCN for non-connected nodes,

and these are reported in Table 6, with the best methods

emphasized in bold.

From Table 6, it is evident that the hybrid schemes

consistently outperformed the original methods across all

(a) 4 clusters (b) 9 clusters (c) 16 clusters

Fig. 10 Fitness evolution of hybrid schemes for the overlapping-intermingled datasets

8882 Cluster Computing (2024) 27:8865–8887

123

Table 3 Mean and standard deviation of fitness values across all methods and datasets

Algorithms Compact-isolated Overlapping-intermingled

K = 4 K = 9 K = 16 K = 4 K = 9 K = 16

ABC 401.02 ± 33.0 1378.0 ± 72.94 2056.99 ± 58.18 841.95 ± 28.21 2014.06 ± 44.55 1266.40 ± 24.91

CADE-CFM 257.63 ± 3.75 726.92 ± 80.68 1623.70 ± 143.63 732.83 ± 3.56 1673.47 ± 46.68 1081.0 ± 36.98

CADE-DCFM 263.26 ± 6.79 766.21 ± 93.27 1569.66 ± 140.02 733.91 ± 3.83 1646.09 ± 34.97 1051.97 ± 33.67

CAKP-CFM 267.41 ± 77.56 923.67 ± 247.57 1357.77 ± 182.77 731.90 ± 34.15 1600.43 ± 72.76 958.98 ± 34.42

CAKP-DCFM 267.51 ± 78.03 977.53 ± 220.52 1345.26 ± 202.95 726.05 ± 0.85 1614.33 ± 77.77 960.58 ± 31.67

CAKS 271.77 ± 65.74 902.39 ± 250.63 1266.37 ± 155.64 729.54 ± 27.84 1582.0 ± 58.06 943.50 ± 23.60

CMA-ES 273.48 ±36.55 1115.20 ± 252.73 1666.42 ± 119.40 739.62 ± 5.01 1672.40 ± 31.19 1081.20 ± 28.40

CSO 445.29 ± 53.36 1476.90 ± 90.05 2187.50 ± 70.60 862.72 ± 38.57 2063.57 ± 55.64 1280.07 ± 31.60

DE 267.68 ± 28.40 714.64 ± 80.22 1405.29 ± 159.02 741.90 ± 24.52 1634.05 ± 39.51 1029.46 ± 36.89

DEKP-CFM 273.87 ± 90.41 942.15 ± 241.38 1335.30 ± 166.13 726.30 ± 0.68 1603.69 ± 65.52 947.72 ± 30.0

DEKP-DCFM 258.34 ± 20.17 693.17 ± 85.44 1235 ± 143.30 726.66 ± 0.78 1580.04 ± 29.59 947.59 ± 23.93

DEKS 258.74 ± 14.48 671.15 ± 94.82 1255.61 ± 145.58 726.03 ± 2.75 1579.13 ± 35.28 949.66 ± 28.14

FFA 480.83 ± 110.39 1371.55 ± 161.51 1970.96 ± 131.02 863.87 ± 71.08 1987.05 ± 111.91 1219.20 ± 57.53

GA 301.48 ± 88.52 1120.45 ± 152.37 1890.76 ± 126.69 752.47 ± 15.35 1830.48 ± 65.30 1176.40 ± 43.99

GWO 565.52 ± 140.88 1573.14 ± 182.89 2264.84 ± 133.82 926.40 ± 76.65 2138.84 ± 128.63 1333.33 ± 61.95

k-means 399.36 ± 188.1 929.12 ± 253.67 1319.44 ± 145.75 732.62 ± 36.08 1608.69 ± 71.80 956.78 ± 32.17

PSO 586.99 ± 103.67 1706.27 ± 152.98 2261.38 ± 133.15 863.84 ± 57.26 2012.79 ± 90.34 1235.31 ± 44.92

WOA 462.72 ± 160.56 1522.71 ± 179.0 2186.85 ± 141.25 901.57 ± 79.96 2067.95 ± 124.94 1284.81 ± 59.56

Table 4 Average execution

time (in seconds)
Algorithms Compact-isolated Overlapping-intermingled

K = 4 K = 9 K = 16 K = 4 K = 9 K = 16

ABC 16.2 50.5 127.09 15.53 50.99 117.21

CADEP-CFM 16.68 50.9 135.15 16.13 51.76 123.46

CADEP-DCFM 16.74 50.28 136.74 15.97 50.98 123.62

CAKP-CFM 17.31 52.35 141.09 16.59 52.76 127.66

CAKP-DCFM 17.41 52.84 139.47 16.54 52.54 125.69

CAKS 17.27 53.5 139.55 16.58 53.37 126.27

CMA-ES 17.36 51.95 135.58 16.64 52.61 121.58

CSO 16.13 49.83 133.2 15.42 50.47 116.08

DE 16.15 49.83 131.93 15.55 50.58 115.49

DEKP-CFM 16.43 49.91 138.83 15.77 50.74 121.63

DEKP-DCFM 16.26 49.64 138 15.59 50.63 120.83

DEKS 16.33 49.75 135.48 15.65 50.33 120.71

FFA 16.09 50.12 132.78 15.56 51.03 116.1

GA 16.54 49.96 130.25 15.99 51 118.01

GWO 15.78 49.45 127.24 15.21 50.13 117.09

K-Means 15.82 49.49 129.76 15.01 49.18 116.78

PSO 15.88 49.7 130.07 15.58 50.84 117.89

WOA 15.46 49.89 126.17 14.92 50.36 117.04

Cluster Computing (2024) 27:8865–8887 8883

123

the datasets. However, within the hybrid schemes, although

the parallel methods exhibited a slightly better performance

over the serial schemes, nevertheless the difference was

marginal. In the case of the larger cluster networks, it was

expected that more nodes will be unconnected since only

one BS was assigned per node cluster. We note that for

more realistic network configurations, additional BSs may

be required to improve coverage, or an increase in BS

transmitter power may be necessitated. However, the pri-

mary focus of our study was to elucidate the viability of the

proposed hybrid clustering schemes for cost-effective net-

work planning, especially in scenarios where the cost of

deploying BSs must be minimized.

6 Conclusion

In this paper, we have proposed two algorithms to study

eight different HM-based clustering schemes, which inte-

grate pre-selected metaheuristics and the k-means algo-

rithm to improve clustering performance. Our approach

involved the use of a well-defined objective function,

investigation across diverse datasets, and a well-docu-

mented selection process to determine the candidate algo-

rithms for the hybrid schemes. We further examined the

performance of both the coupled and decoupled feedback

mechanisms across the different hybrid configurations. Our

findings indicate that the parallel configurations with a

decoupled feedback mechanism demonstrated better

Table 5 Configuration and

feedback mechanisms of

different HM schemes in

comparison to the proposed

HMs

References Configuration Constituent algorithm Feedback mechanism

Serial Parallel K-Means DE CMA-ES CFM DCFM

MBCO [8] 4 7 4 7 7 7 7

Hybrid FFA [9] 4 7 4 7 7 7 7

ATPSO [12] 4 7 4 7 7 7 7

SA-PSO-GK?? [13] 4 7 4 7 7 7 7

Hybrid PSO [14] 7 4 7 7 7 4 7

MPGO [15] 7 4 7 7 7 4 7

PSOGSA [17] 7 4 7 7 7 4 7

ED-DE [18] 7 4 7 4 7 4 7

Hybrid BFO [19] 7 4 7 7 7 4 7

SHS (Proposed) 4 7 4 4 4 7 7

PHS-CFM (Proposed) 7 4 4 4 4 4 7

PHS-DCFM (Proposed) 7 4 4 4 4 7 4

(a) CAKS (b) DEKS (c) CAKP-CFM (d) DEKP-CFM

(e) CADEP-CFM (f) CAKP-DCFM (g) DEKP-DCFM (h) CADEP-DCFM

Fig. 11 Base station placement using the hybrid schemes (the purple diamonds represent the location of the BS; the red nodes are the non-

connected nodes, whereas the blue nodes are the connected nodes.)

8884 Cluster Computing (2024) 27:8865–8887

123

clustering accuracy over an extended range of total fitness

evaluations (TFE), albeit at a slower convergence rate as

compared to the serial-based methods. Therefore, for sce-

narios prioritizing speed, we can recommend the serial

hybrid configuration, for example, using k-means and the

DE algorithm. Conversely, for applications where accuracy

is crucial, a parallel configuration with the decoupled

feedback mechanism may be most appropriate. Impor-

tantly, by using the TFE as the stopping criterion in our

algorithms, we confirm that there were no significant dif-

ferences in the computational times between the hybrid and

individual metaheuristics. Consequently, future works will

aim to explore self-adaptive and mutual-adaptive learning

mechanisms as well as assess the effects of different ini-

tialization and boundary control methods on the clustering

performance of these hybrid schemes.

Author contributions D.N. Molokomme conceptualized the research

contribution, wrote the methodology, implemented the algorithms

using the software, and wrote the original draft of the manuscript.

Whereas, A. J. Onumanyi and A. M. Abu-Mahfouz supervised, did

formal analysis, and also reviewed and edited the manuscript.

Funding Open access funding provided by University of Pretoria.

This research was funded by the Council for Scientific and Industrial

Research (CSIR).

Data availability No datasets were generated or analysed during the

current study.

Declarations

Competing interests The authors declare no competing interests .

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Azaza, M., Wallin, F.: Smart meter data clustering using con-

sumption indicators: responsibility factor and consumption vari-

ability. Energy Procedia 142, 2236–2242 (2017). https://doi.org/

10.1016/j.egypro.2017.12.624

Table 6 Base station coverage performance (CN connected nodes and N-CN non-connected nodes)

Class Algorithms Compact-isolated Overlapping-intermingled

K = 4 K = 9 K = 16 K = 4 K = 9 K = 16

CN N-CN CN N-CN CN N-CN CN N-CN CN N-CN CN N-CN

Serial hybrid CAKS 376 24 835 65 1524 76 306 94 704 196 1509 91

DEKS 376 24 833 67 1527 73 306 94 705 195 1587 13

Parallel hybrid CADE-CFM 376 24 835 65 1493 107 306 94 704 196 1508 92

CADE-DCFM 376 24 835 65 1518 82 306 94 706 194 1536 64

CAKP-CFM 376 24 833 67 1527 73 306 94 705 195 1550 50

CAKP-DCFM 376 24 837 63 1523 77 306 94 704 196 1590 10

DEKP-CFM 376 24 837 63 1528 72 306 94 701 199 1504 96

DEKP-DCFM 378 22 836 64 1529 71 304 96 704 196 1503 97

Original methods ABC 200 200 126 774 671 929 120 280 350 550 1116 484

CMA-ES 356 44 785 115 1483 117 306 94 654 246 1498 102

CSO 342 58 497 403 867 733 303 97 566 334 1296 304

DE 346 54 796 104 1463 137 306 94 651 249 1449 151

FFA 366 34 647 253 1313 287 286 114 684 216 1215 300

GA 375 25 745 155 1219 381 299 101 677 223 1292 308

GWO 363 37 596 304 945 655 291 109 630 270 1280 320

k-means 363 37 826 74 1498 102 306 94 643 257 1446 154

PSO 285 115 372 528 982 618 298 102 614 286 1266 334

WOA 372 28 517 383 1014 586 291 109 618 282 1204 396

Cluster Computing (2024) 27:8865–8887 8885

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.egypro.2017.12.624
https://doi.org/10.1016/j.egypro.2017.12.624

2. Ghosal, A., Nandy, A., Das, A.K., Goswami, S., Panday, M.: A

Short Review on Different Clustering Techniques and Their

Applications, pp. 69–83. Springer, New York (2019). https://doi.

org/10.1007/978-981-13-7403-6_9

3. Yadav, S.A., Poongodi, T.: A novel chain-based clustering for

green communication in wireless sensor network. Int. J. Com-

mun. Syst. 36(13), 5523 (2023). https://doi.org/10.1002/dac.5523

4. Baalamurugan, K.M., Bhanu, S.V.: An efficient clustering

scheme for cloud computing problems using metaheuristic

algorithms. Clust. Comput. 22, 12917–12927 (2019). https://doi.

org/10.1007/s10586-018-1800-4

5. Mirsadeghi, E., Khodayifar, S.: Hybridizing particle swarm

optimization with simulated annealing and differential evolution.

Clust. Comput. 24, 1135–1163 (2021). https://doi.org/10.1007/

s10586-020-03179-y

6. Mageshkumar, C., Karthik, S., Arunachalam, V.: Hybrid meta-

heuristic algorithm for improving the efficiency of data cluster-

ing. Clust. Comput. 22, 435–442 (2019). https://doi.org/10.1007/

s10586-018-2242-8

7. Naghavipour, H., Idris, M.Y.I.B., Soon, T.K., Salleh, R.B., Gani,

A.: Hybrid metaheuristics using rough sets for qos-aware service

composition. IEEE Access 10, 112609–112628 (2022). https://

doi.org/10.1109/access.2022.3213705

8. Das, P., Das, D.K., Dey, S.: A modified bee colony optimization

(MBCO) and its hybridization with k-means for an application to

data clustering. Appl. Soft Comput. 70, 590–603 (2018). https://

doi.org/10.1016/j.asoc.2018.05.045

9. Xie, H., Zhang, L., Lim, C.P., Yu, Y., Liu, C., Liu, H., Walters,

J.: Improving k-means clustering with enhanced firefly algo-

rithms. Appl. Soft Comput. 84, 105763 (2019). https://doi.org/10.

1016/j.asoc.2019.105763

10. Golalipour, K., Akbari, E., Hamidi, S.S., Lee, M., Enayatifar, R.:

From clustering to clustering ensemble selection: a review. Eng.

Appl. Artif. Intell. 104, 104388 (2021). https://doi.org/10.1016/j.

engappai.2021.104388

11. Zhou, P., Sun, B., Liu, X., Du, L., Li, X.: Active clustering

ensemble with self-paced learning. IEEE Trans. Neural Netw.

Learn. Syst. (2023). https://doi.org/10.1109/tnnls.2023.3252586

12. Xu, X., Li, J., Zhou, M., Xu, J., Cao, J.: Accelerated two-stage

particle swarm optimization for clustering not-well-separated

data. IEEE Trans. Syst. Man Cybern. 50(11), 4212–4223 (2018).

https://doi.org/10.1109/tsmc.2018.2839618

13. Abdo, A., Abdelkader, O., Abdel-Hamid, L.: SA-PSO-GK??: a

new hybrid clustering approach for analyzing medical data. IEEE

Access 12, 12501–12516 (2024). https://doi.org/10.1109/

ACCESS.2024.3350442

14. Cheng, R., Sun, C., Jin, Y.: A multi-swarm evolutionary frame-

work based on a feedback mechanism. In: 2013 IEEE Congress

on Evolutionary Computation, pp. 718–724. IEEE (2013). https://

doi.org/10.1109/cec.2013.6557639

15. Huang, K.-W., Wu, Z.-X., Peng, H.-W., Tsai, M.-C., Hung, Y.-

C., Lu, Y.-C.: Memetic particle gravitation optimization algo-

rithm for solving clustering problems. IEEE Access 7,
80950–80968 (2019). https://doi.org/10.1109/access.2019.

2923979

16. Qtaish, A., Braik, M., Albashish, D., Alshammari, M.T., Alre-

shidi, A., Alreshidi, E.J.: Optimization of k-means clustering

method using hybrid capuchin search algorithm. J. Supercomput.

(2023). https://doi.org/10.1007/s11227-023-05540-5

17. Chaudhari, S., Thakare, A., Anter, A.M.: Psogsa: a parallel

implementation model for data clustering using new hybrid

swarm intelligence and improved machine learning technique.

Sustain. Comput. 41, 100953 (2024). https://doi.org/10.1016/j.

suscom.2023.100953

18. Wang, Y., Li, B., Weise, T.: Estimation of distribution and dif-

ferential evolution cooperation for large scale economic load

dispatch optimization of power systems. Inf. Sci. 180(12),
2405–2420 (2010). https://doi.org/10.1016/j.ins.2010.02.015

19. Madhusudhanan, B., Sumathi, P., Karpagam, N.S., Mahesh, A.,

Suhi, P.A.P.: An hybrid metaheuristic approach for efficient

feature selection. Clust. Comput. 22(Suppl 6), 14541–14549

(2019). https://doi.org/10.1007/s10586-018-2337-2

20. Dias, L.A., Ferreira, J.C., Fernandes, M.A.C.: Parallel imple-

mentation of k-means algorithm on FPGA. IEEE Access 8,
41071–41084 (2020). https://doi.org/10.1109/access.2020.

2976900

21. Beyer, H.-G., Sendhoff, B.: Simplify your covariance matrix

adaptation evolution strategy. IEEE Trans. Evol. Comput. 21(5),
746–759 (2017). https://doi.org/10.1109/tevc.2017.2680320

22. Shilaja, C.: Implementation of differential evolution algorithm

and its variants for optimal scheduling of distributed generations.

Int. J. Commun. Syst. 34(6), e4318 (2020). https://doi.org/10.

1002/dac.4318

23. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining

classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3),
226–239 (1998). https://doi.org/10.1109/34.667881

24. Črepinšek, M., Liu, S.-H., Mernik, M.: Replication and com-

parison of computational experiments in applied evolutionary

computing: common pitfalls and guidelines to avoid them. Appl.

Soft Comput. 19, 161–170 (2014). https://doi.org/10.1016/j.asoc.

2014.02.009

25. Mehrmolaei, S., Keyvanpour, M.R., Savargiv, M.: Metaheuristics

on time series clustering problem: theoretical and empirical

evaluation. Evol. Intell. 15(1), 329–348 (2020). https://doi.org/10.
1007/s12065-020-00511-8

26. Kadavy, T., Viktorin, A., Kazikova, A., Pluhacek, M., Senkerik,

R.: Impact of boundary control methods on bound-constrained

optimization benchmarking. IEEE Trans. Evol. Comput. 26(6),
1271–1280 (2022). https://doi.org/10.1145/3583133.3595849

27. Cao, B., Fan, S., Zhao, J., Tian, S., Zheng, Z., Yan, Y., Yang, P.:

Large-scale many-objective deployment optimization of edge

servers. IEEE Trans. Intell. Transp. Syst. 22(6), 3841–3849

(2021). https://doi.org/10.1109/tits.2021.3059455

28. Rappaport, T.S.: Wireless communications-principles and prac-

tice, (the book end). Microw. J. 45(12), 128–129 (2002)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Daisy Nkele Molokomme re-

ceived her B.Tech and M.Tech

in Electrical Engineering from

the Department of Electrical and

Electronic Engineering Tech-

nology, University of Johan-

nesburg, Johannesburg, South

Africa, in 2017 and 2021,

respectively. She is currently

with the Council for Scientific

and Industrial Research (CSIR),

Pretoria, South Africa while

pursuing a Ph.D degree in

Electronic Engineering with the

Department of Electrical, Elec-

tronic and Computer Engineering, University of Pretoria, South

8886 Cluster Computing (2024) 27:8865–8887

123

https://doi.org/10.1007/978-981-13-7403-6_9
https://doi.org/10.1007/978-981-13-7403-6_9
https://doi.org/10.1002/dac.5523
https://doi.org/10.1007/s10586-018-1800-4
https://doi.org/10.1007/s10586-018-1800-4
https://doi.org/10.1007/s10586-020-03179-y
https://doi.org/10.1007/s10586-020-03179-y
https://doi.org/10.1007/s10586-018-2242-8
https://doi.org/10.1007/s10586-018-2242-8
https://doi.org/10.1109/access.2022.3213705
https://doi.org/10.1109/access.2022.3213705
https://doi.org/10.1016/j.asoc.2018.05.045
https://doi.org/10.1016/j.asoc.2018.05.045
https://doi.org/10.1016/j.asoc.2019.105763
https://doi.org/10.1016/j.asoc.2019.105763
https://doi.org/10.1016/j.engappai.2021.104388
https://doi.org/10.1016/j.engappai.2021.104388
https://doi.org/10.1109/tnnls.2023.3252586
https://doi.org/10.1109/tsmc.2018.2839618
https://doi.org/10.1109/ACCESS.2024.3350442
https://doi.org/10.1109/ACCESS.2024.3350442
https://doi.org/10.1109/cec.2013.6557639
https://doi.org/10.1109/cec.2013.6557639
https://doi.org/10.1109/access.2019.2923979
https://doi.org/10.1109/access.2019.2923979
https://doi.org/10.1007/s11227-023-05540-5
https://doi.org/10.1016/j.suscom.2023.100953
https://doi.org/10.1016/j.suscom.2023.100953
https://doi.org/10.1016/j.ins.2010.02.015
https://doi.org/10.1007/s10586-018-2337-2
https://doi.org/10.1109/access.2020.2976900
https://doi.org/10.1109/access.2020.2976900
https://doi.org/10.1109/tevc.2017.2680320
https://doi.org/10.1002/dac.4318
https://doi.org/10.1002/dac.4318
https://doi.org/10.1109/34.667881
https://doi.org/10.1016/j.asoc.2014.02.009
https://doi.org/10.1016/j.asoc.2014.02.009
https://doi.org/10.1007/s12065-020-00511-8
https://doi.org/10.1007/s12065-020-00511-8
https://doi.org/10.1145/3583133.3595849
https://doi.org/10.1109/tits.2021.3059455

Africa. Her current research interests include smart transactive

microgrids, edge computing, metaheuristic algorithms, and artificial

intelligence.

Adeiza James Onumanyi earned
his B.Eng. in Electrical and

Electronics Engineering from

Abubakar Tafawa Balewa

University in Bauchi, Nigeria,

in 2005, and his M.Eng. and

PhD in Communication Engi-

neering from the Federal

University of Technology

(F.U.T) in Minna, Nigeria, in

2010 and 2014, respectively.

Adeiza is a researcher at South

Africa’s Council for Scientific

and Industrial Research (CSIR)

in Pretoria. He has several

research articles published in peer-reviewed journals and at IEEE

flagship conferences. Between 2010 and 2021, he lectured and con-

ducted research at the Department of Telecommunication Engineer-

ing, F.U.T, Minna, Nigeria, where he was involved in securing several

grants, serving on several organizing committees for various confer-

ences, including IEEE conferences, reviewing several articles for high

impact journals, and participating in various technical workshops.

Among his research interests are spectrum sensing in cognitive radio,

wireless sensor networks, smart transactive microgrids, DC

nanogrids, radar systems, image processing, cyber physical systems,

and low powered wireless area networks.

Adnan M. Abu-Mahfouz (M’12-

SM’17) received his MEng and

PhD degrees in computer engi-

neering from the University of

Pretoria. He is currently a Chief

Researcher and the Centre

Manager of the Emerging Digi-

tal Technologies for 4IR

(EDT4IR) research centre at the

Council for Scientific and

Industrial Research (CSIR),

Extraordinary Professor at

University of Pretoria, Professor

Extraordinaire at Tshwane

University of Technology and

Visiting Professor at University of Johannesburg. His research

interests are wireless sensor and actuator network, low power wide

area networks, software defined wireless sensor network, cognitive

radio, network security, network management, sensor/actuator node

development. He is a Section Editor-in-Chief at the Journal of Sensor

and Actuator Networks, an associate editor at IEEE Access, IEEE

Internet of Things and IEEE Transaction on Industrial Informatics,

Senior Member of the IEEE and Member of many IEEE Technical

Communities.

Cluster Computing (2024) 27:8865–8887 8887

123

	Hybrid metaheuristic schemes with different configurations and feedback mechanisms for optimal clustering applications
	Abstract
	Introduction
	Related work
	Methodology
	Objective function
	Datasets
	Compact-isolated dataset
	Overlapping-intermingled dataset

	Candidate algorithms deployed in the HM schemes
	k-means
	CMA-ES
	DE

	Hybrid schemes
	Serial hybrid scheme
	Parallel hybrid scheme
	Termination criteria and boundary control method used in the HMs

	Application to base station placement in smart grids
	Problem definition
	Network coverage indicator
	Placement objective function
	Placement constraints

	Results and discussion
	Parameter settings
	Selection of the constituent algorithms
	Performance of the hybrid schemes
	Physical timing performance
	Comparison to state-of-the-art HM schemes
	Edge base station placement

	Conclusion
	Author contributions
	Open Access
	References

