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Purpose: Artificial intelligence (AI) refers to technology capable of mimicking human cognitive functions and 

has important applications across all sectors and industries, including drug development. This has considerable 

implications for the regulation of drug development processes, as it is expected to transform both the way drugs 

are brought to market and the systems through which this process is controlled. There is currently insufficient 

evidence in published literature of the real-world applications of AI. Therefore, this narrative review investigated, 

collated, and elucidated the applications of AI in drug development and its regulatory processes. 

Methods: A narrative review was conducted to ascertain the role of AI in streamlining drug development and 

regulatory processes. 

Findings: The findings of this review revealed that machine learning or deep learning, natural language processing, 

and robotic process automation were favored applications of AI. Each of them had considerable implications on 

the operations they were intended to support. Overall, the AI tools facilitated access and provided manageability 

of information for decision-making across the drug development lifecycle. However, the findings also indicate 

that additional work is required by regulatory authorities to set out appropriate guidance on applications of the 

technology, which has critical implications for safety, regulatory process workflow and product development 

costs. 

Implications: AI has adequately proven its utility in drug development, prompting further investigations into the 

translational value of its utility based on cost and time saved for the delivery of essential drugs. 
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The current drug development landscape is plagued by costly, time-
ntensive processes that often yield suboptimal results. 1 Artificial intelli-
ence (AI) has been suggested as a potential solution for the challenges
aced in drug development. Expectations for AI in this field are high;
hus, for pragmatic utilization of this technology, it is necessary to in-
estigate its applicability in drug development and regulatory processes.
his is particularly important for the current era of computational tech-
ology in drug development, which seeks to capitalize on large and in-
reasingly complex data to guide development outputs. 2 The definition
f AI typically varies within the literature; however, for the purpose
f this review, AI is defined as a scope of technology that is capable
f mimicking human cognitive functions, such as problem-solving, pat-
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ern recognition and learning. 3 This technology is closely linked to Big
ata, which refers to expansive and complex collections of data that
annot be effectively processed using traditional data analysis tools. 4 , 5 

ig Data, as it pertains to drug development, can be derived from a va-
iety of sources, which include but are not limited to electronic health
ecords (EHR), insurance claims, administrative data, and data derived
rom high-throughput screening in drug modeling. The convergence of
I, Big Data, and drug development occurs in each stage of the devel-
pmental lifecycle of a drug. Within these stages, AI technologies have
een proposed as being capable of improving the efficiency of drug de-
elopment by managing designs, computations, and forecasts more ef-
ectively in comparison to existing methods. 6 The potential benefits of
his are significant, holding great value in drug development as the cur-
ent drug development landscape can cost drug sponsors over 2 billion
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nited States (US) dollars to bring a single drug to the market. 1 Consid-
ring this, it is important to understand how the most recent applications
f AI are evolving to optimize the drug development process. 

he Inefficiencies of Drug Development 

To understand the value of AI in drug development, it is necessary
o first elucidate the problems that result in high costs and contextual-
ze how AI-driven advancements are intended to enhance the efficiency
f development systems. Eroom’s Law, coined by Jack Scannell, repre-
ents the observation that despite technological advancements between
960 and 2010, drug development has progressively become slower and
ore expensive. 7 In contrast, Moore’s Law describes how technologies

mprove with time, becoming more efficient and less expensive in the
rocess. This has not been noted in drug development, despite break-
hrough developments such as high-throughput screening and computa-
ional drug design, among others. 8 Currently, significant advancements
ithin drug development have resulted in high volume and high output
rocesses. However, according to the literature reviewed in this paper,
hese advancements have often been described as superficial, with the
onsensus that productivity from basic research to regulatory authoriza-
ion has declined. 9 While such advancements have facilitated the identi-
cation of additional drug targets and drug-like molecules and improved
ltering capacities, the likelihood that small molecules become fully ap-
roved drugs has remained fairly constant over the past 5 decades while
esearch and development (R&D) processes have become less efficient
nd more expensive. 7 The complexities associated with drug develop-
ent are broad and often nuanced based on the type of drug in devel-

pment, as exemplified by the findings on the limitations of developing
rugs for cardiovascular and nervous system disorders. 8 , 10 The issues
ighlighted in this review are a summative observation of key themes
etailed in the limitations of drug development as described by Scannell
t al 2 and Tormay. 11 

Better than the Beatles ” Problem and “The low-hanging fruit ”

roblem 

The “Better than the Beatles ” problem describes the idea of the im-
robability of developing a new drug that is better than existing ap-
roved drugs for specific targets, as every drug that is released into the
arket raises the stakes for efficacy, making it increasingly difficult for

ubsequent drugs to meet the rising standards. 7 The “low-hanging fruit ”
roblem posits that drug targets that are easy to obtain have already
een identified, and drugs have been developed for those targets. As a
esult, more complex targets remain, requiring more extensive invest-
ent of money and time in the R&D process. This notion aligns with the
nderstanding that the attrition rate for compounds with novel mecha-
isms is higher than those with known mechanisms. 11 This problem has
otential to overlap with the first, as this has been noted in the develop-
ent pipeline for cardiovascular drugs wherein clinical trials are larger

t baseline than those of other therapeutic areas. 8 

Throw money at it ” Tendency and “Basic-research-brute-force ”

ias 

The “Throw money at it ” tendency describes a phenomenon where
rug R&D sponsors allocate greater human capital and additional re-
ources with the expectation that this will increase return on investment
y being the first to market a particular drug. 7 The “Basic-research-
rute-force ” bias refers to the tendency to overestimate the value of ad-
ances in basic research, particularly the identification and validation of
rug targets in the preclinical stages driven by molecular reductionism. 7 

uch advancements are intended to produce better biological and chem-
cal therapeutic developments with greater reproducibility and reliabil-
ty at lower costs. 12 However, there is an evident gap in resource inputs
nd biomedical research outcomes which produce marketable drugs, a
e7
irect failure of the approach to counter attrition by pushing a greater
umber of projects into the development pipeline. 13 , 14 Both of these
ssues relate strongly to the translational value of current drug devel-
pment approaches, from laboratory bench to patient, which is limited
ven in advanced markets such as those in Europe and the US. 9 

Cautious regulator ” Problem 

The “Cautious regulator problem ” describes the rising stringency in
he regulation of drugs that are released into the market owing to the
ailures and threats posed by previously released drugs. Although this
s crucial for public safety, it substantially increases the cost of develop-
ng new drugs as regulations become more challenging to meet. 7 Fur-
hermore, when examining the clinical stages of drug development, 4
hallenges contribute to a decrease in the efficiency of the processes.
irstly, the “narrow clinical search ” problem arises from a change in
pproach, shifting from a broader search for therapeutic potential in bi-
logically active agents to an approach that favors precise effects from
olecules designed with a single drug target in mind. Second is the “big

linical trial ” problem, which refers to clinical trials that are designed
s large and costly experiments that attempt to replicate the sterile and
ontrolled environments of an experiment using human subjects. These
rials are often multi-centred, producing heterogeneous results, and can
e expensive. The third challenge is the “multiple clinical trial ” problem,
n extension of the “better than the Beatles ” and “cautious regulator ”
roblems. It speaks to the strictness of medical practice, where regu-
ators are less likely to accept generalizations on drug efficacy across
eterogeneous patient groups, leading to fewer indications associated
ith drugs and more clinical trials per drug to prove efficacy in varied

ndications. Lastly, the “long cycle time ” problem describes the current
ime investment required for clinical trials. 7 

Regulatory and compliance needs associated with all therapies are
nterwoven into the drug development process. The pharmaceutical reg-
latory industry combines legal, administrative, and technical measures
ndertaken by government and drug sponsors to guarantee the safety,
fficacy, and quality of therapies. 15 Similar to the R&D and clinical
tages of drug development, the regulatory industry must overcome sev-
ral considerations and obstacles with the intention of delivering safe
nd efficacious drugs to the market. This includes issues such as the role
f public engagement in regulatory science, data ownership, and con-
rol, the pre-competitive space, as well as aspects of regulatory science
ike biomarkers, clinical trial data integration, modeling, and surveil-
ance. 16 Furthermore, regulatory professionals today are currently posi-
ioned in a way that is often limiting to their scope of work. 17 Many of
hese professionals focus on specific subprocesses without understand-
ng or being exposed to the full scope of product development. Further-
ore, these subprocesses they are involved in, are often time-intensive

nd performed manually in a siloed approach. 17 , 18 Moving forward,
hese professionals will need to focus on value-added outputs that speak
irectly to patient needs. 17 An example of this would be an increased
ocus on public input regarding the safety concerns of marketed drugs. 18 

Considering the aforementioned, is Big Data-driven AI the solution
o the noted drug development problems? Big Data became a signifi-
ant consideration for drug development around 2010, as computing
echnologies evolved rapidly and continued to grow their processing
ower. 5 This is supported by growing interest in high-capacity compu-
ational subfields of AI, as evidenced by an increase in the availability
f literature between 2016 and 2020. 19 Furthermore, it should be noted
hat many companies are leaning towards the application of AI tech-
ologies, driven by Big Data-related needs. 20 Data utilization in drug
evelopment and regulatory outcomes primarily focuses on 4 key areas:
nforming drug development strategy, characterizing distinctions in ap-
roach among review divisions or therapeutic areas, detailed analysis
f regulatory policy impact on drug development, and enhanced fore-
asting. 21 The data available in pharmaceutical literature can be found
n formats such as text, plots and images, mathematical equations and
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hemical structures. 22 The use of AI in conjunction with Big Data is
elieved to provide actionable insights that would provide solutions to
he aforementioned problems in drug development. As such, the authors
imed to ascertain the role of AI in streamlining drug development and
egulatory processes by providing collated information on the applica-
ions of AI and an overview of the AI-associated transformations in the
egulatory industry based on current needs. Following this, the review
dentified and described the barriers limiting the integration of AI tech-
ologies and finally providing recommendations on the implementation
f AI systems in drug development and regulatory processes. 

ethods 

tudy Design 

This study was conducted as a narrative review. The data sources uti-
ized for this narrative review included 4 databases, namely, Cochrane
ibrary, Medline (OVID), PubMed, and Scopus. The search strategy in-
luded a combination of the medical subject headings (MeSH) terms
uch as “artificial intelligence ”, “drug development ”, and “drug regu-
ation ”. Boolean operators “AND ” and “OR ” were used in the search.
he resultant articles were exported to EndNote (version 20) referenc-

ng manager tool. All duplicate articles were removed using EndNote. 
The inclusion criteria included articles published in English from

015 to present. This time frame was chosen considering the increas-
ng amount of literature focusing on machine learning during this pe-
iod, coinciding with the onset of the Big Data era beginning around
010. 5 , 23 Furthermore, between 2015 and 2020, the utilization of AI
n biotechnology and pharmaceuticals was noted as a significant con-
ributor to the evolution of new drug formulations. 24 The selected pe-
iod allowed for the assimilation of the most relevant and cutting-edge
nformation on the applications of AI. The exclusion criteria included
rticles that were published in languages other than English, and arti-
les that focused primarily on the applications of AI in clinical practice
or diagnostics and patient care, but with no direct correlation to drug
evelopment applications such as in clinical trial settings. Furthermore,
pecific consideration was given to articles that provided examples of
xisting AI utilized in any stage of the drug development pipeline, from
he preclinical stage to regulatory affairs. 

esults and Discussion 

A review of the literature revealed numerous subfields of AI along
ith drug development. These span the entire product lifecycle, includ-

ng drug discovery, pharmaceutical product development, clinical trial
esign and monitoring, product manufacturing and management, and
uality assurance controls. 25 The AI subfields noted in this literature
earch include Natural Language Processing (NLP), Machine Learning
ML), Deep Learning (DL), and Robotic Process Automation (RPA). 

Definitively, the literature describes NLP as computational linguis-
ics, which is a branch of applied AI and computational techniques that
earn, understand, and produce human language content. 26 Machine
earning (ML), on the other hand, refers to AI that does not rely on
tatic algorithms to execute functions but rather learns from available
ata sets, thus effectively creating a machine that is capable of learning
rom experience and improving its functions. 27 This subfield of AI has
enerated considerable interest due to its potential in a wide variety of
ettings, like drug regulation. 28 This AI subdivides into ML-based tech-
iques that include Support Vector Machines, Decision trees, K-nearest
eighbors, Naïve Bayesian methods and DL. 29 , 30 

Considering that DL is an extension of ML, in this review, DL sepa-
ates itself from traditional ML technology by using computational mod-
ls that are made up of multiple processing layers that mimic the human
eural network known as artificial neural networks (ANN). These net-
orks learn representations of unstructured data with multiple layers of
e8
bstraction. DL methods outperform other ML-based approaches and in-
lude tools such as ANN-subfields like Convolutional Neural Networks,
ecurrent Neural Networks, and Generative Adversarial Networks, as
ell as Stacked autoencoders and Boltzmann machines. 20 

Lastly, RPA refers to pre-configured software that has the capacity
o autonomously execute processes, transactions and tasks. 28 It can be
erged with NLP and ML to generate uniform datasets that are relevant

o the analysis performed. 28 According to the authors, this is advanta-
eous to information management systems that are utilized in drug de-
elopment and regulatory processes, considering varying needs to gen-
rate commercially viable data. 

rtificial Intelligence in Research and Development and Preclinical Stages 

f Drug Development 

Currently, the drug development pipeline determines the probabil-
ty of technical and regulatory success of a drug by assessing historical
stimates driven by the current status of the development program and
he specific disease under investigation. This information is then com-
ined with insights from key opinion leaders and statistical analyses
erformed by drug sponsors to provide projections of the likelihood of a
uccessful drug launch. 31 Most interestingly, the use of real-world data
RWD) presents a growing opportunity for guiding drug development
trategy in the stages preceding the preclinical development. 32 How-
ver, it is important to note that Big Data and RWD are not synonymous,
s RWD refers to observational studies that are similar to Big Data but
ocus specifically on patient health status and delivery of care. 33 RWD
re used to develop real-world insights (RWI) and real-world evidence
RWE) that can be used to develop key portions of Target Product Pro-
les (TPPs). These TPPs are effective regulatory lifecycle management
ools that facilitate dialogue between sponsors and regulators, allowing
ore efficient review times. 34 

Definitively, RWE can be understood as scientific evidence derived
rom the rigorous analysis of RWD with appropriate study methodology,
hich assists in guiding the product development process to compare as-

ets based on forecasted population size, anticipated market share, rev-
nue, and perceived advantage of therapies. 32 To support the process
f taking a drug from R&D to market, entities such as IQVIA, Kantar
ealth, and IBM utilize RWD/RWE to provide actionable RWI-driven

ervices to ensure cost-effective and efficient ways to get therapies to
arket. 32 This is supported by evidence that the availability of better

uality information and the use of that information in decision-making
an improve the delivery of new drugs to the market. 35 Conventional
rug discovery methods were considered imperceptive, and hence meth-
ds based on modeling and projections, such as model-informed drug
evelopment (MIDD), were deployed within the industry to assess and
dentify potential risks that threaten the safety, efficacy and financial
uccess of launched assets. 36 , 37 Thus, it can be inferred that this high-
ights a trend toward anticipatory drug development models that en-
ourage early interaction with regulatory agencies and scientists. This
s critical for aspects of development such as dose optimization, sup-
ortive evidence for efficacy, clinical trial design, and informing policy
 Figure 1 ). 38 , 39 

Regulatory agencies like the European Medicines Agency (EMA) and
he Food and Drug Administration (FDA) encourage the use of MIDD for
sset development. 40 The combination of ML and modeling of RWE are
mong the tools capable of supporting MIDD. 39 In silico models are an
xample of a favored MIDD approach that is currently utilized in the
ndustry for the preclinical stages and includes subtypes such as quanti-
ative structure-activity relationship (QSAR), non-compartmental anal-
sis (NCA), physiology-based pharmacokinetic (PBPK modelling), and
harmacokinetic/pharmacodynamic (PK/PD) models. 40 

This review notes that the applicability of AI during these stages
s quite broad, ranging from applications in the assessment of market
eeds for specific therapies to drug target discovery and generating rel-
vant research questions. 32 , 41 This is exemplified by the use of com-



L. Nene, B.T. Flepisi, S.J. Brand et al. Clinical Therapeutics 46 (2024) e6–e14

Figure 1. The use of AI in preclinical and clinical research. The image was created using BioRender ( https://biorender.com/ ). 
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uter systems based on QSAR like DEREK, TOPKAT, COMPACT, MUL-
ICASE, HazardExpert, and OncoLogic. 41 Commercially available soft-
are products like MATLAB, WinNonlin, and SAAM ll can perform lin-

ar and non-linear regression analysis utilizing an NCA approach. Sim-
YP, GatroPlus, and PK-SIM are examples of AI-supported PBPK models
 Figure 1 ). 40 

It is worth noting that PBPK models represent a market-pull ap-
roach and not a technology-push approach, meaning that they gen-
rally carry a lower risk of rejection from regulators and requires less
otivation to manage drug sponsors with respect to implementation. 37 

his is advantageous as pharmacometrics models such as those men-
ioned are increasingly utilized by drug sponsors and supported by reg-
latory agencies to reduce human involvement during the experimen-
al stages of drug development. 42 However, the preference for in silico
odels over in vivo (animal) models has led to an elevated risk of prod-
ct development failures during the later stages. 26 Furthermore, studies
ave also cautioned that potential gains in the efficiency and reduction
f expenses in preclinical research facilitated by AI can be minimized
y failure in clinical trials or drugs with toxicity profiles not predicted
y models. 32 As such, it can be argued that a combination of existing
reclinical research approaches supplemented by AI can support pro-
ess optimization and not complete substitution through modeling and
I-derived approaches. This assertion considers the fact that additional
onfirmatory studies are often needed at clinical trial stages to validate
hese approaches derived from RWE, which result in accelerated regu-
atory approval ( Figure 1 ). 32 

rtificial Intelligence in the Clinical Stages of Drug Development 

The trend for reducing the burden of experimentation on live sub-
ects is an idea that further extends itself into clinical trials wherein
e9
I-based technologies are applied to reduce the burden of clinical trial
esearch on participants, drug sponsors and regulatory bodies. 42 This is
xemplified by increasing emphasis toward establishing virtual clinical
rials, also known as in silico or decentralized trials. 42 , 43 Virtual clinical
rials involve the use of electronic hardware and software that can iden-
ify clinical endpoints and biomarkers, synthesizing a digital twin which
odels disease progression and treatment response of a patient based

n hypothetical input characteristics. The digital twin model can then
e used to predict how an individual patient will respond to the drug in
ertain conditions. 42 , 43 Furthermore, the virtual clinical trial technique
as proven useful in recruiting patients for trials by analyzing data from
eterogeneous sources (e.g., EHRs, social media, and other real-world
atabases), therefore supporting decentralized trials that do not focus
n a single study site or minimize interactions with investigator sites
or trial procedures. This would be enabled by Internet of Things (IoT)
evices, which include products like automated glucometers and blood
ressure cuffs, that are capable of detecting information from the hu-
an body in real time. 36 , 43 , 44 Virtually supported clinical trials have

he advantage of enhancing patient centricity compared to traditional
rials ( Figure 1 ). 43 

There is also evidence for the use of ML techniques that predict tran-
itions between clinical trial phases with high accuracy. There are com-
on factors across therapeutic areas and phases that can be used to

dentify trials that are more likely to succeed or fail. 45 Furthermore,
he utilization of NLP-based software and Random Forest (RF), a sub-
ype of ML, has been useful in the advancement of clinical trials. 29 , 45 

hese AI achieve this by assessing unstructured and free text relating
o eligibility criteria for clinical trials and determining the importance
f variables in phase 2 and phase 3 clinical trials, respectively. 29 , 45 In
ddition, there is increased interest in the role of RWD in supporting
xpanded access to the use of drugs for patients suffering from debilitat-

https://biorender.com/
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ng and life-threatening conditions. 46 When combined with AI applica-
ions, such as NLP, these can be used to process approval documentation
or health policy analysis and provide information on clinical efficacy
hat can impact regulatory decision-making. 46 However, it is necessary
o take into consideration the need for standardization and the lack of
xperience among regulators with such trials, weighed against regula-
ory goals such as efficient review, best possible labeling, and delivery
o market. 17 , 43 Therefore, it can be argued that AI-assisted regulatory
ecision-making requires improvement to ensure that the benefits out-
eigh the harms. Figure 1 illustrates the complementary nature of AI
sed in preclinical and clinical research for drug development. The use
f AI in each stage is aimed at optimization of data generation and man-
gement of the data to maximize the likelihood of regulatory success. 

rtificial Intelligence in the Registration and Regulation Stages of Drug 

evelopment 

Applications of AI, such as random survival forecasting, an exten-
ion of RF, are well suited to support projections of new drug appli-
ation (NDA) submissions, which informs the optimization of resource
llocation and workload inside regulatory agencies. 38 Therefore ensur-
ng timely and high-quality NDA reviews and approvals. 38 In addition,
echnologies such as the NLP-AI developed by Synchrogenix allow reg-
lators to manage compliance information in more automated ways. 47 

ltimately, this wealth of data generated during the R&D/preclinical,
nd clinical stages of drug development is meant to facilitate registra-
ion for investigational new drugs (IND) and NDA, as well as support
ith obtaining market authorization of new drugs. 37 Liu et al. (2022)

eported that the FDA’s Center for Drug Evaluation and Research (CDER)
oted an increase in AI/ML supported regulatory submissions. 48 In
ddition, there is an increasing trend among regulatory agencies with
imilar capabilities and philosophies to engage in collaborative work-
haring or reliance approaches, such as the Australia-Canada-Singapore-
witzerland-United Kingdom (ACCESS) Consortium. 49 Among these
gencies, AI was utilized to optimize workflows of regulatory mecha-
isms aimed at improving assessments for market authorization of NDA
nd INDs. 

rtificial Intelligence in Postmarket Safety Monitoring, Drug Repurposing, 

anufacturing, and Pharmacovigilance 

The application of AI can also be noted in post-market safety
onitoring, drug repurposing, manufacturing, and pharmacovigilance,
hich all play a critical role in the drug development lifecycle. This re-
iew sought to weigh the implications associated with these activities
s they have direct consequences on the delivery of therapies to market
nd are also dependent on the drug development value chain and its
rocesses. 

rug Manufacturing and Formulation 

Damiati 20 and Escotet-Espinoza et al 50 demonstrated in their find-
ngs that ANN are crucial tools for the pre-formulation aspects of drug
evelopment. During the pre-formulation stages, the physicochemical
roperties of a drug are assessed thus allowing for the determination of
arious physical parameters, such as its solubility, stability, interaction
ith excipients, and, ultimately, bioavailability. 20 , 50 Furthermore, a re-
iew conducted by Escotet-Espinoza et al 50 revealed various strategies
or utilizing ANN to determine which coating components were needed
n their formulation based on its effects on in vitro dissolution, film opac-
ty and crack velocity. 

rug Repurposing 

Application of AI in drug repurposing was exemplified by
anczinger et al 51 , who described a ML algorithm (i.e., Support Vec-

or Machine Learning algorithm) that demonstrated the ability to select
or drugs that were already in clinical assessment studies for psoriasis
e10
nd were further validated by in vitro and in vivo studies. 51 Methods such
s these for drug repurposing are expected to become more efficient as
ining of EHRs to retrospectively assess the effect of drugs gains feasi-

ility. 52 This holds great value as the repositioning approach bypasses
any of the pre-approval tests essential for newly developed therapeutic

ompounds. 53 Moreover, ML algorithms use collaborative filtering tech-
iques to predict unknown drug-disease associations. 54 Various types of
ig Data (e.g., genomic, phenotypic, clinical data, chemical structure)
re publicly available for computational drug repositioning research,
hich shows promise in accelerating drug discoveries in areas such as

ancer, as well as infectious and orphan diseases. 54 Integrative reposi-
ioning strategies for heterogeneous data proved useful in identifying
ovel applications for existing drugs. 51 , 54 

harmacovigilance and Postmarket Safety Monitoring 

Pharmacovigilance supported by AI can be seen through applications
uch as the Web Crawler utilized by the Singapore Health Sciences Au-
hority to monitor active alerts regarding product defects and poten-
ial adverse drug reactions (ADRs), which assist the agency in mini-
izing potential defective products from affecting the local market. 55 

dditional examples of AI tools used in R&D and preclinical, clinical
tages, registration, regulation, repurposing, manufacturing, and phar-
acovigilance can be found in Supplementary Tables I, II, III and IV.
hese examples of AI in drug development serve as a proof of concept
or the integration of AI in drug development operations. It should be
oted that the authors of this paper are not affiliated with any of entities
r software products and services mentioned in the paper. 

mplications of Artificial Intelligence Application on Challenges in Drug 

evelopment 

The scope of AI applications noted in this review is broad and ranges
rom preclinical use for target discovery to manufacturing, market au-
horization, and repurposing of existing products. Based on the results
resented, it can be put forth that each of the AI contributes to mit-
gating the challenges associated with drug development as a whole.
or example, AI systems like WEB-RADR and Vulcan address the cau-
ious regulator issue by supporting regulatory functions and reducing
he burden of their related activities on drug regulators. Furthermore,
he technologies described in the various stages directly impact the op-
rational aspects of the drug development process. The impact of the
pplications in terms of turnaround time and resource saving through
he utilization of such AI presents an avenue for future research. 

Although it is difficult to ascertain at this stage, it is likely that
reater regulatory success will be seen in agencies that optimize work-
ows in favor of information sharing with regulatory agencies, key opin-

on leaders and different internal stakeholders within the drug devel-
pment pipeline to help select for development assets that present the
reatest value. 38 , 39 As it stands, AI will likely evolve considerably over
he course of the next decade as it attracts greater investment and is de-
loyed for more operations across the drug development sector. Within
he scope of future research, additional questions will be raised about
he current competitive framework of the pharmaceutical industry, as it
ertains to the “first-to-market ” approach used by many major drug de-
elopment agencies, as seen with the “throw money at it tendency. ” This
ill require the agencies to take into the consideration various factors

imiting the applicability of AI in drug development, the ever-evolving
esearch landscape, and how to best optimize their regulatory intelli-
ence strategies in favor of more cost-effective approaches for the de-
ivery of efficacious drugs. 3 

arriers Limiting the Use of Artificial Intelligence in Drug Development 

Numerous factors, summarized in Figure 2 , coincide with the ap-
licability of AI in drug development that limit the utility of the tech-
ology. These range from issues relating to modeling and regulatory
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Figure 2. Barriers limiting the use of AI in 

drug development. The image was created us- 

ing BioRender ( https://biorender.com/ ). 

Table 1 

Sponsor and regulator challenges in MIDD 

Regulator challenges Sponsor challenges 

Questions assessed by models are hardly described Lack of guidance for cases of interest 

Model objectives are not always clear and in line with the actual use of the model Requirements for models are unclear 

The adequacy of data is not described Inconsistencies in opinions or issues of modelling relating to similar scientific questions 

Models are not sufficiently evaluated or validated Insufficient experience of regulators with MIDD 

Poor reporting with aspects of models missing Poor reporting on assessments 

The data described in this table illustrates key challenges associated with MIDD an approach that is supported through AI and Big Data 53 

Abbreviation: MIDD – Model Informed Drug Development 
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rameworks for AI, data challenges, and interoperability between data
ciences and clinical medicine, among others noted in the review. The
ections that follow provide a cursory review of these barriers. 

imits on Drug Regulators and Sponsors Concerning Models for Informed 

rug Development 

Trustworthy AI needs to be built on principles of credibility, trans-
arency, auditability, reliability and recoverability. 26 Considering these
rinciples, Skottheim Rusten and Musuamba 56 describe the challenges
oted in the literature associated with MIDD as they relate to regula-
ors and sponsors ( Table 1 ) . Key to the regulator-associated challenges
s the “black box ” nature of many AI. This would mean that the logic
nd processing units which process data inputs to generate outputs from
he AI would remain obscured. 57 Furthermore, AI can be dynamic, have
nknown origins, and lack reproducibility, among other problems. 27 , 56 

entral to the issues faced by the sponsors is the lack of consensus on
pproaches used and uncertainty faced by drug sponsor leadership on
ow far MIDD has actually improved drug development operations. 37 , 56 

rom this, it can be surmised that efforts for producing credible research
n the value-add of AI in drug development operations in terms of fi-
ancial and turnaround time gained is lacking ( Figure 2 ). 

These findings are key, as MIDD is expected to become a mainstay
pproach in drug development and regulatory decision-making moving
orward. 58 As such, it can be expected that future evaluations of tech-
ologies affecting drug development will need to include their impact on
e11
IDD, as well as necessitate the establishment of good x practice ( GxP )
ith AI for example, Good Machine Learning Practice (GMLP). 19 

eluctance to Adopt Artificial Intelligence in Operations 

Clinicians and various role players in drug development processes
ften lack expertise in data and computer science, while AI scientists
o not possess a comprehensive understanding of the scope and com-
lexities of clinical medicine. 59 Consequently, this mismatch creates a
isconnect between data science-driven AI technology, and the applica-
ion of clinical knowledge. This cultural divide and cynicism stemming
rom past failures inform the disinterest noted among clinicians regard-
ng AI. 59 In addition, many developers of AI-driven technologies are not
dequately integrated into national health systems or drug sponsors, po-
entially limiting their awareness of the most pressing areas of need. 60 

herefore, there is an urgent demand for integrated platforms that foster
oordination between these professionals and skillsets for the safe and
eaningful use of AI in drug development. Similar sentiments have been

xpressed by the EMA, which called for collaborative evidence genera-
ion and improvement of scientific evaluations by 2025 ( Figure 2 ). 61 

ata Quality, Validation, Transparency, and Security 

Presently, there is a need to characterize data using a quality frame-
ork which enables a shared understanding of the strengths and limita-

ions of Big Data. 27 Regulatory grade RWD, which is anticipated to sup-
ort AI-driven drug development, must exhibit quality, completeness,

https://biorender.com/
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ransparency, generalizability, timeliness, and scalability ( Figure 2 ). 32 

owever, much of RWD currently exists in unstructured formats from
hich relevant data must be interpreted and stored in new structured

ormats 28 thus, requiring considerable time investment. Presently, reg-
latory submissions comprise information in Adobe portable document
ormat (PDF). However, this is not the most optimal format to exploit
I and ML tools. 49 

Initiatives are underway to develop structured content management
ystems whereby a database holds human and machine-readable blocks
f information and allows the importation of such data into a linked doc-
ment. 49 Based on the evidence generated in this review, it can be as-
umed that the likelihood of success for such an initiative would be bol-
tered by the successful implementation of the electronic common tech-
ical document (eCTD), given the standardization approaches used in
CTDs. Furthermore, it would be advisable for organizations, drug spon-
ors and regulators alike, to consider using organizational readiness as-
essments for AI within their strategic planning. These assessments may
e standardized based on lessons generated by previous frameworks and
djusted based on context specific needs. Such assessments take into ac-
ount critical features of data management for the deployment of AI, like
echnology infrastructure, data quality, and analytics, as well as cyber
ecurity. 59 The authors of this review recommend that regulators lead
he development of organizational readiness assessments thus allowing
rug sponsors to measure their processes against a standardized national
r international framework. Approaches such as this have been exem-
lified through the FDA Framework for Real World Evidence which also
ccounts for data standards for integration and submission. 28 Thus, en-
uring minimised risks such as the “black box ” problem associated with
I. 

In contrast with the “black box ” problem of many AI algorithms,
ransparent AI, set to appropriate standards, would inform the user of
he parameters utilized to generate their predictions. 44 Considering this,
he authors of this review encourage regulators to reject the “black
ox ” issues. The code that creates AI algorithms requires the same post-
arketing surveillance mechanisms that drugs have. 27 This feeds into

alidation and regulation principles for AI in drug development, which
sk pertinent questions such as, “What metrics is the algorithm trained

n? ”. The performance of an algorithm is dependent on the datasets on
hich it is trained. Thus, the output will reflect the distribution, variabil-

ty, and complexity of the data in the training dataset and potentially
he biases of those training the algorithm such as selective bias. 23 , 27 

pposing considerations for the protection of AI algorithms as intellec-
ual property, against concerns of health data privacy come into play.
owever, it is important to maintain health privacy at the center of the
onsiderations made when taking into account questions on the extent
o which consent can be provided by an individual on how their data is
sed in predictive modeling. 4 This requires drug sponsors and regula-
ors to maintain balance between transparency and privacy in the use
f AI, taking into account the origins, ownership, formatting, flow and
ccessibility of the data. 4 , 57 Reproducibility of data is another chal-
enge that arises due to the dynamic nature of ML-generated datasets,
hich may sometimes have unknown origins and incomplete metadata
escriptions, thus limiting analysis applications as well as regulatory
delity. 27 , 29 ML algorithms also create the unique conundrum of un-
redictable future behaviors of the machine, thus presenting issues on
he liability of the user for outcomes associated with the AI. 23 

The Japanese Pharmaceuticals and Medical Devices Agency outlines
I/ML-associated risks as dependent on the performance of the technol-
gy. Therefore, higher-performing AI carry more significant risks in the
ncidence of cyberattack and failed reliability, which is a major concern
or AI applied on large-scale data like those utilized in pharmacovigi-
ance and multi-centre clinical trials. 19 , 57 This necessitates secure data
arehouses, which are a repository of large volumes of data collected

rom multiple warehouses, as well as the need for robust security sys-
ems that ensure authorized use, identification of author records, and
udit trails to trace any data changes. 36 , 43 
e12
Data warehouses, such as these, would require management through
vailable technologies such as highly distributed storage systems,
lockchain, and cloud computing, which offer components that assist
n the ML life cycle. 62 These technologies allow for easy and scalable
ccess to computational resources and an ecosystem of tools developed
o aid data scientists in working effectively with ML modelling. 62 , 63 For
xample, this would mean that a clinical trial patient may authorize a
edical doctor to access sensitive data. However, only a fraction of that
ata may be available for a medical researcher in drug development. 57 

These considerations effectively describe Machine Learning and Op-
rations (MLOps), which is a collaborative effort by data engineers and
cientists, as well as operations professionals, to cover the entire life
ycle of ML modeling in production environments such as drug devel-
pment. 63 The emergence of MLOps as it pertains to drug development
onnects the disjointed efforts between pharmaceutical professionals, AI
odelers, and service providers for hosting production-grade ML models

nd to enable collaborations in a systematic way of working and cloud-
ased software to support. 63 It is worth noting that data uploaded in
eal-time into a cloud-based data-sharing environment potentially blurs
he distinction between pre- and postapproval data flow, which may
arry regulatory implications that have not yet been defined. 49 There-
ore, regulatory agencies will likely be faced with the task of reviewing
xisting workflows for dossier submission and the adaptability of these
rocesses in the face of AI-based transformations. 

egulatory Guidance on Using Artificial Intelligence and Big Data 

Literature provides some evidence of the regulatory industry making
ccommodations to support the evolution of the drug development pro-
ess through AI and Big Data-driven approaches. However, it is impor-
ant to note that developing technologies will not fit neatly into current
egulatory frameworks, and additional steps are required for appropri-
te regulation ( Figure 2 ). Many data laws as they currently exist are
nadequate when it comes to protecting the rights of patients, as ex-
mplified by laws like the Genetic Information Non-discrimination Act
2008) and Health Insurance Portability and Accountability Act (1996)
n the US, which currently does not adequately cover the vast major-
ty of health data and can only remove identifiers. 4 Furthermore, such
aws currently do not cover many entities like Google, IBM and Apple
hat engage with health data through IoT devices and ML. 4 , 44 In 2017,
he CDER undertook a multi-year initiative aimed at modernizing sci-
nce and the regulation of new drugs. This process revealed that the
ndustry could benefit from the standardization of processes, increased
ransparency, integration of drug review documents, and strengthening
orkflows through tools and technologies that improve new drug ap-
lications. 60 Alemayehu et al. (2022) asserts that that sponsors should
amiliarize themselves with guidance documents on digital systems and
ppropriate record maintenance requirements considering the lack of
nowledge and regulatory experience with tools like virtual clinical tri-
ls driven by AI. 43 This is necessitated by the need for quality data
nd good data practices. Existing guidelines addressing data integrity,
atient safety and confidentiality include the FDA guidance on using
lectronic source data, the EMA reflection paper on expectations for
ource data, and the European Union Data Protection regulation, among
thers. 4 , 43 However, a less-than-ideal picture is painted when assess-
ng the regulatory landscape in regions such as Africa, where, accord-
ng to the World Health Organization, only 4 regulatory authorities, at
he time, operated at a level of maturity that can be defined as stable,
ell-functioning and integrated, according to the Global Benchmark-

ng Tool. As such, countries within this region, as well as others in the
lobal South, will require substantial support in establishing uniformity
n drug regulation and development processes, while tackling the ad-
ent of AI. 64 This process, within the growing and emerging markets like
hose in Africa, can begin with recognition of common objectives in ex-
sting guidelines and reports shared by regulatory authorities in other re-
ions of the world, such as the EU’s Ethics Guidelines for Trustworthy AI
2019.) 23 , 65 From this, appropriately contextualised frameworks may be
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eveloped by agencies on the continent, accounting for data quality, the
readth of regulatory decision-making and its associated consequences,
long with synergies available with other agencies. 27 Furthermore, the
stablishment of regional public health agencies such as the Africa Cen-
re for Diseases Control and Prevention (2016) positions the continent
avorably by having a central convenor of the shared public health vision
f the states represented. 66 As highlighted by the authors, demonstrated
hrough initiatives like the African Union (AU) Model Law on Medical
roducts Regulation (2014), and the AU Treaty for the Establishment of
he African Medicines Agency (2019) there is an aspiration for regula-
ory agencies across the continent to sufficiently manage requirements
or drug regulation in an ecosystem that relies on work-sharing, trans-
arency, and efficiency. 64 , 67 

In order to achieve this, regulatory agencies and sponsors in emerg-
ng markets needs to follow examples set out by collaborative efforts like
he International Medical Device Forum, which has developed some of
he earliest known guidelines and international standards for AI in clin-
cal trials. 68 These guidelines, known as the Consolidated Standards for
eporting Trials (CONSORT) and Standard Protocol Items: Recommen-
ations for Interventional Trials (SPIRIT), provide guidance for random-
zed trials and protocols, and adaptations (CONSORT-AI and SPIRIT-
I), have since been made to incorporate AI considerations within

hem. 65 , 68 Furthermore, the International Council for Harmonization
ICH) of Technical Requirements of Pharmaceuticals for Human Use,
as released the M15: Model-Informed Drug Development General Prin-
iples Guideline which seeks to broadly cover good practices and prin-
iple in MIDD for regulatory submissions. 69 These are essential consid-
ring the central role that MIDD currently plays in AI implementation
cross preclinical and clinical drug development stages. 

imitations 

The key limitations associated with this study are tied closely to the
ature of the narrative review methodology. The thematic analysis per-
ormed in this paper followed appropriate conventions of the review
ype, assessing the literature based evidence collated from search re-
ults drawn from key terms. This means that the findings of the paper
re limited primarily to the scope of the search terms and are unable to
ive insight on literature that may be available beyond what was sought
ut in the initial identification of the literature database. Ultimately, in
elation to an ever-changing technology with respect to AI, additional
ndings may exist beyond the scope of what has been addressed herein.
urthermore, this review does not offer quantifiable evidence on the
mprovements generated by the use of AI in drug development and re-
ies on previously reported data from other studies. However, this high-
ights an interesting research gap that can be addressed by parametric
easures in future studies. These measures could assess evidence of en-
ancement or deterioration in drug development processes and regula-
ory outcomes. Factors such as time spent in the development pipeline,
perational considerations, and financial benefits could be further ex-
lored to provide a comprehensive overview of the subject. 

onclusion and Recommendations 

Based on the findings of this paper, it can be categorically stated that
I is a strategic lever for drug development, and its utility as a statistical

earning method designed for large and dynamic datasets has been ex-
ensively reported in the literature. The findings of this review indicate
hat AI functions as a context-specific tool to support operations at dif-
erent stages of drug development. AI primarily contributes to enhanc-
ng efficiency in these operations by providing actionable knowledge
hrough which these functions can be executed. As exemplified by the
se of AI technologies such as NLP and DL, AI in drug development has
radually moved past the peak of high expectations and is now entering
he stage where interest wanes from failed experiments, and investment
e13
ontinues to grow in areas where products have demonstrated satisfac-
ory results. 

Key strategies for implementing AI in the pharmaceutical industry
ave been noted and include fostering awareness, encouraging edu-
ation and building expertise in AI, establishing dedicated AI entities,
oadmaps for developing and integrating AI applications, implementing
ystems for data access storage and sharing, and developing diverse AI
ortfolios that are responsive according to organizational readiness. 59 

hese are key recommendations for agencies within Africa that are cur-
ently underprepared as per the observations of the authors, based on
he lack of evidence from the region that was generated by this review.
urthermore, drug sponsors and regulatory authorities have the respon-
ibility of investing in their workforce skills by training regulatory sci-
ntists in digital literacy alongside scientific methods. This is because
he ability to access and analyse data to enrich product knowledge and
nform regulatory decision-making is key expertise, along with automa-
ion of tasks supported by digital tools. 49 Furthermore, investigations
hat produce statistically relevant data into the financial and operational
ains made through AI are required to support the optimization of its
tility in the industry. 
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