Table S3: Examples of AI used in industry for registration and regulation stages of drug development

AI Technology utilised	Function and subfield of AI on	References
	which technology is based	
OpenMRS software	EHR software that can allow	1
	participating countries' regulatory	
	authoring to share medical records	
	amongst each other and best practices	
	of how to apply ML efficiently	
Layout-Aware Semi-	Prototype NLP-based system that	2
automatic Information	provides semi-automated support on	
Extraction (LASIE)	extraction of information from	
	unspecified datasets	
Medical Writing	NLP-ML-based product that aids	3
Automation System	medical writers in preparing, updating,	
	and maintaining required medical	
	documents. It also has the potential to	
	support clinical trial document creation	
Synchrogenix AI	Capable of extracting information from	4
	previous studies on common technical	
	documents, statistical analysis plans,	
	tables, and figures. Then reorganising	
	them into the right sections of the	
	clinical study report	
Intelligent Machine for	NLP-based system with the ability to	5
Document Preparation	search for content using natural	
	language, work without training, search	
	through images and sub-images and	
	integrate into existing workflows of	
	scientists managing documents	
Clinical Text Analysis and	NLP-based software for information	6
Knowledge Extraction	extraction and finding out solutions	
(cTAKES)	from EHRs	
Clinical Language		
Annotation Modelling and		

Processing Toolkit		
(CLAMP)		
DataCelerate	Cloud-based data-sharing platform that	7
	allows for deidentified, anonymised	
	pre-clinical, and clinical data types to	
	be requested and voluntarily shared in a	
	secure and data-compliant way to	
	streamline drug development processes	

The AI technologies described in this table were obtained through the narrative review. They represent evidence of AI that has been successfully applied in industry or as proof of concept for the application of AI to a specific problem relating to drug development in the registration and regulation stages.

Abbreviations: HER – electronic health record; NLP – natural language processing; ML – Machine Learning

- 1. Basu T, Engel-Wolf S, Menzer O. The ethics of machine learning in medical sciences: Where do we stand today? Indian J Dermatol. 2020;65:358.
- Harmata S, Hofer-Schmitz K, Nguyen PH, Quix C, Bakiu B. Layout-Aware Semiautomatic Information Extraction for Pharmaceutical Documents. In: Da Silveira M, Pruski C, Schneider R, editors. Data Integration in the Life Sciences [Internet]. Cham: Springer International Publishing; 2017 [cited 2022 Oct 6]. p. 71–85. (Lecture Notes in Computer Science; vol. 10649). Available from: http://link.springer.com/10.1007/978-3-319-69751-2 8
- 3. Manchanda S, Indani A, Kshirsagar M. Accelerating Clinical Trial Documentation Through Human Aided Medical Writing Automation System. In: TENCON 2019 2019 IEEE Region 10 Conference (TENCON) [Internet]. Kochi, India: IEEE; 2019 [cited 2022 Oct 6]. p. 2403–7. Available from: https://ieeexplore.ieee.org/document/8929665/
- 4. Taranum S. Trends in regulatory writing: A brief overview for aspiring medical writers. MEW. 2019;28:62–9.
- 5. Viswanath S, Fennell JW, Balar K, Krishna P. An Industrial Approach to Using Artificial Intelligence and Natural Language Processing for Accelerated Document Preparation in Drug Development. J Pharm Innov. 2021;16:302–16.
- 6. Kalaiselvan V, Sharma A, Gupta SK. "Feasibility test and application of AI in healthcare"—with special emphasis in clinical, pharmacovigilance, and regulatory practices. Health Technol. 2021;11:1–15.
- 7. Macdonald JC, Isom DC, Evans DD, Page KJ. Digital Innovation in Medicinal Product Regulatory Submission, Review, and Approvals to Create a Dynamic Regulatory Ecosystem—Are We Ready for a Revolution? Frontiers in Medicine [Internet]. 2021 [cited 2022 Oct 6];8. Available from: https://www.frontiersin.org/articles/10.3389/fmed.2021.660808