AI Technology utilised	Function of AI on which	Reference
	technology is based	
Tessella	Predicts binding of molecules to form	1
	a stable compound	
Exscientia	Predicts which molecules are capable	1
	of binding to their targets for specific	
	disease states	
HealNet	Assists with the discovery of and	1
	translation of new treatments towards	
	clinical use	
Derek for Windows	Knowledge-based expert system	2
(DfW)	capable of predicting chemical	
	toxicity	
Project Rephetio	Algorithm designed to identify	3
	patterns of efficacy and predict new	
	uses for drugs	
DeepChem and	ANN-based systems that are	4
AutoQSAR	designed to optimize the design of	
	drug formulations	
Markov chain Monte	ML applying Bayesian statistical	5
Carlo algorithm	approaches to characterise	
	interindividual pharmacokinetic	
	variability with pravastatin	
SSnet	ANN-based system that relates	6
	protein structure to ligand	
	information to predict protein-ligand	
	interaction probability	
KnowTox	In silico assessment of interactions,	7
	particularly induction of xenobiotic	
	enzymes, endocrine effects, and liver	
	toxicity	
BioBERT and	Language modelling systems that are	8
ClinicalBERT	capable of mining through	
	biomedical texts supporting	
	information retrieval, text	
		l

 Table S1: Additional examples of AI used in preclinical stages of drug development

	classification, text summarization and sentiment analysis	
ADRAlert	An ML driven technology that	9
	determines the strength of gene-	
	ADR associations by statistically	
	solving complex drug-gene-ADR	
	network interactions	

The AI technologies described in this table were obtained through the narrative review. They represent evidence of AI that has been successfully applied in industry or as proof of concept for the application of AI to a specific problem relating to drug development in the preclinical and R&D stages

Abbreviations: ANN – artificial neural networks; ML – Machine learning; ADR – adverse drug reaction

- 1. Bonifazi F, Volpe E, Digregorio G, Giannuzzi V, Ceci A. Machine Learning Systems Applied to Health Data and System. Eur J Health Law. 2020;27:242–58.
- Gupta PK, Nawaz MH, Mishra SS, Parappa K, Silla A, Hanumegowda R. New Age Approaches to Predictive Healthcare Using In Silico Drug Design and Internet of Things (IoT). In: Ahad MA, Paiva S, Zafar S, editors. Sustainable and Energy Efficient Computing Paradigms for Society [Internet]. Cham: Springer International Publishing; 2021 [cited 2022 Oct 6]. p. 127–51. (EAI/Springer Innovations in Communication and Computing). Available from: https://link.springer.com/10.1007/978-3-030-51070-1_8
- 3. Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, et al. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife. 2017;6:e26726.
- 4. Sethuraman N. Artificial Intelligence: A New Paradigm for Pharmaceutical Applications in Formulations Development. IJPER. 2020;54:843–6.
- 5. Maharao N, Antontsev V, Wright M, Varshney J. Entering the era of computationally driven drug development. Drug Metabolism Reviews. 2020;52:283–98.
- 6. Verma N, Qu X, Trozzi F, Elsaied M, Karki N, Tao Y, et al. SSnet: A Deep Learning Approach for Protein-Ligand Interaction Prediction. IJMS. 2021;22:1392.
- 7. Morger A, Mathea M, Achenbach JH, Wolf A, Buesen R, Schleifer KJ, et al. KnowTox: pipeline and case study for confident prediction of potential toxic effects of compounds in early phases of development. J Cheminform. 2020;12:24.
- 8. Liu Z, Roberts RA, Lal-Nag M, Chen X, Huang R, Tong W. AI-based language models powering drug discovery and development. Drug Discovery Today. 2021;26:2593–607.
- 9. Liu K, Ding R, Xu H, Qin Y, He Q, Du F, et al. Broad-Spectrum Profiling of Drug Safety via Learning Complex Network. Clin Pharmacol Ther. 2020;107:1373–82.