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Abstract 

Gonimbrasia belina, known as the mopane worm, is a large edible caterpillar in tropical and 

subtropical regions. However, little is known about the bioecology of this species as influenced by 

its host trees. This study evaluated the importance of different potential host trees in understanding 

mopane worms' behaviour and spatial distribution. To assess their relative importance, the study 

compared models incorporating various mopane worm host trees and predictor variables. Using 

the species distribution modelling (SDM) package in R, an ensemble of random forest (RF), 

support vector machine (SVM), and boosted regression tree (BRT) algorithms were used to assess 

the spatial extent of mopane worm distribution in Southern Africa. Four host tree-based scenarios 

were developed to assess their relative contribution to the relative distribution of the mopane worm 

i.e., (1) by excluding all the potential host trees as explanatory variables and considering only the 

environmental variables, (2) focusing on the primary host tree, Colophospermum mopane as an 

explanatory variable together with the other environmental variables, (3) incorporating all the host 

trees, including C. mopane and (4) examining all other host trees excluding C. mopane. Results 

demonstrated that incorporating all host trees enhanced the models' predictive abilities (mean AUC 
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= 0.87) underscoring the significant impact of the alternative host trees on the mopane worm 

distribution patterns beyond just the C. mopane. This study highlights the significance of host trees 

in predicting the behaviour and distribution of mopane worm populations, providing valuable 

insights and decision-making for mopane worm use as an alternative protein source, conservation 

efforts, and land management practices.  
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1 Introduction 

The growing global interest in harnessing insects as a sustainable protein source has gained 

significant momentum in response to the impact of climate change and population on food systems 

(van Huis, 2015). Edible insects, in particular, have attracted considerable attention as a viable and 

nutritious food source, especially in regions facing food security challenges such as in Africa  

(Stull and Weir, 2023). This emerging trend not only addresses nutritional needs in food and feed 

production but also offers ecological, nutraceutical, and medicinal benefits (Kipkoech et al., 2023). 

The Food and Agricultural Organisation of the United Nations (FAO) has recognised edible insects 

as a sustainable solution to address the expected food shortage, especially regarding protein, due 

to their high nutritional value and minimal environmental impact (Rodrigues et al., 2021). 

Numerous studies have underscored the growing importance of edible insects in human nutrition 

(Mokaya et al., 2023; Egonyu et al., 2021; Kelemu et al., 2015). Consequently, from a nutritional 

perspective, edible insects offer a substantial supply of protein and essential minerals such as iron, 
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calcium, and zinc. These attributes position them as a viable component within a range of strategies 

aimed at mitigating the challenges of high protein demand caused by population growth and 

climate change on food insecurity, a predicament already impacting several regions of the world. 

In many African countries, notably those situated within the Southern Africa region, edible insects 

have been widely adopted as an essential protein source. Gonimbrasia belina (Lepidoptera: 

Saturniidae; Westwood, 1894) is a species of emperor moth found in warmer parts of Southern 

Africa (Figure 1). It is a large caterpillar, known as the mopane worm with its name mainly 

originating from the primary consumption of the mopane tree (Colophospermum mopane) (Niassy 

et al., 2016). 

 

FIGURE 1 (A) A cluster of mopane worm (Gonimbrasia belina) on a leaf of mopane tree (Colophospermum 

mopane), (B) a late instar caterpillar form of the emperor moth G. belina. 

It is native to the region and exists in the larval stage as the mopane worm, representing 

the caterpillar form of the emperor moth G. belina (Sekonya et al., 2020). Mopane worm is 

culturally significant and is renowned for its protein-rich composition. It plays a crucial role in the 

local diets and culinary traditions of countries such as Botswana, South Africa, and Zimbabwe 

(Thomas, 2013; Niassy et al., 2018; Hlongwane et al., 2020). The caterpillars are one of the most 

economically important insect food resources in Southern Africa with an estimated economic 
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value worth US $80 million in South Africa, US $35 million in Zimbabwe, and US$ 3.3 million 

in Botswana (Bara et al., 2022). The availability and viability of suitable host trees is a significant 

factor affecting the distribution and abundance of mopane worm throughout the Southern Africa 

region (Togarepi et al., 2020). Host trees play a crucial role as the primary food source for mopane 

worm larvae. These larvae rely on the leaves of specific host trees, such as the mopane tree, due 

to their high nutritional value. By consuming these leaves, the larvae obtain essential nutrients that 

fuel their growth and development. Understanding the relationship between mopane worm and 

their host trees is essential for effective sustainable resource management, rearing of the species, 

and conservation initiatives in the region (Thomas, 2013).  

The mopane worm primarily feeds on the mopane tree, C. mopane (Ferreira et al., 2003). 

After developing from pupae, adult moths lay eggs on the leaves of C. mopane and other suitable 

host trees during the initial weeks of the rainy season in October. However, a secondary and 

smaller reproduction of caterpillars may occur in April if sufficient rainfall is received in February 

(Bara et al., 2022). Thus the most optimal period for harvesting these caterpillars is from December 

to January when they have reached their maximum size and developmental stage before pupation 

(Kwiri et al., 2020). In some countries within the Southern African sub-region such as Botswana, 

mopane worms naturally occur twice a year (bivoltine) while in other countries they are univoltine 

(Mogomotsi et al., 2018). Hence there is a need to consider sustainability mechanisms that will 

ensure sound conservation principles. 

However, the availability of mopane worm is threatened by overharvesting and the decline 

of its primary host tree due to climatic change and anthropogenic activities (Fakazi et al., 2021). 

Previous efforts have explored the possibilities for sustainable harvesting, however, this has not 

been successful due to high demand, low yields, and erratic rainfall attributed to climate change 
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(Baiyegunhi et al., 2016). Therefore, understanding the influence of host trees on the growth, 

development, and distribution of mopane worm is crucial for effective conservation and long-term 

viability. Diverse host species have the potential to offer habitat resilience, reduce pressure on 

mopane trees, enhance nutritional variation, and promote overall biodiversity (Maquia, 2021). 

Additionally, expanding research into alternative host trees is crucial in the quest to rear mopane 

worms. While previous studies have predominantly focused on the mopane tree as the preferred 

host (e.g. Ngarega et al. 2021a), the decline in mopane tree populations necessitates exploring 

alternative host tree species (Stevens, 2021).   

In this current study, we used species distribution modelling (SDM) techniques, which 

have demonstrated significant value in ecological research for predicting species distributions 

(Crase et al., 2012). The SDM approach used in this study involves constructing an ensemble 

model from various algorithms, including random forest (RF), support vector machine (SVM), and 

boosted regression tree (BRT). The ensemble model integrates the strengths of individual 

algorithms, leading to enhanced model accuracy and robustness (Feng et al., 2020). The RF 

algorithm is well suited for handling complex interactions between variables and effectively 

manages large datasets, making it particularly relevant to this study's objectives (Qi, 2012). The 

SVM algorithm demonstrates proficiency in high-dimensional spaces, offering valuable predictive 

capabilities (Otchere et al., 2021). On the other hand, the BRT algorithm employs an iterative 

process to capture non-linear relationships effectively, which can significantly improve model 

performance (Reiss et al., 2015). 

Through using the SDM approach, this research aimed to understand how specific 

environmental variables, particularly the presence of host trees, affect the spatial distribution of 

mopane worm populations in the Southern Africa region. The primary hypothesis of the study was, 
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therefore, to assess the extent of the influence of host trees on the predictive ability of mopane 

worm habitat suitability models. By incorporating the findings of this research, researchers can 

better assess the suitability of alternative host trees and their potential to complement the declining 

C. mopane, thus offering alternative resources for mopane worm to thrive and ensuring the species' 

long-term sustainability. 

 

2 Materials and methods 

Study area 

The study was conducted in Southern Africa i.e., Angola, Botswana, Lesotho, Malawi, 

Mozambique, Namibia, South Africa, Swaziland, Zambia, and Zimbabwe collectively termed as 

Southern Africa (Error! Reference source not found.). The study area is located between 

latitudes 34° 54' S and 4° 21' S, and longitudes 8° 58' E and 41° 18' E, covering an approximate 

area of 5,995,215 km2. Southern Africa is home to a variety of ecosystems, landscapes, and 

climatic conditions. It includes countries with coastlines such as Angola, Mozambique, Namibia, 

and South Africa as well as landlocked nations like Botswana, Lesotho, Malawi, Swaziland, 

Zambia, and Zimbabwe (Kawasaki et al., 2021). The region's geography ranges from arid and 

semi-arid landscapes in Botswana and Namibia to lush forests and savannahs in Mozambique and 

Zambia (Mukwada, 2018). Southern Africa includes a diverse range of ecological habitats, such 

as the vast Kalahari Desert, the Okavango Delta's wetlands, the Zambezi River basin, the Miombo 

woodlands, the Eastern Highlands, and South Africa's various biomes (Dowsett-Lemaire, 1985). 

Because of the diversity of these habitats, not all of them are suitable for the sustenance of the 

mopane worm life cycle. 
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FIGURE 2	Spatial distribution of mopane worm (Gonimbrasia belina) in Southern Africa.



 

 

 

Species occurrence data 

The occurrence data for the mopane worm and its potential host trees were obtained from the 

Global Biodiversity Information Facility (GBIF) (https://www.gbif.org/) and the iNaturalist 

website (https://www.inaturalist.org/). The GBIF is an international network and data 

infrastructure funded by the world’s governments aimed at providing access to data about all taxa. 

The facility hosts more than 2 billion records of data from all taxa, hence was ideal as the main 

data source for our target edible insect (mopane worm) and its potential host trees. Additionally, 

we utilised iNaturalist, a citizen science platform, to ensure comprehensive occurrence data for all 

the species. In this study, presence-only data was used and is summarised in TABLE 1 . Only 

records of species that had precise locations and coordinates were included in the list of occurrence 

data used in the analysis. To ensure data integrity, entries with missing values, duplicates, data 

older than 1950, due to higher susceptibility to unreliability (Perennes et al., 2021), and incomplete 

information regarding occurrence locations were systematically excluded. This data cleaning was 

done using the “rgbif v.0.7.0” package developed by Chamberlain et al. (2022) in the R 

environment (R Core Team, 2023). It was also assumed that the year and the season would not 

affect the location of the occurrence hence this was not considered as a delimiter within the 

elimination criteria. However, approximately one harvest per year during the early months of the 

rainy season (November to January) with seldom harvests being conducted between April and 

May of good rainfall years. The quantity of the harvest varies from year to year mainly influenced 

by the presence and viability of leaves of host trees. 

  

9



 

 

TABLE 1 Occurrence data of mopane worm (Gonimbrasia belina) and its potential host trees obtained from 

the Global Biodiversity Information Facility (GBIF) and iNaturalist website 

Species name Taxonomic 

group 

 (Order: Family) 

Species type Number of records Number of retained 

records after spatial 

thinning 

Gonimbrasia belina (Westwood, 

1894) 

Lepidoptera: 

Saturniidae 

 

edible insect 462 260 

Colophospermum mopane (Kirk 

ex Benth) J. Léonard 

Fabales: 

Fabaceae 

 

host tree 1594 950 

Dichrostachys cinerea (L.) 

Wight and Arn. 

Fabales: 

Fabaceae 

 

host tree 1737 856 

Diospyros mespiliformis Hochst. 

ex A.DC. 

 

Ericales: 

Ebenaceae 

 

host tree 385 217 

Julbernardia globiflora (Benth.) 

Troupin 

 

Fabales: 

Fabaceae 

 

host tree 369 300 

Sclerocarya birrea (A.Rich.) 

Hochst. 

 

Sapindales: 

Anacardiaceae 

 

host tree 1395 648 

Terminalia sericea Burch. ex 

DC. 

 

Myrtales: 

Combretaceae 

 

host tree 1353 859 
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Mopane worm (Gonimbrasia belina) occurrence data 

A systematic spatial thinning technique was applied to the mopane worm occurrence data obtained 

from the GBIF and iNaturalist databases, retaining within the used dataset, points that have a 

distance of 1 km apart in all directions using the “spThin v.0.2.0” package (Aiello-Lammens et al., 

2015). This thinning process aimed to mitigate bias caused by the clustering of points and reduce 

potential overfitting in the species distribution model. TABLE 1  shows the reduced number of 

points utilised in the analysis. 

 

Host tree occurrence data 

Various tree species documented in the literature as suitable host trees were considered as potential 

host trees in this study due to their critical role in the distribution and abundance of mopane worms 

throughout Southern Africa (Togarepi et al., 2020). The analysis of the relationship between 

mopane worm and these host trees is fundamental to improving our understanding of resource 

management, potential mopane worm rearing opportunities, and critical conservation efforts in the 

region (Thomas, 2013). By considering the significance of these host trees, the study contributed 

to a comprehensive understanding of the interplay between the mopane worm and their crucial 

habitat resources. 

The selection of suitable host trees was informed by a user-defined criterion that ensured 

the development of robust models i.e. the species needed to have a minimum of 100 occurrence 

records within the spatial extent of Southern Africa. This approach was informed by the need to 

include documented substitute host tree species for mopane worm that were predominantly found 

in Southern Africa. Consequently, the host tree Uapaca kirkiana which has been reported in Shen 

et al. (2023) as one of the main hosts of mopane worm was excluded from the analysis as it did 
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not meet the threshold number of 100 occurrence points within the spatial extent of Southern 

Africa, resulting in a consideration of only the top 6 host trees (TABLE 1 ). Similarly, spatial 

thinning was done for the host tree occurrence data at a 1km radial distance. Figure 3 represents 

the selected host trees present in Southern Africa. 

 

Predictor variables  

Bioclimatic variables 

Bioclimatic variables are environmental variables that are used to describe the ecological 

conditions of various species in a given area (Title and Bemmels, 2018). They have been used 

predominantly to perform SDM, such as in this study, as they offer crucial knowledge in 

understanding species’ ecological niches (Mtengwana et al., 2021).  

We considered 19 bioclimatic variables in running both host tree distribution models and 

the mopane worm model scenarios. The bioclimatic variables used in this study were freely 

obtained from the WorldClim database (https://www.worldclim.org/) at a spatial resolution of 30 

arc seconds (i.e. 1 × 1 km). The 19 bioclimatic variables were clipped to the Southern Africa region 

and were later subjected to a collinearity test in R. The test employed a hierarchical approach, i.e. 

Pearson's correlation test and the variance inflation factor (VIF). Supplementary Table S1 shows 

the bioclimatic variables that were used together with the other predictor variables for various host 

tree models and the mopane worm model scenario. 

 

12



Colophospermum mopane

Dichrostachys cinerea

Diospyros mespiliformis

Julbernardia globiflora

Sclerocarya birrea

Terminalia sericea

Southern Africa

Neighbouring countries

u01232223
Typewritten Text
FIGURE 3	Spatial distribution of mopane worm (Gonimbrasia belina) suitable host trees.
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Edaphic variables 

Edaphic variables were used in the study as they have proven valuable for assessing the ecological 

niche requirements of tree species and comprehending the factors that influence their geographic 

distribution in numerous studies on host tree species distribution models (Maes et al., 2019; Pecchi 

et al., 2019; Pelletier et al., 2019). The behaviour of mopane worm larvae, specifically their 

burrowing into the ground and pupating during dry seasons, suggests their preference for 

favourable soil conditions (Shen et al., 2023). This behaviour indicates that the larvae actively 

seek out soil environments that are conducive to their pupation process, potentially characterised 

by specific moisture levels or other soil properties that support successful development (Styles and 

Skinner, 1996).  

Soil variables used in the study were downloaded from various sites, as shown in TABLE 

2 . These variables were also tested alongside other predictor variables and filtered according 

to the thresholds set for Pearson’s correlation and VIF. TABLE 2  gives a detailed account of 

the considerations for the soil variable for each host tree and mopane worm scenario model. These 

soil variables were resampled and projected to the same dimensions of Southern Africa in 

preparation for use in the models. 
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TABLE 2 Edaphic variables used in various models in this study. 

Soil Variable Source Resolution Time Modeled species 

OpenLandMap 

soil ph in H20 

Google Earth Engine catalogue 

(Hengl, 2018)

 

250 m NA All modelled species 

Soil subsurface 

moisture 

(susm) 

NASA-USDA Enhanced SMAP Global 

Soil Moisture Data 

https://earth.gsfc.nasa.gov/hydro/data/nasa-

usda-global-soil-moisture-data  

(Google Earth Engine catalogue) 

10 km Average of 

10 years 

C. mopane (Rains, 2017) 

J. globiflora (Gwate and Ndou, 

2022) 

T. sericea ‒ both subsurface 

and surface soil moisture can be 

used but susm was considered 

(Nakanyala and Hipondoka, 

2020) 

D. cinerea (Musimba, 2020) 

Soil surface 

moisture 

(ssm) 

NASA-USDA Enhanced SMAP Global 

Soil Moisture Data 

https://earth.gsfc.nasa.gov/hydro/data/nasa-

usda-global-soil-moisture-data 

(Google Earth Engine catalogue) 

10 km Average of 

10 years 

S. birrea (Dzikiti et al., 2022) 

Mopane worm ‒ after filtering 

D. mespiliformis (Wakawa et 

al., 2022) 

Africa Surface 

lithology 

RCMRD- Geoportal 

https://geoportal.rcmrd.org/layers/  

~95 m NA All modelled species 

NA = Not Applicable. 

 

It is important to acknowledge that the decision to consider between soil subsurface 

moisture and soil surface moisture for the various host trees was contingent upon the scholarly 

sources cited in Table 2. The various citations given, expound upon the distinct root systems 

associated with each tree species. 
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Topographic data 

The digital elevation model (DEM) utilised in this study was obtained from the Google Earth 

engine platform. The primary data source for the DEM was the shuttle radar topography mission 

(SRTM), which provides elevation data with a spatial resolution of 30 meters (Farr et al., 2007). 

The DEM data used in the study had gaps, and it was necessary to address these gaps by filling the 

‘NoData’ raster cells in the DEM file. In quantum GIS (QGIS Version 3.28, 2022), the 

‘FillNoData’ function within the GDAL plugin was employed, utilizing the nearest neighbour 

interpolation technique. This process allowed for the estimation of values in the missing areas in 

the DEM raster. The resampled and projected DEM raster, representing the general altitude of 

Southern Africa, was then aligned with the masking raster layer file for further analysis as a 

predictor variable.  

 

Land use/ land cover  

Land use and land cover (LULC) are essential factors in describing the ecological niche of mopane 

worm. Several studies have examined how LULC affects mopane worm distribution and 

highlighted the influence of human activities on the presence and abundance of mopane worm 

(Gondo et al., 2019; Ndlovu et al., 2019).  

Assessing the impact of LULC on the population of mopane worm is crucial, as it can result 

in both positive and negative consequences. Positively, LULC provides information about the 

various land cover types and uses, such as agricultural use, which has been noted to favour mopane 

worm populations. Conversely, the distribution of mopane worm can be indirectly affected by 

human activities associated with land use, such as habitat modification or landscape fragmentation 

and degradation (Mugari et al., 2019). 
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FIGURE 4	A systematic flowchart illustrating the methodological processes employed for modelling all the mopane worm host trees and mopane worm. The four main processes employed to develop the key models for this study were (1) input data, involving the collection of all relevant data types for the study (2) data preparation, which entailed data cleaning and selection of predictor variables (3) modelling, encompassing the use of ensembles and (4) generating various outputs aligned with the study's objectives.
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The LULC raster layer was utilised in all four case model scenarios presented in Figure 4. 

The LULC raster image employed in this study was clipped to the geographic extent of Southern 

Africa and was obtained at a spatial resolution of approximately 1 km × 1 km. The primary data 

source for the consensus global land cover dataset was the EarthEnv website, which is supported 

by the NCEAS (National Center for Ecological Analysis and Synthesis), NASA (National 

Aeronautics and Space Administration), NSF (National Science Foundation), and Yale University. 

The data source contains 12 distinct land cover classes such as open water, snow/ice, urban/built 

up, cultivated and managed vegetation, herbaceous vegetation, and shrubs among others. 

This dataset was selected due to its close alignment with the intended model resolution and 

its established importance in the context of monitoring and modelling biodiversity, ecosystems, 

and climate dynamics at a global scale (Tuanmu and Jetz, 2014). The LULC raster layer was later 

resampled and projected accurately to the dimensions of the mask file used (bioclim 4), in the R 

software. 

 

Variable selection and multicollinearity analysis  

Multicollinearity test for predictor variables  

In SDM, overfitting is a common issue that can arise due to multicollinearity between predictor 

variables. Overfitting occurs when a model performs well on the training data but fails to generalise 

to independent data (Zhang et al., 2019). To address this issue, one approach is to identify and 

eliminate the highly correlated variables from the models. Two common methods used for this 

purpose are the VIF and Pearson's correlation coefficient. The VIF assesses the extent to which 

multicollinearity raises the slope estimate variance (Liou and Mulualem, 2019). 
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The Pearson's correlation was set at |r| > 0.7 while the VIF correlation was set at 10 

following Makori et al. (2017). These thresholds help in identifying and removing variables with 

strong correlations. The 'car' package in the statistical software R, as described in Salmerón et al. 

(2019), was employed to carry out the elimination of highly correlated variables. 

In the study, every model scenario had a set of predictor variables as described in the 

previous subsections, with the number of predictor variables ranging from 10-18, with host-tree 

scenario 4 having the highest number of variables used (Supplementary Figure S10). Notably, the 

DEM predictor variable was excluded from 2 out of the 10 models conducted in the study. This 

decision was made during the collinearity test process, where it was identified that the DEM 

variable exhibited high collinearity with other variables in those specific models using the set VIF 

threshold. Therefore, to ensure the models' accuracy and avoid multicollinearity issues, the DEM 

variable was removed from those analyses. The two models included that of the J. globiflora and 

S. birrea host trees. 

 

Visualising multicollinearity tests output using a dendrogram 

Understanding the relationships between predictor variables in statistical analysis requires the 

ability to visualise their multicollinearity. Various statistical techniques have been used to visualise 

multicollinearity outputs, with dendrogram plots being one of the most effective ways  

(Ahmadalipour and Moradkhani, 2018).  

In the case of predictor variable tests for mopane worm host trees described in this study, 

dendrogram plots were specifically generated from sample extract information of proposed 

environmental layers within each model. These plots provide valuable insights into the 
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interrelationships between predictor variables, enabling a comprehensive understanding of 

potential multicollinearity effects in the analysis (Supplementary Figures S1-S7). 

 

Predicting host tree distribution in Southern Africa 

A total of 6 models representing potential host trees of mopane worm distribution were run in R 

within the sdm package (Naimi et al., 2022). Each model was treated independently of others and 

multiple model runs were done for each host tree to achieve satisfactory model outputs that were 

later used as explanatory variables in three host-tree scenarios. 

Several algorithms were tested in their ability to accurately model the host tree distribution, 

and three modelling techniques generally outperformed all SDM models. The three model 

algorithms that were chosen due to their good performance were support vector machine (SVM), 

boosted regression tree (BRT), and random forest (RF). 

The difficulty of obtaining absence data has led to the widespread use of presence-only 

models with pseudo-absence (Downie et al., 2013). Semiautomatic generation of ‘background’ 

points together with ‘presence-only’ data were used in the host tree and mopane worm model 

scenarios. Different presence-to-background point ratios were used for the various host tree models 

to achieve the best model performance, reduce biases, and champion equitable ratios of presence-

to-background point data as shown in TABLE 3  
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TABLE 3 The ratios of the presence to background data used for each of the host tree modelling scenarios 

Host tree model Presence to background ratio data 

Colophospermum mopane 1:5 

Dichrostachys cinerea 1:10 

Diospyros mespiliformis 1:10 

Julbernardia globiflora 1:5 

Sclerocarya birrea 1:10 

Terminalia sericea 1:5 

 

The explanatory variable derived from each mopane worm host tree model was an 

ensemble model of the best three performing algorithms, which were decided using accuracy 

metrics. Utilizing a weighted average of the best-performing model, ensemble models optimised 

the prediction accuracy of the various machine learning techniques (Vorsino et al., 2014). To 

produce the ensemble models, the weighted area under the curve (AUC) was employed, with a 

threshold value of 0.7, to determine which models to include.  The AUC has been commonly used 

in the selection of model algorithms for an optimal solution of an ensemble (Kumar et al., 2023). 

The QGIS software was used in the reclassification and generation of all host tree 

suitability maps for visualization purposes.  The reclassification of the suitability raster layers 

exported from the R environment followed the class limits described by Azrag et al. (2022) i.e. 

≤0.2 unsuitable, 0.21 ≤ 0.4 low suitability, 0.41 ≤ 0.6 moderate suitability, and 0.61 ≤ 1 high 

suitability. 
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Predicting mopane worm (Gonimbrasia belina) distribution in Southern Africa 

Four different model scenarios were employed with the primary model using mopane worm 

presence-only observations without any mopane worm host tree as an explanatory variable, 

scenario 1. The other three scenarios had the presence of mopane worm in addition to (1) C. 

mopane host tree (scenario 2), (2) all host trees (scenario 3), and (3) all host trees, except C. 

mopane (scenario 4) as described in the methodology flowchart (Error! Reference source not 

found.). The primary scenario 1 model, served as the base-comparison model. Several model runs 

were conducted to achieve optimal model performance, establishing precedence for the ratio of 

presence to background data points in the subsequent models. Given that the focus species was 

mopane worm, the only modification made in the consecutive models was the number of predictor 

variables added. 

Scenario 1 model set the three main algorithms to be ensemble as BRT, RF, and SVM. The 

rest of the models used the same algorithms for consistency. These models were similarly run in 

R software using the SDM package (Naimi et al., 2022), and the ensembles were produced using 

the weighted AUC accuracy metric. Each ensemble model for all four model scenarios had all 

three algorithms used regardless of the AUC threshold value of inclusion set for the host trees. 

Subsequently, the resulting suitability raster layers of all four modelling scenarios were 

exported to QGIS software for reclassification using the same classification criteria employed to 

generate the suitability maps for the host trees described by Azrag et al. (2022). The process was 

followed by map generation based on the reclassified layers. 
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Model evaluation 

Effective model evaluation is a crucial step in assessing the accuracy and reliability of modelling 

outcomes. In this study, the model accuracies were rigorously tested utilizing a robust 10-fold 

cross-validation approach. This method has consistently demonstrated its effectiveness in 

providing a comprehensive and reliable evaluation of a model's performance (Dutschmann et al., 

2023). 

In this study, the metrics used to evaluate model performance included a variety of 

indicators such as AUC, correlation (COR), true skill statistic (TSS), and deviance. The model's 

overall capacity to distinguish between positive and negative instances is measured by the AUC. 

The values of the AUC range from 0 to 1. Higher AUC values indicate stronger discrimination 

ability (Mohammadi et al., 2019). COR offers insights into the relationship's strength and direction 

with values ranging from -1 to +1. Better model performance is indicated by a higher absolute 

value of COR (Handel, 2015; Smith and Santos, 2020). 

The TSS is a combined sensitivity and specificity metric. TSS values range between -1 and 

+1, with higher values indicating better classification performance (Parikh et al., 2008). On the 

other hand, deviance is a measure of a model’s goodness of fit. It quantifies the difference between 

the observed data and the model's predictions. Lower deviance values indicate better fit, suggesting 

that the model accurately captures the data's patterns (MacKenzie et al., 2018a). 

In this study, particular emphasis was placed on maximizing the TSS and AUC values 

while considering the tradeoff between COR and deviance. The focus was on achieving optimal 

discrimination between positive and negative instances (AUC) and accurately capturing the 

relationship between predicted and actual values (COR) of the host trees and mopane worm 
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(MacKenzie et al., 2018b). By prioritizing TSS and AUC, the analysis sought to strike a balance 

between these key indicators to ensure a comprehensive evaluation of the model'’ performance. 

 

3 Results 

Host tree suitability in Southern Africa 

Among the evaluated host tree models, the D. mespiliformis model consistently exhibited the 

highest performance across all three model algorithms (RF, SVM, and BRT). Specifically, the RF 

algorithm achieved the highest goodness of fit (AUC = 0.97 and TSS = 0.88; Table 4).  

On the other hand, T. sericea consistently demonstrated the lowest performance among the 

studied host tree models, with the BRT algorithm yielding the lowest AUC and a TSS (Table 4). 

The C. mopane model closely followed the performance of the D. mespiliformis model, achieving 

high values for AUC and TSS across all three algorithms used.  
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TABLE 4 Accuracy metrics of host tree models utilizing random forest (RF), support vector machine (SVM), 

and boosted regression tree (BRT) algorithms. The model accuracies include the area under the 

curve (AUC), correlation (COR), true skill statistic (TSS), and deviance. 

Host tree species name Model algorithm AUC COR TSS Deviance 

Diospyros mespiliformis RF 0.97 0.80 0.88 0.22 

SVM 0.95 0.74 0.82 0.28 

BRT 0.96 0.72 0.84 0.35 

      

Colophospermum mopane RF 0.97   0.83    0.85 0.31 

SVM 0.93 0.73 0.77 0.46 

BRT 0.92 0.71 0.74 0.57 

 

Sclerocarya birrea RF 0.96 0.74 0.83 0.26 

SVM 0.92 0.64 0.75 0.35 

BRT 0.90 0.62 0.68 0.41 

      

Julbernardia globiflora RF 0.94 0.70 0.79 0.45 

SVM 0.90 0.58 0.72 0.62 

BRT 0.91 0.61 0.71 0.64 

      

Dichrostachys cinerea  RF 0.95   0.70   0.80 0.29 

SVM 0.90 0.56 0.70 0.41 

BRT 0.88 0.56 0.64 0.44 

 

Terminalia sericea RF 0.93 0.71 0.74 0.47 

SVM 0.88 0.59 0.65 0.60 

BRT 0.86 0.56 0.59 0.71 
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Spatial distribution of host tree suitability in Southern Africa 

The suitable areas for the survival of each mopane worm host tree revealed distinct spatial patterns. 

For instance, the C. mopane showed high suitability in northern Botswana. Additionally, high 

suitability regions for C. mopane were in the Southern parts of Zimbabwe, the northeastern regions 

of South Africa, the south-western areas of Mozambique and the northwestern parts of Namibia 

(Figure 5). Conversely, the remaining countries in the Southern Africa region exhibited regions of 

moderate to low suitability, and unsuitable for the survival of C. mopane. 

The assessment of T. sericea's suitability in Southern Africa revealed that the host tree 

thrives in northern Botswana and the northeastern regions of South Africa. On the other hand, 

other countries like Malawi displayed relatively low suitability for T. sericea, while regions in 

Angola, Lesotho, Namibia, and Zambia were mostly unsuitable for the host tree (Figure 5).  

Whereas D. mespiliformis showed a high suitability preference in the bordering region 

encompassing Zimbabwe, South Africa, and Mozambique, the highest suitability for D. 

mespiliformis was observed in the northeastern part of South Africa. Most parts of the Southern 

Africa region exhibited a higher degree of unsuitability for the tree’s survival. 

Similarly, S. birrea showed high suitability in the northeastern part of South Africa and 

along the shores of the Southwest Indian Ocean. However, regions such as Namibia, Angola, and 

Zambia were deemed unsuitable for S. birrea within the study area. The rest of the countries within 

the study area exhibited a range of suitability from low to unsuitable for S. birrea (Figure 5). 

For J. globiflora, high suitability was observed in Mozambique and Malawi. Parts of 

Zimbabwe, and along the border with Mozambique, showed varying levels of suitability. 

Mozambique was highly suitable for the J. globiflora. However, most of the Southern Africa 
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FIGURE 5	Mopane worm (Gonimbrasia belina) host tree suitability in Southern Africa developed using ensemble model techniques in species distribution model (SDM) with random forest (RF), boosted regression tree (BRT) and support vector machine (SVM) model algorithms. The base map used is the Esri World Satellite Imagery accessible within the QGIS environment.
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region was identified as unsuitable for J. globiflora, with patches of low suitability observed across 

Zambia (Figure 5). 

Lastly, the suitability of D. cinerea was similar to D. mespiliformis, which exhibited a high 

level of suitability in South Africa, particularly in the northern regions and along the Southwest 

Indian Ocean. In contrast, the rest of the region showed unsuitable areas for D. cinerea survival, 

with Botswana and Zimbabwe having a few areas of moderate suitability transitioning into 

unsuitable regions (Supplementary Figure S13). 

 

Mopane worm (Gonimbrasia belina) habitat suitability in Southern Africa  

Based on the statistical analysis of the mean AUC and mean TSS values obtained from different 

mopane worm model scenarios, it was observed that the scenario incorporating all host trees 

(scenario 3) exhibited the highest mean AUC value of 0.87 and mean TSS value of 0.68 (Table 5). 

Contrarily, the model that did not incorporate any host tree (scenario 1) as an explanatory variable 

exhibited the lowest mean AUC (0.85) and mean TSS (0.61) values (Table 5). 
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TABLE 5 Accuracy metrics of mopane worm (Gonimbrasia belina) habitat suitability models in Southern 

Africa with four different model scenarios using support vector machine (SVM), random forest 

(RF), and boosted regression tree (BRT) algorithms. The model accuracies include the area under 

the curve (AUC), correlation (COR), true skill statistic (TSS), and deviance 

Model scenarios  Model algorithm AUC COR TSS Deviance 

Scenario 1  RF 0.90  0.60    0.68 0.38 

SVM 0.81 0.45 0.55 0.48 

BRT 0.85 0.47 0.60 0.48 

 

Scenario 2  RF 0.90 0.59    0.69 0.38 

SVM 0.83 0.44 0.62 0.50 

BRT 0.87 0.51 0.65 0.48 

 

Scenario 3 RF 0.91 0.61 0.72 0.37 

SVM 0.82 0.52 0.65 0.45 

BRT 0.88 0.55 0.67 0.45 

 

Scenario 4 RF 0.91 0.60 0.69 0.38 

SVM 0.81 0.46 0.58 0.49 

BRT 0.88 0.53 0.68 0.45 
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Comparatively, the ensemble model which incorporated all the host trees (scenario 3) 

demonstrated superior predictive performance in predicting the distribution of mopane worm, as 

evidenced by the higher accuracy metrics achieved compared to the other scenarios. The ensemble 

model which only had the alternative host trees to the C. mopane (scenario 4) also exhibited 

favourable results, representing a robust alternative for predicting suitable areas for the survival of 

mopane worm across all evaluated metrics. The base model which did not incorporate any host 

tree variables (scenario 1), displayed commendable predictive capabilities. The model scenario 

that only incorporated C. mopane as the sole host tree (scenario 2), improved the base model 

(scenario 1) though to a lesser extent as compared to the other scenario models (scenario 3 and 

scenario 4). 

Spatial distribution of mopane worm (Gonimbrasia belina) suitability in Southern Africa 

The four different scenarios considered for the study yielded similar habitat suitability patterns for 

mopane worm across the Southern Africa region. When considering other predictor variables with 

the exclusion of any host tree explanatory variable, the habitat suitability map revealed that 

mopane worm exhibited low to high suitability primarily in the northeastern part of South Africa 

and low to moderate suitability in Southern Zimbabwe. Conversely, the remaining regions of 

Southern Africa showed unsuitable areas for mopane worm survival with some parts of Namibia 

showing patches of low suitability (Figure 6). 

In contrast, when including the primary host tree as an explanatory variable, slight 

differences were observed with respect to the spatial extent of high suitability categories most 

especially in the northern part of South Africa. The suitability map that included C. mopane as the 

only host tree, revealed that areas along the boundary of Mozambique South Africa, and Zimbabwe 

exhibited high suitability for the survival of mopane worm, with the immediate surrounding 
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FIGURE 6	Suitability of mopane worm (Gonimbrasia belina) in Southern Africa. The base map used is the Esri World Satellite Imagery accessible within the QGIS software.



 

 

regions showing moderate to low suitability. Additionally, certain areas in Namibia showed low 

to moderate suitability for mopane worm distribution, while the remaining parts of Southern Africa 

were unsuitable (Figure 6). The relative importance of the C. mopane tree was recorded as the 

highest compared to the other environmental variables (Supplementary Figure S10) across other 

different host tree scenarios (Supplementary Figures S8-S12). 

When incorporating all mopane worm host trees into the model, there was a noticeable 

increase in the spatial extent of highly suitable areas for mopane worm survival as compared to 

the scenario where only the C. mopane host tree was considered. Nevertheless, the model that 

included all host trees exhibited a slightly larger spatial area suitable for the mopane worm 

compared to the model that lacked any host tree as an explanatory variable, with patches of low to 

moderate suitability in Botswana. The relative variable importance for each mopane worm host 

tree indicated varying degrees of influence on the distribution of mopane worm with D. cinerea 

showing high relative importance as compared to the primary host tree, C. mopane (Supplementary 

Figure S9). 

Lastly, in the absence of the C. mopane tree, the spatial extent of suitable regions for 

mopane worm mirrored that of the scenario with all host trees as explanatory variables (scenario 

3), with a range of suitability varying from low to high. Notably, slightly more areas in the northern 

part of South Africa exhibited moderate to low suitability. 
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4 Discussion    

Numerous empirical studies have indisputably revealed the biotic interdependence present in 

several insect species and their host trees (Wardhaugh, 2014; Du et al., 2020).  In a study conducted 

by Kusia et al. (2021), the maximum entropy (MaxEnt) model was leveraged to delineate the 

distribution of Saturniids based on their associations with their host trees, to comprehend the 

complicated biological relationship between the species and their host trees, among other things. 

Additionally, in a study done by Shen et al. (2023), numerous ensemble models of various host 

trees, alongside other pertinent biotic interactions were integrated into a Bayesian network, 

facilitating the present and future prediction of mopane worm. Aligned with these scientific 

endeavours, our study adopted a modelling paradigm to comprehensively grasp the ecological 

relationships governing mopane worm to their host trees. 

 

Influence of host trees on the distribution of mopane worm (Gonimbrasia belina) in Southern 

Africa 

In contrast to earlier studies that primarily centred on individual host trees and the impacts of 

climate change on the population and distribution of mopane worm, our research specifically 

concentrated on harnessing host tree-based models collaboratively and comparatively for 

predictive purposes (Ngarega et al., 2021b). There is a noticeable dearth of research that 

investigates the interactions between mopane worms and various host trees. This unique approach 

enabled a comprehensive gauge of the collective influence of diverse host trees, facilitating a more 

holistic comprehension of mopane worm distribution patterns. Moreover, our study adopted a 

powerful modelling technique, affording us a meticulous exploration of potential interactions 

among predictor variables that might have been overlooked in previous investigations.  
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The outcomes derived from the host tree models and their corresponding suitability 

locations in Southern Africa offer essential insights for stakeholders when determining suitable 

areas for rearing the edible mopane worm. By comparing the relative importance rankings of each 

host tree, decision-makers can identify the most influential host trees in shaping mopane worm 

distribution. Understanding the comparative significance of each host tree allows decision-makers 

to prioritise the selection of rearing sites where the most critical host trees are prevalent such as 

the C. mopane and the D. cinerea host trees. 

The study also made several noteworthy contributions to the existing knowledge of mopane 

worm distribution. Firstly, it revealed that incorporating the primary host tree, C. mopane in our 

model, significantly improved the predictive capabilities of the mopane worm (scenario 2) as 

compared to models without any host tree information. Further enhancement in predictive abilities 

was observed with the inclusion of multiple host trees, as seen in scenario 3, encompassing all host 

trees. This finding is consistent with previous research indicating that certain host trees can 

significantly influence the presence and abundance of insect species (Mráček et al., 2005). It also 

reinforces the ecological importance of C. mopane as a key predictor for mopane worm presence, 

consistent with previous research (Kwiri et al., 2020; Nemadodzi et al., 2023).  

These findings underscore the potential significance of alternative host trees, particularly 

D. cinerea, which demonstrated the highest relative variable importance among all host trees and 

other environmental variables included in the model development. This suggests that D. cinerea 

may exert a relatively stronger influence on mopane worm distribution patterns compared to all 

other host trees considered. This could signify the importance of D. cinerea as a mirror 

replacement to the C. mopane in case of its extinction or of its limited supply. It's worth noting 

that our initial study did not originally intend to examine the sole impact of D. cinerea. Based on 
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the outcomes arising from our initial hypothesis, we performed a fifth host-tree-based mopane 

worm model, focusing solely on the influence of D. cinerea. In the findings, the relative 

importance value for D. cinerea slightly exceeded 0.8, in contrast to scenario 2, which exclusively 

featured C. mopane with a value of approximately 0.7. The detailed results of this additional 

scenario are presented in Supplementary Figure S12. This would contribute to a deeper exploration 

of the ecological dynamics surrounding mopane worm habitat and distribution.  

 

Implications and limitations of the study 

The study's findings have significant implications for conservation efforts, especially considering 

the concerning decline in C. mopane trees caused by multiple factors, such as climate change and 

elephant damage in various regions (Simbarashe and Farai, 2018). Additionally, the decline of 

mopane worm populations can largely be attributed to the overharvesting of the edible caterpillar 

by communities (Langley et al., 2020). Earlier studies also indicate that rainfall patterns, 

distribution, occurrence, temperature and occurrence of droughts, impact of natural enemies and 

predators also influence the occurrence and distribution of the mopane worm. As vast forests of C. 

mopane trees are no longer inhabited by mopane worms this indicates the greater importance of 

identifying and defining the level of importance of other host trees as well as other non-host factors 

in determining mopane worm abundance in Southern Africa.  

Furthermore, recent studies point to the fact of declining populations associated with larvae 

failing to burrow and pupate due to frequent droughts and low soil moisture at the time of pupation. 

Hence, there is a need for future studies to conduct laboratory tests that derive and identify 

thresholds of drought and soil texture that inhibit the burrowing of the mopane worm into the soil 

to complete its life cycle. Therefore, the habitat suitability maps presented in the research can serve 
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as a valuable tool to guide targeted conservation measures in addressing these challenges. These 

maps identify regions with high suitability for the survival of mopane worm and their host trees, 

providing essential information for conservation initiatives to focus their efforts on protecting 

these areas. 

Another key implication is the recognising the importance of C. mopane as a critical 

predictor variable for guiding targeted conservation strategies. By focusing on the conservation of 

this primary host tree, we can support the long-term viability of the species. However, our study's 

examination of the collective impact of multiple host trees, with D. cinerea notably achieving a 

high relative importance rank, provides invaluable insights for formulating comprehensive 

management plans aimed at conserving other alternative host trees. Understanding how different 

host trees contribute to mopane worm distribution allows for a more holistic approach to 

conservation efforts. 

Despite the valuable insights gained from our study, it is acknowledged that the findings 

are specific to Southern Africa. Therefore, caution should be exercised when extrapolating the 

results to other regions with different ecological conditions and host tree species. Similarly, the 

use of a coarse spatial resolution of 1km might have restricted our ability to capture fine-scale 

spatial variations in mopane worm distribution and its associations with specific host trees. While 

the study focuses on mopane worm host tree species, it acknowledges other potential limiting 

environmental hazards, including forest fires and pesticide use as common agricultural practices, 

as well as other ecological interactions such as predation, competition, and mutualism, that could 

impact mopane worm distribution. These factors and interactions may not have been fully 

accounted for in the models. Further research and refinement in these areas is warranted to enhance 
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the accuracy and precision of the ecological relationships between mopane worm and individual 

host trees. 

 

5 Conclusions 

The study provided valuable insights into the predictive abilities of the mopane worm distribution 

in Southern Africa, particularly within diverse host tree scenarios. The incorporation of multiple 

mopane host trees has notably enhanced the model's predictive accuracy as evidenced by the 

empirical evidence derived from our research, further elucidating the important role mopane host 

trees play in influencing the model's performance. These findings can inform conservation efforts, 

land management strategies, and decision-making processes aimed at preserving suitable habitats 

for mopane worm populations. Furthermore, the research underscores the imperative of 

establishing comprehensive policy frameworks to regulate the harvest and trade of mopane worms 

within respective country jurisdictions considering the potential loss of host trees to climate change 

and logging. Moreover, further research is needed to explore the ecological relationships and 

potential synergistic effects of multiple host trees and other landscape indicators on mopane worm 

distribution. 
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