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Abstract
After collecting a number of results on interval and almost interval preserving lin-
ear maps and vector lattice homomorphisms, we show that direct systems in various
categories of normed vector lattices and Banach lattices have direct limits, and that
these coincide with direct limits of the systems in naturally associated other cate-
gories. For those categories where the general constructions do not work to establish
the existence of general direct limits, we describe the basic structure of those direct
limits that do exist. A direct system in the category of Banach lattices and contractive
almost interval preserving vector lattice homomorphisms has a direct limit. When
the Banach lattices in the system all have order continuous norms, then so does the
Banach lattice in a direct limit. This is used to show that a Banach function space over
a locally compact Hausdorff space has an order continuous norm when the topologies
on all compact subsets are metrisable and (the images of) the continuous compactly
supported functions are dense.
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1 Introduction and overview

Until very recently, there has been a rathermodest role for direct limits of vector lattices
in the literature. In [9], Shannon characterises the spaces of continuous compactly
supported functions on locally compact Hausdorff spaces as the direct limits of certain
direct systems ofBanach lattices in the category of normedvector lattices and isometric
lattice homomorphisms. In [4], Filter shows that direct limits exist in the category of
vector lattices and lattice homomorphisms. He also studies permanence properties
when the lattice homomorphisms are injective. It is only recently in [10] that the
subject has been taken up again, and more comprehensively, by Van Amstel and
Van der Walt. They extend the work in [4] on direct limits of vector lattices by also
taking interval preserving and order continuous lattice homomorphisms into account.
In addition, they set up the basic theory for inverse limits of vector lattices, for which
there is also only a very limited literature (see [10] for references). Both types of limits
are then used to study the relation between a vector lattice and its order dual, and a
number of applications of the theory of direct and inverse limits to several problems
in concrete vector lattices are given.

The current paper is primarily concerned with the existence of direct limits of
direct systems in various categories of normed vector lattices and Banach lattices. The
presence of a norm makes this more complicated than the purely algebraic case of
vector lattices, where we have only little to add to [10]. Nevertheless, we still also give
a method to construct direct limits of direct systems in categories of vector lattices that
is different from that in [4] (as recapitulated in [10]). It appears to be a somewhat more
transparent and, what is more, it is naturally modified to show that direct limits also
exist in various categories of normed vector lattices andBanach lattices and contractive
vector lattice homomorphisms.

This paper is organised as follows.
Section2 contains preliminarymaterial. Thedefinitions of a direct limit in a category

and of (almost) interval preserving linear maps are recalled, and the thirteen categories
of vector lattices, normed vector lattices, and Banach lattices are introduced that we
shall consider in this paper, together with a few other ones that occur naturally.

Section 3 on interval and almost interval preserving linear maps and lattice homo-
morphisms is the toolbox for this paper. We have collected the basic general results
in the literature about these maps that we are aware of, and added our own contribu-
tions. We believe that this section contains a fairly comprehensive basic theory of the
categorical aspects of such maps that could perhaps also find use elsewhere.

In Sect. 4, we give what we call the standard constructions of direct limits of (suit-
able) direct systems of— in order of increasing complexity of the constructions—
vector lattices, normed vector lattices, and Banach lattices. They are essentially the
well-known basic constructions of direct limits of direct systems of vector spaces and
linear maps, and of normed spaces and Banach spaces and contractions, respectively.
To see why these also work for some categories of vector lattices, normed vector lat-
tices, and Banach lattices, and not for others, it is necessary to briefly go through the
three basic constructions. These reviews of the constructions also make it immediately
clear why the direct limits of a fixed direct system in various categories coincide. We
also show that a direct limit of a direct system of normed spaces (resp. Banach spaces)
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and contractive linear maps is also a direct limit of that system in the category of
metric spaces (resp. complete metric spaces) and contractive maps. Although we may
not be the first to note this, we are not aware of a reference for these two facts.

The constructions in Sect. 4 are not guaranteed to work for all thirteen categories
of vector lattices, normed vector lattices, and Banach lattices under consideration.
For six of these, the existence of direct limits of their general direct systems remains
open. Nevertheless, the results in Sect. 3 enable us to say something in Sect. 5 about
the basic structure of those direct limits that do exist. For five of these exceptional
categories, we give an example of a direct system for which the standard construction
‘unexpectedly’ still produces a direct limit, and an example where it fails to do so.

The concluding Sect. 6 is concerned with the order continuity of direct limits of
direct systems ofBanach lattices. Section4 shows that direct limits exist in the category
of Banach lattices and contractive almost interval preserving vector lattice homo-
morphisms. When all Banach lattices in a direct system in this category are order
continuous, then, as is shown in this section, so is the Banach lattice in its direct
limit. As an application, we show that a Banach function space over a locally compact
Hausdorff space has an order continuous norm when the topologies on all its com-
pact subsets are metrisable and (the images of) the continuous compactly supported
functions are dense in it. An alternate, more direct proof of this is also provided.
It seems natural to wonder whether methods as in [10], using direct as well as inverse
limits in categories of vector lattices, can also be applied to problems in normed
vector lattices and Banach lattices, once the material in the present paper has been
supplemented with sufficiently many results on inverse limits of direct systems of
normed vector lattices and Banach lattices.

2 Preliminaries

In this section, we give the conventions, notations, and definitions used in the sequel.
All vector spaces in this paper are real vector spaces.1 A preordered vector space is

a vector space with a linear preorder induced by a wedge that need not be a cone. The
positive wedges of preordered vector spaces need not be generating. Vector lattices
need not be Archimedean. If S is a subset of a vector lattice E , then we write S+ for
the set {s+ : s ∈ S} of the positive parts of its elements. Hence S+ ⊇ S ∩ E+ with
a possibly proper inclusion; for a linear subspace L of E , we have L+ = L ∩ E+ if
and only if L is a vector sublattice of E . We write E∼ for the order dual of a vector
lattice E . By a lattice homomorphism we mean a vector lattice homomorphism; by a
normed lattice we mean a normed vector lattice; and by an order continuous Banach
lattice wemean a Banach lattice that has an order continuous vector norm. The positive
wedges of preordered normed spaces need not be closed. A contraction between two
normed spaces is supposed to be linear. We write E∗ for the norm dual of a normed
space E .

1 The constructions of direct limits of direct systems of vector spaces, normed spaces, and Banach spaces
that we shall review also work for complex spaces.
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When E is a vector lattice and e ≤ e′ in E , then we let [e, e′]E :={e′′ ∈ E : e ≤
e′′ ≤ e′} denote the corresponding order interval in E .

A linearmapϕ : E → F between twovector lattices is said to be interval preserving
if it is positive and such that ϕ([0, x]E ) = [0, ϕ(x)]F for all x ∈ E+.

A linear map ϕ : E → F from a vector lattice E into a normed lattice F is called
almost interval preserving if it is positive and such that [0, ϕ(x)]F = ϕ([0, x]E ) for
all x ∈ E+. It is clear that [0, ϕ(x)]F ⊇ ϕ([0, x]E ) for positive ϕ; the point is the
reverse inclusion.

Let Cat be a category. Suppose that I is a directed non-empty set, and that(
(Oi )i∈I , (ϕ j i )i, j∈I , j≥i

)
is a pair, consisting of a collection of objects Oi indexed

by I , and morphisms ϕ j i : Oi → Oj for all i, j ∈ I with i ≤ j , such that ϕi i is the
identity morphism of Oi and ϕk j ◦ ϕ j i = ϕki for all i, j, k ∈ I with i ≤ j ≤ k. Then(
(Oi )i∈I , (ϕ j i )i, j∈I , j≥i

)
is called a direct system in Cat over I . As we shall always

be working with one direct system at a time, we shall omit the mention of the index
set I in the proofs and in the notation altogether, and simply write

(
(Oi ), (ϕ j i ) j≥i

)
.

If O is an object in Cat and ϕi : Oi → O are morphisms, then the system
(
O, (ϕi )

)

is called compatible with
(
(Oi ), (ϕ j i ) j≥i

)
when ϕ j ◦ ϕ j i = ϕi for all j ≥ i . A direct

limit of the system
(
(Oi ), (ϕ j i ) j≥i

)
in Cat is a compatible system

(
O, (ϕi )

)
with

the property that, for every compatible system
(
O ′, (ϕ′

i )
)
, there is a unique morphism

χ : O → O ′ such that ϕ′
i = χ ◦ ϕi for all i .2 The commutativity of the diagram

Oi O j

O

O ′

ϕ j i

ϕi

ϕ′
i

ϕ j

ϕ′
jχ

shows that, in retrospect, the compatibility of
(
O ′, (ϕ′

i )
)
‘originates’ from the com-

patibility of
(
O, (ϕi )

)
.

Direct limits need not exist, but if they do then they are unique up to isomorphism
in a strong sense. If

(
O, (ϕi )

)
and

(
O ′, (ϕ′

i )
)
are both direct limits of

(
(Oi ), (ϕ j i ) j≥i

)
,

and χ : O → O ′ is the unique morphism such that ϕ′
i = χ ◦ ϕi for all i , then χ is an

isomorphism. Its inverse is the unique morphism χ ′ : O ′ → O such that ϕi = χ ′ ◦ ϕ′
i

for all i .
For a category of vector lattices and linear maps, there are two properties that we

consider for the linear maps that are its morphisms: being interval preserving and
being a lattice homomorphism. This gives four categories of vector lattices, and we
ask for the existence of direct limits of direct systems in each of these. One of these
categories consists of the vector lattices and the linear maps. In this category, all direct
systems have direct limits that, after application of the forgetful functor, yield their
direct limits in the category of vector spaces and linear maps. Indeed, if E is the vector

2 The terminology in the literature is not uniform: ‘inductive system’ and ‘inductive limit’ are also used,
for example. In categorical language, a direct limit as above is a co-limit of the diagram that is provided by(
(Oi ), (ϕ j i ) j≥i

)
.
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space in a direct limit in the latter category, then one merely needs to supply it with
the structure of a vector lattice. This is clearly possible since every vector space is
isomorphic, as a vector space, to the vector lattice of finitely supported functions on a
basis. This leaves three categories to consider.

For a category of normed lattices or Banach lattices and contractions, there are
three properties that we consider for the contractions: being interval preserving, being
almost interval preserving, and being a lattice homomorphism. This leads to eight
categories for each. Here, we have nothing to say about the (non-trivial) cases where
the morphisms are simply contractions, and we shall ignore this case in the sequel.
This leaves seven categories for each, but since being interval preserving implies being
almost interval preserving there are effectively five categories of normed lattices or
Banach lattices to consider in the sequel.

We give an overview of these thirteen categories in the following table, and also
include additional categories that will turn out to occur naturally in the sequel.

Objects Morphisms

VLIPLH Vector lattices Interval preserving lattice homomorphisms
VLLH Vector lattices Lattice homomorphisms

POVSPos Preordered vector spaces Positive linear maps
VS Vector spaces Linear maps
Set Sets Arbitrary maps
VLIP Vector lattices Interval preserving linear maps
NLIPLH Normed lattices Contractive interval preserving lattice homomorphisms
NLAIPLH Normed lattices Contractive almost interval preserving lattice homomorphisms
NLLH Normed lattices Contractive lattice homomorphisms

PONSPos Preordered normed spaces Positive contractions
NS Normed spaces Contractions
Met Metric spaces Contractive maps
NLIP Normed lattices Interval preserving contractions
NLAIP Normed lattices Almost interval preserving contractions
BLAIPLH Banach lattices Contractive almost interval preserving lattice homomorphisms
BLLH Banach lattices Contractive lattice homomorphisms

POBSPos Preordered Banach spaces Positive contractions
BS Banach spaces Contractions
ComMet Complete metric spaces Contractive maps
BLIP Banach lattices Interval preserving contractions
BLAIP Banach lattices Almost interval preserving contractions
BLIPLH Banach lattices Contractive interval preserving lattice homomorphisms

The ordering in the table may look a bit odd at first sight, but it reflects the
existence of the following chains, in which the inclusion symbols denote subcate-
gory/supercategory relations, and arrows indicate the obvious forgetful functors:

VLIPLH ⊂ VLLH ⊂ POVSPos → VS → Set
NLIPLH ⊂ NLAIPLH ⊂ NLLH ⊂ PONSPos → NS ⊂ Met

BLAIPLH ⊂ BLLH ⊂ POBSPos → BS ⊂ ComMet
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As we shall see in Theorem 4.1, Theorems 4.3 and 4.5, respectively, direct systems in
those categories in the above chains that consist of vector lattices have direct limits in
the pertinent categories, and these direct limits are also direct limits of these systems
in the categories to the right in the same chain.3 Direct limits also exist in VS, NS,
and BS, and these are also direct limits of the system in Set, Met, and ComMet,
respectively.

The categories VLIP, NLIP, NLAIP, BLIP, BLAIP, and BLIPLH are outliers in the sense
that the general constructions of direct limits that work for the other categories of
vector lattices may fail in these cases. The existence of direct limits of general direct
systems in these categories is unclear. We shall comment further on this in Sect. 5.

3 Interval preserving and almost interval preserving linear maps and
lattice homomorphisms

In this section, we collect a number of results of a categorical flavour on interval and
almost interval preserving linear maps and lattice homomorphisms. Our primary goal
is an application of such results in the context of direct limits in Sect. 4. We include
more than is needed for just that, however, in an attempt to fill a reasonably complete
toolbox that may also find use elsewhere. Some of the results are elementary and have
only been included explicitly to complete the picture and for reference purposes in the
sequel of the paper, but others are less obvious.

We start with the case of interval preserving maps and vector lattices. After that,
we consider that of normed lattices and almost interval preserving maps, where the
proofs of analogous and additional results are less straightforward.

3.1 Interval preserving linear maps and lattice homomorphisms

Interval preserving linear maps are related to lattice homomorphisms via duality.
When ϕ : E → F is an interval preserving linear map between two vector lattices,
then its order adjoint ϕ∼ : F∼ → E∼ is a lattice homomorphism; when ϕ is a lat-
tice homomorphism, then ϕ∼ is interval preserving; when ϕ∼ is interval preserving
and F∼ separates the points of F , then ϕ is a lattice homomorphism. We refer to [1,
Theorems 2.16 and 2.20] for these results.

The following two lemmas are easy consequences of the definitions.

Lemma 3.1 The composition of two interval preserving linear maps between vector
lattice is again an interval preserving linear map.

Lemma 3.2 Let ϕ : E → F be an interval preserving linear map between two vector
lattices E and F. Take a vector sublattice F ′ of F such that ϕ(E) ⊆ F ′. Then
ϕ : E → F ′ is also an interval preserving linear map.

3 Strictly speaking, one should say that the images of the direct limits under the appropriate combinations
of inclusion and/or forgetful functors are direct limits of the images of the direct systems under the same
combinations of functors. Since there appears to be little chance of confusion, we prefer to use a shorter
formulation as in the text.

123



Direct limits in categories of normed vector lattices… Page 7 of 32 39

The next result, for which we refer to [6, Proposition 14.7]), is a basic property of
interval preserving linear maps.

Proposition 3.3 Let ϕ : E → F be an interval preserving linear map between two
vector lattices E and F. If I is an ideal in E, then ϕ(I ) is an ideal in F, and ϕ(I )+ =
ϕ(I+).

We have the following relation between lattice homomorphisms and interval pre-
serving linear maps. The equivalence in (1) follows from Proposition 3.3 and [10,
Proposition 2.1]. The special case of (2) that an injective interval preserving linear
map is a lattice homomorphism was established in [10, Proposition 2.1], with a proof
different from ours.

Proposition 3.4 Let ϕ : E → F be a linear map between two vector lattices E and F.

(1) Suppose that ϕ is a lattice homomorphism. Then the following are equivalent:

(a) ϕ is interval preserving;
(b) ϕ(E) is an ideal in F.

(2) Suppose that ϕ is interval preserving. Then the following are equivalent:

(a) ϕ is a lattice homomorphism;
(b) ker ϕ is an ideal in E.

Proof In view of the preceding remarks, it only remains to prove that an interval
preserving linear map ϕ is a lattice homomorphism when ker ϕ is an ideal in F . From
Proposition 3.3 we see that ϕ(E) is a vector sublattice of F and that ϕ(E+) = ϕ(E)+.
We let q : E → E/ ker ϕ denote the quotient map, and let ϕ′ be the linear map
ϕ′ : E/ ker ϕ → F such that ϕ = ϕ′ ◦ q. Then ϕ′ is a linear bijection between
E/ ker ϕ and ϕ(E) such that ϕ′((E/ ker ϕ)+) = ϕ′(q(E+)) = ϕ(E+) = ϕ(E)+.
Hence ϕ′ is a lattice homomorphism, and then so is ϕ = ϕ′ ◦ q. ��

The following three results are geared towards direct limits. The verification of the
first two is straightforward.

Lemma 3.5 Let E be a vector lattice, and let I be a directed set. Suppose that, for
i ∈ I , Ei is a vector sublattice of E such that Ei ⊆ E j whenever i ≤ j . Then

⋃
i Ei

is a vector sublattice of E, and the following are equivalent:

(1) all inclusion maps from Ei into E j for i ≤ j are interval preserving lattice
homomorphisms;

(2) all inclusion maps from the Ei into
⋃

i Ei are interval preserving lattice homo-
morphisms.

Lemma 3.6 Let I be a directed set, let (Ei )i∈I be a collection
〈
vector spaces / vector

lattices
〉
, and let ϕi : Ei → E be

〈
linearmaps / lattice homomorphisms

〉
into a

〈
vector

space / vector lattice
〉
E, such that ϕi (Ei ) ⊆ ϕ j (E j ) when i ≤ j . Then

⋃
i ϕi (Ei ) is

a
〈
linear subspace / vector sublattice

〉
of E. Let χ : ⋃

i ϕi (Ei ) → F be a map into
a

〈
vector space / vector lattice

〉
F. Then the following are equivalent:
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(1) all maps χ ◦ ϕi : Ei → F are
〈
linear maps / lattice homomorphisms

〉
;

(2) χ : ⋃
i ϕi (Ei ) → F is a

〈
linear map / lattice homomorphism

〉
.

Proposition 3.7 Let I be a directed set, let (Ei )i∈I be a collection vector lattices, and
let ϕi : Ei → E be interval preserving linear maps into a vector lattice E such that
ϕi (Ei ) ⊆ ϕ j (E j ) when i ≤ j . Then

⋃
i ϕi (Ei ) is an ideal in E. Let χ : ⋃

i ϕi (Ei ) →
F be a linear map into a vector lattice F. Then the following are equivalent:

(1) all maps χ ◦ ϕi : Ei → F are interval preserving linear maps;
(2) χ : ⋃

i ϕi (Ei ) → F is an interval preserving linear map.

Proof It follows from Proposition 3.3 that
⋃

i ϕi (Ei ) is an ideal in E ; Lemma 3.6
yields that the linearity of all χ ◦ ϕi is equivalent to that of χ .

We prove that χ is interval preserving when all χ ◦ϕi are. To show that χ is positive,
take e ∈ (⋃

i ϕi (Ei )
)+. Then e = ϕi (ei ) for some i and ei ∈ Ei . By Proposition 3.3,

ϕi (ei ) ∈ ϕi (Ei )
+ = ϕi (E

+
i ), so we may suppose that ei ∈ E+

i . Hence χ(e) =
(χ ◦ ϕi )(ei ) ∈ F+, so that χ is positive. We show that χ is interval preserving. Take
e ∈ (⋃

i ϕi (Ei )
)+ and f ∈ [0, χ(e)]F . Again there exist an i and ei ∈ E+

i such that
ϕi (ei ) = e. Since f ∈ [0, χ(e)]F = [0, (χ ◦ ϕi )(ei )]F , there exists an ẽi ∈ [0, ei ]Ei

such that χ(ϕi (ẽi )) = (χ ◦ ϕi )(ẽi ) = f . Because ϕi (ẽi ) ∈ [0, ϕi (ei )]E = [0, e]E , we
conclude that χ is interval preserving.

It is clear from Lemma 3.1 that all χ ◦ ϕi are interval preserving when χ is. ��

The combination of the case of Proposition 3.7 where I consists of one element
with Proposition 3.3 and Lemma 3.6 yields the following.

Corollary 3.8 Suppose that the diagram

E

ϕ(E) F

G

ψ
ϕ

⊆ ψ ′

is commutative, where E, F, and G are vector lattices. If ϕ : E → G and ψ : E → F
are both

〈
interval preserving linearmaps / interval preserving lattice homomorphism

〉
,

then ϕ(E) is a vector sublattice of G, and ψ ′ : ϕ(E) → F is an
〈
interval preserving

linear map / interval preserving lattice homomorphism
〉
.

Using Lemma 3.1, Corollary 3.8 has the following consequence. We shall apply
it in quotient constructions to push down the interval preserving property of the map
in the top of a commutative diagram to the map in the bottom. In these applications,
ϕE and ϕF in the diagram are surjective (quotient) lattice homomorphisms, which are
interval preserving according to Proposition 3.4.
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Corollary 3.9 Suppose that the diagram

E F

E ′ F ′

ψ

ϕE ϕF

ψ ′

is commutative, where E, E ′, F, and F ′ are vector lattices; and ϕE is surjective.
If ϕE , ϕF , and ψ are

〈
interval preserving linear maps / interval preserving lattice

homomorphism
〉
, then ψ ′ is an

〈
interval preserving linear map / interval preserving

lattice homomorphism
〉
.

3.2 Almost interval preserving linear maps and lattice homomorphisms

The connection between (almost) interval preserving linear maps and lattice homo-
morphisms is particularly strong in the case of normed lattices and continuous maps.
We recall that the norm dual E∗ of a normed lattice E is an ideal in E∼ that is a
Banach lattice, and that E∗ = E∼ when E is a Banach lattice; see [1, Theorem 3.49,
Theorem 4.1, and Corollary 4.5], for example. We then have the following, which is
for the most part [7, Proposition 1.4.19]. Part (2.c), which applies to order continuous
Banach lattices, has been added for use in the present paper. It also brings out the
perfect symmetry between ϕ and ϕ∗ when order intervals are weakly compact.

Proposition 3.10 Let ϕ : E → F be a continuous linear map between normed lat-
tices E and F, with adjoint ϕ∗ : F∗ → E∗.

(1) The following are equivalent:

(a) ϕ : E → F is a lattice homomorphism;
(b) ϕ∗ : F∗ → E∗ is almost interval preserving;
(c) ϕ∗ : F∗ → E∗ is interval preserving.

(2) The following are equivalent:

(a) ϕ∗ : F∗ → E∗ is a lattice homomorphism;
(b) ϕ : E → F is almost interval preserving.

When order intervals in E are weakly compact, then these are also equivalent
to:

(c) ϕ : E → F is interval preserving.

Proof In view of the results in [7, Proposition 1.4.19], we need only prove that (2.b)
implies (2.c) when order intervals in E are weakly compact. Take x ∈ E+. Since the
order interval [0, x] is weakly compact, so is ϕ([0, x]). Hence it is weakly closed.
Because it is convex, this implies that ϕ([0, x]) is norm closed. Since ϕ is supposed to
be almost interval preserving, we now see that it is actually even interval preserving.

��
The following two lemmas are direct consequences of the definitions.
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Lemma 3.11 Let E be a vector lattice, and let F and G be normed lattices. Suppose
that ϕ : E → F is an almost interval preserving linear map, and that ψ : F → G is a
continuous almost interval preserving linear map. Then ψ ◦ ϕ : E → G is an almost
interval preserving linear map.

Lemma 3.12 Let ϕ : E → F be an almost interval preserving linear map between a
vector lattice E and a normed lattice F. Take a vector sublattice F ′ of F such that
ϕ(E) ⊆ F ′. Then ϕ : E → F ′ is also an almost interval preserving linear map.

It is established in [2, Theorem 2.1.(1)] that ϕ(E) is an ideal in F when ϕ : E → F
is an almost interval preserving linear map between Banach lattices E and F . Our
next result is more precise. For its proof, we recall from Sect. 2 that, for a subset S of
a vector lattice E , S+ denotes the set of positive parts of elements of S. This contains
S ∩ E+, but the inclusion can be proper.

Proposition 3.13 Let ϕ : E → F be an almost interval preserving linear map between
a vector lattice E and a normed lattice F. Let I be an ideal in E. Then:

(1) ϕ(I ) is an ideal in F and
(
ϕ(I )

)+ = ϕ(I+) = ϕ(I )+;
(2) the following are equivalent:

(a) ϕ(I+) is closed;
(b) ϕ(I ) is closed and ϕ(I )+ = ϕ(I+).

Proof We prove (1). As a preparation, we establish the following claim: whenever
y, z ∈ F are such that 0 ≤ y ≤ |z| and z ∈ ϕ(I ), then y ∈ ϕ(I+). To see this,
choose a sequence (xn) ⊆ I such that ϕ(xn) → z. Then |ϕ(xn)| → |z|. Since
|ϕ(xn)| ∈ [0, ϕ(|xn|)]F = ϕ([0, |xn|]E ), there exists a sequence (x ′

n) in E such that
x ′
n ∈ [0, |xn|]E and ‖ϕ(x ′

n) − |ϕ(xn)|‖ < 1/2n . Then (x ′
n) ⊆ I+ and ϕ(x ′

n) → |z|.
Hence y∧ϕ(x ′

n) → y∧ |z| = y. Since y∧ϕ(x ′
n) ∈ [0, ϕ(x ′

n)]F = ϕ([0, x ′
n]E ), there

exists a sequence (x ′′
n ) in E such that x ′′

n ∈ [0, x ′
n]E and ‖ϕ(x ′′

n ) − y ∧ ϕ(x ′
n)‖ < 1/2n .

Then (x ′′
n ) ⊆ I+ and ϕ(x ′′

n ) → y, showing that y ∈ ϕ(I+). Our claim has now been
established.

We can now show that ϕ(I ) is an ideal in F . Suppose that y, z ∈ F are such that
z ∈ ϕ(I ) and that 0 ≤ |y| ≤ |z|. Then 0 ≤ y± ≤ |z|. It follows from the claim that
y± ∈ ϕ(I+) ⊆ ϕ(I ), so that also y ∈ ϕ(I ). Hence ϕ(I ) is an ideal in F .

We show that
(
ϕ(I )

)+ = ϕ(I+). Take z ∈
(
ϕ(I )

)+
. Since we already know that

ϕ(I ) is a vector sublattice of F , we have z ∈ ϕ(I ). From the fact that 0 ≤ z ≤ |z| and
the claim it follows that z ∈ ϕ(I+). Hence

(
ϕ(I )

)+ ⊆ ϕ(I+). The converse inclusion

ϕ(I+) ⊆
(
ϕ(I )

)+
follows from the positivity of ϕ and the closedness of F+.

Next we show that ϕ(I+) = ϕ(I )+. The positivity of ϕ makes clear that ϕ(I+) ⊆
ϕ(I )+. For the reverse inclusion, take z ∈ ϕ(I )+. There exists a sequence (xn) in I
such that ϕ(xn)+ → z. Since 0 ≤ ϕ(xn)+ ≤ |ϕ(xn)| ≤ ϕ(|xn|), we have ϕ(xn)+ ∈
[0, ϕ(|xn|)]F . From this we see that there exist x ′

n ∈ [0, |xn|]E ⊆ I+ such that
‖ϕ(x ′

n) − ϕ(xn)+‖ < 1/2n . Then also ϕ(x ′
n) → z, showing that z ∈ ϕ(I+). The

proof of (1) is now complete.
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We prove that (2.a) implies (2.b). In view of (1), it is sufficient to prove that ϕ(I )
is closed. For this, suppose that z ∈ F and that (xn) ⊆ I is a sequence such that
ϕ(xn) → z. Then ϕ(xn)± → z±, so that z± ∈ ϕ(I )+. By (1), the latter set equals
ϕ(I+). Since ϕ(I+) is closed, we see that z± ∈ ϕ(I+) ⊆ ϕ(I ). Then also z ∈ ϕ(I ),
as desired.

It is immediate from (1) that (2.b) implies (2.a). ��
The following result is concernedwith the relation between lattice homomorphisms

and almost interval preserving linear maps.

Proposition 3.14 Let ϕ : E → F be a linear map between a vector lattice E and a
normed lattice F.

(1) Suppose that ϕ is a lattice homomorphism. Then the following are equivalent:

(a) ϕ is almost interval preserving;
(b) ϕ(E) is an ideal in F.

(2) Suppose that ϕ is almost interval preserving. If, in addition, ker ϕ is an ideal in E
and ϕ(E+) is closed, then ϕ is a lattice homomorphism.

Proof We prove (1). In view of Proposition 3.13, it only remains to be shown that ϕ

is almost interval preserving when ϕ is a lattice homomorphism and ϕ(E) is an ideal
in F . In this case, take x ∈ E+ and y ∈ F such that y ∈ [0, ϕ(x)]F . Since ϕ(x) ∈
ϕ(E), we also have y ∈ ϕ(E). Choose a sequence (xn) in E such that ϕ(xn) → y.
Then y = |y| ∧ ϕ(x) = [limn→∞ |ϕ(xn)|] ∧ ϕ(x) = limn→∞ ϕ(|xn| ∧ x). Since
|xn| ∧ x ∈ [0, x], this shows that y ∈ ϕ([0, x]E ).

We prove (2). We see from Proposition 3.13 that ϕ(E) is a vector sublattice of F
and that ϕ(E+) = ϕ(E)+. The argument in the proof of part (2) of Proposition 3.4
then shows that ϕ is a lattice homomorphism. ��

In particular, the inclusion map from a vector sublattice of a normed lattice into its
closure is almost interval preserving.

If E is a normed lattice where order intervals are weakly compact and if ϕ is
continuous, then part (2) of Proposition 3.14 can be improved.

Proposition 3.15 Let ϕ : E → F be a continuous almost interval preserving linear
map between normed vector lattices E and F, where order intervals in E are weakly
compact. Then the following are equivalent:

(1) ϕ is a lattice homomorphism;
(2) ker ϕ is an ideal in E.

Proof We need only prove that (2) implies (1). By Proposition 3.10, ϕ is, in fact,
even interval preserving, and then part (2) of Proposition 3.4 shows that ϕ is a lattice
homomorphism. ��

Themajority of the results in the remainder of this section are relevant in the context
of direct limits in NLAIPLH and BLAIPLH. In view of part (1) of Proposition 3.13, the
first one is about closures of vector sublattices being ideals.
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Proposition 3.16 Let E be a normed lattice, and let I be a directed set. Suppose that,
for i ∈ I , Ei is a vector sublattice of E such that Ei ⊆ E j whenever i ≤ j , and that

E = ⋃
i Ei . Then the following are equivalent:

(1) all inclusion maps from Ei into E j for i ≤ j are almost interval preserving lattice
homomorphisms;

(2) all inclusion maps from the Ei into the vector sublattice
⋃

i Ei of E are almost
interval preserving lattice homomorphisms;

(3) all inclusion maps from the Ei into E are almost interval preserving lattice homo-
morphisms.

Proof We prove that (1) implies (3). Fix an index i and an ei ∈ E+, and take e ∈
[0, ei ]E . There exist a sequence of indices (in) and elements ein of Ein such that
ein → e. We may suppose that in ≥ i and that ein ∈ E+

in
for all n. We also have

that ein ∧ ei → e. Since ein ∧ ei ∈ [0, ei ]Ein
, there exists a sequence (e′

in
) such that

e′
in

∈ [0, ei ]Ei and ‖e′
in

− ein ∧ ei‖ < 1/2n for all n. This implies that also e′
in

→ e.

Hence e ∈ [0, ei ]E , as desired.
It is immediate from Lemma 3.12 that (3) implies (2) and that (2) implies (1). ��
The proof of the following result is elementary.

Lemma 3.17 Let I be a directed set, let (Ei )i∈I be a collection
〈
vector spaces / vector

lattices
〉
, and let ϕi : Ei → E be

〈
linear maps / lattice homomorphisms

〉
into a〈

normed space / normed lattice
〉
E, such that ϕi (Ei ) ⊆ ϕ j (E j ) when i ≤ j . Let

χ : ⋃
i ϕi (Ei ) → F be a continuous map into a

〈
normed space / normed lattice

〉
F.

Then
⋃

i ϕi (Ei ) is a
〈
vector space / vector lattice

〉
, and the following are equivalent:

(1) all maps χ ◦ ϕi : Ei → F are
〈
linear maps / lattice homomorphisms

〉
;

(2) χ is a
〈
linear map / lattice homomorphism

〉
.

The proof of our next result is less straightforward than that of its counterpart for
interval preserving linear maps between vector lattices, Proposition 3.7.

Proposition 3.18 Let I be a directed set, let (Ei )i∈I be a collection of vector lattices,
let ϕi : Ei → E be almost interval preserving linear maps into a normed lattice E
such that ϕi (Ei ) ⊆ ϕ j (E j ). Then

⋃
i ϕi (Ei ) is an ideal in E. Let χ : ⋃

i ϕi (Ei ) → F
be a continuous linear map into a normed lattice F. Then the following are equivalent:

(1) all maps χ ◦ ϕi : Ei → F are almost interval preserving linear maps;
(2) χ is an almost interval preserving linear map.

Proof It follows from Proposition 3.13 that
⋃

i ϕi (Ei ) is an ideal in E , and then so is
its closure

⋃
i ϕi (Ei ). Lemma 3.17 yields that the linearity of all χ ◦ ϕi is equivalent

to that of χ .
We prove that χ is almost interval preserving when all χ ◦ϕi are. We prove that (1)

implies (2). To show that χ is positive, let e ∈
(⋃

i ϕi (Ei )
)+

. There exist sequences

(in) of indices and (ein ) of elements ein of Ein such that ϕin (ein ) → e. Then also
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(ϕin (ein ))
+ → e. As in the proof of part (1) of Proposition 3.13, we have (ϕin (ein ))

+ ∈
[0, ϕ(|ein |)]F , so that there exist ẽin ∈ (Ein )

+ such that ‖ϕin (ẽin ) − (ϕin (ein ))
+‖ <

1/2n . Since then also ϕin (ẽin ) → e, we see from χ(e) = limn(χ ◦ ϕin )(ẽin ) that χ is
positive.

To see that χ is almost interval preserving when the χ ◦ ϕi are, take e ∈(⋃
i ϕi (Ei )

)+
. Suppose that f ∈ [0, χ(e)]F . Take ε > 0. There exist an index i

and an ei ∈ Ei such that ‖e − ϕi (ei )‖ < ε. Using that then also
∥∥e − ϕi (ei )+

∥∥ < ε,
we see from the second equality in part (1) of Proposition 3.13 that we may suppose
that ei ∈ E+

i . Set f̃ := f ∧ (χ ◦ ϕi )(ei ) ∈ [0, (χ ◦ ϕi )(ei )]F . Hence there exists an
ẽi ∈ [0, ei ]Ei such that

∥
∥ f̃ − (χ ◦ ϕi )(̃ei )

∥
∥ < ε, and then we have

∥∥ f − χ
(
ϕi (̃ei ) ∧ e

)∥∥ ≤ ∥∥ f − f̃
∥∥ + ∥∥ f̃ − (χ ◦ ϕi )(̃ei )

∥∥

+ ∥∥(χ ◦ ϕi )(̃ei ) − χ
(
ϕi (̃ei ) ∧ e

)∥∥

= ∥∥ f ∧ χ(e) − f ∧ χ
(
ϕi (ei )

)∥∥ + ∥∥ f̃ − (χ ◦ ϕi )(̃ei )
∥∥

+ ∥∥χ
(
ϕi (̃ei ) ∧ ϕi (ei )

) − χ
(
ϕi (̃ei ) ∧ e

)∥∥

<
∥∥χ(e) − χ

(
ϕi (ei )

)∥∥ + ε

+ ∥∥χ
∥∥ ∥∥ϕi (̃ei ) ∧ ϕi (ei ) − ϕi (̃ei ) ∧ e

∥∥

≤ ‖χ‖‖e − ϕi (ei )‖ + ε + ‖χ‖ ‖ϕi (ei ) − e‖
≤ (1 + 2‖χ‖) ε.

As ϕi (̃ei ) ∧ e ∈ [0, e]⋃
i ϕi (Ei )

, we conclude that f ∈ χ
([0, e]⋃

i ϕi (Ei )

)
, as desired.

Lemma 3.11 and Lemma 3.12 show that all χ ◦ ϕi are almost interval preserving
when χ is. ��

When the Ei in Proposition 3.18 are normed lattices and the ϕi are continuous,
Proposition 3.10 provides the ingredients for an alternate proof of a variation of Propo-
sition 3.18. Although the result is weaker, we still include it for reasons of aesthetic
appeal of its proof.

Proposition 3.19 Let I be a set, let (Ei )i∈I be a collection normed lattices, and let
ϕi : Ei → E be continuous almost interval preserving linear maps into a normed
lattice E, such that E = ⋃

i ϕi (Ei ). Let χ : E → F be a continuous linear map into
a normed lattice F. Then the following are equivalent:

(1) all maps χ ◦ ϕi : Ei → F are almost interval preserving linear maps;
(2) χ is an almost interval preserving linear map.

Proof To show that χ is almost interval preserving when the χ ◦ ϕi are, we use the
equivalence of (2.a) and (2.b) of Proposition 3.10. We know that the ϕ∗

i : E∗ → E∗
i

and the (χ ◦ ϕi )
∗ : F∗ → E∗

i are all lattice homomorphisms and need to show that
χ∗ : F∗ → E∗ is also a lattice homomorphism. Take f ∗ ∈ F∗. Then

ϕ∗
i

[
χ∗(| f ∗|)] = (χ ◦ ϕi )

∗(| f ∗|) = ∣∣(χ ◦ ϕi )
∗( f ∗)

∣∣

= ∣∣ϕ∗
i

[
χ∗( f ∗)

]∣∣ = ϕ∗
i

[∣∣χ∗( f ∗)
∣∣].

123



39 Page 14 of 32 C. Ding, M. de Jeu

Stated otherwise, we have that
[
χ∗(| f ∗|)](ϕi (ei )) = [|χ∗( f ∗)|](ϕi (ei )) for ei ∈ Ei .

Since
⋃

i ϕi (Ei ) is dense in E , we conclude that χ∗(| f ∗|) = |χ∗( f ∗)|. Hence χ∗ is
a lattice homomorphism.

Lemma 3.11 shows that all χ ◦ ϕi are almost interval preserving when χ is. ��
We have already observed that the inclusion map from a vector sublattice of a

normed lattice into its closure is almost interval preserving. Hence the case of Propo-
sition 3.18 where I has one element has the following consequence.

Corollary 3.20 Let E ′ be a dense vector sublattice of a normed lattice E, let F be a
normed lattice, and let χ : E → F be a continuous linear map. Then χ is almost
interval preserving if and only if its restriction χ : E ′ → F to E ′ is almost interval
preserving.

The combination of the case of Proposition 3.18 where I consists of one element
with part (1) of Proposition 3.13 andwith Lemma 3.17 yields the following companion
result to Corollary 3.8.

Corollary 3.21 Suppose that the diagram

E

ϕ(E) F

G

ψϕ

⊆ ψ ′

is commutative, where E is vector lattice; F and G are normed lattices; and ψ ′
is continuous. If ϕ : E → G and ψ : E → F are both

〈
almost interval preserving

linear maps / almost interval preserving lattice homomorphism
〉
, then ϕ(E) is a vector

sublattice of G, and ψ ′ : ϕ(E) → F is an
〈
almost interval preserving linear map /

almost interval preserving lattice homomorphism
〉
.

UsingLemma3.11,Corollary 3.21 is easily seen to have the following consequence,
which is a companion result to Corollary 3.9. Analogously to the latter result, we shall
apply it in quotient constructions to push down the almost interval preserving property
from the map in the top of a commutative diagram to the map in the bottom, in cases
where ϕE and ϕF in the diagram are surjective quotient lattice homomorphisms.

Corollary 3.22 Suppose that the diagram

E F

E ′ F ′

ψ

ϕE ϕF

ψ ′

is commutative, where E is a vector lattice; E ′, F and F ′ are normed lattices;ϕE (E) =
E ′; and ϕF and ψ ′ are continuous. If ϕE , ϕF , and ψ are

〈
almost interval preserving
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linear maps / almost interval preserving lattice homomorphism
〉
, thenψ ′ is an

〈
almost

interval preserving linear map / almost interval preserving lattice homomorphism
〉
.

4 Direct limits: existence via three standard constructions

In each of the categories VS, NS, and BS, every direct system has a direct limit. This
can be proved via well-known standard constructions that are similar to each other.
We shall now show that each of these constructions can also be used to provide direct
limits in some (but not all) of the categories of vector lattices, normed latticed, and
Banach lattices under consideration in this paper.

4.1 Direct limits of vector lattices

Every direct system in the categoryVLLH of vector lattices and lattice homomorphisms
has a direct limit in VLLH. This was first established by Filter in [4]. His method is to
first regard the system as a direct system in Set, and then supply the canonical direct
limit in this category with the structure of a vector lattice to produce a direct limit
in VLLH. This is also the method as reviewed in [10]. There is, however, an alternate
approach that is, perhaps, more transparent. It uses a well-known construction that is
applied in many non-analytical categories of practical interest. The idea is to start with
a direct system in the category VS of vector spaces and linear maps, and construct
a direct limit of that system in Set, but in such a way that the set E in that direct
limit in Set is already naturally a vector space. It is then virtually immediately clear
that also a direct limit of the system in VS has been found. If the system is in VLLH,
then this standard construction (as we shall call it) equally evidently produces a direct
limit in VLLH. With a little help from the general toolbox in Sect. 3, this also works in
the category VLIPLH of vector lattices and interval preserving lattice homomorphisms,
where the existence of direct limits was first established in [10, Proposition 3.4]).

The whole setup shows naturally that certain direct limits are also direct limits in
categories ‘to the right’ in a chain of categories, as in [10, Proposition 3.4]. Further-
more, in contrast to the approach in [4], this construction can easily be adapted to
work for direct limits of normed lattices and Banach lattices.

Suppose, then, that
(
(Ei ), (ϕ j i ) j≥i

)
is a direct system in VS. We construct a direct

limit of the system in Set. For this, consider the vector space

Ẽ :=
∏

i

Ei

and its linear subspace

Ẽ0:=
{
(ei ) ∈ Ẽ : there exists an index i such that e j = 0 for j ≥ i

}
.
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We define the linear maps ψi : Ei → Ẽ by setting

(
ψi (ei )

)
j :=

{
ϕ j i (ei ) when j ≥ i;
0 else.

(4.1)

We let q : Ẽ → Ẽ/Ẽ0 denote the linear quotient map into the vector space Ẽ/Ẽ0, and
define the linear maps ϕi : Ei → Ẽ/Ẽ0 by setting ϕi :=q ◦ ψi . Clearly, when ei ∈ Ei

and e j ∈ E j , then ϕi (ei ) = ϕ j (e j ) if and only if there exists a k ≥ i, j such that
ϕki (ei ) = ϕk j (e j ). It is then immediate that ϕi = ϕ j ◦ ϕ j i when i ≤ j . We define the
subset

E :=
⋃

i

ϕi (Ei )

of the space Ẽ/Ẽ0. The fact that ϕi = ϕ j ◦ϕ j i for i ≤ j implies that ϕi (Ei ) ⊆ ϕ j (E j )

when j ≥ i . Hence E is a nested union of linear subspaces of Ẽ/Ẽ0, so that E itself
is also a linear subspace of Ẽ/Ẽ0; we view the ϕi as linear maps from the Ei into E .

We claim that
(
E, (ϕi )

)
is a direct limit of

(
(Ei ), (ϕ j i ) j≥i

)
inSet. The compatibility

with
(
(Ei ), (ϕ j i ) j≥i

)
has already been observed. For the universal property, suppose

that
(
E ′, (ϕ′

i )
)
is a system in Set that is compatible with

(
(Ei ), (ϕ j i ) j≥i

)
. If χ : E →

E ′ is to be a factoring map, then the requirement ϕ′
i = χ ◦ ϕi obviously uniquely

determines χ . Hence we take this as a definition: for e ∈ E , choose i and ei ∈ Ei

such that e = ϕi (ei ), and set χ(e):=ϕ′
i (ei ). To show that this is well defined, suppose

that ϕi (ei ) = ϕ j (e j ). Then there exists a k ≥ i, j such that ϕki (ei ) = ϕk j (e j ), which
implies that ϕ′

i (ei ) = ϕ′
k

(
ϕki (ei )

) = ϕ′
k

(
ϕk j (e j )

) = ϕ′
j (e j ). Hence χ is well defined,

which establishes our claim.
If

(
E ′, (ϕ′

i )
)
is a system in VS that is compatible with

(
(Ei ), (ϕ j i ) j≥i

)
, then

Lemma 3.6 shows that the unique factoring map χ : E → E ′ as defined above in
Set is, in fact, linear. We conclude that

(
E, (ϕi )

)
is a direct limit of

(
(Ei ), (ϕ j i ) j≥i

)

in VS that is also a direct limit of the system in Set.
If

(
(Ei ), (ϕ j i ) j≥i

)
is a direct system in VLLH, then we proceed as above for VS to

construct a direct limit
(
E, (ϕi )

)
in Set. In this case, Ẽ is a vector lattice and Ẽ0 is an

ideal in Ẽ . Hence Ẽ/Ẽ0 is a vector lattice. Theψi are now lattice homomorphisms, and
then so are the ϕi : Ei → Ẽ/Ẽ0. This implies that the nested union E is now a vector
sublattice of Ẽ/Ẽ0, so that the ϕi can be viewed as lattice homomorphisms into E .
If

(
E ′, (ϕ′

i )
)
is a direct system in VLLH that is compatible with

(
(Ei ), (ϕ j i ) j≥i

)
, then

Lemma 3.6 shows that the factoring map χ as constructed above in Set is, in fact, a
lattice homomorphism.We conclude that

(
E, (ϕi )

)
is a direct limit of

(
(Ei ), (ϕ j i ) j≥i

)

in VLLH. It is also a direct limit of the system in VS.
Let

(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in VLLH. We claim that its direct limit(

E, (ϕi )
)
in VLLH as constructed above is, in addition, also a direct limit of(

(Ei ), (ϕ j i ) j≥i
)
in the category POVSPos of preordered vector spaces and positive

linearmaps. To see this, suppose that
(
E ′, (ϕ′

i )
)
is a system inPOVSPos that is compat-

ible with
(
(Ei ), (ϕ j i ) j≥i

)
. Then the factoring linearmapχ : E → E ′ inVS is positive.
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Indeed, take e ∈ E+, and choose i such that e = ϕi (ei ) for some ei ∈ Ei . As ϕi is a lat-
tice homomorphism, we may suppose that ei ∈ (Ei )

+. Then χ(e) = ϕ′
i (ei ) ∈ (E ′)+.

We now consider a direct system
(
(Ei ), (ϕ j i ) j≥i

)
in the category VLIPLH of vector

lattices and interval preserving lattice homomorphisms. After the construction of the
vector lattice E and the lattice homomorphisms ϕi : Ei → E as for VLLH, it is now
natural to attempt to start with the observation that the ψi are interval preserving, and
try to argue from there to show that the lattice homomorphisms ϕi are also interval
preserving. The ψi , however, are interval preserving only in degenerate cases (see
Lemma 4.2). To get around this obstruction, we consider the commutative diagram

Ei E j

ϕi (Ei ) ϕ j (E j )

ϕ j i

ϕi ϕ j

ι j i

(4.2)

where the bottom map is the inclusion map. Corollary 3.9 shows that ι j i is an interval
preserving lattice homomorphism, and thenLemma3.5 implies that the inclusionmaps
from the ϕi (Ei ) into E are also interval preserving lattice homomorphisms. We know
from Proposition 3.4 that the surjective lattice homomorphisms ϕi : Ei → ϕi (Ei )

are interval preserving, so that we can now still conclude that the compositions
ϕi : Ei → E are interval preserving lattice homomorphisms. If

(
E ′, (ϕ′

i )
)
is a system

in VLIPLH that is compatible with
(
(Ei ), (ϕ j i ) j≥i

)
, then it follows from Lemma 3.6

and Proposition 3.7 that the factoring map χ : E → E ′ in Set is an interval preserving
lattice homomorphism. We conclude that

(
E, (ϕi )

)
as produced by the standard con-

struction for direct limits of direct systems in VS is a direct limit of
(
(Ei ), (ϕ j i ) j≥i

)

in VLIPLH. It is also a direct limit of the system in VLLH. These two facts can already
be found in [10, Proposition 3.4].

As is easily checked, it is generally true that all direct limits of a given direct system
in a category are preserved under a given functor when this holds for one particular
direct limit. Using this, and the compatible isomorphisms between direct limits, the
above yields the following modest improvement of some of the material in [10] on
direct limits.

Theorem 4.1 Let
(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in

〈
VLIPLH / VLLH / VS

〉
. Then

it has a direct limit in
〈
VLIPLH / VLLH / VS

〉
. If

(
E, (ϕi )

)
is any direct limit, then

E = ⋃
i ϕi (Ei ), ϕi (Ei ) ⊆ ϕ j (E j ) when i ≤ j , and the ϕi (Ei ) are

〈
ideals in E /

vector sublattices of E / linear subspaces of E
〉
. Furthermore,

(
E, (ϕi )

)
is also a

direct limit of
(
(Ei ), (ϕ j i ) j≥i

)
in every category to the right of

〈
VLIPLH / VLLH / VS

〉

in the chain

VLIPLH ⊂ VLLH ⊂ POVSPos → VS → Set.

It was mentioned above that the maps ψi are interval preserving only in degenerate
cases. We conclude this section by tieing up this loose end.

Lemma 4.2 Let
(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in the category of vector lattices

and linear maps. For every index i , the following are equivalent:
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(1) the map ψi : Ei → Ẽ in Eq. (4.1) is interval preserving;
(2) ϕ j i = 0 for all j > i .

Proof We prove that (1) implies (2). Since ψi is interval preserving, so is its compo-
sition with a surjective lattice homomorphism. Hence ξ : Ei → Ei × E j , defined
by setting ξ(ei ):=(ϕi i (ei ), ϕ j i (ei )), is interval preserving. Take ei ∈ E+

i . Since
(ϕi i (ei )/2, ϕ j i (ei )) ∈ [0, ξ(ei )]Ei×E j , there exists an e′

i ∈ [0, ei ]Ei such that
ξ(e′

i ) = (ϕi i (ei )/2, ϕ j i (ei )). This implies that ϕ j i (ei/2) = ϕ j i (ei ). It follows that
ϕ j i = 0.

It is clear that (2) implies (1). ��

Suppose that
(
(Ei ), (ϕ j i ) j≥i

)
is a direct system in VLIP such that all maps ψi are

interval preserving. In view of Lemma 4.2, there are then two possibilities:

(1) The index set has no largest element. Then all maps ϕ′
i in every compatible system(

E ′, (ϕ′
i )

)
inVLIP are the zeromap. Such adirect systemhas a direct limit

(
E, (ϕi )

)

in VLIP where E is the zero space, and where all ϕi : Ei → E are the zero map.
(2) The index set has a largest element il. Then all maps ϕ′

i in every compatible system(
E ′, (ϕ′

i )
)
in VLIP are the zero map when i �= ϕil . Such a system has a direct limit(

E, (ϕi )
)
inVLIP where E = Eil , where ϕi : Ei → E is the zeromapwhen i �= il,

and where ϕil : Eil → E is the identity map.

4.2 Direct limits of normed lattices

Analogously to the vector lattice case in Sect. 4.1, direct limits can be found in a number
of categories of normed lattices by using a general construction and then exploiting
the additional information. The method is an adaptation of the one in Sect. 4.1. In
this case, the resulting standard construction produces a direct limit of a direct system(
(Ei ), (ϕ j i ) j≥i

)
in the category NS of normed spaces and contractions that is also a

direct limit in the categoryMet of metric spaces and contractive maps. It is as follows.
Consider the vector space

Ẽ :=
{
(ei ) ∈

∏

i

Ei : sup
i

‖ei‖ < ∞
}

(4.3)

and supply it with the norm

‖(ei )‖:= sup
i

‖ei‖

for (ei ) ∈ Ẽ . Then

Ẽ0:=
{
(ei ) ∈ Ẽ : lim

i
‖ei‖ = 0

}
(4.4)

123



Direct limits in categories of normed vector lattices… Page 19 of 32 39

is a closed linear subspace of Ẽ . Since the ϕ j i are all contractions, we can define
contractions ψi : Ei → Ẽ by setting

(
ψi (ei )

)
j :=

{
ϕ j i (ei ) when j ≥ i;
0 else.

(4.5)

We let q : Ẽ → Ẽ/Ẽ0 denote the quotient map between the normed spaces Ẽ
and Ẽ0, and set ϕi :=q ◦ ψi . The ϕi are contractions. Clearly, when ei ∈ Ei and
e j ∈ E j , then ϕi (ei ) = ϕ j (e j ) if and only if there exists a k ≥ i, j such that
liml≥k ‖ϕli (ei ) − ϕl j (e j )‖ = 0. In particular, if ϕki (ei ) = ϕk j (e j ) for some k ≥ i, j ,
then ϕi (ei ) = ϕ j (e j ). It is now clear that ϕi = ϕ j ◦ϕ j i for i ≤ j . We define the subset

E :=
⋃

i

ϕi (Ei )

of Ẽ/Ẽ0. As in the case of VS, the fact that ϕi = ϕ j ◦ ϕ j i for i ≤ j implies that the
nested union E is a linear subspace of Ẽ/Ẽ0, so that we can view the ϕi as contractions
from the Ei into the normed space E .

We claim that
(
E, (ϕi )

)
is a direct limit of

(
(Ei ), (ϕ j i ) j≥i

)
inMet. The compatibil-

ity with
(
(Ei ), (ϕ j i ) j≥i

)
has again already been observed. For the universal property,

suppose that the system
(
E ′, (ϕ′

i )
)
in Met is compatible with

(
(Ei ), (ϕ j i ) j≥i

)
. We

define the (again evidently unique) factoring map χ : E → E ′ as before: take e ∈ E ,
choose i and ei ∈ Ei such that e = ϕi (ei ), and set χ(e):=ϕ′

i (ei ). The require-
ment χ ◦ ϕi = ϕ′

i is met by construction, but we need to show that χ is well
defined. For this, suppose that ϕi (ei ) = ϕ j (e j ), and take ε > 0. There exists a
k ≥ i, j such that ‖ϕki (ei ) − ϕk j (e j )‖ < ε. Since ϕ′

k is contractive, this implies that

dE ′
(
ϕ′
i (ei ), ϕ

′
j (e j )

) = dE ′
(
ϕ′
k

(
ϕki (ei )

)
, ϕ′

k

(
ϕk j (e j )

))
< ε. As ε was arbitrary, we

have ϕ′
i (ei ) = ϕ′

j (e j ), so that χ is well defined. It remains to be shown that χ is

contractive. Take ei ∈ Ei and e j ∈ E j , and let ε > 0. There exists an ẽ = (ẽk) ∈ Ẽ0
such that

sup
k

∥∥(
ψi (ei )

)
k − (

ψ j (e j )
)
k + ẽk

∥∥ = ∥∥ψi (ei ) − ψ j (e j ) + ẽ
∥∥

<
∥∥ϕi (ei ) − ϕ j (e j )

∥∥ + ε/2.

Hence we can choose a k ≥ i, j such that

∥
∥ϕki (ei ) − ϕk j (e j ) + ẽk

∥
∥ <

∥
∥ϕi (ei ) − ϕ j (e j )

∥
∥ + ε/2

as well as ‖ẽk‖ < ε/2. Then
∥∥ϕki (ei ) − ϕk j (e j )

∥∥ <
∥∥ϕi (ei ) − ϕ j (e j )

∥∥ + ε, so that

dE ′
(
χ

(
ϕi (ei )

)
, χ

(
ϕ j (e j )

)) = dE ′
(
χ

(
ϕk(ϕki (ei ))

)
, χ

(
ϕk(ϕk j (e j ))

))

= dE ′
(
ϕ′
k(ϕki (ei )), ϕ

′
k(ϕk j (e j ))

)
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≤ ∥∥ϕki (ei ) − ϕk j (e j )
∥∥

<
∥
∥ϕi (ei ) − ϕ j (e j )

∥
∥ + ε.

As ε was arbitrary, this implies that χ is contractive. Hence
(
E, (ϕi )

)
is indeed a direct

limit of
(
(Ei ), (ϕ j i ) j≥i

)
inMet.

If
(
E ′, (ϕ′

i )
)
is a system in NS that is compatible with

(
(Ei ), (ϕ j i ) j≥i

)
, then

Lemma 3.6 implies that the unique factoring map χ : E → E ′ as defined above in
Met is, in fact, linear. We conclude that

(
E, (ϕi )

)
is a direct limit of

(
(Ei ), (ϕ j i ) j≥i

)

in NS that is also a direct limit of the system in Met.4
If

(
(Ei ), (ϕ j i ) j≥i

)
is a direct system in NLLH, then we proceed as above for NS

to construct a direct limit
(
E, (ϕi )

)
in Met. In this case, Ẽ is a normed lattice

and Ẽ0 is a closed ideal in Ẽ , so that Ẽ/Ẽ0 is a normed vector lattice. The ψi and
the ϕi : Ei → Ẽ/Ẽ0 are contractive lattice homomorphisms. This implies that the
nested union E is a normed sublattice of Ẽ/Ẽ0, so that we can view the ϕi as contrac-
tive lattice homomorphisms into E . If

(
E ′, (ϕ′

i )
)
is a system inNLLH that is compatible

with
(
(Ei ), (ϕ j i ) j≥i

)
, then Lemma 3.6 implies that the factoring map χ : E → E ′

as constructed above in Met is, in fact, a lattice homomorphism. We conclude that(
E, (ϕi )

)
as produced by the standard construction for direct limits of direct systems

in NS is a direct limit of
(
(Ei ), (ϕ j i ) j≥i

)
in NLLH. Analogously to the vector lattice

case, the fact that the ϕi are lattice homomorphisms implies that it is also a direct limit
in the category PONSPos of preordered normed spaces and positive contractions.

Next, we consider a direct system
(
(Ei ), (ϕ j i ) j≥i

)
in the category NLAIPLH of

normed lattices and contractive almost interval preserving lattice homomorphisms.
Analogously to the case of vector lattices, it is only in degenerate situations that
the ψi are almost interval preserving (see Lemma 4.4). In this case, the combination
of diagram (4.2) and Corollary 3.22 shows that the inclusion maps from the ϕi (Ei )

into the ϕ j (E j ) for i ≤ j are almost interval preserving. By Proposition 3.16, the
inclusion maps from the ϕi (Ei ) into E are then also almost interval preserving. Since
the ϕi : Ei → ϕi (Ei ) are surjective lattice homomorphisms, Proposition 3.4 shows
that they are interval preserving. We conclude that the compositions ϕi : Ei → E are
almost interval preserving lattice homomorphisms. If

(
E ′, (ϕ′

i )
)
is a system inNLAIPLH

that is compatible with
(
(Ei ), (ϕ j i ) j≥i

)
, then it follows from Proposition 3.18 that the

factoring contractive lattice homomorphismχ : E → E ′ is almost interval preserving.
We thus see that the construction yields a direct limit

(
E, (ϕi )

)
of the system inNLAIPLH

that is also a direct limit in NLLH.
Next, we consider a direct system

(
(Ei ), (ϕ j i ) j≥i

)
in the categoryNLIPLH of normed

lattices and contractive interval preserving lattice homomorphisms. Then a reasoning
as for VLIPLH shows that

(
E, (ϕi )

)
as produced by the standard construction for direct

limits of direct systems inNS is a direct limit of the system inNLIPLH. Proposition 3.18
implies that it is also a direct limit in NLAIPLH.

The above shows that we have the following companion result to Theorem 4.1.

4 Although we shall not need it, let us still mention for the sake of completeness that it is not difficult to
verify that ‖ϕi (ei )‖ = lim supk≥i ‖ϕki (ei )‖:= inf j≥i supk≥ j ‖ϕki (ei )‖ = lim j≥i supk≥ j ‖ϕki (ei )‖.
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Theorem 4.3 Let
(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in

〈
NLIPLH / NLAIPLH / NLLH /

NS
〉
. Then it has a direct limit in

〈
NLIPLH / NLAIPLH / NLLH / NS

〉
. If

(
E, (ϕi )

)
is

any direct limit, then E = ⋃
i ϕi (Ei ), ϕi (Ei ) ⊆ ϕ j (E j ) when i ≤ j , and

〈
the ϕi (Ei )

are ideals in E / the ϕi (Ei ) are vector sublattices of E and the ϕi (Ei ) are ideals
in E / the ϕi (Ei ) are vector sublattices of E / the ϕi (Ei ) are linear subspaces of E

〉
.

Furthermore,
(
E, (ϕi )

)
is also a direct limit of

(
(Ei ), (ϕ j i ) j≥i

)
in every category to

the right of
〈
NLIPLH / NLAIPLH / NLLH / NS

〉
in the chain

NLIPLH ⊂ NLAIPLH ⊂ NLLH ⊂ PONSPos → NS ⊂ Met.

As in Sect. 4.1, we conclude by showing that theψi are (almost) interval preserving
only in degenerate cases.

Lemma 4.4 Let
(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in the category of normed lattices

and almost interval preserving contractions. For every index i , the following are
equivalent:

(1) the map ψi : Ei → Ẽ in Eq. (4.5) is interval preserving;
(2) the map ψi : Ei → Ẽ in Eq. (4.5) is almost interval preserving;
(3) ϕ j i = 0 for all j > i .

Proof It is clear that (1) implies (2) and that (3) implies (1).
We prove that (2) implies (3). Since ψi is almost interval preserving, so is a

composition with a surjective continuous lattice homomorphism. Hence ξ : Ei →
Ei × E j , defined by setting ξ(ei ):=(ϕi i (ei ), ϕ j i (ei )), is almost interval preserving.
Take ei ∈ E+

i . Since (ϕi i (ei )/2, ϕ j i (ei )) ∈ [0, ξ(ei )]Ei×E j , there exists a sequence
(xn) ⊆ [0, ei ]Ei such that ξ(xn) → (ϕi i (ei )/2, ϕ j i (ei )). That is, xn → ei/2 and
ϕ j i (xn) → ϕ j i (ei ). This implies that ϕ j i (ei ) = 0, and it follows that ϕ j i = 0. ��

As in Sect. 4.1, this leaves two possibilities for direct systems inNLIP and inNLAIP
such that the ψi are (almost) interval preserving, with an analogous description of
their direct limits in the pertinent category.

4.3 Direct limits of Banach lattices

For direct limits in categories of Banach lattices, the standard construction is that of
a direct limit of a system

(
(Ei ), (ϕ j i ) j≥i

)
in the category BS of Banach spaces and

contractions that is also a direct limit of the system in the category ComMet of
complete metric spaces and contractions.

Suppose that
(
(Ei ), (ϕ j i ) j≥i

)
is a direct system in BS. In that case, one starts by

carrying out the standard construction forNS that produces a direct limit inNS which
is also a direct limit in Met. After that, one extra step is needed because the normed
space that is produced by the construction inNS need not be a Banach space. Hence it
is replaced with its completion, for which there is a concrete model at hand. Its closure

E :=
⋃

i

ϕi (Ei ).
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in Ẽ/Ẽ0 is a Banach space since Ẽ is now a Banach space. We view the ϕi as con-
tractions from Ei into E . Since a factoring

〈
contractive map / contraction

〉
from⋃

i ϕi (Ei ) into a
〈
complete metric space / Banach space

〉
as produced by the standard

construction for NS can be uniquely extended to a
〈
contractive map / contraction

〉

from E into that space, it is clear that
(
E, (ϕi )

)
is a direct limit of

(
(Ei ), (ϕ j i ) j≥i

)
in

ComMet as well as in BS.
For a direct system

(
(Ei ), (ϕ j i ) j≥i

)
in BLLH, the Banach space Ẽ/Ẽ0 is a Banach

lattice. Then so is E , which is the closure of a vector sublattice. The ϕi : Ei → E
are contractive lattice homomorphisms. If

(
E ′, (ϕ′

i )
)
is a system in BLLH that is com-

patible with
(
(Ei ), (ϕ j i ) j≥i

)
, then Lemma 3.17 shows that the factoring contractive

map χ : E → E ′ inComMet is a lattice homomorphism.We conclude that the direct
limit

(
E, (ϕi )

)
of

(
(Ei ), (ϕ j i ) j≥i

)
in BS is also a direct limit of the system in BLLH.

An easy approximation argument shows that the fact that the ϕi are lattice homomor-
phisms implies that it is also a direct limit in the category POBSPos of preordered
Banach spaces and positive contractions.

For direct systems in the category BLIPLH of Banach lattices and contractive interval
preserving lattice homomorphisms, the construction for BS cannot be expected to
work in general. The reason is that the inclusion map from the normed vector lattice⋃

i ϕi (Ei ) into the Banach lattice
⋃

i ϕi (Ei ) is only guaranteed to be almost interval
preserving.

For a direct system
(
(Ei ), (ϕ j i ) j≥i

)
in the category BLAIPLH and contractive almost

interval preserving lattice homomorphisms, however, the standard construction for BS
does produce a direct limit in BLAIPLH, which is then also a direct limit in BLLH. The
argument for this is a minor modification of that for NLAIPLH, using diagram (4.2),
Corollary 3.22, Proposition 3.16 (in a slightly different way), and Proposition 3.18
(also in a slightly different way) again.

The above implies that we have the following companion result to Theorems 4.1
and 4.3.

Theorem 4.5 Let
(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in

〈
BLAIPLH / BLLH / BS

〉
. Then

it has a direct limit in
〈
BLAIPLH / BLLH / BS

〉
. If

(
E, (ϕi )

)
is any direct limit, then

E = ⋃
i ϕi (Ei ), ϕi (Ei ) ⊆ ϕ j (E j )when i ≤ j , and

〈
the ϕi (Ei )) are vector sublattices

of E and the ϕi (Ei ) are ideals in E / the ϕi (Ei ) are vector sublattices of E / the
ϕi (Ei ) are linear subspaces of E

〉
. Furthermore,

(
E, (ϕi )

)
is also a direct limit of(

(Ei ), (ϕ j i ) j≥i
)
in every category to the right of

〈
BLAIPLH / BLLH / BS

〉
in the chain

BLAIPLH ⊂ BLLH ⊂ POBSPos → BS ⊂ ComMet.

5 Direct limits: additional results

The constructions in Sect. 4 do not work for the categories VLIP (the vector lattices
and interval preserving linear maps),NLIP (the normed lattices and interval preserving
contractions),NLAIP (the normed lattices and almost interval preserving contractions),
BLIP (the Banach lattices and interval preserving contractions), BLAIP (the Banach
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lattices and almost interval preserving contractions), or BLIPLH (the Banach lattices
and contractive interval preserving lattice homomorphisms).

For the first five of these exceptional categories, the problem is with diagram 4.2
to which Corollary 3.9 or Corollary 3.22 are applied to see that the inclusion maps
at the bottom of the diagram are (almost) interval preserving. When the connecting
morphisms ϕ j i are not lattice homomorphisms, then the ψi need not be lattice homo-
morphisms, and then neither need the ϕi = q ◦ ψi be. Hence the hypotheses in the
corollaries need not be satisfied.

The standard construction of direct limits of direct systems of Banach lattices
involves passing from

⋃
i ϕi (Ei ) to its closure in Ẽ/Ẽ0. As already noted in Sect. 4.3,

the corresponding inclusion map will not generally be interval preserving, but only
almost interval preserving. Hence the standard construction fails (only) at the very last
step and need not produce direct limits in the sixth exceptional category BLIPLH.

For each of these six categories, it is an open question whether direct limits always
exist. Still, for four of these categories, the results in Sect. 3 can be used to describe
basic traits of the structure of those direct limits that do exist.

Proposition 5.1 (1) Let
(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in VLIP or NLIP, and sup-

pose that
(
E, (ϕi )

)
is a direct limit of the system in that same category. Then

E = ⋃
i ϕi (Ei ), ϕi (Ei ) ⊆ ϕ j (E j ) whenever i ≤ j , and the ϕi (Ei ) are ideals

in E.
(2) Let

(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in NLAIP or BLAIP, and suppose that

(
E, (ϕi )

)
is a direct limit of the system in that category. Then E = ⋃

i ϕi (Ei ),
ϕi (Ei ) ⊆ ϕ j (E j ) whenever i ≤ j , and the ϕi (Ei ) are ideals in E.

Proof We prove (2); the proof of (1) is similar but easier. We start with NLAIP. Since
the ϕi are almost interval preserving, Proposition 3.13 shows that the ϕi (Ei ) are
ideals in E . In particular, they are vector sublattices. The compatibility of the ϕi
with the ϕ j i implies that ϕi (Ei ) ⊆ ϕ j (E j ) whenever i ≤ j ; then also ϕi (Ei ) ⊆
ϕ j (E j ). Hence the nested union

⋃
i ϕi (Ei ) is a vector sublattice of E , and then so

is
⋃

i ϕi (Ei ) = ⋃
i ϕi (Ei ). We view the ϕi as maps from the Ei into

⋃
i ϕi (Ei );

they are then almost interval preserving by Lemma 3.12. Suppose that
(
E ′, (ϕ′

i )
)
is

a system that is compatible with
(
(Ei ), (ϕ j i ) j≥i

)
, and let χ : E → E ′ be the unique

factoring almost interval preserving contraction. Then Proposition 3.18 shows that
the restriction of χ to

⋃
i ϕi (Ei ) is also an almost interval preserving contraction. By

continuity and density, this restriction is the unique factoring continuous map from⋃
i ϕi (Ei ) into E ′. The essential uniqueness of direct limits now implies that the

inclusion map from
⋃

i ϕi (Ei ) into E must be an isomorphism. This concludes the
proof forNLAIP. For BLAIP one needmerely add the remark that

⋃
i ϕi (Ei ) is a Banach

space since E is. ��
Remark 5.2 (1) It does not appear to be possible to give a similar reasoning, based on

the results in Sect. 3, that leads to a priori knowledge about the structure of direct
limits in BLIPLH or BLIP.

(2) One can give similar arguments to deduce all statements about the structure of
the direct limits in Theorem 4.1, Theorem 4.3, and Theorem 4.5. The main points

123



39 Page 24 of 32 C. Ding, M. de Jeu

of these results are, therefore, the asserted existence of the direct limits and the
preservation of thesewhen passing to categories to the right in the pertinent chains.

Some direct systems in the exceptional categories have direct limits because these
coincide with direct limits in a category to the right in one of the three chains of
categories. The following result is based on Theorem 4.1, Theorem 4.3, Theorem 4.5,
Proposition 3.7, and Proposition 3.18.

Lemma 5.3 (1) Let
(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in VLIP, and let

(
E, (ϕi )

)
be

a direct limit of this system in VS. If E is a vector lattice and the ϕi : Ei → E
are interval preserving, then

(
E, (ϕi )

)
is also a direct limit of

(
(Ei ), (ϕ j i ) j≥i

)
in

VLIP.
(2) Let

(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in NLIP, and let

(
E, (ϕi )

)
be a direct limit

of this system in NS. If E is a normed lattice and the ϕi : Ei → E are interval
preserving, then

(
E, (ϕi )

)
is also a direct limit of

(
(Ei ), (ϕ j i ) j≥i

)
in NLIP.

(3) Let
(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in NLAIP, and let

(
E, (ϕi )

)
be a direct

limit of this system in NS. If E is a normed lattice and the ϕi : Ei → E are
almost interval preserving, then

(
E, (ϕi )

)
is also a direct limit of

(
(Ei ), (ϕ j i ) j≥i

)

in NLAIP.
(4) Let

(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in BLAIP, and let

(
E, (ϕi )

)
be a direct limit

of this system in BS. If E is a Banach lattice and the ϕi : Ei → E are almost
interval preserving, then

(
E, (ϕi )

)
is also a direct limit of

(
(Ei ), (ϕ j i ) j≥i

)
in

BLAIP.

Proof We prove (4); the other proofs are similar. Since
(
E, (ϕi )

)
is a direct limit

of the system in BS, we know from Theorem 4.5 that E = ⋃
i ϕi (Ei ). Suppose that(

E ′, (ϕ′
i )

)
is a direct system inBLAIP that is compatible with

(
(Ei ), (ϕ j i ) j≥i

)
.We view(

E ′, (ϕ′
i )

)
as a direct system in BS and let χ : E → E ′ denote the unique factoring

contraction in BS. As the compositions χ ◦ ϕi = ϕ′
i are almost interval preserving,

Proposition 3.18 shows that χ is almost interval preserving. ��
Theorem 4.1, Theorem 4.3, and Theorem 4.5 assert that a number of direct limits

of direct systems of vector lattices, normed lattices, or Banach lattices, are also direct
limits of these systems in VS, NS, or BS, respectively. In view of this, Lemma 5.3 has
the following consequence.

Corollary 5.4 (1) A direct limit of a direct system in VLIPLH is also a direct limit of
that system in VLIP.

(2) A direct limit of a direct system in NLIPLH is also a direct limit of that system in
NLIP.

(3) A direct limit of a direct system in NLIPLH or NLAIPLH is also a direct limit of that
system in NLAIP.

(4) A direct limit of a direct system in BLAIPLH is also a direct limit of that system in
BLAIP.

We conclude this section by giving four examples. They show that, for each of the
five exceptional categories VLIP, NLIP, NLAIP, BLIP, and BLAIP, there exists a non-
trivial direct system in it for which the standard construction still produces a direct
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limit, even though there is no guarantee that it will. They also show that, for each of
these categories, there is a direct system in it for which the standard construction does
not produce a direct limit, so that the existence of these direct limits remains unclear.

Example 5.5 Fix 1 ≤ p < ∞. For the index set we takeN = {1, 2, . . . }, and for each
i ∈ N we take Ei = �p. We let ϕi i be the identity map on Ei , and for i < j we define
ϕ j i : Ei → E j by setting

ϕ j i
(
(x1, x2, . . . )

):=
(
x1,x2, . . . , xi−1,

xi + xi+1

2
,
xi+2 + xi+3

2
, . . . ,

x2 j−i−2 + x2 j−i−1

2
, x2 j−i , x2 j−i+1, x2 j−i+2, . . .

)
.

(5.1)

In words: ϕ j i takes out the block (xi , . . . , x2 j−i−1) of length (2 j − 2i), averages the
coordinates in pairs, and inserts the resulting block of the halved length ( j − i) again.
The original x2 j−i , which is was the first coordinate after the original block, is now in
position i − 1+ ( j − i) + 1 = j . It follows from this description that ϕk j ◦ ϕ j i = ϕki

whenever i ≤ j ≤ k. It is clear that all ϕ j i are surjective interval preserving linear
maps, so that we have a direct system

(
(Ei ), (ϕ j i ) j≥i

)
in BLIP. However, ϕ j i is not

a lattice homomorphism when j > i , so the standard construction for categories of
Banach lattices is not guaranteed to work.

The standard construction for direct limits in categories of Banach lattices starts
by defining Ẽ and Ẽ0 as in Eq. (4.3) and Eq. (4.4), respectively. The linear map
ψi : Ei → Ẽ is given by Eq. (4.5). We let q : Ẽ → Ẽ/Ẽ0 denote the quotient map,
and define ϕi : Ei → Ẽ/Ẽ0 by setting ϕi :=q ◦ ψi as in the standard construction.
The candidate Banach lattice in the direct limit in BLIP is the Banach subspace E =⋃

i ϕi (Ei ) of Ẽ/Ẽ0. Since ϕi (Ei ) = ϕ j
(
ϕ j i (Ei )

) = ϕ j (E j ) when j ≥ i , all images
ϕi (Ei ) coincide. Remarkably enough, these images are a Banach sublattice of Ẽ/Ẽ0.
To see this, we introduce auxiliary maps. For x ∈ �p, we define ξ(x) ∈ Ẽ by setting(
ξ(x)

)
i :=x for all i ∈ N; this defines a lattice homomorphism ξ : �p → Ẽ . Next,

we define 	 : �p → Ẽ/Ẽ0 by setting 	:=q ◦ ξ . It is not difficult to see that 	 is
an isometric embedding of �p as a Banach sublattice of Ẽ/Ẽ0. We claim that all
images ϕi (Ei ) coincide with 	(�p). To see this, fix an index i and take an element
x = (x1, x2, . . . ) of Ei . Using that p is finite, it is then not too difficult to verify that
ϕi (x) = 	(x ′), where x ′ ∈ �p is given by

x ′ =
(
x1, x2, . . . , xi−1,

xi + xi+1

2
,
xi+2 + xi+3

2
,
xi+4 + xi+5

2
, . . .

)
. (5.2)

Hence ϕi (Ei ) = 	(�p). Moreover, Eq. (5.2) makes clear that the ϕi : Ei → E are
interval preserving. Suppose now that

(
(Ei ), (ϕ j i ) j≥i

)
is a direct system in BLIP.

Since the standard construction always produces a direct limit in BS, there is a unique
factoring contraction χ : E → E ′. Proposition 3.18 then shows that χ is interval pre-
serving. Hence

(
E, (ϕi )

)
as produced by the standard construction for direct systems

in categories of Banach lattices is a direct limit of the direct system in BLIP.
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One can also view the above direct system as a direct system in BLAIP. Using that
almost interval preserving contractions from the order continuous Banach lattices �p

into a normed lattice E ′ are actually interval preserving (see Proposition 3.10), we see
that the standard construction for Banach lattices also produces a direct limit of the
system in BLAIP.

One can also view the above direct system as a direct system in NLIP. Then one
does not take the closure in he standard construction, and works with E = ⋃

i ϕi (Ei )

instead. In this case, this does not change the space, and just as above for Banach
lattices one see that the standard construction for normed lattices produces a direct
limit in NLIP, and then also in NLAIP again.

Example 5.6 Consider the direct system inVLIP where the index set isN, Ei = c00 for
all i , and where the ϕ j i are as in Example 5.5. Arguing as in that example, the standard
construction for direct systems in categories of vector lattices is seen to unexpectedly
produce a direct limit in VLIP that is isomorphic to c00.

Example 5.7 Consider the direct system in BLIP where the index set is N, Ei = �∞
for all i , and where the ϕ j i are as in Example 5.5. Again we have E = ⋃

i ϕi (Ei ) =
ϕ1(E1). We claim that, in this case, the Banach space E is not a vector sublattice of the
Banach lattice Ẽ/Ẽ0 in the standard construction for direct systems of Banach lattices
because

∣∣ϕ1(1,−1, 1,−1, . . . )
∣∣ is not in it. Suppose, to the contrary, that it is in E . Then

there exists x ∈ E1 such that
∥∥∥q

(∣∣ψ1(1,−1, 1,−1, . . . )
∣∣
)

− q
(
ψ1(x)

)∥∥∥ < 1/2, so

that there exists (ẽ j ) ∈ Ẽ0 such that
∥∥∥
∣∣ψ1(1,−1, 1,−1, . . . )

∣∣ − ψ1(x) + ẽ
∥∥∥ < 1/2.

Since lim j ‖ẽ j‖ = 0, there exists an N with

∥∥∥
∣∣ϕ j1(1,−1, 1,−1, . . . )

∣∣ − ϕ j1(x)
∥∥∥ <

1

2

for all j ≥ N . Now
∣∣ϕ j1(1,−1, 1,−1, . . . )

∣∣ consists of ( j − 1) 0’s followed by 1’s,
so that we have that

∥
∥∥∥

(
x1 + x2

2
,
x3 + x4

2
, . . . ,

x2 j−3 + x2 j−2

2
, x2 j−1 − 1, x2 j − 1, . . .

)∥
∥∥∥ <

1

2

for all j ≥ N . For j = N this yields that |x2N−1 − 1| < 1/2 and |x2N − 1| < 1/2, so
that |x2N−1 + x2N − 2| < 1. On the other hand, the fact that |x2 j−3 + x2 j−2|/2 < 1/2
for j = N + 1 shows that |x2N−1 + x2N |< 1, contradicting |x2N−1 + x2N − 2|< 1.
We conclude that E is not a vector sublattice. Hence the standard construction for
categories of Banach lattices does not produce a direct limit of the system in BLIP. For
the same reason, it does not produce a direct limit of the system in BLAIP. In addition,
it does not produce a direct limit inNLIP or inNLAIP:

∣∣ϕ1(1,−1, 1,−1, . . . )
∣∣ is not in

⋃
i ϕi (Ei ), so certainly not in

⋃
i ϕi (Ei ).

For each of the categories BLIP, BLAIP, NLIP, and NLAIP, it is unclear whether the
above system has a direct limit in it.
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Example 5.8 Consider the direct system in VLIP where the index set is N, Ei = �∞
for all i , and where the ϕ j i are as in Example 5.5. Arguing as in Example 5.7, one
shows that the linear subspace E = ϕ1(Ei ) of the vector lattice Ẽ/Ẽ0 in the standard
construction for direct systems of vector lattices is not a vector sublattice because∣∣ϕ1(1,−1, 1,−1, . . . )

∣∣ is not in it. Hence the standard construction for direct systems
in categories of vector lattices does not produce a direct limit of the system in VLIP. It
is unclear whether the system has a direct limit in VLIP.

6 Direct limits and order continuity

Suppose that
(
E, (ϕi )

)
is a direct limit of a direct system

(
(Ei ), (ϕ j i ) j≥i

)
in a category

of vector lattices, normed vector lattices, or Banach lattices. Which properties of
the Ei are then inherited by E? Not much appears to be known about this in general.
It is easy to see that, for a direct system

(
(Ei ), (ϕ j i ) j≥i

)
in VLLH or VLIPLH, the

lattice homomorphisms ϕi : Ei → E are injective if and only if all connecting lattice
homomorphisms ϕ j i for j ≥ i are. In this case, E = ⋃

i ϕi (Ei ) is a union of vector
sublattices that are isomorphic copies of the Ei ; for VLIPLH the ϕi (Ei ) are even ideals
in E . For this situation, it is established in [4] that a number of properties of the Ei are
inherited by E ; see [10, Theorem 3.6] for an overview. The general situation where
the ϕ j i are not necessarily injective is more demanding, however, because properties
of the Ei need not be inherited by their quotients ϕi (Ei ) to which results such as
in [4] could then be applied. We are not aware of any permanence results as in [4]
when the ϕ j i are not injective. For categories of normed lattices or Banach lattices,
the situation is even a little more complicated. Here the ϕi need not even be injective
when the ϕ j i are, so that any results which one can derive when E is (the closure) of a
union of vector sublattices or ideals do not automatically translate to the general case
even with injective ϕ j i .

In this section, we investigate the permanence of order continuity of direct limits
of direct systems of order continuous Banach lattices in the general situation of not
necessarily injectiveϕ j i . If

(
E, (ϕi )

)
is a direct limit of a direct system

(
(Ei ), (ϕ j i ) j≥i

)

in a category of Banach lattices, and if the Ei are all order continuous, is E then order
continuous?

This is not true for all categories. It can already fail in the most natural of all
situations. If E is a Banach lattice such that E = ⋃

i Ei is the closure of a union of
Banach sublattices, then there is a canonical direct system in BLLH such that E is the
Banach lattice in one of its direct limits. As a directed index set for the Ei , we take
the collection of the Ei with the ordering determined by inclusion. The connecting
morphisms ϕ j i are then the inclusion maps from Ei into E j . If we let ϕi denote the
inclusion from Ei into E , then evidently

(
E, (ϕi )

)
is a direct limit of

(
(Ei ), (ϕ j i ) j≥i

)

in BLLH. As Wickstead pointed out by the following example, it is already possible
in this archetypical situation that a direct limit in BLLH of a direct system of order
continuous Banach lattices is no longer order continuous.

Example 6.1 For i = 1, 2, . . . , set ci :=
{
(xn) ∈ c : xk = xi for all k ≥ i

}
. Then

c = ⋃
i ci . Each ci is finite dimensional and therefore order continuous, but c is not.
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As it turns out, the obstruction in Example 6.1 is that the inclusion maps between
the ci are not almost interval preserving. If a direct system

(
(Ei ), (ϕ j i ) j≥i

)
in BLAIP

has a direct limit
(
E, (ϕi )

)
in BLAIP (which is not automatic), and if the Ei are all order

continuous, then E is order continuous. We need a little preparation for the proof of
this fact.

When E is a Banach lattice, we let γE : E → E∗∗ denote the canonical isometric
embedding of E as a Banach sublattice of E∗∗. We shall use the following character-
isation of order continuous Banach lattices in terms of γE .

Proposition 6.2 Let E be a Banach lattice with canonical embedding γE : E → E∗∗.
Then the following are equivalent:

(1) E is order continuous;
(2) γE is almost interval preserving;
(3) γE is interval preserving.

Proof The order continuity of the norm on E is equivalent to γE (E) being an ideal
in E∗∗; see [7, Theorem 2.4], for example. Since γE (E) is closed, an appeal to the
first parts of Propositions 3.4 and 3.14 concludes the proof. ��

We can now give a proof of the following result.

Theorem 6.3 Let
(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in BLAIP that has a direct limit

(E, (ϕi )) in BLAIP. If each Ei is order continuous, then so is E.

Proof It follows from Proposition 3.10 that the ϕ∗∗
i : E∗∗

i → E∗∗ are almost interval
preserving contractions. The order continuity of the Ei implies that the same is true for
the γEi : Ei → E∗∗

i . Hence the ϕ∗∗
i ◦ γEi : Ei → E∗∗ are almost interval preserving

contractions. The commutativity of the diagram

Ei E j

E∗∗
i E∗∗

j

E∗∗

ϕ j i

γEi γE j
ϕ∗∗
j i

ϕ∗∗
i ϕ∗∗

j

shows that the system (ϕ∗∗
i ◦ γEi ) of almost interval preserving contractions from

the Ei into E∗∗ is compatible with (ϕ j i ) j≥i . Hence there exists a unique almost
interval preserving contraction χ : E → E∗∗ such that ϕ∗∗

i ◦ γEi = χ ◦ ϕi for all i .
This χ is a continuous linear map that makes the diagram

Ei E

E∗∗
i E∗∗

ϕi

γEi χ

ϕ∗∗
i
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commutative for all i . The diagram shows that χ agrees with γE on each ϕi (Ei ), and
then, by continuity, also on

⋃
i ϕi (Ei ), which equals E by Proposition 5.1. Hence

χ = γE , and we see that γE is almost interval preserving. By Proposition 6.2, E is
order continuous. ��

According to Theorem 4.5, a direct system in BLAIPLH has a direct limit in that
category. By Corollary 5.4, all such direct limits are also direct limits in BLAIP. Hence
we have the following.

Theorem 6.4 Let
(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in BLAIPLH. Then it has a direct

limit inBLAIPLH. Take a direct limit
(
E, (ϕi )

)
inBLAIPLH. If all Ei are order continuous,

then so is E.

We proceed to establish a few results that are particularly relevant in the context
of Banach function spaces. The proof of the following preparatory result is similar to
that of Lemma 5.3.

Lemma 6.5 Let
(
(Ei ), (ϕ j i ) j≥i

)
be a direct system in BLAIPLH, and let

(
E, (ϕi )

)
be

a direct limit of this system in BS. If E is a Banach lattice and the ϕi : Ei → E are
almost interval preserving lattice homomorphisms, then

(
E, (ϕi )

)
is also a direct limit

of
(
(Ei ), (ϕ j i ) j≥i

)
in BLAIPLH.

Corollary 6.6 Let E be a Banach lattice, and let (Ei ) be a family of closed ideals
in E with the property that, for every Ei and E j in the family, there exists an Ek in

the family such that Ei , E j ⊆ Ek. Suppose that E = ⋃
i Ei . Then the following are

equivalent:

(1) all Ei are order continuous;
(2) E is order continuous

Proof It is clear that (2) implies (1). We prove the converse. According to Proposi-
tion 3.14, the inclusion maps from the Ei into E are almost interval preserving. By
Lemma 3.12, the same is true for the inclusion maps between the Ei . Hence the canon-
ical direct system that is determined by the Ei is a system in BLAIPLH. It is immediate
that E and the inclusion maps from the Ei into E constitute a direct limit of this
canonical system in BS. An appeal to Lemma 6.5 and Theorem 6.4 shows that E is
order continuous. ��

Corollary 6.6 applies in particular when the Ei are projection bands.5 We give a
direct proof for this particular case, and also include a criterion for density that is of
some practical relevance in Banach function spaces.

Proposition 6.7 Let E be a Banach lattice, and let (Ei ) be a collection of projection
bands in E. The following are equivalent:

(1) E = ⋃
i Ei ;

5 In fact, once we know that E is order continuous, we see that the Ei are projection bands; see [7,
Theorem 2.4.4], for example.
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(2) for every x ∈ E and every ε > 0, there exists an index i such that ‖PEd
i
x‖ < ε.

When this is the case, the following are equivalent:

(a) all Ei are order continuous;
(b) E is order continuous.

Proof We prove that (1) implies (2). Take x ∈ E and ε > 0. Choose an index i and a
y ∈ Ei such that ‖x − y‖ < ε/2. Then

‖PEd
i
x‖ = ‖x − PEi x‖

≤ ‖x − y‖ + ‖y − PEi x‖
= ‖x − y‖ + ‖PEi (y − x)‖
< ε/2 + ε/2

= ε.

It is evident that (2) implies (1) because ‖x − PEi x‖ = ‖PEd
i
x‖ for all x and i .

We prove that (a) implies (b). Suppose that E is not order continuous. Then, by
[7, Theorem 2.4.2], there exists an x ∈ E and a disjoint sequence (xn) in E such that
0 ≤ xn ≤ x for all n and α:= infn ‖xn‖ > 0. Choose an index i such that ‖PEd

i
x‖ <

α/2. Then, for all n, we have 0 ≤ PEi xn ≤ PEi x and ‖PEi xn‖ ≥ ‖xn‖ − ‖PEd
i
xn‖ >

α/2. Again by [7, Theorem 2.4.2], this shows that Ei is not order continuous. This
contradiction implies that E is order continuous.

Since Banach sublattices of order continuous Banach lattices are order continuous
(this follows from [7, Theorem 2.4.2], for example), it is clear that (b) implies (a). ��

We conclude with a result on Banach function spaces, which follows from a com-
bination of Corollary 6.6 (or Proposition 6.7) and ideas from [3] in the context of
Banach function spaces over compact abelian groups. As usual, when (X ,�,μ) is
a measure space, we let L0(X ,�,μ) denote the σ -Dedekind complete vector lat-
tice of �-measurable functions on X , with identification of two functions when they
agree μ-almost everywhere. We write [ f ] for the equivalence class of a measurable
function f . A Banach function space over (X ,�,μ) is an ideal in L0(X ,�,μ) that
is supplied with a norm in which it is a Banach lattice. For a topological space X , we
let C(X) resp. Cc(X) denote the continuous resp. the continuous compactly supported
functions on X .

There are no regularity assumptions on the measure μ in the following theorem.

Theorem 6.8 Let X be a locally compact Hausdorff space such that the topologies
on all its compact subsets are metrisable, let � be the Borel σ -algebra of X, and let
μ : � → [0,∞] be a measure. Let j : Cc(X) → L0(X ,�,μ) denote the canonical
map, sending f to [ f ]. Suppose that E is a Banach function space over (X ,�,μ)

such that j(Cc(X)) is contained in E and dense in E. Then E is order continuous.

Proof For every S ∈ �, we define PS : E → E by setting PS([ f ]) = [χS f ], whereχS

is the indicator function of S. The PS are continuous order projections, so that their

123



Direct limits in categories of normed vector lattices… Page 31 of 32 39

ranges PS(E) are closed ideals (even projection bands) in E . When f ∈ Cc(X), then
Psupp f [ f ] = [ f ]. Hence

E = j(Cc(X)) ⊆
⋃

K compact

PK (E) ⊆ E,

In view of Corollary 6.6 (or of Proposition 6.7), it will be sufficient to show that PK (E)

is order continuous for every compact subset K of X . Take such a K . The density of
j(Cc(X)) in E implies that PK ( j(Cc(X))) is dense in PK (E). We let γK : C(K ) →
L0(X ,�,μ) denote the map that is obtained by extending a continuous function f
on K to a measurable function f̃ on X by setting it equal to zero outside K , and then
defining γK ( f ):=[ f̃ ]. Since every continuous function on K can be extended to an
element of Cc(X) (see [8, Theorem 20.4], for example), we see that PK ( j(Cc(X))) =
γK (C(K )). As is well known, themetrisability of K implies (and is even equivalent to)
the separability of (C(K ), ‖ · ‖∞); see [5, Theorem 26.15], for example. The positive
map γK : (C(K ), ‖ · ‖∞) → PK (E) between Banach lattices is continuous, so that
γK (C(K )) is a separable subspaceof PK (E). SinceγK (C(K )) coincideswith thedense
subspace PK ( j(Cc(X))) of PK (E), we conclude that PK (E) is separable. But then
this σ -Dedekind complete Banach lattice PK (E) cannot contain a Banach sublattice
that is isomorphic to �∞, so that it is order continuous by [7, Corollary 2.4.3]. ��
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