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Abstract

Infectious bronchitis (IB) is a highly contagious, acute respiratory disease in chickens, with a

severe economic impact on poultry production globally. The rapid emergence of regional

variants of this Gammacoronavirus warrants new vaccine approaches that are more

humane and rapid to produce than the current embryonated chicken egg-based method

used for IB variant vaccine propagation (chemically-inactivated whole viruses). The produc-

tion of virus-like particles (VLPs) expressing the Spike (S) glycoprotein, the major antigen

which induces neutralizing antibodies, has not been achieved in planta up until now. In this

study, using the Agrobacterium-mediated Nicotiana benthamiana (tobacco plant) transient

expression system, the highest levels of VLPs displaying a modified S protein of a QX-like

IB variant were obtained when the native transmembrane (TM) domain and cytoplasmic tail

were substituted with that of the Newcastle disease virus (NDV) fusion glycoprotein, co-infil-

trated with the NDV Matrix protein. In comparison, the native IB modified S co-infiltrated with

IB virus membrane, envelope and nucleocapsid proteins, or substituted with the TM and CT

of an H6-subtype influenza A virus hemagglutinin glycoprotein yielded lower VLP expres-

sion levels. Strong immunogenicity was confirmed in specific pathogen free chickens immu-

nized intramuscularly with VLPs adjuvanted with Emulsigen®-P, where birds that received

doses of 5 μg or 20 μg (S protein content) seroconverted after two weeks with mean hemag-

gluttination inhibition titres of 9.1 and 10 log2, respectively. Plant-produced IB VLP variant

vaccines are safer, more rapid and cost effective to produce than VLPs produced in insect

cell expression systems or the traditional egg-produced inactivated whole virus oil emulsion

vaccines currently in use, with great potential for improved IB disease control in future.

Introduction

Infectious bronchitis (IB) is a highly contagious, acute respiratory disease in chickens that is

listed by the World Organization for Animal Health (WOAH) due to its global economic

impact, estimated to be only second to that of highly pathogenic avian influenza [1, 2]. The IB
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virus (IBV) is a member of the Coronaviridae family, and the spherical or pleiomorphic viri-

ons, that range in size from 80 to 120 nm in diameter, have club-shaped glycoprotein spikes

(S) of 16 to 21 nm projecting from the envelope surface [3–5]. The S glycoprotein is composed

of two domains, with S1 (the bulb) facilitating attachment of the virus to the host cell receptor

and displaying most of the viral antigenic epitopes that induce neutralising antibodies in the

host, and S2 (the stalk) assisting with host cell attachment [5, 6].

Vaccination is commonly used to control IB in poultry, but a high virus mutation rate

driven by genetic drift and genomic recombination has given rise to at least 32 global IBV

genotypes [3, 7]. Novel variants are constantly emerging with the ability to escape the protec-

tion from commercial live attenuated and live recombinant IB vaccines, particularly if these

mutations occur in the S1 gene’s hypervariable (HVR) regions [8]. Inactivated whole virus oil

emulsion vaccines derived from dominant circulating field strains remain one of the most

effective control strategies for variant IBVs [9, 10] as they induce high titres of serum antibody

that protects the kidneys, internal tissues and reproductive tract [4, 8]. Their production is

however reliant on the isolation of field virus, a seed strain that is free of extraneous agents,

adaptation to high growth properties in specific pathogen-free (SPF) chicken eggs by serial

passage, and total chemical inactivation, all procedures requiring time (up to a year) and high

containment conditions [10, 11].

Virus-like particles (VLPs) are multi-protein nanostructures that imitate native virus parti-

cles, but contain no genetic material, rendering them unable to replicate and cause infection,

recombine with live viruses or revert to virulence [12, 13]. IBV VLPs can be produced more

rapidly than other vaccine types and induce both cellular and humoral immunity [14–16].

Various IBV VLP permutations expressing native or chimeric S proteins were successfully

expressed in insect cells using the baculovirus- mediated insect expression system, with immu-

nogenicity or efficacy against live virus challenge demonstrated in the target animals [2, 17–

19]. Plant-based platforms in turn offer numerous advantages over insect cells and other pro-

tein expression systems in terms of safety, speed, cost, and scalability, and VLPs for several

viral families have been produced using the Agrobacterium-mediated Nicotiana benthamiana
(tobacco plant) transient expression system [20–25]. No contaminating animal endotoxins or

pathogens are produced, and the growth of infectious prions or viruses that infect humans is

not supported [26]. The production of plant-produced VLPs can be achieved within two

weeks of obtaining the antigenic gene sequence of interest, and scalability depends on the

number of tobacco plants infiltrated. Mass agroinfiltration is achieved by vacuum infiltration,

and larger volumes of plant material can be purified using methods such as ion exchange, size

exclusion, or affinity chromatography, or tangential flow filtration [15, 25, 27].

Most recently, VLPs expressing the full-length S protein of the severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), a Betacoronavirus, were expressed in tobacco plants.

VLP formation was achieved by introducing two consecutive proline residues into the loop

between the S protein HVR-1 region and the central helix to stabilise the S protein’s prefusion

state [28], replacing the native signal sequence with a plant signal sequence, and the transmem-

brane (TM) domain and cytosolic tail (CT) with the equivalent sequences of an influenza A

virus (IAV) H5-subtype hemagglutinin glycoprotein [29]. Although it was also reported that

SARS-CoV-2 VLPs bearing the unmodified, native form of S alone or in combination with the

envelope (E) and membrane (M) proteins express in N. benthamiana [30], this has not been

the case with the Gammacoronavirus IB VLPs [31]. In the present study, we investigated incor-

porating stabilizing mutations in S and substituting the TM domain and CT from IAV or

Newcastle disease virus (NDV), and successfully produced IB VLPs expressing the full-length

S protein for the first time, that were shown to be highly immunogenic in the target species.
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Methods

Recombinant plasmid design and construction

The S protein gene sequence for QX-like IBV strain ck/ZA/3665/11 (Genbank protein ID

AKC34133; Uniprot ID A0A0E3XJ26) was modified by replacing the native signal peptide

with a murine signal peptide to enhance expression [32], including a KOZAK sequence

(GCCACC) upstream of the S1 domain, and removing the original endoplasmic reticulum

(ER) retention signal (S1 Fig). Two consecutive proline residues were introduced at residues

843–844 into the loop between the first heptad repeat (HR1) and the central helix [28]. This

construct, retaining the native IBV TM and CT domains, was designated mIBV-S2P (Fig 1

(C)). Ultramer primers were designed to substitute the TM domain and CT with that of the

IAV H6 subtype hemagglutinin (HA) or the NDV F glycoprotein (LaSota strain). The con-

structs designated mIBV-S2P-IAV-H6TM/CT, and mIBV-S2P-NDV-FTM/CT (Fig 1(C)) were

created with the primer pairs in Table 1.

Gene sequences encoding the IBV M (Genbank protein ID AKC34136; Uniprot ID

A0A0E3TI94), E (Genbank protein ID AKC34135; Uniprot ID A0A0E3TJA4) and N (Gen-

bank protein ID AKC34140) proteins for strain ck/ZA/3665/11 were also chemically synthe-

sised. A gene sequence encoding the Matrix protein of NDV isolate turkey/South Africa/

N2057/2013, (Genbank protein ID KR815908) was already available. A plant codon-optimised

gene sequence encoding the IAV M2 protein of strain A/New Caledonia/20/1999(H1N1)

(Genbank protein ID HQ008884), was also already available for use. Based on our previous

research [23, 33] we have found that chicken or human codon optimisation (GC-rich)

enhances expression in plants, therefore all genes were chicken codon-optimised and GC-

enriched unless otherwise stated and synthesised by BioBasic Inc., Canada, to incorporate AgeI
and XhoI sites on the 5’ and 3’ ends of each gene. The modified genes for mIBV--

S2P-IAV-H6TM/CT and mIBV-S2P-NDV-FTM/CT were amplified by PCR. A mix containing

0.3 μM of each forward and reverse primer, dNTPs, 5 X HIFI buffer and HIFI DNA polymer-

ase enzyme (KAPA Biosystems) with template DNA was prepared. PCR amplification was per-

formed in the GeneAmp 2720 Thermocycler (Applied Biosystems) for 1 cycle of 95˚C initial

denaturation for 3 min; 35 cycles of 98˚C denaturation for 20 sec, 70˚C annealing for 30 sec,

72˚C extension for 3.5 min and a final single 72˚C extension step for 5 minutes. The PCR

products were separated on a 1% (m/v) agarose gel with a molecular weight marker. The target

bands were excised and purified using the ZymocleanTM Gel DNA Recovery Kit. The purified

genes for all constructs were digested using the AgeI/XhoI restriction sites and ligated individ-

ually into pEAQ-HT plasmids (containing the silencing suppressor P19 [34]) with a Fast-

linkTM DNA Ligation Kit (Epicentre) according to the manufacturer’s recommended proce-

dure. Clones were verified by Sanger DNA sequencing at Inqaba Biotech (Pty), Ltd, Pretoria.

Agroinfiltration

Recombinant plasmids for mIBV-S2P, mIBV-S2P-IAV-H6TM/CT, and mIBV-S2P-NDV-FTM/

CT were transformed into electrocompetent Agrobacterium tumefaciens strain AGL-1, ATCC1

BAA-101TM and verified by colony PCR [23] and Sanger DNA sequencing. Glycerol stocks

prepared from single colonies were propagated in Lysogeny Broth [35] (5 g/L yeast extract, 10

g/L tryptone, 10 g/L NaCl) with 50 μg/ml kanamycin, rifampicin (30 μg/ml) and carbenicillin

(100 μg/ml) at 28˚C overnight (15–20 hours) until the OD600 was� 2. The same procedures

were followed for the IBV M, E, and N recombinant plasmids, as well as for the NDV Matrix,

and IAV M2 recombinant plasmids. Overnight cultures were centrifuged at 7000 x g for 7 min-

utes at 10˚C and the cell pellets were resuspended and diluted in 2-(N-morpholino)
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ethanesulfonic acid (MES) infiltration buffer (10 mM MES, 10 mM MgCl2, pH 5.6, 200 μM

3,5-Dimethoxy-4-hydroxy-acetophenone) to an OD600 of between 1 and 2 before being com-

bined to ratios of 2:1:1:1 (pEAQ-HT-mIBV-S2P: M: E: N), 2:1 (pEAQ-HT-mIBV--

S2P-IAV-H6TM/CT: pEAQ-HT-IAV-M2) and 2:1 (pEAQ-HT-mIBV-S2P-NDV-FTM/CT:

pEAQ-HT-NDV-Matrix). A higher ratio (4:1) of construct in relation to chaperone proteins

Fig 1. SDS-PAGE (A) and Western blot (B) of partially-purified plant-produced IBV S protein (Primary antibody–

IBV antisera, secondary antibody—Goat-α-Chicken IgY HRP). Lane 1: molecular weight marker; Lane 2: plant-

expressed empty pEAQ-HT vector; Lane 3: purified live QX-like IBV strain ck/ZA/3665/11; Lanes 4–7: mIBV-S2P:M:

E:N fractions 2 (lanes 4 and 6) and 3 (lanes 5 and 7) extracted in either PBS or bicine as indicated; Lanes 8–11:

mIBV-S2P-IAV-H6TM/CT:M2 fractions 2 (lanes 8 and 10) and 3 (lanes 9 and 11) extracted in either PBS or bicine as

indicated; Lanes 12–15: mIBV-S2P-NDV-FTM/CT:NDV Matrix fractions 2 (lanes 12 and 14) and 3 (lanes 13 and 15)

extracted in either PBS or bicine as indicated. (C) Schematic diagrams of recombinant Spike protein constructs

mIBV-S2P with native IBV TM and CT, mIBV-S2P-IAV-H6TM/CT with TM and CT replaced with equivalent

sequences of IAV H6 protein, and mIBV-S2P-NDV-FTM/CT with TM and CT replaced with equivalent sequences of

NDV F protein.

https://doi.org/10.1371/journal.pone.0288970.g001
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has also been shown to improve protein expression [36]. The solutions were left at room tem-

perature (21˚C) for 1–2 hours before infiltrating. Agrobacterium-transformed vector combina-

tions were syringe-infiltrated into the leaves of 3–4-week-old N. benthamiana ΔXT/FT, a

glycosylation mutant with a targeted downregulation of plant complex N-glycans β1,2-xylose

and core α1,3-fucose that facilitate mammalian-like glycosylation [37]. The seeds had been

germinated on Murashige and Skoog media and were hardened-off in pots containing steri-

lised compost/red soil/vermiculite (1:1:1) and fertilised with Chemicult hydroponic powder

(Chemicult, South Africa) as per the manufacturer’s recommendation. Plantlets were grown in

a growth room facility fitted with alternating high sodium pressure and halide lamps, main-

tained at 26–28˚C, for 16 h light and 8 h dark conditions for 3–4 weeks. The infiltrated leaves

were harvested at 6 days post-infiltration (6 dpi has been reported for the harvest of plant-pro-

duced VLPs [20, 34], and was also previously determined to be the optimal harvest time for IB

VLPs [31]) and weighed.

Protein extraction and purification

The leaf tissue was extracted in 1 X PBS (140 mM NaCl, 1.5 mM KH2PO4, 10 mM Na2HPO4,

2.7 mM KCl, pH 7.4) or bicine buffers (50 mM Bicine, 20 mM NaCl pH 8.4) at 4˚C supple-

mented with protease inhibitor cocktail (Sigma P2714) using a juicer as described by [23]. The

mIBV-S2P, mIBV-S2P-IAV-H6TM/CT, and mIBV-S2P-NDV-FTM/CT VLPs were purified using

sucrose density gradient centrifugation. Twenty and 70% (m/v) sucrose solutions were pre-

pared by dissolving sterile sucrose in sterile 1X PBS, before overlaying 3 ml of 20% sucrose

onto 2 ml of 70% sucrose in 38.5 ml ultra-clearTM Beckman tubes. The clarified leaf superna-

tant (33.5 ml) was layered gently on top of the sucrose gradient and centrifuged at 32 000 x g at

10˚C for 2 hours. 0.5 ml fractions (successively labelled from fraction 1 upwards) were col-

lected from the bottom of the 70% sucrose gradient using a tube coupled to a peristaltic pump.

Analysis by SDS PAGE, Western blot and LC-MS/MS

Sucrose density gradient fractions 2 and 3 were analysed on 12% SDS-PAGE (sodium dodecyl

sulfate–polyacrylamide gel electrophoresis) and Western blots were performed. For immuno-

blotting, the SDS-PAGE gel was transferred onto a Polyvinylidene difluoride (PVDF) mem-

brane at 1.3 A, 25 V, for 7 minutes using the Trans-blot1 Turbo™ Transfer system (BioRad)

according to manufacturer’s directions. Following overnight blocking in a 3% [m/v] Bovine

Serum Albumin (BSA) in 1 X PBS blocking solution containing 0.1% [m/v] TWEEN20, the

membrane was incubated in antisera (at a dilution of 1:1000) in blocking solution. The antisera

was collected from a commercial flock that had been vaccinated twice with a combination of

live commercial Mass-type vaccines (University of Pretoria). The membrane was washed and

incubated in the secondary antibody, Goat-α-Chicken IgY HRP (Abcam, Novex) (at a dilution

Table 1. Primers used for synthetic construct design.

Construct Name Sequence (50– 30)

mIBV-S2P-IAV-H6TM/CT rIBV-S-H6TM/CT Forward TTTACCGGTATGGGCTGGAGCTGG

rIBV-S-H6TM/CT Reverse AAACTCGAGTCAGATGCACACTCTGCACTGCATGCTGCCGTTGCTGCACATCCACAGGCCCATAG
CAATGATCAGTCCCACCAGCACCAGGCTGCTGCTCACTGTGCTGGTAGATAGCCAGCTTAATGTAG
GTTTTCAG

mIBV-S2P-NDV-FTM/CT rIBV-S-H6TM/CT Forward TTTACCGGTATGGGCTGGAGCTGG

rIBV-S-FTM/CT Reverse AAACTCGAGTCACATCTTTGTTGTGGCTCTCATCTGATCCAGGGTGTTATTGCCCAGCCACAGCAGT
GTTTTCTGCTGTGCCTTCTGCTTGTACATCAGGTAGCAGGCCAGGATCAGGCTCAGGATTCCGAAC
ACCAGGGAGATGATTGTCAGCACGATGTAGGTGATCAGCTTAATGTAGGTTTTCAG

https://doi.org/10.1371/journal.pone.0288970.t001
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of 1:2000) in 1 X PBS-TWEEN before protein detection with ClarityTM Western ECL chemil-

luminescence substrate (BioRad) and visualisation with a ChemiDocTM MP Imaging System

(Bio-Rad). Protein bands of the expected size were excised from stained SDS-PAGE gels and

trypsin digested [38] for Liquid Chromatography Mass Spectrometry (LC-MS/MS) based pep-

tide sequencing at CSIR Biosciences. The obtained MS/MS spectra were compared with the

Uniprot Swissprot protein database through the Paragon search engine (AB Sciex) on Protein

pilot v5. Only the proteins with a threshold of� 99.9% confidence level were reported.

Transmission electron microscopy

Sucrose density gradient partially purified IB VLPs fraction 3 (which displayed the most prom-

inent bands on both SDS-PAGE and Western blot) for each of the plasmid combinations were

adsorbed onto carbon-coated holey copper grids and stained as described in [23]. The grids

were air-dried and imaged for VLPs using a JEOL JEM-1400 Flash Transmission Electron

Microscope (TEM) at the University of Pretoria. One millilitre of SPF chicken egg allantoic

fluid containing live strain ck/ZA/3665/11 (see Serological Testing) was clarified by centrifuga-

tion and also submitted for TEM.

S protein quantitation

The fractions for the plasmid combination displaying the highest level of S protein expression

in VLPs i.e., the mIBV-S2P-NDV-FTM/CT: Matrix combination, as determined by the

SDS-PAGE and immunoblotting results, were pooled and dialysed in PBS buffer using a 3500

mW CO Slide-A-Lyzer1 Dialysis Cassette (ThermoFisher Scientific), after which 15% (m/v)

trehalose dehydrate (Sigma-Aldrich) was added. The partially purified VLPs were quantified

by densitometry of stained SDS-PAGE using Bovine Serum Albumin (BSA) protein standards

of known concentrations and analysed using the quantification software on the ChemiDocTM

MP Imaging System (Bio-Rad).

Immunization of chickens

Six-week-old SPF White Leghorn Chickens (Gallus gallus) (n = 20) purchased from Avi-Farms

(Pty) Ltd, Pretoria were identified individually with numbered wing tags. The birds were

housed in an isolation room in the Biosafety Level 3 facility at the University of Pretoria’s Vet-

erinary Faculty. Water and feed (Nova Feeds, South Africa) were provided ad libitum.

Two vaccine doses, 5 μg and 20 μg (S protein content) in single dose volumes of 0.25 ml

were prepared for comparison. Just prior to immunization, the partially purified

mIBV-S2P-NDV-FTM/CT+NDV Matrix VLPs were diluted with sterile 1X PBS and vigorously

mixed by shaking with 10% (v/v) of Emulsigen1-P Adjuvant (MVP, Phibro Animal Health,

USA). The chickens were randomly assigned into two treatment groups of ten birds each. One

millilitre blood samples collected from the wing veins of each of the birds prior to vaccination

were used for the baseline comparison. The first group was immunized intramuscularly with

the 5 μg VLP vaccine while the second group was immunized intramuscularly with the 20 μg

VLP vaccine. After 14 days, blood samples were taken from all the chickens before euthanasia

by cervical dislocation. All study procedures were approved by the Research and Animal Ethics

Committees of the University of Pretoria (REC106-20), the CSIR (251/2018) and the Depart-

ment of Agriculture, Land Reform, and Rural Development (12/11/1/1/MG).
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Serological testing

Sera were tested using two commercial IBV antibody detection kits, namely the BioChek

Infectious Bronchitis Virus Antibody test kit (BioChek UK Ltd), and the IDEXX IBV Antibody

test kit (IDEXX Laboratories Inc, United States) according to the manufacturers’ recommen-

dations. To prepare antigen for hemagglutination inhibition (HI) tests, SPF chicken egg allan-

toic fluid containing 106.5 egg infectious dose EID50/ 0.1 ml of live QX-like IBV strain chicken/

ZA/3665/11 was centrifuged at 3000 rpm for 15 minutes at 4˚C and the clarified fluid was

transferred to a clean tube. Five millilitres of the clarified fluid were mixed with 1 ml of a 1 U/

ml neuraminidase solution from Clostridium perfringens (Abnova, Taiwan). Aliquots (1 millili-

tre) were incubated for overnight at 37˚C in a heating block, pooled and then chilled at 4˚C

[39]. The HA and HI tests were performed according to the standard method using 1% (v/v)

chicken red blood cells (CRBCs) [10]. The last well in the 2-fold titration of test serum where

CRBC streaming in the tilted plate was observed, relative to the controls, was recorded as the

log2 HI titre. Due to limited antigen availability, HI was performed only on the blood samples

taken two weeks after immunisation, PBS and SPF negative serum was used as the negative

controls. HI results for the two treatment groups were tested for normality using the D’Agos-

tino & Pearson test, Anderson-Darling test, Shapiro-Wilk test, and Kolmogorov-Smirnov test,

and statistically compared using the non-parametric Mann-Whitney U Test in the GraphPad

Prism v 9.4.1 software for Windows (La Jolla, CA, USA). A P value < 0.05 was considered

significant.

Results

Agroinfiltration and protein expression

SDS PAGE of fractions 2 and 3 of the partially purified plant extracts showed bands at approxi-

mately 127 kDa for mIBV-S2P, 122 kDa for mIBV-S2P-IAV-H6TM/CT, and 124 kDa for

mIBV-S2P-NDV-FTM/CT correlating to the expected size of the IBV S protein, for all three con-

structs tested (Fig 1(A)) and LC-MS/MS based peptide sequencing confirmed the bands to be

the S protein of IBV (S2 Fig). The S-protein specific bands detected by Western blot were the

strongest for mIBV-S2P-NDV-FTM/CT, followed by mIBV-S2P-IAV-H6TM/CT, with the weak-

est expression of the S protein displayed by mIBV-S2P (Fig 1(B)). The large diffused bands

>124 kDa are indicative of supramolecular structures associated with the VLPs as these are

not present in negative controls, and similar results were reported by [40]. The chicken anti-

IBV serum did not detect the S protein band in the QX-virus positive control, which was most

likely because the quantity of S protein in the purified virus was low, but also because the

source flock had been immunized with Mass-type IB vaccines, and there is little cross-protec-

tion between the highly variable S protein of different serotypes [41]. The IBV antisera how-

ever reacted strongly with the conserved 45 kDa IBV N protein in the purified positive control

virus and the mIBV-S2P VLPs produced by co-infiltrating with the IBV M, E and N proteins,

as N is a structural protein that is highly conserved between serotypes [42]. No difference was

observed when bicine buffer was used compared to PBS to purify the VLPs. Under the TEM,

VLPs were observed in the plant leaf extracts that resembled native IBV particles, ranging in

diameter from 67 nm to 135 nm, with most being between 80 and 100 nm in size, and spikes

ranging from 12 to 25 nm in length (Fig 2(A) and 2(B)). The crown-like S protein surface pro-

jections are clearly visible in both TEM images.

Since Western blot analysis showed that the mIBV-S2P-NDV-FTM/CT construct produced

the highest levels of VLP formation and S protein expression, the VLPs formed from this con-

struct were selected for the immunogenicity study. Fractions 2 and 3 were pooled, dialysed in
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PBS and stabilised with trehalose. SDS PAGE was performed, and densitometry analysis deter-

mined the concentration of the 124 kDa S protein band to be ~ 101 ng/ μl (S3 Fig). As with live

strain ck/ZA/3665/11 on which the VLP designs were based and most strains of IBV, the

tobacco plant-produced IB VLPs did not agglutinate CRBCs, therefore HA could not be used

for the vaccine quantitation. Following treatment with a neuraminidase solution [39], haemag-

glutination ability of live ck/ZA/3665/11 virus could be activated, allowing for the haemagglu-

tination inhibition study to be performed.

Immunogenicity in chickens

All 20 pre-vaccination serum samples tested negative for the presence of IBV-specific antibod-

ies with a commercial ELISA kit, verifying that the SPF chickens had no prior exposure to

IBV. Two weeks after vaccination, the ten chickens vaccinated with 5 μg seroconverted with

HI titres that ranged from 8 log2 to 10 log2 with a geometric mean titre (GMT) of 9.1 log2

whereas the ten that received 20 μg had significantly higher (P = 0.0001) HI titres that ranged

from 10 log2 to 12 log2 with a GMT of 10.5 log2 (Fig 3). All twenty samples collected at 14 days

tested negative for the presence of IBV-specific antibodies on two commercial ELISA kits, and

no adverse vaccination effects at the injection site were observed in any of the chickens during

the course of the experiment.

Discussion

In this study, VLPs displaying the immunogenic S protein of IB virus were successfully pro-

duced in planta for the first time. Previously, the native IBV S protein with various combina-

tions of modifications including replacement of the native retention peptide with a murine

signal peptide, substitution of the TM and/or CT domains with those of IAV HA, as well as

removal of the ER retention signal, did not successfully assemble VLPs in plants [31]. The sta-

bilising proline residues in the S protein introduced in the present study therefore appears to

be a critical requirement for plant-produced IB VLPs, and the highest levels of IB VLP expres-

sion (as confirmed by Western blot and LC-MS/MS) were obtained when the native TM

domain and CT of the S glycoprotein were substituted with the equivalent sequence of NDV F

glycoprotein, co-infiltrated with the NDV Matrix protein. Slightly lower levels of VLP expres-

sion were obtained when the chimeric modified S protein contained the TM and CT of an

Fig 2. Negative-stained transmission electron microscopy images of (A) live QX-like IBV strain ck/ZA/3665/11

and (B) IBV virus-like particles expressed with the mIBV-S2P-NDV-FTM/CT construct in N. benthamiana. The

crown-like S protein surface projections are clearly visible in both TEM images.

https://doi.org/10.1371/journal.pone.0288970.g002
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H6-subtype IAV hemagglutinin protein, as confirmed by Western blot and LC-MS/MS. The

lowest levels of VLP expression were obtained when the modified S protein with its native TM

and CT was co-infiltrated with the IBV M, E and N structural proteins, but in general co-infil-

trating with virus-specific structural proteins enhanced VLP formation.

The yield of the optimally-expressed VLP (developed from the mIBV-S2P-NSV-FTM/CT

construct) in this study was calculated at 16.77 mg/kg of leaf material harvested. The NDV

Matrix protein plays a key role in the assembly and budding of viruses at the cell membrane

[43], suggesting that its presence may improve expression of the IBV S protein, perhaps even

Fig 3. Hemagglutination inhibition (HI) titres for chicken sera after a single vaccination with 5 and 20 μg doses of

IB VLPs. The bar depicts the geometric mean titre; statistical significance is indicated by the asterisks (P < 0.05). A

titre of 4 log2 (1:16) or higher is considered positive for the HI test.

https://doi.org/10.1371/journal.pone.0288970.g003
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more so when co-expressing with the S protein at a higher ratio (4:1), as suggested by [36]. It

was previously shown that the transient co-expression of IAV M2 has the potential to improve

the accumulation and the stability of recombinant proteins in the secretory pathway of plant

cells through pH regulation [36], but co-infiltrating with the IAV M1 protein, was not neces-

sary for and may decrease the formation of IAV VLPs in plants [44].

The IB VLPs with the chimeric S-NDV protein + NDV Matrix protein, that displayed the

most abundant VLP expression under TEM and the strongest antigenicity in vitro, was formu-

lated as a vaccine with Emulsigen1-P adjuvant. Emulsigen1-P stimulates optimal immune

responses in chickens vaccinated with plant-produced IAV VLPs and is used at a lower volume

compared to other adjuvants [33]. The SPF chickens immunized with 5 μg (approximate S

protein content) doses of the adjuvanted IB VLPs showed no adverse vaccine effects, whereas

the traditional whole inactivated virus oil emulsion vaccines occasionally cause lesions at the

injection site that lead to carcass downgrades [45]. A single 5 μg dose of per bird of the plant-

produced IB VLP vaccine was sufficient to elicit a strong humoral response in SPF chickens of

S-specific antibodies using the HI test, but there is scope to improve the quantitation methods

of non-agglutinating VLPs such as this to further optimise the effective dose.

Since the vaccine did not contain the IBV structural proteins (M, N, E), no antibodies were

detected by two commercial IBV ELISA kits, which are targeted at detecting the highly con-

served structural IBV group-specific antibodies common to all IBV serotypes. This feature of

the plant-produced IB VLPs can potentially be used for DIVA if only VLP vaccines are admin-

istered, but in practice, the vaccination program would likely include a combination of heterol-

ogous live-attenuated and homologous VLP vaccines, that affords the best protection. The HI

test on the other hand, was able to detect the neutralizing S-protein specific antibodies elicited

by the VLP vaccine. The efficacy of the IBV VLP vaccine produced here, for which the immu-

nogenicity and lack of toxicity in the target species was demonstrated, will be assessed by live

virus challenge in a follow-up study.

Supporting information

S1 Fig. Protein sequence of the synthetic gene mIBV-S2P. The murine signal peptide is

highlighted in blue, the linker in magenta, and the S2 domain in grey with heptad repeat 1 in

yellow, the central helix in green, and the two stabilizing proline substitutions in boldface and

underlined.

(DOCX)

S2 Fig. Protein confirmation using LC-MS/MS-based peptide sequencing of the modified

IBV spike protein constructs compared in this study (A) mIBV-S2P, (B) mIBV--

S2P-IAV-H6TM/CT, and (C) mIBV-S2P-NDV-FTM/CT. The percentage sequence coverage is

indicated above with several unique peptides identified with > 90% confidence. Peptides with

> 95% confidence are highlighted in green, those with 50–95% confidence in yellow, and those

with<50% confidence in red. No peptides were identified for the non-highlighted regions of

the sequence (grey).

(DOCX)

S3 Fig. Densitometric analysis by SDS-PAGE of partially-purified mIBV-S2P-NDV-FTM/

CT VLPs. Lane 1: SeeBluePlus2 protein ladder; Lane 2: BSA Standard 100 ng/μl; Lane 3: BSA

Standard 150 ng/μl; Lane 4: BSA Standard 200 ng/μl; Lane 5: BSA Standard 250 ng/μl; Lane 6:

BSA Standard 300 ng/μl; Lane 7: Dialysed VLP sample (25 μl); Lane 8: Dialysed VLP sample

(10 μl); Lane 9: PageRuler Prestained protein ladder; Lane 10: Positive control (Live QX-like
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IBV); Lane 11: Negative control (pEAQ-HT-empty).

(DOCX)

S4 Fig. Original uncropped, unedited SDS-PAGE of partially-purified plant-produced IBV

S protein Lane 1: molecular weight marker; Lane 2: plant-expressed empty pEAQ-HT vec-

tor; Lane 3: purified live QX-like IBV strain ck/ZA/3665/11; Lanes 4–7: mIBV-S2P:M:E:N

fractions 2 (lanes 4 and 6) and 3 (lanes 5 and 7) extracted in either PBS or bicine as indi-

cated; Lanes 8–11: mIBV-S2P-IAV-H6TM/CT:M2 fractions 2 (lanes 8 and 10) and 3 (lanes 9

and 11) extracted in either PBS or bicine as indicated; Lanes 12–15: mIBV-S2P-NDV-FTM/

CT:NDV Matrix fractions 2 (lanes 12 and 14) and 3 (lanes 13 and 15) extracted in either

PBS or bicine as indicated.

(PNG)

S5 Fig. Original uncropped, unedited Western blot (B) of partially-purified plant-pro-

duced IBV S protein (Primary antibody–IBV antisera, secondary antibody—Goat-α-

Chicken IgY HRP). Lane 1: molecular weight marker; Lane 2: plant-expressed empty

pEAQ-HT vector; Lane 3: purified live QX-like IBV strain ck/ZA/3665/11; Lanes 4–7:

mIBV-S2P:M:E:N fractions 2 (lanes 4 and 6) and 3 (lanes 5 and 7) extracted in either PBS or

bicine as indicated; Lanes 8–11: mIBV-S2P-IAV-H6TM/CT:M2 fractions 2 (lanes 8 and 10) and

3 (lanes 9 and 11) extracted in either PBS or bicine as indicated; Lanes 12–15:

mIBV-S2P-NDV-FTM/CT:NDV Matrix fractions 2 (lanes 12 and 14) and 3 (lanes 13 and 15)

extracted in either PBS or bicine as indicated.

(TIF)

S1 Raw images.

(PDF)
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