Supplementary Table 1: List of the four sampling sites, their codes, geographical description and observed anthropogenic activities within the study sites

Site name	Description	Anthropogenic Activities	Coordinates
Maden dam	This dam is about 22km from King William's Town and is well known for	Fishing, tourism and	32° 44' 00" S,
	regular fishing activities. The dam is surrounded by weed beds which	domestic activities.	27° 16' 00" E
	provide food for the fish.		
Rooikrantz	It is a dam on the Buffalo River, about 15 km northwest of King William's	Fishing, animal rearing,	32° 45' 2" S,
dam	Town in the Eastern Cape Province. It lies due east of the larger and newer	irrigation, tourism and	27° 19' 07" E
	Sandile Dam.	domestic purposes	
King	King William's Town is along the banks of the Buffalo River. The area's	Deposition of dirt and	32° 53' S, 27°
William's	economy depends on cattle and sheep ranching, and the town itself has a	chemical pollutants,	24' E
Town	large industrial base producing textiles, soap, candles, sweets, cartons and	dumping site, WWTP	
	clothing.	effluent discharge	
Eluxolzweni	Eluxolzweni is an informal settlement situated next to the N2 freeway just	Fishing, irrigation,	32° 91' 36" S,
	north of Mdantsane. It falls under Buffalo City Metropolitan	domestic purposes,	27° 75' 69" E
	Municipality in the Eastern Cape Province of South Africa.	WWTP effluent discharge	

WWTP: Wastewater Treatment Plant (Report highlights impacts on river health, 2005).

Supplementary Table 2: Primer sequence, PCR cycling conditions and expected amplicon sizes for the confirmation and delineation of *E. coli* into its pathotypes.

Target	Gene	Primer sequence (5'-3')	PCR cycling conditions	Amplic	Reference
strains				on size	
E. coli	uidA housekeeping	F: AAAACGGCAAGAAAAAGCAG	94 °C, 5 min; 35[95 °C, 30 sec; 58 °C, 1	147	(Moyo et al.,
	gene	R: ACGCGTGGTTAACAGTCTTGCG	min; 72 °C, 1 min] 72 °C, 8 min		2007)
EAEC	eagg adhesion gene	F: AGACTCTGGCGAAAGACTGTATC	95 °C, 15 min; 35 cycles [94 °C, 45 s; 55	194	(Kong et al.,
		R: ATGGCTGTCTGTAATAGATGAGAAC	°C, 45 s; 68 °C, 2 min]; 72 °C, 5 min		2002)
EIEC	ipaH invasion gene	F: CTC GGCACGTTTTAATAGTCTGG	95 °C, 5 min; 30 cycles [95 °C, 45 sec; 55	320	(Vidal et al.,
		R: GTGGAGAGCTGAAGTTTCTCTGC	°C, 45 sec; 72 °C, 45 sec]; 72 °C, 10 min		2005)
DAEC	daaE adhesion gene	F: GAACGTTGGTTAATGTGGGGTAA	94 °C, 2 min; 40 cycles [92°C, 30 s; 59 °C,	542	(Vidal et al.,
		R: TATTCACCGGTCGGTTATCAGT	30 s; 72 °C, 30 s]; 72 °C, 5 min		2005)
ETEC	EC <i>lt</i> toxin gene F: GGCGACAGATTATACCGTGC 94 °C, 2 min; 35 cycle		94 °C, 2 min; 35 cycles [94 °C, 1 min; 55	450	(López-Saucedo
		R: CGGTCTCTATATTCCCTGTT	°C, 1 min, 72 °C, 1 min]; 72 °C, 5 min		et al., 2003)
EPEC	eae adhesion gene	F: TCAATGCAGTTCCGTTATCAGTT	95 °C, 15 min; 35 cycles [94 °C, 45 s; 55	482	(Stacy-Phipps et
		R: GTAAAGTCCGTTACCCCAACCTG	°C, 45 s; 68 °C, 2 min]; 72 °C, 5 min		al., 1995)
	bfp adhesion gene	F: AGACTCTGGCGAAAACTGTATC	94 °C, 2 min; 40 cycles [94 °C, 1 min; 55	300	(Stacy-Phipps et
		R: ATGGCTGTCTGTAATAGATGAGAAC	°C, 1 min; 72 °C, 1 min]; 72 °C, 5 min		al., 1995)
EHEC	stx1 toxin gene	F: ATAAATCGCCATTCGTTGACTAC	94 °C, 3 min; 35 cycles [93 °C, 60 s; 55 °C,	les [93 °C, 60 s; 55 °C, 180 (Paton and Pato	
		R: AGAACGCCCACTGAGATCATC	60 s; 72 °C, 60 sec]; 72 °C, 7 min		1998)
	stx2 toxin gene	F: GGCACTGTCTGAAACTGCTCC	94 °C, 3 min; 35 cycles [93 °C, 60 s; 55 °C,	255	(Paton and Paton,
		R: TCGCCAGTTATCTGACATTCTG	60 s; 72 °C, 60 sec]; 72 °C, 7 min		1998)

Supplementary Table 3: Data inputted for exposure and diarrheal disease risk modelling in each study site

	Maden dam	Rooikrantz dam	King William's Town dam	Eluxolzweni dam	Data source
Concentration (C) of <i>E. coli</i> (CFU/100 mls \times 10 ²)	Min: 9.20 Mean: 9.53 Max: 9.80	Min: 10.80 Mean: 11.00 Max: 11.20	Min: 15.00 Mean: 16.00 Max: 17.00	Min: 7.00 Mean: 8.17 Max: 9.50	This study
Recovery efficiency (R) (%)	16.00	12.00	4.00	8.00	This study
Proportion (I) of <i>E. coli</i> capable of causing diarrheal disease (%) Daily amount (M) of water directly or indirectly ingested (ml/day)	29.00 10.00	27.00 10.00	27.00 10.00	28.00 10.00	This study (Shuval et al., 1997)

Min: Minimum, Max: Maximum

SN	Antimicrobial	Code/concentration	Class
1	Doxycycline	DXT/30 µg	Tetracyclines
2	Tetracycline	T/30 µg	
3	Norfloxacin	NOR/30 µg	Fluoroquinolones
4	Ciprofloxacin	CIP/5 µg	
5	Chloramphenicol	C/30 µg	Phenicols
6	Nalidixic acid	NA/30 μg	Quinolones
7	Cefuroxime	CXM/30 µg	Cephems
8	Cefotaxime	CTX/30 µg	
9	Trimethoprim/sulphamethoxazole	TS/25 μg:25 μg	Sulfonamides
10	Amikacin	AK/30 μg,	Aminoglycosides
11	Gentamycin	GM/10 μg	
12	Nitrofurantoin	NI/300 μg	Nitrofurans
13	Ampicillin	AP/10 μg	β-lactams
14	Amoxicillin-clavulanic acid	AUG/30 µg	
15	Meropenem	MEM/10 µg	Carbapenems
16	Imipenem	IMI/10 µg	

Supplementary Table 4: list of antimicrobials used to carry out antimicrobial susceptibility testing of the DEC

Supplementary Table 5: The primer sequence and expected amplicon size used for the screening of resistance genes in the pathogenic strains of *E. coli*

Antibiotic	Genes	PCR primer sequence (5'–3')	PCR cycling condition	Amplicon	Reference
class				size (bp)	
Tetracyclines	tetA	F: GCTACATCCTGCTTGCCTTC	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	210	(Mendez
		R: CATAGATCGCCGTGAAGAGG	72 °C,1.5m]; 72 °C,5m		et al.,
					1980)
	tetB	F: TTGGTTAGGGGCAAGTTTTG	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	659	(Marshall
		R: GTAATGGGCCAATAACACCG	72 °C,1.5m]; 72 °C,5m		et al.,
					1983)
	tetC	F: CTTGAGAGCCTTCAACCCAG	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	418	(Marshall
		R: ATGGTCGTCATCTACCTGCC	72 °C,1.5m]; 72 °C,5m		et al.,
					1983)
	tetD	F: AAACCATTACGGCATTCTGC	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	787	(Marshall
		R: GACCGGATACACCATCCATC	72 °C,1.5m]; 72 °C,5m		et al.,
					1983)
	tetE	F: AAACCACATCCTCCATACGC	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	278	(Marshall
		R: AAATAGGCCACAACCGTCAG	72 °C,1.5m]; 72 °C,5m		et al.,
					1986)
	tetG	F: GCTCGGTGGTATCTCTGCTC	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	468	(Zhao and
		R: AGCAACAGAATCGGGAACAC	72 °C,1.5m]; 72 °C,5m		Aoki,
					1992)
	tetK	F: TCGATAGGAACAGCAGTA	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	169	(Warsa et
		R: CAGCAGATCCTACTCCTT	72 °C,1.5m]; 72 °C,5m		al., 1996)
	tetL	F: TCGTTAGCGTGCTGTCATTC	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	267	(Burdett et
		R: GTATCCCACCAATGTAGCCG	72 °C,1.5m]; 72 °C,5m		al., 1982)
	tetM	F: GTGGACAAAGGTACAACGAG	94 °C,5m; 35[94 °C,1m; 55 °C,1m;	406	(Warsa et
		R: CGGTAAAGTTCGTCACACAC	72 °C,1.5m]; 72 °C,5m		al., 1996)

Sulfonamides	sull	F: CGGCGTGGGGCTACCTGAACG R: GCCGATCGCGTGAAGTTCCG	94 °C,5m; 30[94 °C,30s; 65 °C,30s; 72 °C,2m]; 72 °C,10m	433	(Kerrn et al., 2002)
	sulII	F: GCGCTCAAGGCAGATGGCATT R: GCGTTTGATACCGGCACCCGT	94 °C,5m; 30[94 °C,30s; 65 °C,30s; 72 °C,2m]; 72 °C,10m	293	(Kerrn et al., 2002)
Phenicols	cmlA1	F: CACCAATCATGACCAAG R: GGCATCACTCGGCATGGACATG	94 °C,5m; 30[94 °C,30s; 50 °C,30s; 72 °C,1.5m]; 72 °C,5m	115	(Post and Hall, 2009)
	catI	F: AGTTGCTCAATGTACCTATAACC R: TTGTAATTCATTAAGCATTCTGCC	94 °C,5m; 30[94 °C,30s; 50 °C,30s; 72 °C,1.5m]; 72 °C,5m	320	(Maynard et al., 2004)
	catII	F: ACACTTTGCCCTTTATCGTC R: TGAAAGCCATCACATACTGC	94 °C,5m; 30[94 °C,30s; 50 °C,30s; 72 °C,1.5m]; 72 °C,5m	543	(Maynard et al., 2004)
Aminoglycosides	strA	F CTTGGTGATAACGGCAATTC R: CCAATCGCAGATAGAAGGC	94 °C,4m; 30[94 °C,45s; 50 °C,45s; 72 °C,45s]; 72 °C,5m	348	(Velusamy et al., 2007)
	aadA	F: GTGGATGGCGGCCTGAAGCC R: AATGCCCAGTCGGCAGCG	94 °C,4m; 30[94 °C,45s; 50 °C,45s; 72 °C,45s]; 72 °C,5m	525	(Velusamy et al., 2007)
	aac(3)-IIa $(aacC2)^a$	F: CGGAAGGCAATAACGGAG R: TCGAACAGGTAGCACTGAG	94 °C,5m; 30[94 °C,30s; 50 °C,30s; 72 °C,1.5m]; 72 °C,5m	428	(Maynard et al., 2004)
	aph(3)-Ia (aphA1) ^a	F: ATGGGCTCGCGATAATGTC R: CTCACCGAGGCAGTTCCAT	94 °C,5m; 30[94 °C,30s; 50 °C,30s; 72 °C,1.5m]; 72 °C,5m	600	(Maynard et al., 2004)

aph(3)-IIa	F: GAACAAGATGGATTGCACGC	94 °C,5m; 30[94 °C,30s; 50 °C,30s;	510	(Maynard
$(aphA2)^a$	R: GCTCTTCAGCAATATCACGG	72 °C,1.5m]; 72 °C,5m		et al.,
				2004)

Supplementary Table 6: The primer sequence and expected amplicon size used for the screening of $AmpC \beta$ -lactamase (Velusamy et al., 2007) and ESBLs in pathogenic strains of *E. coli* (Dallenne et al., 2010).

PCR name	Targeted β-	Primer name	Primer sequence (5' –3')	PCR cycling	Amplicon
	Lactamase(s)			condition	size (bp)
Simplex	AmpC	AmpC_for	TTCTATCAAMACTGGCARCC	94 °C, 4m; 30[94 °C,	550
AmpC ^a		AmpC_rev	CCYTTTTATGTACCCAYGA	45 s; 60 °C, 45s; 72 °C,	
				45s]; 72 °C, 7m	
Multiplex I	TEM variants	MultiTSO-T_for	CATTTCCGTGTCGCCCTTATTC	94 °C, 10m; 30[94 °C,	800
TEM, SHV	including TEM-1 and	MultiTSO-T_rev	CGTTCATCCATAGTTGCCTGAC	40 s; 60 °C, 40s; 72 °C,	
and OXA-1-	TEM-2			1m]; 72 °C, 7m	
like	SHV variants	MultiTSO-S_for	AGCCGCTTGAGCAAATTAAAC		713
	including SHV-1	MultiTSO-S_rev	ATCCCGCAGATAAATCACCAC		
	OXA-1, OXA-4 and	MultiTSO-O_for	GGCACCAGATTCAACTTTCAAG		564
	OXA-30	MultiTSO-O_rev	GACCCCAAGTTTCCTGTAAGTG		
Multiplex II	Variants of CTX-M	MultiCTXMGp1_for	TTAGGAARTGTGCCGCTGYA ^b	94 °C, 10m; 30[94 °C,	688
CTX-M	group 1 including	MultiCTXMGp1-	CGATATCGTTGGTGGTRCCAT ^b	40 s; 60 °C, 40s; 72 °C,	
group 1,	CTX-M-1, CTX-M-3	2_rev		1m]; 72 °C, 7m	
group 2 and	and CTX-M-15				
group 9	variants of CTX-M	MultiCTXMGp2_for	CGTTAACGGCACGATGAC		404
	group 2 including	MultiCTXMGp1-	CGATATCGTTGGTGGTRCCAT ^b		
	CTXM-2	2_rev			
	Variants of CTX-M	MultiCTXMGp9_for	TCAAGCCTGCCGATCTGGT		561
	group 9 including	MultiCTXMGp9_rev	TGATTCTCGCCGCTGAAG		
	CTX-M-9 and CTX-				
	M-14				
CTX-M	CTX-M-8, CTX-M-	CTX-Mg8/25_for	AACRCRCAGACGCTCTAC ^b		326
group 8/25	25, CTX-M-26 and	CTX-Mg8/25_rev	TCGAGCCGGAASGTGTYAT ^b		
	CTX-M-39 to CTX-				
	M-41				

Multiplex	ACC-1 and ACC-2	MultiCaseACC_for	CACCTCCAGCGACTTGTTAC	94 °C, 10m; 30[94 °C,	346
III ACC,		MultiCaseACC_rev	GTTAGCCAGCATCACGATCC	40 s; 60 °C, 40s; 72 °C,	
FOX, MOX,				1m]; 72 °C, 7m	
DHA, CIT	FOX-1 to FOX-5	MultiCaseFOX_for	CTACAGTGCGGGTGGTTT		162
and EBC		MultiCaseFOX_rev	CTATTTGCGGCCAGGTGA		
(plasmid-					
mediated					
AmpC)					
	MOX-1, MOX-2,	MultiCaseMOX_for	GCAACAACGACAATCCATCCT		895
	CMY-1, CMY-8 to	MultiCaseMOX_rev	GGGATAGGCGTAACTCTCCCAA		
	CMY-11 and CMY-				
	19				
	DHA-1 and DHA-2	MultiCaseDHA_for	TGATGGCACAGCAGGATATTC		997
		MultiCaseDHA_rev	GCTTTGACTCTTTCGGTATTCG		
	LAT-1 to LAT-3,	MultiCaseCIT_for	CGAAGAGGCAATGACCAGAC		538
	BIL-1, CMY-2 to	MultiCaseCIT_rev	ACGGACAGGGTTAGGATAGY ^b		
	MY-7, CMY-12 to				
	CMY-18 and CMY-				
	21 to CMY-23				
	ACT-1 and MIR-1	MultiCaseEBC_for	CGGTAAAGCCGATGTTGCG		683
		MultiCaseEBC_rev	AGCCTAACCCCTGATACA		
Multiplex	GES-1 to GES-9 and	MultiGES_for	AGTCGGCTAGACCGGAAAG	94 °C, 10m; 30[94 °C,	399
IV VEB,	GES-11	MultiGES_rev	TTTGTCCGTGCTCAGGAT	40 s; 57 °C, 40s; 72 °C,	
PER and				1m]; 72 °C, 7m	
GES					
	PER-1 and PER-3	MultiPER_for	GCTCCGATAATGAAAGCGT		520
		MultiPER_rev	TTCGGCTTGACTCGGCTGA		
	VEB-1 to VEB-6	MultiVEB_for	CATTTCCCGATGCAAAGCGT		648
		MultiVEB_rev	CGAAGTTTCTTTGGACTCTG		

Multiplex V	GES-1 to GES-9 and	MultiGES_for	AGTCGGCTAGACCGGAAAG	94 °C, 10m; 30[94 °C,	399
GES and	GES-11	MultiGES_rev	TTTGTCCGTGCTCAGGAT	40 s; 60 °C, 40s; 72 °C,	
OXA-48-				1m]; 72 °C, 7m	
like					
	OXA-48-like	MultiOXA-48_for	GCTTGATCGCCCTCGATT		281
		MultiOXA-48_rev	GATTTGCTCCGTGGCCGAAA		
Multiplex	IMP variants except	MultiIMP_for	TTGACACTCCATTTACDG ^b	94 °C, 10m; 30[94 °C,	139
VI IMP,	IMP-9, IMP-16, IMP-	MultiIMP_rev	GATYGAGAATTAAGCCACYCT ^b	40 s; 55 °C, 40s; 72 °C,	
VIM and	18, IMP-22 and IMP-			1m]; 72 °C, 7m	
KPC	25				
	VIM variants	MultiVIM_for ^c	GATGGTGTTTGGTCGCATA		390
	including VIM-1 and	MultiVIM_rev ^c	CGAATGCGCAGCACCAG		
	VIM-2				
	KPC-1 to KPC-5	MultiKPC_for	CATTCAAGGGCTTTCTTGCTGC		538
		MultiKPC_rev	ACGACGGCATAGTCATTTGC		

^a This primer pair was previously described by (Velusamy et al., 2007). ^bY=T or C; R=A or G; S=G or C; D=A or G or T. ^cThis primer pair was previously described by (Ellington et al., 2007).

References

- Burdett, V., Inamine, J., and Rajagopalan, S. (1982). Heterogeneity of tetracycline resistance determinants in Streptococcus. J. Bacteriol. 149, 995–1004. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6801018 [Accessed April 10, 2019].
- Dallenne, C., da Costa, A., Decré, D., Favier, C., and Arlet, G. (2010). Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. *J. Antimicrob. Chemother.* 65, 490–495. doi:10.1093/jac/dkp498.
- Ellington, M. J., Kistler, J., Livermore, D. M., and Woodford, N. (2007). Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. *J. Antimicrob. Chemother*. 59, 321–322. doi:10.1093/jac/dkl481.
- Kerrn, M. B., Klemmensen, T., Frimodt-Møller, N., and Espersen, F. (2002). Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. J. Antimicrob. Chemother. 50, 513–516. doi:10.1093/jac/dkf164.
- Kong, R., Lee, S., Law, T., Law, S., and Wu, R. (2002). Rapid detection of six types of bacterial pathogens in marine waters by multiplex PCR. *Water Res.* 36, 2802–2812. doi:10.1016/S0043-1354(01)00503-6.
- López-Saucedo, C., Cerna, J. F., Villegas-Sepulveda, N., Thompson, R., Velazquez, F. R., Torres, J., et al. (2003). Single Multiplex Polymerase Chain Reaction To Detect Diverse Loci Associated with Diarrheagenic Escherichia coli. *Emerg. Infect. Dis.* 9, 127–131. doi:10.3201/eid0901.010507.
- Marshall, B., Morrissey, S., Flynn, P., and Levy, S. B. (1986). A new tetracycline-resistance determinant, class E, isolated from Enterobacteriaceae. *Gene* 50, 111–117. doi:10.1016/0378-1119(86)90315-X.
- Marshall, B., Tachibana, C., and Levy, S. B. (1983). Frequency of tetracycline resistance determinant classes among lactose-fermenting coliforms. *Antimicrob. Agents Chemother.* 24, 835–40. doi:10.1128/AAC.24.6.835.
- Maynard, C., Bekal, S., Sanschagrin, F., Levesque, R. C., Brousseau, R., Masson, L., et al. (2004). Heterogeneity among Virulence and Antimicrobial Resistance Gene Profiles of Extraintestinal Escherichia coli Isolates of Animal and Human Origin. J. Clin. Microbiol. 42, 5444–5452. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15583263 [Accessed January 21, 2018].
- Mendez, B., Tachibana, C., and Levy, S. B. (1980). Heterogeneity of tetracycline resistance determinants. *Plasmid* 3, 99–108. doi:10.1016/0147-619X(80)90101-8.
- Moyo, S. J., Maselle, S. Y., Matee, M. I., Langeland, N., and Mylvaganam, H. (2007). Identification of diarrheagenic Escherichia coli isolated from infants and children in Dares Salaam, Tanzania. *BMC Infect. Dis.* 7, 92. doi:10.1186/1471-2334-7-92.
- Paton, A. W., and Paton, J. C. (1998). Detection and Characterization of Shiga Toxigenic Escherichia coli by Using Multiplex PCR Assays for stx 1, stx 2, eaeA, Enterohemorrhagic E. coli hlyA, rfb O111, and rfb O157. *J. Clin. Microbiol.* 36, 598– 602.
- Post, V., and Hall, R. M. (2009). AbaR5, a large multiple-antibiotic resistance region found

in Acinetobacter baumannii. *Antimicrob. Agents Chemother*. 53, 2667–71. doi:10.1128/AAC.01407-08.

- Report highlights impacts on river health (2005). Urban development and dense human settlements are impacting, in some cases severely, on the main river system of the Eastern Cape. This is the main finding of the latest State-of-Rivers (SoR) report, which studied the Buffalo River.
- Shuval, H., Lampert, Y., and Fattal, B. (1997). Development of a risk assessment approach for evaluating wastewater reuse standards for agriculture. *Water Sci. Technol.* 35, 15–20. doi:10.1016/S0273-1223(97)00228-X.
- Stacy-Phipps, S., Mecca, J. J., and Weiss, J. B. (1995). Multiplex PCR assay and simple preparation method for stool specimens detect enterotoxigenic Escherichia coli DNA during course of infection. *J. Clin. Microbiol.* 33, 1054–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7615704 [Accessed January 21, 2018].
- Velusamy, S., Gillespie, B. E., Lewis, M. J., Nguyen, L. T., Headrick, S. I., Schukken, Y. H., et al. (2007). Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli isolated from dairy cows with mastitis. *Vet. Microbiol.* 124, 319–328. doi:10.1016/j.vetmic.2007.04.040.
- Vidal, M., Kruger, E., Durán, C., Lagos, R., Levine, M., Prado, V., et al. (2005). Single multiplex PCR assay to identify simultaneously the six categories of diarrheagenic Escherichia coli associated with enteric infections. J. Clin. Microbiol. 43, 5362–5. doi:10.1128/JCM.43.10.5362–5365.2005.
- Warsa, U. C., Nonoyama, M., Ida, T., Okamoto, R., Okubo, T., Shimauchi, C., et al. (1996). Detection of tet(K) and tet(M) in Staphylococcus aureus of Asian countries by the polymerase chain reaction. J. Antibiot. (Tokyo). 49, 1127–32. doi:10.7164/antibiotics.49.1127.
- Zhao, J., and Aoki, T. (1992). Nucleotide Sequence Analysis of the Class G Tetracycline Resistance Determinant from Vibrio anguillarum. *Microbiol. Immunol.* 36, 1051–1060. doi:10.1111/j.1348-0421.1992.tb02109.x.