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BACKGROUND: Prostate cancer (PCa) is a significant health burden for African men, with mortality rates more than double global
averages. The prostate specific Anoctamin 7 (ANO7) gene linked with poor patient outcomes has recently been identified as the
target for an African-specific protein-truncating PCa-risk allele.
METHODS: Here we determined the role of ANO7 in a study of 889 men from southern Africa, leveraging exomic genotyping array
PCa case-control data (n= 780, 17 ANO7 alleles) and deep sequenced whole genome data for germline and tumour ANO7
interrogation (n= 109), while providing clinicopathologically matched European-derived sequence data comparative analyses
(n= 57). Associated predicted deleterious variants (PDVs) were further assessed for impact using computational protein structure
analysis.
RESULTS: Notably rare in European patients, we found the common African PDV p.Ile740Leu (rs74804606) to be associated with
PCa risk in our case-control analysis (Wilcoxon rank-sum test, false discovery rate/FDR= 0.03), while sequencing revealed co-
occurrence with the recently reported African-specific deleterious risk variant p.Ser914* (rs60985508). Additional findings included
a novel protein-truncating African-specific frameshift variant p.Asp789Leu, African-relevant PDVs associated with altered protein
structure at Ca2+ binding sites, early-onset PCa associated with PDVs and germline structural variants in Africans (Linear regression
models, −6.42 years, 95% CI=−10.68 to −2.16, P-value= 0.003) and ANO7 as an inter-chromosomal PCa-related gene fusion
partner in African derived tumours.
CONCLUSIONS: Here we provide not only validation for ANO7 as an African-relevant protein-altering PCa-risk locus, but additional
evidence for a role of inherited and acquired ANO7 variance in the observed phenotypic heterogeneity and African-ancestral health
disparity.

Prostate Cancer and Prostatic Diseases (2024) 27:558–565; https://doi.org/10.1038/s41391-023-00722-x

INTRODUCTION
Prostate cancer (PCa) is a significant health burden globally with
mortality rates that vary dramatically by ethnicity [1, 2]. Being of
African ancestry is a significant risk factor for aggressive
presentation and associated mortality. Within the United States,
African American men have a higher lifetime risk of dying from
PCa [1] and a significantly higher mortality rate than men of
European ancestry after adjusting for age, income and other
factors [3]. PCa mortality rates are double the global averages in
Sub-Saharan Africa, 2.7-fold greater in southern Africa compared
to the United States [2]. Combined with substantial PCa heritability
[4], a genomic study including men across the diverse spectrum of
African ancestries provides an underappreciated opportunity to
identify contributing genetic factors to PCa associated health
disparity.

Anoctamin 7 (ANO7), also called TMEM16G, codes for a member
of the anoctamin family which has been reported to be correlated
with cancer progression [5]. The original name ‘New Gene
Expressed in Prostate’ (NGEP) highlights the almost exclusive
expression of ANO7 in prostate epithelial cells [6]. While the
function of ANO7 in the prostate remains unknown, this
transmembrane protein is suggested to be dependent on calcium
(Ca2+) as a potential calcium-activated chloride channel (CACC) or
a Ca2+-dependent phospholipid scramblase (PLS) [7]. ANO7 tissue
expression has been associated with PCa outcomes, with contra-
dictory studies linking decreased [8–10], or increased [11]
expression with aggressive disease. The latter study linking
genotypes with expression suggests the contribution of genetic
ancestry (Iranian and German versus Finnish) as contributing
factors for the observed disparity. As a candidate PCa
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susceptibility gene, differences in associated risk alleles have been
identified between ancestries. Most recently, an ANO7 stop-gain
variant p.Ser914* (rs60985508) has shown a significant association
with PCa in men of African ancestry [12]. Conversely, the
significance of four European-specific (85,554 cases, 91,972
controls) PCa-risk variants rs77559646, rs2074840, p.Ala759Thr
(rs76832527) and p.Glu226Lys/p.Glu226* (rs77482050) were
excluded from the analyses of men of African (10 368 cases,
10,986 controls) and East Asian (8611 cases, 18,809 controls) or
Hispanic ancestries (2714 cases, 5 239 controls) [13]. Additionally,
p.Arg30Gly/p.Arg30* (rs148609049) has been associated with
reduced survival rates (1 627 Finnish cases) [11], rs77559646 with
improved progression-free survival (110 and 98 Finnish cases) [14],
and rs62187431 with lower risk for biochemical recurrence (638
Asian cases) [15].
Taken together, the literature suggests a link among genetic

ancestry, the spectrum of ANO7 variation, and PCa risk and/or
disease outcome. Observing (as of 1 March 2023) a notable lack of
pathogenic ANO7 germline variants reported in ClinVar [16], we
sought in this study to determine if germline and/or acquired
variants within ANO7 are contributing to aggressive PCa
presentation in southern Africa. Here we interrogate ANO7
germline and tumour genome sequencing (n= 166), as well as
array-based genotype data (n= 780), providing the first insights
for the relevance of ANO7 and aggressive PCa presentation within
the genetically diverse southern African population identifier.

SUBJECTS AND METHODS
Subjects and whole genome sequencing
Blood and tumour samples were collected from 166 patients diagnosed
with PCa from South Africa (n= 113) and Australia (n= 53), with a bias
towards high-risk cases (79.5% Gleason score �4+ 3, Supplementary
Table S1). The samples underwent deep whole genome sequencing (WGS)
using a single technical and Hg38 referenced variant calling and
annotation pipeline, as previously described [17]. Ancestry inference was
computed using fastSTRUCTURE population analysis with 7 472 833
germline single-nucleotide variants (SNVs). Of the 166 patients, 109 were
categorised as African (all South African) having �98% African-ancestral
fraction, and 57 as European (53 Australian, 4 South African) allowing up to
3% African ancestral and 26% Asian contributions [17]. Germline and
somatic variants were selected in ANO7 gene (GRCh38 assembly, allowing
1 kb extension at upstream and downstream) and including besides SNVs,
also small insertion-deletions (indels) and larger structural variations (SVs).

Exome array case-control study
The investigation of African-related PCa causal variants was conducted on
a case-control study of 798 South Africans. Genotyping was conducted on
the Infinium HumanExome-12 v1.0 BeadChip array (Illumina, California,
United States). Subjects were filtered for admixture according to a principal
component analysis (PCA) of the ancestry of subjects and were also filtered
for relatedness (supplementary methods). Samples that passed quality
control (n= 780; Table 1) included 473 cases (age median 71, range
49–102) and 307 controls (age median 70, range 45–99). Cases and
controls are of similar age distribution (Wilcoxon test, P-value= 0.49). From
54 markers across the ANO7 gene region, 17 single-nucleotide polymorph-
isms were represented within our study cohort (Supplementary Table S2).

Annotation of short variants
The annotation of short variants (further outlined in supplementary methods)
identified in both WGS and exome array was processed with the online tool
SNPnexus (https://www.snp-nexus.org/v4/) [18]. SNPnexus provides multiple
tools and datasets for annotation, including Sorting Intolerant From Tolerant
(SIFT, Jan 2019 updated) [19], Polymorphism Phenotype (PolyPhen, Jan 2019
updated) [20], and cancer genome interpreter (CGI) [21]. Predicted
deleterious variants (PDVs) were defined as variants with SIFT scores under
0.05 or PolyPhen scores greater than 0.446 or causing stop/gain or frameshift
on the main transcript of ANO7 ENST00000274979. Other variants included
benign, tolerated or structural variants. Minor allele frequencies (MAF) of
PDVs in African and European populations were obtained from the online
Allele Frequency Aggregator (ALFA) [22].

Sequence analysis
Sequence and phylogenetic analyses were conducted using MEGA (v11)
[23] on 45 unique amino acid sequences of the ANO7 transcript
ENST00000274979. Sequences were aligned by MUSCLE [24] in MEGA
and the best protein model was estimated by PhyML (v 3.0) [25], as
detailed in supplementary methods. We used the neighbour-joining
statistical method and bootstrap values equal to 1000 to construct a
phylogenetic tree, which was only assessed for groupings due to low
branch support.

Statistical analysis
Significant thresholds were set as 0.05 for P-value and false discovery rate
(FDR) corrected by Rstatix package (v 0.7.0) [26] if multiple tests were
conducted for each variant. The same version of R (v 4.1.3; R Core Team,
2022) was used throughout the study.
Correlations between variants were tested using Spearman’s rank

correlation coefficient (ρ) from Stats package in R, which assumes no
frequency distribution. Haplotype block analysis used Haploview v4.1 [27].
Associations between age at diagnosis and selected ANO7 variants were
investigated with linear regression models using Stats package in R. African
patients with age available (n= 108, one unavailable) were tested for
carrying �3 selected variants. The best model was selected by the fitness
of the model estimated by Akaike’s Information Criterion (AIC) in stepwise
selection. PDV prevalence in ethnic groups was compared using logistic
regression models from Stats package in R (supplementary methods).
Genotypes identified in exome array data were compared between cases
and controls using non-parametric Wilcoxon rank-sum test which fits non-
normal distributed data.

Prediction of protein structures and pores
The protein structure of amino acid sequences was predicted using the
RaptorX Structure Prediction online server [28] which predicts protein
structures by aligning the given sequence to known structures and uses
convolutional neural networks (CNN) for a high quality contact map. The
predicted structure was used for pore prediction by MOLE online tool [29]
with default settings at 13 Å and 0.8 Å for the probe radius and interior
threshold, respectively. MOLE identifies possible channels and merges
them to pores with estimated physicochemical properties, such as
hydropathy, radii, and bottleneck. The pore prediction of each protein
was conducted over 20 times to achieve reproducible results that defined
pores within the same group of helices more than three times.
Approximately 2 to 3 distinctive pores were identified per protein
structure.

RESULTS
ANO7 ancestral diversity
A total of 809 germline variants were reported within the ANO7 gene
region for 166 WGS genomes, with as expected [17, 30], greater
numbers observed for Africans over Europeans (median 125 vs 110).
Exhibiting 45 unique amino acid sequences of ANO7 containing
germline missenses, with median pairwise genetic distance 0.003
(range, 0.001–0.005). The number of African-specific sequences were
more than twice of the Europeans (29 vs 12), with African patients
exhibiting three times as many individually unique African-specific
sequences as Europeans (21 vs 7). Phylogenetic analysis divided the
sequences into eight groups (Fig. 1) including three African-specific
(Groups B, D and F) and one European-specific (Group A).

ANO7 germline predicted deleterious variants (PDVs)
Of the 13 germline variants identified in 166 WGS genomes
annotated as PDVs (Table 1, Supplementary Fig. S1), nine were
African-specific, including p.Leu734Pro and p.Asp789Leu novel to
this study, while p.Ala744Gly (rs773052325) has previously
been reported in a single East Asian (Supplementary Fig. S1).
Known PCa variants included the European-exclusive PDV
p.Ala759Thr (rs76832527, [13, 31, 32]) and the recently described
African-related p.Ser914* (rs60985508, [12]). Ancestrally shared
PDVs p.Ile740Leu (rs74804606) and p.Ser914* (rs60985508)
showed a higher prevalence in African patients (logistic regres-
sion models, p.Ile740Leu/rs74804606: Europeans vs Africans; odds
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ratio/OR= 0.04, 95% confident interval/CI= 0.005–0.30, P-value=
0.02; p.Ser914*/rs60985508: OR= 0.01, 95% CI= 0.002–0.09,
P-value= 2.03e−05).

Common germline ANO7 variants associated with African-
ancestral PCa risk
Of the 17 ANO7 variants represented within our 473 genotyped
southern African PCa cases and 307 cancer-free controls
(Supplementary Table S2), six identified PDVs were overlapped
with our sequencing data (Table 1, Supplementary Fig. S2). While
PDV p.Ile740Leu (rs74804606) was associated with PCa risk
(Wilcoxon test, FDR= 0.03; Supplementary Table S2), the
European-derived PCa-risk variant p.Ala759Thr (rs76832527) was
rare in our study with no associated risk.

Intercorrelation of germline ANO7 variants
We investigated the correlation between germline ANO7 PDVs or
SVs, with known PCa-risk variants (Spearman’s test, FDRs= 0 to
2.84e−03, Table 2). Correlations identified exclusively in African
patients involved four germline SVs while the correlation specific
to European patients involve a PCa-risk synonymous variant
rs62187431, whilst rs62187431 was also correlated with two

germline SVs exclusively in the African patients (Supplementary
Table S3). An ancestrally shared correlated pair was observed
between two PDVs, p.Ile740Leu (rs74804606) and p.Ser914*
(rs60985508), cooccurred in 29 Africans and a single European.
The other correlated pair between PDVs, p.Asp789Leu (novel
frameshift) and p.Asp789Val (rs527323541), cooccurred together
in five African patients, which together truncated the Anoctamin 7
protein by 100 amino acids. As the less frequent variant only
occurred in a subject when the more frequent variant was present,
most were defined as inclusive correlated (IC) pairs (Supplemen-
tary Fig. S3). The IC pair p.Ala759Thr (rs76832527) and rs62187431
whose linkage disequilibrium (LD) was also reported in Asian
patients [15] were in the same haplotype block with strong LD in
European patients.

ANO7 germline PDVs linked with early-onset PCa
Correlating PCa measurements and ANO7 variants using linear
regression analyses with adjustments for the number of small
germline variants and PCa-risk levels, we found African patients to
present six years earlier at diagnosis (−6.42 years, 95% CI=
−10.68 to −2.16, P-value= 0.003) if carrying three or more
selected germline variants (PDVs and/or SVs), regardless of
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zygosity (Supplementary Fig. S4). Of these 15 African patients, 14
carried at least two germline PDVs and one carried two germline
SVs, suggesting an accumulation of inherited PCa risk from
selected ANO7 variants. While none of our European patients
presented with greater than two selected variants, it should be
noted that ANO7 rs77559646 has previously been reported to be
associated with early-onset PCa in a Finnish study [11].

ANO7 as a putative cancer driver
Somatic variants, 23 small variants (Supplementary Table S4) and
two inter-chromosomal fusion SVs (Supplementary Figs. S5 and S6),
were biased towards high-risk tumours (Gleason score �4+ 3)
derived from patients of predominantly African ancestry (8 out of 9).
An African missense p.Phe79Leu (rs1217170132) was annotated
with a deleterious impact on an alternative transcript
(ENST00000451047), which has not been reported in population
data or previous studies. Additionally, and novel to this study, we
found ANO7 to act as a fusion partner for oncogenic genes, namely
G3BP Stress Granule Assembly Factor 1 (G3BP1) at 5q33.1 [33–35]
and PTPRF interacting protein alpha 4 (PPFIA4) at 1q32.1 [36–38]

Impact of ANO7 PDVs on protein structure
Of the 13 PDVs in WGS (Table 1, Supplementary Fig. S1), 11
clustered in the Calcium (Ca2+)-activated chloride channel
(Supplementary Fig. S1), while a single PDV was located in an
anoctamin dimer region. Two clustering of PDVs in proximity with
distances <13 Å were predicted in the tertiary structure (Supple-
mentary Fig. S7, Fig. 2a, b), with one clustering, p.Ile740Leu
(rs74804606) and p.Ala744Gly (rs773052325), located adjacent to
putative Ca2+ binding sites (Fig. 2c) originally identified in
Anoctamin 1 protein [39].

Two potential ion conduction pores were identified in the
transmembrane domains (TMDs) and passed through putative
Ca2+ binding sites (Fig. 3a). The two pores were close among
helices α5–8 at the end connecting to the cytoplasm and apart at
the other end where Pore 1 was circled by helices α5–9, while Pore
2 was tilted with helices α4–6 surrounded, the similar placement
of ion conduction of Anoctamin 1 protein [39]. Their properties
were similar that were hydrophobic and less ionisable in the
central part near the Ca2+ binding sites and with radii larger than
1 Å within TMDs (bottlenecks, Pores 1= 1.6 Å, Pores 2= 1.3 Å,
Supplementary Fig. S8). The result of pore identification changed
with presence of PDVs, which could hinder the movement of ions
and affect the interaction between Ca2+ and Anoctamin 7 protein.
For a protein with p.Ala470Val (rs887541003) and p.Ile740Leu
(rs74804606), Pore 1 was not identified, while Pore 2 was
identified as narrower with 0.4 Å bottleneck radius and was less
hydrophilic and ionisable at the centre of the pore above the
bottleneck (Fig. 3b, c). The pore alteration could be the
consequence of positional changes of residues 673–693, which
were also observed when other PDVs were present (Supplemen-
tary Fig. S9).

DISCUSSION
Recently pinpointed as an African-relevant PCa-risk locus, here we
performed a thorough investigation for the role of ANO7 variants
in PCa predisposition and aggressive disease in men from
southern Africa, identifying numerous potential roles for ANO7
in driving ancestrally-linked PCa health disparities. Firstly, we
validated the African-related PCa-risk variant p.Ser914*
(rs60985508) [12] in our study through co-occurrence with the

Fig. 2 Closely distributed of PDVs on Anoctamin 7 protein. a, b, Two groups of closely distributed PDVs. a p.Ile740Leu (rs74804606) is close
to p.Leu734Pro (novel) and p.Ala744Gly (rs773052325) with the structural distance of 10.2 Å and 6.1 Å, respectively. b PDVs p.Arg465Trp
(rs145157097), p.Ala470Val (rs887541003) and p.Arg578Cys (rs111934267) are close to each other with labelled distance in Å unit. c Putative
Ca2+ binding sites and adjacent PDVs. Putative Ca2+ binding sites are in blue, shown as sticks, which are residues p.Asn655, p.Asn656,
p.Glu659, p.Asn735, p.Glu707, p.Glu 710, p.Glu739, and p.Asp743.

Table 2. Correlations between PDVs and other variants.

Pairs of correlated variants Ethnicity ρa FDR ICb Distance (kb)

p.Asp789Val p.Asp789Leu (stop-gain) African 1 0 Y Adjacent

p.Tyr440Asn g.21684_22027del African 0.49 3.61E−06 Y 3.8

p.Arg578Cys g.23653_23712del African 0.49 3.61E−06 Y 4.9

p.Arg578Cys g.4185_4328dup African 0.49 3.61E−06 Y 24.3

p.Leu734Pro g.27267_27392del African 0.4 9.44E−04 Y 6.9

p.Ile740Leu p.Ser914* (stop-gain) African 0.37 2.84E−03 N 6.2

European 1 0 Y 6.2

p.Ala759Thr rs62187431 European 0.92 1.32E−23 Y 5.5

PDVs defined as variants with SIFT scores under 0.05 or PolyPhen scores greater than 0.446; Other variants including benign, tolerated or structural variants.
aRho (Spearman’s correlation coefficient).
bWhether the correlated pair is an IC pair. Y for yes and N for no.
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African dominant p.Ile740Leu (rs74804606), which has previously
been associated with estrone per androstenedione ratio in women
with increased risk of breast cancer [40]. Conversely, the
European-specific PCa-risk deleterious variant p.Ala759Thr
(rs76832527, [13, 31, 32]) showed no significant difference in our
African cohort. Besides the strong LD between p.Ala759Thr
(rs76832527) and the PCa-risk variant rs62187431 in our European
patients, which has been verified in an Asian study [15], the higher
p.Ala759Thr (rs76832527) MAF suggests earlier divergence in
Europeans. Taken together, these deleterious variants with distinct
frequencies across ancestries may potentially account for the
divergent PCa outcomes across ancestries.

Given that variation in conserved amino acid residues can
potentially impact protein properties [41], we further examined for
the possible impact of identified African-relevant PDVs on the
ANO7 protein that is known to be Ca2+ dependent for being either
CACC or PLS [7]. A previous Anoctamin 1 study showed that co-
occurrence of variants at residues 740, 759 and 775 (Anoctamin 7
equivalent residue positions) significantly decreased channel
activity [42]. Our study shows that the impaired activity with the
presence of PDVs is likely to be caused by a decrease in binding
affinity and ion selectivity in proximity to Ca2+ binding sites and in
ion conduction pores through the binding sites. Those affecting
PDVs are either African-specific or with higher prevalence in
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Fig. 3 Ion conduction pore predicted in Anoctamin 7 protein. a Two possible pores with zoomed-in views of the Ca2+ binding region. Pores
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pore 2 in altered protein. Bottom part: reduced bottleneck for Pore 2 in altered protein.
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African than European patients. Three PDVs, namely p.Leu734Pro
(novel), p.Ile740Leu (rs74804606) and p.Ala744Gly (rs773052325),
are located neighbouring to Ca2+ binding sites and one PDV
p.Ala632Val (rs139066448) is within the re-entrant structure
(residues 628–657) [7]. Additionally, the obstruction of predicted
ion conduction paths was observed in proteins containing PDVs
such as p.Ile740Leu (rs74804606). The changed pore properties
include narrower bottlenecks in TMDs and differential hydrophilic
and ionisable capabilities near binding sites. These impairment on
ANO7 protein may be relevant to the observed overexpression in
malignant tumour cells [43].
Novel to this study, we identify ANO7 as a potential oncogenic

driver in African men, through the formation of gene fusions with
the cancer-related genes G3BP1 and PPFIA4, involved in androgen
receptor (AR) [35] and mitogen-activated protein kinase (MAPK)
signalling [44], respectively. The protein of G3BP1 promotes PCa
tumourigenesis by binding to a PCa-specific suppressor SPOP [40].
The G3BP1-SPOP bound ubiquitin activates AR signalling and
upregulates G3BP1 transcription [35], leading to overexpression of
G3BP1 in PCa tumour cells [33, 34] and further inhabitation of the
tumour suppressor SPOP [35]. The second fusion gene partner
PPFIA4 has been observed to be overexpression in PCa patients
having experienced biochemical relapse after radical prostatect-
omy [37]. The PPFIA4 protein liprin-α4 is involved in the MAPK
signalling pathway [44] which may cause castration-resistant PCa
through AR pathway independence [45, 46], and has been
proposed as a potential therapeutic target for several cancer
types [47, 48]. Contradictorily, PPFIA4 is a hypoxia-induced gene
potentially stabilise cell-cell contacts [49] and may prevent
invasion of PCa cells [38].

CONCLUSIONS
In conclusion, the present study on ANO7 variants has shown
genetic differences between Africans and Europeans and correla-
tions with PCa, indicating the role of ethnicity in the implication of
genetic variants in PCa. The alterations of protein structure caused
by ANO7 variants may exert an impact on molecular function and
may further promote tumourigenesis. These findings underline
the possibility that ANO7 variants are involved in an ancestrally-
related multi-hit processes of carcinogenesis and emphasise the
necessity of a future study of ANO7 variation and clinical
correlation in a larger sample size of African patients.
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The data used in this study will be made available on request.
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