
royalsocietypublishing.org/journal/rspb
Review
Cite this article: Sánchez CA et al. 2024

Advances in understanding bat infection

dynamics across biological scales. Proc. R. Soc.

B 291: 20232823.
https://doi.org/10.1098/rspb.2023.2823
Received: 13 December 2023

Accepted: 31 January 2024
Subject Category:
Ecology

Subject Areas:
ecology, health and disease and epidemiology

Keywords:
biomarkers, Chiroptera, disease ecology, health,

stress, physiology
Authors for correspondence:
Cecilia A. Sánchez

e-mail: sanchez@ecohealthalliance.org

Kendra L. Phelps

e-mail: phelps@ecohealthalliance.org

Kevin J. Olival

e-mail: olival@ecohealthalliance.org
© 2024 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.7075588.
Advances in understanding bat infection
dynamics across biological scales

Cecilia A. Sánchez1, Kendra L. Phelps1, Hannah K. Frank2, Marike Geldenhuys3,
Megan E. Griffiths4, Devin N. Jones5, Gwenddolen Kettenburg6,
Tamika J. Lunn7,8, Kelsey R. Moreno9, Marinda Mortlock3,
Amanda Vicente-Santos10, Luis R. Víquez-R11, Rebekah C. Kading12,
Wanda Markotter3, DeeAnn M. Reeder11 and Kevin J. Olival1

1EcoHealth Alliance, New York, NY 10018, USA
2Department of Ecology & Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
3Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
4MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
5Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717, USA
6Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
7Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
8Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
9Department of Psychology, Saint Xavier University, Chicago, IL 60655, USA
10School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
11Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
12Department of Microbiology, Immunology and Pathology, Center for Vector-borne and Infectious Diseases,
Colorado State University, Fort Collins, CO 80523, USA

CAS, 0000-0002-1141-6816; KLP, 0000-0002-3120-4802; HKF, 0000-0002-4507-181X;
MG, 0000-0003-4005-118X; MEG, 0000-0003-4130-9840; DNJ, 0000-0001-9215-2930;
GK, 0000-0003-3353-4159; TJL, 0000-0003-4439-2045; KRM, 0000-0002-0890-0682;
MM, 0000-0001-9286-1040; AV-S, 0000-0001-6012-2059; LRV-R, 0000-0002-5865-2461;
RCK, 0000-0002-4996-915X; WM, 0000-0002-7550-0080; DAMR, 0000-0001-8651-2012;
KJO, 0000-0003-3211-1875

Over the past two decades, research on bat-associated microbes such as
viruses, bacteria and fungi has dramatically increased. Here, we synthesize
themes from a conference symposium focused on advances in the research of
bats and their microbes, including physiological, immunological, ecological
and epidemiological research that has improved our understanding of bat
infection dynamics at multiple biological scales. We first present metrics
for measuring individual bat responses to infection and challenges associ-
ated with using these metrics. We next discuss infection dynamics within
bat populations of the same species, before introducing complexities that
arise in multi-species communities of bats, humans and/or livestock. Finally,
we outline critical gaps and opportunities for future interdisciplinary work
on topics involving bats and their microbes.
1. Introduction
Studies of bat-associated microbes (i.e. microorganisms detected in or isolated
from bats) date back to rabies virus investigations in the early 1900s [1]. In the
past two decades, following the emergence of Severe Acute Respiratory Syndrome
(SARS) coronavirus (CoV) in 2003 and SARS-CoV-2 in 2019, there has been a dra-
matic increase in research on bat-associated microbes, including viruses, bacteria,
haemosporidians and fungi [2–5]. Thesemicrobesmayormay not cause disease in
bats, and thuswe broadly use the term ‘microbes’ rather than ‘pathogens’ through-
out this paper to acknowledge that detecting microorganisms in bats is distinct
from the process of determining pathogenicity [6]. Research has moved far
beyond simple microbe detection in bat hosts and includes cutting-edge
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Figure 1. Map illustrating the geographical and taxonomic diversity of bat species highlighted in case studies throughout the main text, with approximate study
location and photo. Species names are coloured according to bat family, with a simplified phylogeny showing relationships between families. See electronic
supplementary material for photo permissions.
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investigations into infection dynamics at individual, population and community scales, and One Health approaches to integrate bat
ecology and health [7–11].

As part of the joint 50th North American Symposium for Bat Research and 19th International Bat Research Conference, we orga-
nized a symposium focused on advances in the research of bats and their microbes (electronic supplementarymaterial, table S1). We
invited early-career scientists to present on physiological, immunological, ecological and epidemiological investigations that have
improved our understanding of bat health and infection dynamics. Building on topics discussed by our presenters, here, we
review recent bat infection research at the individual, population and community scales. We first present novel approaches and
metrics for measuring individual bat responses to infection and challenges associated with assessing consequences of infection.
We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in
multi-species communities, including humans or livestock. Throughout, we highlight case studies from a diverse set of bat species
(figure 1). We conclude by summarizing critical gaps and opportunities for future interdisciplinary work on health topics involving
bats and their microbes.
2. Research at the individual scale: metrics for assessing bat responses to infection
A prevailing narrative in infectious disease research is that bats do not get ‘sick’when infected with viruses or other microbes (with
some exceptions [12]). Experimental challenges on individual bats and bat cell line infection studies have reinforced this narrative,
suggesting bats may be more tolerant of viral infection than other mammals [13–15], especially for microbes for which they are the
putative reservoir host. However, other studies suggest bats sometimes develop disease due to microbial infection (e.g. morbidity
and mass mortality events caused by viruses, fungi and bacteria [16–18]). We submit that researchers must employ a broader set of
metrics and technologies to build a more complete picture of bat responses to infection.

(a) Physiological responses to infection
While acute responses tomicrobial infectionsmay haveminimal consequences for physiological status, cumulative and/or interactive
effects of co-occurring or repeat infections can precipitate a cascade of detrimental physiological responses [19]. A comprehensive
strategy to assess bat responses to infection should include complementary ‘snapshot’ indicators that show individual short-term
reactions as well as downstream metrics that reflect prolonged physiological responses.

A reliable tool for examining the relationship between physiological status and infection status in bats is the measurement of gluco-
corticoid (GC) hormones. GCs (i.e. cortisol and corticosterone) are critical in regulating physiological processes (e.g. metabolism,
reproduction, immunity). While short-term increases in GCs are beneficial for survival, prolonged elevated levels of GCs can
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downregulate immunological functioning, potentially increasing vulnerability to infection and transmission risk to other species [20,21].
Minimally invasive (e.g. blood, < 5 µl) and non-invasive (e.g. faeces, urine and fur) methods to quantify GCs are increasingly available
[22,23].

Body condition can serve as a downstream indicator of the consequences of infection [24], with studies identifying associations
between decreased body condition and infection status [25–27]. However, significant variation in morphology among bat species
means a one-size-fits-all measure of body condition may not exist. The most widely used body condition indices (BCI) are the ratio
index (body mass/forearm length) and the residual index (residuals of body mass-forearm length regression), which attempt to
provide size corrections for body mass [28]. For temperate insectivorous bat species, body mass alone has been suggested as a
more effective measure of body condition [24]. Regardless of the index used, it is worth noting that short-term factors affecting
mass (e.g. pregnancy, food consumption, waste elimination) can alter BCI values and interpretation.

With a small amount of whole blood (< 100 µl), researchers can assess a bat’s physiological status via blood chemistry
parameters. For instance, handheld point-of-care blood analysers (e.g. i-STAT) were used to demonstrate that little brown bats
(Myotis lucifugus) infected by Pseudogymnoascus destructans (the aetiological agent of white-nose syndrome (WNS) [29]) had
depleted electrolyte levels and exhibited respiratory acidosis [30,31]. In Ethiopian epauletted fruit bats (Epomophorus labiatus),
haematological and electrolyte values varied by infection intensity with the malarial parasite Hepatocystis [32,33]. Although
blood chemistry analysis is promising, it is important to establish reference ranges to serve as a baseline against which
measurements from infected individuals can be compared [34–36].

Blood smears, easily prepared in the field from < 5 µl of blood, are a tool by which to characterize leucocyte (white blood cell)
profiles that provide awindow into the immune status of individual bats [37]. Because leucocytes are energetically costly to produce
andmaintain, a high leucocyte count can indicate a robust cellular or inflammatory response to acute infection [38]. Neutrophils and
lymphocytes are associated with the innate and adaptive immune responses, respectively [39]; therefore, the ratio of neutrophils to
lymphocytes is used to measure the relative investment on each arm of the immune response and as an indication of acute infection
or chronic stress [40]. As with other physiological metrics, we lack an understanding of baseline values and the interpretation of
‘abnormal’ leucocyte profiles in bats. Promising lines of work include the validation of markers for more detailed classification
and study of bat lymphocyte types (e.g. T-cell subsets, B-cells, natural killer cells [41]), and studies of B- and T-cell receptors [42],
the characterization of which will greatly improve our understanding of bat infection responses.

Transcriptomic approaches, inwhich a snapshot of expressed genes is sequenced and identified, have proven invaluable in under-
standing the severity of metabolic and immune consequences of infection for bats [15,43,44]. Additionally, the blood proteome
contains proteins secreted from blood cells and organs, including those involved in host response to infection and immune bio-
markers, and innovative proteomic tools show potential in characterizing bat immune systems and their responses to microbial
infections [45]. Complemented by recent advances in genomics [46], ‘-omics’ approaches stand to further our ability to explore
mechanisms by which bats interact with microbes and consequences for bat physiological status.

(b) Behavioural responses to infection
Sickness behaviours are largely consistent across vertebrate species and include decreased movement, food consumption and
social interactions [47,48]. However, few studies have focused on how bats alter their behaviour during illness. Several species
(M. lucifugus; common vampire bat (Desmodus rotundus); Egyptian rousette (Rousettus aegyptiacus)) reduce overall activity levels
when experiencing immune challenges (e.g. lipopolysaccharide injections) or microbial infections [49–51]. Additional behavioural
changes include social isolation, temporary cessation of foraging flights, and reduced grooming, production of contact calls and
food intake [49–54]. Given the diversity of bat species, data from only three species is insufficient to fully describe how bats alter
their behaviours when infected.

Understanding behavioural responses to infection is also important for designing and interpreting microbe surveillance studies,
given that infected individualsmay be underrepresented in sampling due to a reduction or cessation of foraging [51].Most knowledge
of behavioural changes comes fromworkwith captive bat colonies, allowing for continualmonitoring of behaviours of interest. How-
ever, two studies tracked free-ranging bats [51,52], demonstrating the feasibility of observing behavioural changes in free-ranging bats
in the context of infection. Ongoing technological advanceswill continue to expand opportunities formonitoring previously inaccess-
ible bats. For instance, smaller on-animal trackers and batteries will enable movement studies for smaller species [55]. Automated
video analysis tools, combinedwith thermal imaging cameras,will enablemonitoring of departures from typical behavioural patterns
in high bat density environments [56–58]. Identifying disruptions to typical patternswill require robust long-term baseline behaviour-
al data for multiple species. Collaborations between disease researchers and those conducting long-term behavioural studies [59]
would be especially valuable in this context; individual-scale, longitudinal infection data could be added to behavioural studies to
understand changes linked with infection status.

(c) The role of bat microbiomes in regulating infection
Much research has demonstrated the importance of host-associated microbiomes, particularly in the gastrointestinal tract (GIT), in
influencing host immune function [60]. However, the extent to which the GIT microbiome affects the ability of bats to maintain or
mitigate infections remains largely unknown [61]. Destabilization of gut and other symbiotic microbial communities (i.e. dysbiosis)
can negatively affect an individual’s immune status [62]. Experimental studies have shown that GIT microbiota transplanted from
great roundleaf bats (Hipposideros armiger) into antibiotic-treated mice altered immune cell levels and conferred greater resistance
and survival to H1N1 influenza infection compared with control groups, indicating the GIT microbiome can interact with and
change the host immune system [63]. Additionally, lipopolysaccharide injections in R. aegyptiacus induced significant and rapid
(24–48 h) changes to the composition and diversity of gut microbial communities [64].
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Many questions regarding the relationship between GIT microbial communities and bat health remain, including: how do GIT
microbes interact with host immune function to maintain, prevent or clear infections? To what extent do GIT microbial communities
differ and influence responses to infection relative to othermammalian species, especially given rapid gut transit times in bats?Howdo
microbial communities change naturally over time orwith viral, bacterial or other active infections? Repeat sampling of individual bats
will aid our ability to answer these questions and identify how dysbiosis presents in bats. Studies of bat microbial communities paired
with whole-genome sequencing, transcriptomics, metabolomics and viral screening approaches will provide a holistic picture of
tolerance and resistance mechanisms.
ing.org/journal/rspb
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3. Research at the population scale: elucidating patterns of infection dynamics
The often-gregarious nature of bats allows researchers to examine links between population demographics (e.g. age composition,
density) and population measures of infection such as prevalence and seroprevalence. Different sampling methods (e.g. cross-sec-
tional versus longitudinal) can provide an understanding of infection at a single time point or across time scales. Data collected in
the field can be used to develop and validate mechanistic models to understand how viruses are maintained in bat populations
[65]. Relatedly, model-guided fieldwork approaches are useful to focus data collection on the key drivers of infection dynamics,
and to maximize the power of inference during data analyses [66].

(a) Linking population characteristics to infection dynamics
Population-scale demographics can significantly influence infection dynamics. Seasonal reproductive cycles are common across bat
species and are thought to mediate population-scale infection dynamics [67–69]. During gestation, immune function is biased towards
anti-inflammatory responses that are important for a successful pregnancy but can increase virus susceptibility within females [70].
These shifts are modulated by hormonal changes that trigger an anti-inflammatory polarization of immune cells [70]. Bats, which
rely particularly on inflammatory innate and cellular responses for heightened viral suppression and regulation of latent infections,
are expected to be heavily influenced by a gestation-induced anti-inflammatory polarization [71]. Immunological shifts could explain
seasonal and sex-specific biases commonly observed in bat antibody seroprevalence [72–74], and seasonal patterns in shedding and
spillover [75]. The importance of reproduction in infection dynamics remains to be investigated in a mechanistic fashion, partly due
to challenges in sampling sufficient individuals per demographic or reproductive cohort for meaningful analyses.

Seasonal dynamics relating to the influx of susceptible juveniles have been studied in detail and have been associated with
increased infection prevalence in populations. For example, pulses of Marburg virus infection have been noted in older juvenile
R. aegyptiacus inUganda, co-occurringwith synchronous bi-annual birthing cycles [76]. The combined effects ofwaningmaternal anti-
bodies and immunologically naive bats roosting beneath adult bats contribute to the circulation ofMarburg virus in this reservoir host
[76]. Similar viral dynamics have been reported for diverse henipavirus-related viruses among R. aegyptiacus [67], and ‘amplification’
cycles for coronaviruses in multiple other species [25,68,77,78].

Roosting preferences relating to habitat type and aggregation patterns often correlate with infection dynamics [79]. Cave-roosting
species typically exhibit higher rates of infection and a greater diversity of viruses than non-cave-roosting species [80]. For tree-roost-
ing species, within-roost aggregation structures can mediate infection dynamics. For example, sparsely distributed tree stands can
promote high within-tree bat densities due to limited tree availability, further promoting transmission and generation of more explo-
sive epidemics upon virus introduction [81]. Not all specieswithin a genus roost in the same densities. For instance, AsianRhinolophus
species linked to SARS-related coronaviruses (sarbecoviruses) roost in higher densities and with more species than European and
African Rhinolophus sarbecovirus hosts [82], increasing risk of viral recombination and adaptation to new hosts.

(b) Sampling strategies to infer population-scale infection dynamics
Biosurveillance among bat populations has traditionally been performed opportunistically and as cross-sectional studies [83]. One-
time cross-sectional sampling can provide an excellent overview of microbe presence and diversity within and across host species, as
well as insights into tissue tropism and routes of excretion [84,85]. Opportunistic sampling across diverse species has also led to the
discovery and characterization of newmicrobes [86]. By contrast, repeated sampling of populations and individuals lends ecological
context to infection dynamics through time. Questions regarding infection prevalence and shedding at the population scale in associ-
ation with season, age cohort or reproductive phenology can be addressed, as well as long-term patterns between population
demographics and infection status [87,88]. Tracking individual bats using passive integrated transponder (PIT) tags [89], tattooing
[67], satellite/radio transmitters [90] or other long-termmarkingmethods facilitatesmonitoring of infections or seroconversion rates.
Tracking data also elucidates bat and bat-associatedmicrobemovement between roosts (i.e. metapopulation insight) and allows esti-
mation of population size over time. Combining host and/or parasite population genetics with infection studies also holds promise
for better understanding patterns of bat dispersal andmigration [91]. Future bat movement researchwould benefit from PIT tag data
sharing (e.g. https://www.ausbats.org.au/pit-tag-register.html) to facilitate repeat detections across broad geographical areas. This
would be particularly valuable for epidemiological insights into bats with long-distance migratory and dispersal behaviours.

(c) New modelling approaches to understand viral dynamics
Multidisciplinarymodelling approaches integrate theory, fieldwork and laboratorywork, and allow for holistic approaches tomechan-
isticallyunderstandcomplex bat–microbe systems [66]. Empirical studies of bat infection traditionallyuse antibodyormicrobedetection
in populations to construct time-series curves of active infection and exposure. While useful for hypothesis generation, integrative
research is needed to identify causal drivers of dynamics, and to predict times and locations of spillover risk. Integration of age into

https://www.ausbats.org.au/pit-tag-register.html
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serological time series can improve estimates of key infection parameters (e.g. R0 and force of infection) [92,93]. Age-structured serolo-
gical data has been used to evaluate models of filovirus and henipavirus dynamics in Madagascar fruit bats; however, evidence of
within-host variation in immunological status through time and limited model recovery of serological patterns among age classes
suggests alternative dynamics may underlie viral persistence in these bat species [74]. In addition, molecular tests often contain
more information than the binary presence/absence reported. As recently demonstrated with human testing data, cross-sectional
viral load distributions have been used to estimate epidemic trajectories by drawing from information in cycle threshold (Ct) values
from reverse transcription quantitative PCR tests [94]. This method has yet to be applied towildlife populations andmay be beneficial
in cases where Ct values reflect a (probabilistic) measure of time since infection. Careful consideration of Ct values may also improve
researchers’ ability to determine when bats are shedding infectious viruses and estimate the risk of viral spillover [95]. Viral shedding
and serology data are not regularly paired in bat–virus systems [96], though this can yield powerful insights to triangulatemechanisms
of infection dynamics [97].

Sequencing and further characterization of samples positive for viral infection is necessary to understand strain diversity, identify
specificmolecular or phenotypic traits, and construct virus phylogenies [98]. Given the rapid evolution of viral species comparedwith
their bat hosts, virus phylodynamics can provide insight into host movement and past transmission over the landscape [99]. Similarly,
population genetic studies of bat hosts can elucidate mechanisms and pathways for present and future disease transmission [100].
Furthermore, sequencing can allow the identification of co-circulating virus strains [99]. Sequencing complete viral genomes is necess-
ary to investigate viral recombination; incorporation of novel genes may highlight co-circulation of multiple viral families within bat
populations [101]. Obtaining sequences depends on the ability to sample actively infected bats—a challenge for acute infections [88].
Phylogenetic information can thus be obtained by sampling not only the bat host but also sentinel spillover species. Sequencing viral
genomes allows for the design of more inclusive molecular panels. Divergent viruses may be missed by conventional PCR [102], and
while these assays are important to inform population-scale viral dynamics, they may miss nuanced virus-specific patterns in
a particular bat system, especially in viral discovery efforts where a priori knowledge of viruses is missing.
3

4. Research at the community scale: multi-species dynamics and complexities
Aswith all species, bats do not exist in an ecological vacuum; thus, insights gained from individual- or population-scale studiesmust
be re-examined within a multi-species framework. Bat infection research at the community scale involves interactions between two
or more species (e.g. bats, livestock, humans) and can have great relevance to human, wildlife, agricultural and ecosystem health.

(a) Linking host infection dynamics to spillover risk
With the large number of emerging infectious diseases reported from wildlife, often causing high morbidity and mortality, zoonotic
spillover has become a great source of concern [103], and information to enable prediction and prevention of spillover is imperative.
When considering spillover of microbes from wildlife to other species, there are three broad categories to consider—the reservoir
species, the infectious agent and the recipient host [104]. However, these factors are not mutually exclusive and can be influenced
by extrinsic variables such as climate and food availability [72,105].

Insights into bat reservoir infection dynamics and interactions with susceptible (spillover) hosts are needed to make informed
risk assessments and require longitudinal research approaches [88]. Identification of spillover risk factors can be achieved by asses-
sing infection dynamics in the reservoir host in conjunction with data on known spillover events [8]. For newly recognized viruses
or those of unknown zoonotic potential, identifying possible risk factors or bridge hosts for spillover is more challenging. Closely
related host species or individuals within a species may differ significantly in host proteins bound by viruses (e.g. angiotensin
converting enzyme 2 (ACE2) bound by SARS-CoV-2 or dipeptidyl peptidase 4 (DPP4) bound by Middle East Respiratory Syn-
drome (MERS)-CoV), making predictions of susceptibility difficult [106]. In addition, a lack of expertise in bat species
identification and continued changes to host and microbe taxonomy pose real challenges for standardizing analyses across tem-
poral and spatial scales. Host–microbe datasets should specify details of bat species identification and be linked with taxonomic
resources to reconcile nomenclature changes over time (e.g. https://batnames.org/). Infection dynamics can also vary across virus
species and reservoir hosts, and between geographically dispersed populations of the same host species. For example, in a mono-
estrous R. aegyptiacus population in South Africa, peaks of henipavirus-related virus excretion occurred during the winter and were
thought to be driven by concurrent waning of maternal immunity and nutritional stress [67]. Consequently, spillover risk was con-
sidered highest during winter and in plantations where bats were seeking food, thereby increasing the potential for human contact
[67]. By contrast, R. aegyptiacus populations in more equatorial regions display bimodal polyoestry [107] and are subject to different
climates and food availability [108], potentially altering viral excretion dynamics and the timing of peak henipavirus spillover risk.

(b) Interfaces and behaviours promoting microbe transmission
Agricultural intensification has been linked to increased interactions andmicrobe spillover frombats to livestock [109,110]. For instance,
the expansion of cattle farming in Latin America has allowed D. rotundus to feed almost exclusively on livestock blood, driving more
frequent bat–livestock interactions [111,112]—a concern given their role in the transmission of rabies virus and potentially other zoo-
noses (e.g. Bartonella, Trypanosoma). Generally, bat–livestock interfaces are less studied than other wildlife–livestock interfaces in the
context of infectious diseases [113]. Further surveillance is needed to detect spillover of bat microbes to livestock, given that asympto-
matic infections may go unnoticed [114,115]. Beyond traditional microbe surveillance, movement trackers, proximity loggers and
acoustic surveys can uncover patterns of overlapping landscape use [116], while surveys of farmers can provide insight into
common bat–livestock interactions [117].

https://batnames.org/
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Urban habitats represent one interface where bats and people may come into contact. While a meta-analysis found that areas with
intermediate and high levels of urban developmentwere associatedwith lower bat habitat use [118],many species can adapt to human-
dominated landscapes. Some bats use human infrastructure (e.g. tunnels, bridges, houses) as their roosting sites [119], sometimes sus-
taining large colony sizes near humans. These interactions can result in microbe transmission, such as with histoplasmosis, caused by
inhalingHistoplasma capsulatum spores that grow on bat guano [120]. Within the flying fox (Pteropus spp.)–Hendra virus system, loss of
native foraging habitat combinedwith planting of cultivated trees in urban and agricultural areas has brought bats into closer proximity
with humans and horses, thereby increasing viral spillover risk [8,121]. More data are needed on the ways, frequency and duration in
which humans and bats contact each other to improve estimates of spillover risk [122–124].
 .org/journal/rspb
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(c) Anthropogenic disturbances and bat infection
Anthropogenic disturbances on bats are diverse and occur at different spatial scales and with varying severity (e.g. land modifi-
cation, light and noise pollution, cave tourism, guano mining, hunting [125]). Changes in bat behaviour or community
composition in response to these disturbances can alter infection and parasitism dynamics. Deforestation, through changes in bat
community and roosting behaviour, has been linked to differences in the richness and prevalence of viruses and parasites across
multiple Neotropical systems [79,126,127]. Anthropogenic disturbances might also cause physiological changes (e.g. stress-induced
immune suppression) that increase susceptibility, reactivate latent infections [98] or increase shedding of infectious particles. Though
other stressors such as food shortages, poor nutrition and fungal infection have been linked to greater viral seroprevalence, shedding
and replication in bats [72,128,129], evidence for effects of direct anthropogenic disturbances on infection dynamics is limited.
During periods of early and late reproduction, female Mexican free-tailed bats (Tadarida brasiliensis) roosting in bridges had
higher rabies virus seroprevalence than those roosting in caves [130]. Other work found that T. brasiliensis roosting in bridges had
lower plasma cortisol levels and ectoparasite loads compared with their cave-roosting counterparts [131]. Future research to resolve
the effects of anthropogenic disturbance on bat infection will need to incorporate qualitative and quantitative metrics of disturbance
[132,133] and assess multiple behavioural and physiological bat responses to these anthropogenic changes.
(d) Novel approaches to reduce transmission of bat microbes
Culling of reservoir species has been employed in numerous wildlife systems to reduce disease transmission [134], yet culling out-
comes in bats can be complex and may contribute to increased microbe transmission [135–137]. Reducing microbe spillover from
free-ranging bats to other hosts requires a better understanding of infection dynamics from the individual to the community scales
to effectively target control measures and interventions. Innovative ‘low-tech’ methods to prevent cross-species transmission
between bats and other hosts, such as culturally tailored community outreach tools [7] and cost-effective physical barriers to trans-
mission (e.g. bamboo skirts for Nipah virus [138]), should be integrated with landscape-level interventions such as ecological
engineering to reduce contact with people and livestock [139] and vaccination of host species. Vaccination could complement
or replace culling as proactive spillover risk reduction; however, vaccine delivery is challenging given large, reclusive bat popu-
lations. While oral vaccines held inside edible baits have been successfully implemented in some wildlife disease systems [140],
the diets of most bat species preclude this approach. Novel approaches to vaccine distribution include the use of aerosolized
spray vaccines [141], which are promising for cavity-roosting bat species in which large groups aggregate at high density.
Alternatively, self-spreading vaccines exploit bat behaviours to spread vaccines from founder individuals to direct contacts (trans-
ferable vaccines) [142] or over multiple generations (transmissible vaccines) [143]. These methods are being investigated for
combating vampire bat-transmitted rabies virus [11,144], and have potential utility in other bat–virus systems. Vaccines can
also provide avenues for bat conservation (e.g. for bat populations threatened by WNS [145]).
5. Strengthening interdisciplinary collaboration in bat research
Historically, the bat research community has been siloed between the infectious disease and ecology/conservation disciplines, with few
influential researchers bridging interdisciplinary science between these disciplines [6,146]. The emergence ofWNS in the US represented
one instance in which researchers came together to combat an infectious disease threatening the viability and conservation of bat popu-
lations [146]. Following the coronavirus disease (COVID)-19 pandemic, the culture of the bat research community has shifted to adopt a
more integrative, interdisciplinary and collaborative approach (electronic supplementarymaterial, figure S1). The focus on bats as sarbe-
covirus hosts during the pandemic had negative impacts on bats and conservation programmes [147–149] but also created an area of
common concern that brought research communities together.

This momentum towards interdisciplinary collaboration in the peer-reviewed literature has been mirrored in professional
networks. Global research communities joined forces to address knowledge gaps surrounding SARS-CoV-2-associated threats to
bats [150,151], and facilitate regional bat One Health surveillance [152]. The International Union for Conservation of Nature (IUCN)
Bat Specialist Group (https://www.iucnbsg.org/) mobilized aworking group during the COVID-19 pandemic to develop guidelines
for researchers, cavers, guano collectors andwildlife rehabilitators to prevent SARS-CoV-2 transmission fromhumans to bats, and led a
zoonotic diseases science communication workshop [153]. The Global Union of Bat Diversity Networks has convened multiple net-
works spanning conservation to infectious diseases and initiated numerous interdisciplinary projects (https://www.gbatnet.org/
interdisciplinary-projects/). The Bat Health Foundation (https://www.bathealthfoundation.org/) seeks to build a database for bat
physiological parameters to inform conservation and infectious disease research. Additional interdisciplinary partnerships and
projects will be critical to advance a One Health mission.

https://www.iucnbsg.org/
https://www.gbatnet.org/interdisciplinary-projects/
https://www.gbatnet.org/interdisciplinary-projects/
https://www.bathealthfoundation.org/
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6. Conclusion
We have highlighted our current understanding of factors impacting bat–microbe interactions at individual, population and commu-
nity scales, and identified future research needs (figure 2), including: (i) establishing species-specific baseline values for individual
physiological biomarkers (especially in free-ranging populations) and including broad metrics of bat responses to infection, (ii) com-
bining infection prevalence, sequence and serology data with host population ecology, physiology and phenology to create more
informative models of infection dynamics, especially through the synthesis of cross-sectional and longitudinal studies, and (iii) gen-
erating an understanding of the extrinsic and intrinsic factors impactingmicrobe spread between species in communities, with special
attention to the role of humans and environmental factors in these dynamics. In all cases, emphasis should be placed on communi-
cation and collaboration within the bat research community and across disciplines. Through integrated research, we can discover
patterns and make predictions that will safeguard bats, humans and other species.

Data accessibility. Data to support authorship network mapping of the bat research community (described in the electronic supplementary material)
are available at Zenodo: https://doi.org/10.5281/zenodo.8003910 [154].
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