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Abstract

Since 2016, the invasive insect Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctui-

dae) from the Americas has made maize production unattainable without pesticides in parts

of Sub-Saharan Africa and Asia. To counteract this pest, farmers often resort to the use haz-

ardous pesticides. This study aimed to investigate botanicals, microbials, and semi-syn-

thetic insecticides in Ghana for pest control without harming local ecosystems. Under

laboratory and on-station conditions, the present study evaluated the acute and sublethal

responses of S. frugiperda to: (i) Pieris rapae Granulovirus (PrGV) + Bacillus thuringiensis

sub sp. kurstaki (Btk) 5 WP, (ii) Btk + monosultap 55 WP, (iii) ethyl palmitate 5 SC, (iv) aza-

dirachtin 0.3 SC, (v) acetamiprid (20 g/l) + λ-cyhalothrin (15 g/l) 35 EC, (vi) acetamiprid (30

g/l) + indoxacarb (16 g/l) 46 EC, and (vii) emamectin benzoate 1.9 EC. The results showed

that at 96 hours post-exposure emamectin benzoate-based formulation has the highest

acute larvicidal effect with lower LC50 values of 0.019 mL/L. However, the results suggested

strong sublethal effects of PrGV + Btk, azadirachtin, and ethyl palmitate on the bionomics of

S. frugiperda. Two seasons on-station experiments, showed that the semi-synthetic ema-

mectin benzoate and the bioinsecticide PrGV + Btk are good candidates for managing S.

frugiperda. The promising efficacy of emamectin benzoate and PrGV + Btk on the bionomics

of S. frugiperda in the laboratory and on-station demonstrated that they are viable options

for managing this pest.

Introduction

Agricultural productivity plays a crucial role in determining the economic growth of a country.

In sub-Saharan Africa, agriculture is a significant contributor to the GDP of countries and
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employs a large proportion of the population [1,2]. For instance, in Ghana, agriculture

accounts for 20% of the GDP of the country and is vital for food security, with maize (Zea
mays L., Poales: Poaceae) being a major crop [2,3]. Maize is a staple crop in Ghana that can be

cultivated in almost all ecological zones of the country [2,3]. However, agricultural production

in Ghana is under threat from various pests, including the fall armyworm (Spodoptera frugi-
perda, Lepidoptera: Noctuidae) [4,5]. Spodoptera frugiperda is an invasive pest, native to the

Americas, that was first detected in Africa in early 2016 and has since spread rapidly across the

continent, posing a serious threat to food security and agricultural livelihoods [6–8]. Infesting

other staple crops like sorghum, millet, rice, and wheat, S. frugiperda is a voracious feeder that

predominantly targets maize crops [9–11]. Clusters of eggs are laid by female moths, and the

resulting larvae are extremely destructive [6,12]. The larvae of the pest feed on the foliage of

host plants and possess the ability to tunnel into maize cobs, resulting in significant reductions

in both grain quantity and quality [6,13]. The fast reproduction rate, preference for maize, and

pesticide tolerance of S. frugiperda make it a challenging pest to manage [14,15].

Farmers have turned to synthetic insecticides for controlling the pest, which are hazardous

to the environment and human health [4,16]. Studies have shown that the use of synthetic

insecticides can lead to resistance development, environmental pollution, and health hazards

[15,17]. As a result, there is a growing interest in alternative pest control methods such as

botanicals, microbials, and insect growth regulator pesticides, which are considered safer for

the environment and human health, and less likely to induce resistance [5,18–20].

In response to the urgent S. frugiperda infestation in Ghana, farmers were provided with

insecticides, encompassing synthetic, botanical, and microbial formulations [21–23]. How-

ever, it is important to highlight that these distributions took place without conducting prior

efficacy testing or determining suitable application doses. Instead, the application doses were

approximated based on those used for similar Lepidopteran pests affecting other crops [4,5].

However, it is important to note that variations in environmental conditions, biological fac-

tors, and insecticide resistance can affect the sensitivity of pesticides [24,25]. Furthermore, to

ensure the safety of non-target species and the effectiveness of the pesticides, bioassays should

be conducted before approving new chemical formulations for use by farmers, as recom-

mended by WHO [26]. Meanwhile, traditional approaches of bio-efficacy testing can be chal-

lenging due to their narrow focus on individual mortality in a short term and the variation in

the mode of action of active ingredients [27]. For instance, an insecticide may not induce acute

mortality, but its sublethal toxicity can still significantly impact insect populations, including

the development of resistance, disruption of behavior, and reduced reproductive success [27].

Thus, understanding the sublethal effects of insecticides is crucial for developing effective pest

management strategies that minimize chronic impacts on non-target organisms and reduce

the development of resistance in pest populations.

On-station and/or field trials are vital to ensuring that the recommended doses of insecti-

cides are the minimum necessary to control the target pests effectively, while minimizing non-

targeted effects, such as phytotoxicity [28–30]. Additionally, on-station conditions typically

represent more realistic conditions compared to laboratory studies, providing more reliable

data for making management decisions [28,30]. Insects in the field are exposed to a range of

environmental factors that can affect their behavior and susceptibility to insecticides [30]. In

the present study, we hypothesized that not all the insecticide formulation in use or recom-

mended to maize farmers for the management of S. frugiperda may demonstrate promising

acute efficacy against the pest. Therefore, the primary objective of this study was to assess the

efficacy of selected commercial pesticides against S. frugiperda in Ghana. The study was con-

ducted in two phases, where lethal concentrations of selected commercial pesticides were

determined under laboratory conditions, and the effects of sublethal concentration on the
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bionomics, reproduction parameters, and longevity of S. frugiperda were investigated. In the

second phase, the effectiveness of selected commercial pesticides in reducing the infestation of

S. frugiperda and increasing maize grain yield was evaluated under field conditions.

Understanding the sublethal effects of insecticides is crucial for developing effective pest

management strategies that minimize the impact on non-target organisms and reduce the

development of resistance in pest populations. The findings of this study will provide valuable

insights into the efficacy of selected commercial pesticides and their impact on S. frugiperda,

contributing to the development of more effective and sustainable pest management strategies

for farmers in Ghana.

Materials and methods

Ethics statement

This study was conducted outside of national parks or any protected areas. The crop used in

the study, maize (Zea mays L.), and the invasive insect pest, the fall armyworm (Spodoptera
frugiperda, Lepidoptera: Noctuidae), are not considered endangered or protected species.

Laboratory studies

Experimental insect and plant. We obtained test-insects from a colony of S. frugiperda at

the Laboratory of Entomology of SIREC. The colony was established in 2017 by collecting egg

masses and larvae from insecticide-free maize fields across Ghana during a national inventory

survey of the natural enemies of the pest. To rear the insects, we followed the method described

by [12] and fed the larvae fresh castor bean leaves and adults a 10% honey solution. We tested

the insects under conditions of 27 ± 1˚C temperature, 60 ± 5% RH, and 12 hours of photo-

phase. To conduct the larvicidal bioassays, we planted "QPM var. Obatanpa" maize in plastic

pots (8 cm diameter × 7.5 cm high) containing 0.5 L planting substrate (manure:soil 1:5).

Insecticides. Seven commercial insecticides obtained from different sources were tested

in vitro on the larvae of S. frugiperda (Table 1). The insecticide formulations included: Synthet-

ics, Strike 1.9 EC™ (19.2 g/L of emamectin benzoate), K-Optimal 35 EC1 (20g/L acetamiprid

+ 15g/L lambda-cyhalothrin), Viper 46 EC1 (16g/L acetamiprid + 30g/L indoxacarb); Botani-

cals, Adepa 5 SC1 (5% ethyl palmitate), Neemgold 0.3 SC1 (3% azadirachtin); and microbials

Agoo 55 WP1 (55%Bacillus thuringiensis kurstaki + 45% monosultap), and Bypel 5 WP1

[10000 PIB/mg Peris rapae Granulosis Virus + 16000 IU/mg Bacillus thuringiensis kurstaki).

Table 1. Details on insecticides assessed and the concentration ranges used.

Trade name Common namea Manufacture Conc.

Recommended

No. of

tested conc.b
Conc. Rangesc

Strike 1.9 EC™ 19.2 g/L Emamectin benzoate B. Kaakyire Agrochemicals 1 mL/L 5 0.001–10

Viper 46 EC1 16 g/L Acetamiprid + 30 g/L Indoxacarb Arysta Life Science Ltd. 3 mL/L 5 0.03–24

K-Optimal 35 EC1 20 g/L Acetamiprid + 15 g/L ʎ-cyhalothrin Macrofertil Gh. Ltd. 3.3 mL/L 6 1.67–40

Adepa 5 SC1 5% Ethyl palmitate Kwadutsa and Joam Co. Ltd. 6.7 mL/L 7 3.33–1000

NeemGold 0.3 SC1 3% Azadirachtin Foliage Crop Solutions Ltd. 2 mL/L 6 0.50–54

Bypel 1 WP1 10,000 PIB/mg PrGV + 16,000 IU/mg Btk Wuhan UNIOASIS BioTech Co. Ltd. 1000 mg/L 6 125–4000

Agoo 55WP1 55% Btk + 45% Monosultap Kwadutsa and Joam Co. Ltd. 3333 mg/L 5 863–13333

a Pieris rapae Granulosis Virus (PrGV); PIB: Polyhedra Infective Bodies; Btk: Bacillus thuringiensis subsp. kurstaki; IU: International Units.
b Number of concentrations tested (expressed as either w/v or v/v of product per liter of water).
c Range of concentrations tested for each formulated insecticide product.

Conc.: Concentration of product. No.: Number.

https://doi.org/10.1371/journal.pone.0290390.t001
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Concentrations (w/v or v/v) of the product per liter of water were prepared using distilled

water. The baseline concentrations of each insecticide were determined following a prelimi-

nary test by exposing batches of 25 third instar larvae per a wide range of concentrations in

leaf-dip assay and monitored for 72 h. The minimum lethal concentration (LC5), the maxi-

mum lethal concentration (LC95), and the median lethal concentrations (LC30 and LC70) were

chosen to establish the number and range of concentrations for each insecticide [26] (Table 1),

with the manufacturer-recommended concentrations included in the tests. The concentrations

were prepared using serial dilution method [31].

Larvicidal bioassays. The lethal concentrations of each formulation were determined

using a leaf-dip method with fresh leaves of potted maize plants aged 14 to 18 days. The foliage

of maize plant was briefly dipped into each test dilution, along with a control of distilled water,

and air-dried for 40 minutes at room temperature. The poisoned maize leaves were then cut

into pieces (2.5 cm) and placed in plastic cups (7.3 × 7.3 × 6.0 cm). Batches of 10 early third

instar larvae of S. frugiperda were individually confined with insecticide-treated leaves, and

their death time was monitored up to 96 hours. This constituted the biological replicates and

replicated with 8–10 batches of larvae per concentration. Experiments were conducted at

27 ± 1˚C, 60 ± 5% RH, and 12:12 h (L:D) photoperiod. When control mortality exceeded 10%,

data were corrected using the following Schneider-Orelli’s formula [32]:

Corrected mortality pð Þ ¼
%Responded � %Responded in Control

100 � Responded% in Control

Sublethal effects on the bionomics of F0 parent generation of S. frugiperda. To evaluate

the effects of sublethal insecticide concentrations on S. frugiperda progeny reproduction,

maize plants were impregnated with LC25 concentrations in distilled water using the same

method as the larvicidal bioassays. A control group was treated with distilled water only.

Chopped, treated leaves were placed in plastic cups, and third-instar larvae of S. frugiperda
were individually placed in each cup to feed on either untreated or insecticide-treated maize

leaves. After 48 hours of feeding, the insecticide-treated leaves were replaced daily with

untreated leaves for the surviving larvae until they emerged as adults. The F0 generation moths

were then coupled in a 1:1 sex ratio, with five couples being placed in an oviposition cage

(40 × 40 × 55 cm) along with individually potted maize plants. The longevity of the pupae and

adults (days), as well as fecundity (i.e., number of eggs produced by individual female insect),

were meticulously recorded. The experiment was conducted under controlled environmental

conditions of 27 ± 1˚C, 60 ± 5% RH, and a 12:12 h (L:D) photoperiod.

Sublethal effects on the bionomics of F1 generation of S. frugiperda. Ten individual

eggs laid by insecticide-survived parents (F0 generation) from the same treatment plant were

gently placed on untreated potted maize plant leaves using a tiny brush pen. Each insecticide

treatment was replicated 7–9 times, resulting in 7–9×10 eggs per treatment. Upon hatching,

the larvae were fed with untreated maize leaves in separated cups until adult emergence. Ten

adult moths (1:1 sex ratio) from the same treatment were independently paired on maize

plants (in 20 × 20 × 35 cm Plexiglass cages), and the daily oviposition was monitored and

recorded by changing the maize plants until the insects died. The duration of each develop-

mental stage was recorded.

On-station experiments

This research was conducted at the University of Ghana’s Soil and Irrigation Research Centre,

(SIREC) at Kpong (00 04’ E, 60 09’ N), in the Lower Manya District of the Eastern Region of
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Ghana. SIREC, is located approximately 22 m above sea level and lies within the lower Volta

basin of the Coastal Savanna agro-ecological zone of Ghana. It is characterized by an annual

rainfall of 700–1100 mm and an average annual temperature of 28˚C. The relative humidity

(RH) ranged between 59%-93% throughout the year. The main soil type was the Vertisols

(black clay soil). Two consecutive on-station experiments were carried out to assess the effec-

tiveness of four insecticides, namely Strike 1.9 EC™ (emamectin benzoate), Bypel 1 WP1

(PrGV + Btk), Agoo 55WP1 (Btk + monosultap), and NeemGold 0.3 SC1 (azadirachtin). The

selection of these insecticides was based on their larvicidal potency (see Table 1) and also to

represent each of the insecticide classes, including synthetic, microbial, and botanical. The first

trial took place from September 3, 2018 to December 26, 2018 during the minor rainy season;

the second trial was conducted under surface irrigation and was conducted from January 14,

2019 to April 27, 2019 during the dry season.

Plant material. Maize variety “QPM Obatanpa var.” was used for the field trials and

arranged in a randomized complete block design (RCBD) with four replicates. Each block had

5-unit plots (10 m × 8 m) representing the single factor, insecticide treatments. Two seeds

were sown per hill with an interplant distance of 80 cm between rows and 40 cm between

plants. The alley between neighboring plots were 2.5 m to avoid spray drift. A complex fertil-

izer (N15P15K15) was applied at 250 kg/ha and supplied with 100 kg N/ha in the form of ammo-

nium nitrate. Standard cropping and agronomic practices were carried out, including

chemical control of weeds using selective herbicide 2,4-Dichlorophenoxyacetic acid (2,4 D).

Handpicking of resistant weed and alternative host of the pest, mainly crabgrass (Digitaria sp.)

was performed during both seasons. During the dry season, surface irrigation method was

employed to provide 7-day intervals water to the plants.

Insecticide preparation, application and data collection. In both trials, recommended

doses were used: Strike 1.9 EC™ (emamectin benzoate) at 1 mL per 1 L of water (150 mL / ha),

Bypel 1 WP1 (PrGV + Btk) at 1 g per 1 L of water (200g / ha), Agoo 55WP1 (Btk + monosul-

tap) at 3.3 g per L of water (400g / ha), and NeemGold 0.3 SC1 (azadirachtin) at 2 mL per 1 L

of water (400 mL / ha). Control plots received no insecticide. A 15 L knapsack sprayer with a

full-cone nozzle was used for application, calibrated before use to ensure proper flow rate and

insecticide dose. Applications were made late afternoon (4–6 pm) beginning 10 days after ger-

mination to reduce photodegradation and minimize side effects on pollinators [33]. The num-

ber of insecticide applications was decided based on the infestation level determined by visual

scouting [12], resulting in two and three treatments during the first and second trials,

respectively.

Data collected included alive larvae per plant (larval incidence) and maize grain yield. Ten

plants per plot were sampled, and larval incidence data were collected 1 day before and 3, and

7 days after treatment. Yield per hectare was estimated by multiplying the yield per 10 plants

per plot by theoretical plant density per hectare.

Statistical analyses

The laboratory data were analyzed using Finney’s Probit Analysis Programme [34] to deter-

mine lethal concentrations, fiducial limits (95%), slopes, and Chi-square values. The popula-

tion and reproduction parameters were calculated using TWOSEX-MSChart 2023 software

[35,36], with the standard errors determined by bootstrapping with 100,000 repetitions. Paired

bootstrapping was used to evaluate differences between groups (P< 0.05). The data were

checked for normality using Shapiro–Wilk test and equal variances using Levene test before

selecting the appropriate statistical analyses. Thus, the analysis of larval mortality induced by

the concentrations recommended by the manufacturers was conducted using the Likelihood
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ratio test (LR test) applied to a generalized linear model (GLM). Similarly, pupal duration,

mortality (between pupa and adult stages), adult longevity, and fecundity were analyzed using

the LR test with GLM. The percent population reduction resulting from insecticide application

was determined using the following formula:

R ¼
ðPreTP � PostTPÞ

PreTP
� 100

Here, R represents the percent population reduction, while PreTP and PostTP represent the

population densities before and after insecticide spray per treatment plot, respectively. The cal-

culated R values were subjected to statistical analysis using a one-way analysis of variance

(ANOVA). In addition, to analyze the differences between the control treatment (no insecti-

cide) and the other treatments (insecticide receiver plots), the Dunnett (two-sided) test was

employed [37]. This analysis was conducted with a confidence interval of 95%. Similarly, yield

data were analyzed using one-way ANOVA. The means were separated using Tukey’s Range

Test (α = 0.05). Except for the population and reproduction characteristics, all data were ana-

lyzed in R [38].

Results

Larvicidal potency of insecticides on S. frugiperda larvae mortality in

laboratory bioassay

Table 2 (toxicity bioassay results) showed LC50 values at 96 HAT (hours after treatment) rang-

ing from 0.019 mL/L Strike 1.9 EC™ (emamectin benzoate) to 108.5 mL/L Adepa 5 SC1 (ethyl

palmitate) with slope values below 1 observed for emamectin benzoate and ethyl palmitate.

According to the findings presented in Tables 1 and 2, the LC50 values for emamectin benzo-

ate, Viper 46 EC1 (acetamiprid + indoxacarb), Bypel 1 WP1 (PrGV + Btk), and Agoo

55WP1 (Btk + monosultap) were lower than the dosages recommended by the manufacturer.

In contrast, the LC50 of K-Optimal 35 EC1 (acetamiprid + γ-cyhalothrin), Adepa 5 SC1

(ethyl palmitate), and NeemGold 0.3 SC1 (azadirachtin) were higher than the recommended

dose (Tables 1 and 2). However, it is noteworthy that the calculated LC90 values for all of the

insecticides tested were higher than the manufacturer-recommended dosages (Tables 1 and 2).

Table 2. Dose-mortality responses of S. frugiperda larvae to different insecticides at 96 HAT.

Insecticides N LC10

(95% F.L.)

LC50

(95% F.L.)

LC90

(95% F.L.)

Slope ± SE df χ2

Emamectin benzoate 575 0.0000587

(1.03E-05–3.34E-04)

0.019

(0.003–0.108)

6.09

(1.07–34.69)

0.513±0.385 4 0.8

Acetamiprid + Indoxacarb 585 0.17

(0.08–0.35)

1.78

(0.86–3.65)

18.445

(8.99–37.82)

1.274±0.159 4 0.49

Acetamiprid + ʎ-Cyhalothrin 665 1.41

(0.89–2.23)

7.39

(4.66–11.71)

38.69

(24.40–61.34)

1.786±0.102 5 0.9

Ethyl palmitate 740 2.83

(1.13–7.10)

108.51

(43.28–272.03)

4152.48

(1656.48–10410.36)

0.819±0.204 6 0.42

Azadirachtin 700 0.48

(0.25–0.93)

4.73

(2.48–9.04)

45.92

(24.05–87.68)

1.304±0.143 5 0.89

PrGV + Btk 650 51.06

(31.20–83.57)

257.46

(157.32–421.34)

1298.81

(793.20–2124.33)

1.828±0.109 5 0.97

Btk + Monosultap 650 706.94

(466.93–1070.33)

2766.16

(1827.02–1827.02)

10823.52

(7148.82–16387.13)

2.255±0.092 4 0.32

N: Number of larvae tested. F.L.: Fiducial Limits. LC: Lethal concentration 10% (LC10), lethal concentration 50% (LC50), lethal concentration 90% (LC90).

https://doi.org/10.1371/journal.pone.0290390.t002
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Mortality rates were compared for different insecticide formulations using their recom-

mended concentration at various time intervals (Fig 1). Emamectin benzoate had significantly

higher mortality rates than other formulations at 24 HAT (LR test with GLM, χ2 = 426.85,

P< 0.0001; Fig 1A). Emamectin benzoate and acetamiprid + indoxacarb had significantly

higher mortality rates at 48 HAT (LR with GLM, χ2 = 952.05, P< 0.0001; Fig 1B). Emamectin

benzoate, acetamiprid + indoxacarb, and PrGV + Btk had the highest mortality rates at 72

HAT (LR with GLM, χ2 = 860.78, P< 0.0001; Fig 1C). PrGV + Btk and emamectin benzoate

had the highest mortality rates at 96 HAT (LR with GLM, χ2 = 915.96, P< 0.0001; Fig 1D).

Emamectin benzoate and acetamiprid + indoxacarb had the highest mortality rates between

24–72 HAT, while PrGV + Btk and Btk + monosultap had a progressive effect, with a signifi-

cantly higher mortality rate at 96 HAT (LR with GLM, χ2 = 915.96, P< 0.0001; Fig 1).

Sublethal effects on F0 generation parent bionomics

Pupal duration, pupal mortality, adult longevity, and female fecundity of the F0 generation of

S. frugiperda were all affected by the sublethal concentration of the tested insecticide formula-

tions (LR with GLM, P< 0.0001; Table 3). For instance, pupal duration was significantly

Fig 1. Effects of manufacture recommended concentrations on the mortality rate of Spodoptera frugiperda. Bars represent the means ± SE larval mortality

at (a) 24 hours after treatment (HAT), (b) 48 HAT, (c) 72 HAT, and (d) 96 HAT. Different letters above bars indicate significant differences between

treatments (Likelihood ratio test (LR test) applied to a generalized lineal model (GLM), followed by Tukey’s honest significant difference (HSD) at P< 0.05).

https://doi.org/10.1371/journal.pone.0290390.g001
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lengthened by PrGV + Btk and ethyl palmitate, while shortened by azadirachtin, acetamiprid +

ʎ-cyhalothrin, acetamiprid + indoxacarb, and emamectin benzoate, compared to the control

treatment (LR with GLM, P< 0.0001; Table 3). The lowest fecundity was recorded with PrGV

+ Btk, acetamiprid + indoxacarb, and ethyl palmitate treatments (LR with GLM, P< 0.0001;

Table 3).

Transgenerational sublethal effects on S. frugiperda bionomics

Stage duration of F1 generation. Compared to the control treatment, insecticides signifi-

cantly reduced the stage length of F1 generation of S. frugiperda (paired bootstrap test,

P< 0.05; Table 4; S1–S7 Tables). Azadirachtin (S2 Table) and ethyl palmitate (S3 Table)

lengthened the egg stage, but PrGV + Btk (S4 Table) shorten it compared to the control treat-

ment (paired bootstrap test, P< 0.05; Table 4; S1–S4 Tables). Azadirachtin (S2 Table) and

ethyl palmitate (S3 Table) lengthened the larval stage, but PrGV + Btk (S4 Table), emamectin

benzoate (S5 Table), and acetamiprid + indoxacarb (S6 Table) significantly shortened it

(paired bootstrap test, P< 0.05; Table 4; S2–S6 Table). Emamectin benzoate (S5 Table) and

acetamiprid + indoxacarb (S6 Table) had the shortest preadult stage, whereas azadirachtin

Table 3. Effect of sublethal concentrations on parent adults (F0 generation) of Spodoptera frugiperda (Mean ± SE).

Insecticide Pupal duration

(day)

% Mortality

(Pupa–Adult)

Male longevity

(day)

Female longevity

(day)

Fecundity

Emamectin benzoate 5.82±0.20c 27.78±6.15ab 8.40±0.47d 8.95±0.51c 238.00±13.65bc

Acetamiprid + Indoxacarb 6.02±0.20c 26.79±5.97ab 9.86±0.46bc 11.90±0.50ab 150.50±09.27cd

Acetamiprid + ʎ-Cyhalothrin 5.82±0.20c 26.42±6.11ab 9.19±0.46cd 10.00±0.53bc 248.37±32.76b

Ethyl palmitate 9.45±0.19a 34.33±5.84b 9.67±0.46bcd 8.87±0.47c 187.12±12.88bcd

Azadirachtin 6.37±0.23c 30.00±6.55ab 9.83±0.50bc 10.47±0.54bc 233.75±22.99bc

PrGV + Btk 9.36±0.19a 27.87±5.79ab 8.91±0.44cd 8.67±0.49c 115.75±05.32d

Btk + Monosultap 7.21±0.21b 32.26±5.99b 10.94±0.50b 10.54±0.46bc 259.25±21.54b

Control 7.44±0.18b 8.06±3.49a 12.85±0.41a 13.26±0.41a 580.87±34.38a

χ2 89.6 23.37 31.64 42.08 43.55

df 7 7 7 7 7

P< 0.05 < 0.0001 0.0014 < 0.0001 < 0.0001 < 0.0001

Different letters within the same column represent significant differences at P < 0.05 (Likelihood Ratio test (LR) applied to a generalized linear model (GLM), followed

by Tukey’s HSD, test). Fecundity: Means number of eggs laid by individual female insect.

https://doi.org/10.1371/journal.pone.0290390.t003

Table 4. Response of duration (in day) of developmental stages of Spodoptera frugiperda to sublethal insecticide concentrations (Mean ± SE).

Insecticide Egg Larva Pupa Preadult Male adult Female adult

Emamectin benzoate 2.83±0.07bcd 10.35±0.22d 5.76±0.11f 19.31±0.25e 9.90±0.26cd 10.57±0.27c

Acetamiprid + Indoxacarb 2.80±0.08cd 10.35±0.21d 5.94±0.11f 19.11±0.30e 12.09±0.34b 12.97±6.16a

Acetamiprid + ʎ-Cyhalothrin 2.88±0.08bcd 11.10±0.26c 6.32±0.13e 20.45±0.32d 10.62±0.31c 11.00±0.35c

Ethyl palmitate 3.28±0.10a 15.31±0.40a 7.45±1.27b 26.41±0.45a 7.00±0.15e 7.15±0.18e

Azadirachtin 3.04±0.08a 15.08±0.37a 6.80±0.19c 25.10±0.42b 7.23±0.32e 7.45±0.33e

PrGV + Btk 2.67±0.08d 10.41±0.15d 8.77±0.17a 21.97±0.24c 9.97±0.35c 10.33±0.37d

Btk + Monosultap 2.74±0.09d 11.19±0.23c 6.62±0.14d 20.57±0.32d 12.48±0.49a 12.68±0.43ab

Control 3.00±0.07b 13.96±0.10b 7.22±0.12b 24.24±0.16b 13.31±0.27a 13.49±0.35a

The data in the table are mean (days) ± SE. Different superscript letters indicate significant difference P < 0.05 (paired bootstrap test with TWOSEX-MSChart 2023

software [35]). Consult S1–S8 Tables for an in-depth view of the data that informed these analyses.

https://doi.org/10.1371/journal.pone.0290390.t004
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(S2 Table) and ethyl palmitate (S3 Table) had the longest (paired bootstrap test, P< 0.05;

Table 4). Azadirachtin, ethyl palmitate, PrGV + Btk, and emamectin benzoate treatments had

the shortest adult stages (paired bootstrap test, P< 0.05; Table 4; S2–S5 Tables).

Reproduction parameters of F1 generation. The insecticide treatments did not signifi-

cantly affect the fecundity of F1 generation of S. frugiperda (paired bootstrap test, P> 0.05;

Table 5; S1–S8 Tables). However, they had a significant impact on the total pre-oviposition

period (TPOP), with and azadirachtin (S2 Table) and ethyl palmitate (S3 Table) having the

longest TPOP, and emamectin benzoate (S5 Table) and acetamiprid + indoxacarb (S6 Table)

having the shortest (paired bootstrap test, P< 0.05; Table 5; S2–S6 Tables). Additionally, the

number of oviposition days was significantly reduced by ethyl palmitate (S3 Table), emamectin

benzoate (S5 Table), acetamiprid + indoxacarb (S6 Table), acetamiprid + ʎ-cyhalothrin (S7

Table) (paired bootstrap test, P< 0.05; Table 5; S3–S7 Tables). PrGV + Btk (S4 Table), ema-

mectin benzoate (S5 Table), acetamiprid + indoxacarb (S6 Table), and acetamiprid + ʎ-cyhalo-

thrin (S7 Table) had a significantly negative effect on the longevity of S. frugiperda compared

to other treatments (paired bootstrap test, P< 0.05; Table 5; S4–S7 Tables).

Population growth parameters of Spodoptera frugiperda at F1 generation. The popula-

tion growth parameters of F1 generation were significantly affected by the insecticide treat-

ments, with azadirachtin (S2 Table) and ethyl palmitate (S3 Table) having negative effect on

the Intrinsic Rate of Increase (r) of S. frugiperda (paired bootstrap test, P< 0.05; Table 6;

Table 5. Effect of sublethal insecticide concentrations on reproduction parameters of Spodoptera frugiperda (Mean ± SE).

Insecticide Fecundity TPOP (day) Oviposition days Mean Longevity

Emamectin benzoate 237.70±09.19a 19.53±0.41e 5.16±0.14d 25.25±0.94g

Acetamiprid + Indoxacarb 276.97±10.23a 19.75±0.44e 5.27±0.17d 27.11±1.04de

Acetamiprid + ʎ-Cyhalothrin 295.19±10.65a 21.46±0.43cd 5.11±0.14d 26.66±0.96def

Ethyl palmitate 232.50±08.29a 26.56±5.06a 5.06±0.11d 30.44±0.91b

Azadirachtin 302.55±16.67a 25.21±0.60a 5.86±0.22c 28.75±0.94bc

PrGV + Btk 350.43±17.95a 22.37±0.32c 6.67±0.29b 26.37±1.14cd

Btk + Monosultap 407.61±14.61a 21.61±0.44c 7.68±0.21a 28.81±1.08b

Control 428.82±12.69a 24.69±0.22b 7.05±0.13b 33.36±1.21a

TPOP: Total pre-oviposition period. The data in the table are mean values ± SE. Different superscript letters indicate significant difference P < 0.05 (paired bootstrap

test with TWOSEX-MSChart 2023 software [35]). Consult S1–S8 Tables for an in-depth view of the data that informed these analyses.

https://doi.org/10.1371/journal.pone.0290390.t005

Table 6. Effect of sublethal insecticide concentrations on the population parameters of F1 generation of Spodoptera frugiperda (Mean ± SE).

Insecticide Intrinsic Rate of Increase

(r in days)

Finite Rate of Increase

(λ in days)

Net Reproductive Rate

(R0)

Mean Generation Time

(T in days)

Emamectin benzoate 0.20±0.008abc 1.22±0.010abc 81.03±12.39e 21.88±0.42e

Acetamiprid + Indoxacarb 0.21±0.008a 1.24±0.010a 108.80±15.28cde 21.73±0.49e

Acetamiprid + ʎ-Cyhalothrin 0.20±0.007ab 1.22±0.009ab 117.44±15.57bcd 23.40±0.45d

Ethyl palmitate 0.16±0.006g 1.18±0.008g 101.34±13.54cde 28.14±0.71a

Azadirachtin 0.18±0.007def 1.20±0.008def 132.15±17.75b 26.81±0.67ab

PrGV + Btk 0.19± 0.006bcde 1.21±0.008bcde 128.20±19.77bc 25.15±0.34c

Btk + Monosultap 0.20±0.006a 1.23±0.009a 164.10±23.58a 24.62±0.38c

Control 0.19±0.004bcd 1.21±0.005bcd 209.05±24.70a 28.71±0.21a

The data in the table are mean values ± SE. Different superscript letters indicate significant difference P< 0.05 (paired bootstrap test with TWOSEX-MSChart 2023

software [35]). Consult S1–S8 Tables for an in-depth view of the data that informed these analyses.

https://doi.org/10.1371/journal.pone.0290390.t006
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S2 and S3 Tables). These insecticides similarly affected the Finite Rate of Increase (ʎ) of S. fru-
giperda, resulting in lowest values (paired bootstrap test, P< 0.05; Table 6; S2 and S3 Tables).

The Net Reproductive Rate (Ro) of S. frugiperda was negatively significantly affected by ethyl

palmitate (S3 Table), emamectin benzoate (S5 Table), acetamiprid + indoxacarb (S6 Table)

(paired bootstrap test, P< 0.05; Table 6; S3–S6 Tables). The Mean Generation Time (T) was

significantly reduced by PrGV + Btk (S4 Table), emamectin benzoate (S5 Table), acetamiprid

+ indoxacarb (S6 Table), acetamiprid + ʎ-cyhalothrin (S7 Table), and Btk + monosultap (S8

Table) (paired bootstrap test, P< 0.05; Table 6; S4–S8 Tables).

Age-stage survival of Spodoptera frugiperda at F1 generation. Age-stage specific sur-

vival rate Sxj is the expected duration of neonate nymphs that will survive to age x and stage j.

Fig 2 displays the effects of sublethal concentrations on Sxj of F1 generation of S. frugiperda,

with no significant differences observed between the treatments (paired bootstrap test,

P> 0.05; S1–S8 Tables). However, compared to the control treatment (0.85), the probability of

neonate larvae reaching the adult stage was lower for all other treatments, with the lowest

probability observed for PrGV + Btk (0.73) (paired bootstrap test, P> 0.05; S1–S8 Tables).

On-station experiments

Minor rainy season

Throughout the minor rainy season experiment, the treatments had significant effect on the

reduction of S. frugiperda larvae population per maize plant (One-way ANOVA, N = 10,

df = 4, P< 0.05; Fig 3A–3D; S9 Table). The initial insecticidal spray administered 15 days after

planting demonstrated higher population reduction with emamectin benzoate and PrGV +

Btk treatments compared to other treatment groups, observed 3 days after the insecticide treat-

ment (DAT) (One-way ANOVA, N = 10, df = 4, F = 8.56, P< 0.001; Fig 3A; S9 Table). Com-

pared to the control treatment, emamectin benzoate treatment plot had significantly higher

population reduction of 70.04% (Dunnet’s test, P< 0.001; Fig 3A; S9 Table). Similarly, 7 DAT,

significant difference was observed between the treatment plots regarding the number of alive

S. frugiperda larvae (One-way ANOVA, N = 10, df = 4, F = 19.82, P< 0.0001; Fig 3B; S9

Table). As a result, the population reductions on the emamectin benzoate (72.96%) and PrGV

+ Btk (71.42%) treatment plots were significantly higher compared to the control plots (Dun-

net’s test, P< 0.001; Fig 3B; S9 Table).

After the second spray at 3 DAT, none of the insecticide treatments showed a significant

difference compared to the control treatment based on Dunnett’s test (P> 0.05; Fig 3C; S9

Table). However, at 7 DAT, significantly higher population reduction rates of 77.29% for the

emamectin benzoate treatment and 66.62% for the PrGV + Btk treatment were recorded, com-

pared to the control treatment (Dunnett’s test, P< 0.01; Fig 3D; S9 Table).

Dry season. During the dry season experiment, a significant difference was observed

among the populations of alive larvae of S. frugiperda following insecticide sprays (Fig 4; S10

Table). After the first spray, at 3 DAT, the emamectin benzoate treatment plots demonstrated

the highest reduction in the population of S. frugiperda larvae (One-way ANOVA, N = 10,

df = 4, F = 14.64, P< 0.0001; Fig 4A; S10 Table), i.e., 58.33% higher than on control plots

(Dunnett’s test, P< 0.0001; Fig 4A; S10 Table). Furthermore, at 7 DAT, there were signifi-

cantly higher population reductions on the emamectin benzoate (60.54%) and PrGV + Btk
(48.35%) treatment plots compared to the control plots., as determined by Dunnett’s test

(P< 0.01; Fig 4B; S10 Table).

Following the second spray, at 3 DAT, there was no significant difference observed between

the treatments in terms of S. frugiperda larvae populations (One-way ANOVA, N = 10, df = 4,

F = 0.59, P> 0.05; Fig 4C; S10 Table). However, at 7 DAT, the highest population reduction
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rates of 46.10% and 44.49% were recorded in the emamectin benzoate and PrGV + Btk treat-

ment plots (One-way ANOVA, N = 10, df = 4, F = 5.84, P< 0.05; Fig 4D; S10 Table), and sig-

nificantly different from the control treatment (Dunnett’s test, P< 0.05; Fig 4D; S10 Table).

On the third day following the third application of insecticide, significant decrease in the

population of S. frugiperda larvae was observed in the plots treated with emamectin benzoate

and PrGV + Btk, in comparison to other treatments (One-way ANOVA, N = 10, df = 4,

F = 3.30, P< 0.05; Fig 4E; S10 Table). Seventh day following the third insecticide spray, the

most significant reduction (77.29%) in population of S. frugiperda larvae was recorded on

PrGV + Btk treated plots compared to the other treatments (One-way ANOVA, N = 10, df = 4,

F = 6.62, P< 0.01; Fig 4F; S10 Table). In general, only the emamectin benzoate (60.71%) and

Fig 2. Age-stage survival rates (Sxj) of Spodoptera frugiperda on maize leaves treated with sublethal concentration LC25 and control (untreated). Sxj is the

probability that a newborn egg will survive to age x and stage j. The data evaluation was performed using the paired bootstrap test via the TWOSEX-MSChart

2023 software [35]. Consult S1–S8 Tables for an in-depth view of the data that informed these analyses.

https://doi.org/10.1371/journal.pone.0290390.g002
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Fig 3. Population reduction of Spodoptera frugiperda larvae during the minor rainy season on-station trial. Two insecticide spray events were conducted: The

first spray on September 15th, 2018 (A, B), and the second spray on October 4th, 2018 (C, D). The bars in the figure represent the mean population reduction, and

the asterisks (*P< 0.05; **P< 0.01 and ***P< 0.001) above the bars indicate the significant difference between the insecticide-treated plots and the control using

One-way ANOVA and Dunnett’s Test (α = 0.05). The term "pop." is an abbreviation for the population of live S. frugiperda larvae, while "DAT" indicates the count

of days post-treatment. Refer to S9 Table for a detailed breakdown of the data.

https://doi.org/10.1371/journal.pone.0290390.g003
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Fig 4. Population reduction of Spodoptera frugiperda larvae during the dry season on-station trial. Three insecticide spray

events were conducted: The first spray on January 29th, 2019 (A, B), the second spray on February 13th, 2019 (C, D), and the third

spray on February 27th, 2019 (E, F). The bars in the figure represent the mean population reduction, and the asterisks (*P< 0.05;

**P< 0.01 and ***P< 0.001) above the bars indicate the significant difference between the insecticide-treated plots and the control

using One-way ANOVA and Dunnett’s Test (α = 0.05). The term "pop." is an abbreviation for the population of live S. frugiperda
larvae, while "DAT" indicates the count of days post-treatment. Refer to S10 Table for a detailed breakdown of the data.

https://doi.org/10.1371/journal.pone.0290390.g004
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PrGV + Btk treatments showed significantly higher population reduction compared to the

control treatment at both 3 and 7 DAT (Dunnett’s test, P< 0.05; Fig 4E and 4F; S10 Table).

Dry grain yield of maize during on-station experiments. The study found that applying

insecticide treatments had a positive impact on maize grain yield (Fig 5). During the minor

rainy season, there was a significant difference in grain yields among the treatments. Maize

plants treated with PrGV + Btk and emamectin benzoate had the highest yields, while the low-

est yields were recorded on Btk + monosultap plots (One-way ANOVA, df = 4, F = 70.12,

P< 0.0001; Fig 5A; S11 Table). Similarly, during the dry season, PrGV + Btk and emamectin

benzoate significantly produced the highest maize grain yields (One-way ANOVA, df = 4,

F = 59.97, P< 0.0001; Fig 5B; S11 Table). However, the azadirachtin treatment had the lowest

yields among the insecticide-treated maize plants (One-way ANOVA, df = 4, F = 59.97,

P< 0.0001; Fig 5B; S11 Table).

Discussion

The study conducted toxicity bioassays on Spodoptera frugiperda larvae using various insecti-

cide classes, including synthetic, botanical, and microbial insecticides. The results showed that

emamectin benzoate had the highest larvicidal potency, whereas ethyl palmitate had the least.

Previous research found substantial larval mortality in Lepidoptera larvae, especially those fed

insecticide-treated diets [39–42]. Emamectin benzoate showed high toxicity to Lepidopterans

such as the diamondback moth (Plutella xylostella, Plutellidae), the tomato leafminer (Phthori-
maea absoluta, Gelechiidae), and Spodoptera sp. [31,41–44]. For instance, [31] and [41] found

0.0051 mg/L (expressed in ppm) and 0.0023–3.303 mg/L as LC50 for emamectin benzoate on

first and second early instar larvae of S. frugiperda in a leaf-dip bioassay, respectively, while

[40] found 0.0014 mg/L for neonate larvae of S. littoralis at 48 h post-exposure. Though some-

what different, mean LC50 for emamectin benzoate (0.019 mg/L) in our study is within the

range established by [31]. These discrepancies in results may be attributed to variations in bio-

logical resources, species, age, methods, and exposure time. Nevertheless, our findings, along

with other studies, support the notion that emamectin benzoate is a promising candidate for

managing Lepidopteran pests, particularly defoliators like S. frugiperda [5,41]. Notably, the

LC50 values of emamectin benzoate, acetamiprid + indoxacarb, PrGV + Btk, and Btk + mono-

sultap in our study were lower than the manufacturer-recommended dosages, indicating that

these insecticides could be effective in controlling S. frugiperda under field conditions using

the concentrations suggested by the manufacturers.

Comparing the manufacture recommended concentrations of the insecticides, we found

that effectiveness of the binary microbial PrGV + Btk was slow in action compared to emamec-

tin benzoate, and acetamiprid + indoxacarb but became more effective overtime, mainly at 96

HAT. Yet, little evidences exist from previous studies on the toxicity of PrGV against S. frugi-
perda, while, its companion compound Btk toxin has been studied and used against a wide

range of Lepidopteran species, including S. frugiperda [45–47]. Studies have, however been

reported about the insecticidal activity of PrGV on Pieris rapae Linnaeus (Lepidoptera: Pieri-

dae) in vitro [48]. However, since natural entomopathogenic viruses utilized as biological con-

trol agents are species-specific, narrow-spectrum insecticides, their toxicity to other arthropod

species (pests or beneficials) is essential. Meanwhile, natural entomopathogenic viruses have

been shown to be an effective alternative to broad-spectrum insecticides [5,49,50].

Our study suggests that insecticidal efficacy testing should not only focus on determining

lethal dosages but also include sublethal effects of formulations, especially with entomopatho-

gens and botanicals. Our study found that PrGV + Btk, Btk + monosultap, as well as the botan-

icals ethyl palmitate and azadirachtin, had significant sublethal effects on fecundity, reducing
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the net reproductive rate of both the S. frugiperda parents (F0 generation) and their offspring

(F1 generation). Although these formulations showed weaker potency compared to synthetic

insecticides during the toxicity bioassays, their sublethal effects are noteworthy. This finding is

consistent with previous research [51,52]. For instance, it is known that azadirachtin com-

monly reduces fertility and offspring production in Lepidoptera adults [51]. In contrast, there

is limited published research available on the insecticidal potency of ethyl palmitate as a stand-

alone insecticide [53,54]. Ethyl palmitate has been used as a solvent or carrier for other insecti-

cides and biopesticides, and there are a few studies investigating the efficacy of these

formulations. Thus, our study constitutes a baseline for further investigations on the insecti-

cidal role of ethyl palmitate and its mode of action.

The efficacy of Btk + monosultap and azadirachtin in controlling the incidence of S. frugi-
perda larvae showed inconsistency during the on-station experiments, unlike PrGV + Btk and

emamectin benzoate treatments. This suggests that the efficacy of Btk + monosultap and aza-

dirachtin may be influenced by environmental factors such as temperature, UV radiation, and

humidity [55,56]. However, it is worth noting that previous studies have reported the efficacy

of Btk against S. frugiperda under field conditions [5,57,58]. It is important to consider that

most of these studies utilized genetically engineered Bt-maize, which may explain the discrep-

ancy between our findings and the previously reported efficacy of Bt in controlling S. frugi-
perda. Moreover, the field-evolved resistance of Lepidopteran pest species to Bt-based

formulations [45,59]and the rapid development of resistance to monosultap in Lepidopteran

species [60,61] can also explain the limited efficacy of Btk + monosultap against S. frugiperda.

Furthermore, considering the LC50 values, it is worth noting that they were higher than the

recommended dosages applied for the Btk + monosultap and azadirachtin treatments in field

conditions. Therefore, it is advisable to utilize higher dosages of these formulations to achieve

Fig 5. Grain yield of maize during minor and dry season on-station experiments. Bars represent the means ± SE of dry grain yields recorded on four plots

(replicates). Different letters above bars indicate significant differences between treatments (One-way ANOVA followed by a Tukey’s test, P< 0.05) during (A)

the minor rainy and (B) dry season.

https://doi.org/10.1371/journal.pone.0290390.g005
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more effective control of S. frugiperda. On the other hand, the low efficacy in this study of aza-

dirachtin-based formulations is due to the effects of manufacturing, storage, and transport

conditions that can impact neem-based pesticides [62,63].

Consistently, PrGV + Btk reduced the incidence of S. frugiperda and increased maize grain

yield. While the PrGV + Btk-based product has shown promising efficacy in both laboratory

and on-station conditions, there is still a need for further investigations to fully understand its

potential and serve as a relief for smallholder farmers. One important consideration is the

need to confirm the complete profile of the commercial formulation used in our study. Con-

ducting microbiological studies will be crucial in assessing the impact of the technical-grade

PrGV on target pests, understanding its mode of action, evaluating its persistence, and assess-

ing any potential environmental effects [64]. These studies will provide valuable insights into

the efficacy and safety of PrGV + Btk and contribute to its appropriate use in pest management

strategies.

Similar to PrGV + Btk-based formulation, emamectin benzoate has demonstrated effective-

ness against S. frugiperda in on-station conditions, and increased maize grain yield, consistent

with findings from other studies [5,41,65]. However, it is important to acknowledge the high

risk of resistance evolution in S. frugiperda populations exposed to emamectin benzoate [65].

Meanwhile, evidence of field-evolved resistance to emamectin benzoate has been reported in

the native range of the pest [66]. Furthermore, it is crucial to investigate the potential impact

of these formulations on non-target species, particularly natural enemies of S. frugiperda [5].

Understanding the compatibility of PrGV + Btk and emamectin benzoate with beneficial

organisms will help ensure the preservation of natural biological control agents, which are vital

for sustainable pest management practices. To support the adoption of these formulations by

local farmers, economic analyses are essential. Assessing the cost-effectiveness of PrGV + Btk
and emamectin benzoate-based formulations will provide valuable insights into their practical-

ity and affordability for farmers, helping them make informed decisions regarding their use.

Conclusion

Our study evaluated the toxicity of various insecticides against Spodoptera frugiperda larvae,

and emamectin benzoate showed the highest larvicidal potency. The binary microbial PrGV +

Btk was effective but slow in action, while ethyl palmitate had the lowest potency. The study

also found that insecticidal efficacy testing should not only focus on determining lethal dosages

but also include sublethal effects of formulations. Although botanical and microbial formula-

tions showed weaker potency compared to synthetic insecticides during the toxicity bioassays,

their sublethal effects are noteworthy. However, the efficacy of azadirachtin and Btk + mono-

sultap was inconsistent in on-station experiments, indicating that their effectiveness depends

on environmental factors. Additionally, the study suggests that further investigations are

needed to understand the mode of action of ethyl palmitate and PrGV as a standalone insecti-

cide. Overall, our study indicated that the semi-synthetic emamectin benzoate and the micro-

bial PrGV + Btk are good candidate in managing S. frugiperda.
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