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1 Data

In [1] we used specific regional datasets to calibrate the model. As part of the national COVID
response, all the National Health Service (NHS) hospitals in England treating COVID-19 patients
submitted a daily Situation Report (SITREP) to NHS England. The data associated to Sussex NHS
Trusts was extracted and combined to weekly death counts from the Office for National Statistics
(ONS) with COVID-19 reported as the underlying cause of death. To be precise, by Sussex we mean
the collective term for geographies pertaining to the counties of East Sussex and West Sussex in South
East England. The SITREP contained counts of daily admissions, daily discharges, and the beds
occupied daily, whilst the ONS death dataset contained the number of deaths recorded outside of
hospitals and the number of deaths recorded within hospitals per week. Here we regard outside of
hospital as entries with “Home” as their place of death, this is due to complications with assumptions
on the other categories. For example, the assumption that the individuals being modelled are well
mixed is not necessarily upheld in care homes.

Whilst the ONS death data is publicly available, the SITREP data in general is not, but, given
the national need for data, the UK government produced the Coronavirus Dashboard [2]. It provides
users with the ability to look at different metrics of COVID-19, such as hospitalisations and deaths,
for different regions and provides an API for users to download the datasets. The granularity of the
data depends on the size of the region the data is required for, typically all data is available for each
nation of the UK, but hospitalisations and deaths are split depending on their geographical location.
Indeed, hospitalisations are recorded using NHS regions and NHS trusts, and deaths are recorded
using local authority regions. The unfortunate difference between using the Coronavirus dashboard
and the SITREP is that the Coronavirus dashboard does not contain the number of daily discharges,
and it does not differentiate place of death like the ONS weekly death registry does. In order to
apply the approach presented in [1] we adapted the Coronavirus dashboard data in the following
way: we calculated the proportion of hospital COVID-19 deaths for the region being considered from
the ONS weekly death registry and applied this proportion to the deaths dataset acquired from the
Coronavirus Dashboard to give us a proxy dataset on deaths in hospital and deaths outside of hospital.
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Next, we used the deaths in hospital with the admissions and beds occupied datasets to find a proxy
dataset for the discharges, since the offset of beds occupied between each day depends on the number
of admissions, discharges and deaths that day. We note that this results in a very noisy discharges
dataset due to noise accumulating from multiple sources. For this reason, we decided to apply a 7-day
rolling average to the discharges. The Coronavirus dashboard has access to patients in mechanical
ventilation beds and so we could include a compartment that describes the high-dependency unit
(HDU). We decided not to do this since we do not have access to the number of patients who have
died in HDU, we only have access to the number of patients who died in hospital, and so parameter
identifiability would be an issue.

Other than issues of data availability, data collection is something that needs to be considered when
calibrating mathematical models. In particular, one needs to consider whether underreporting is a
significant factor from the data and, if so, how does on take that into consideration in the calibration
process. In this manuscript, we are assuming that underreporting is not significant in order to not
overly complicate the objective of the study, however we acknowledge this is not necessarily true. In
particular, one should take into account the following

• a patient was admitted to hospital due to something unrelated to COVID-19, but also tested
positive for COVID-19 on admission;

• a patient died in hospital due to something unrelated to COVID-19, but also had COVID-19
when they died;

• a patient was infected whilst in hospital (nosocial infections);

• a patient died in the community due to something unrelated to COVID-19, but also had COVID-
19 when they died.

Underreporting was the main reason why we did not use cases data when conducting our study in
[1], and thus here as well. Whilst the appearance of an underreporting parameter in the data is not
hard to reason, the derivation of the observational model and understanding what parameters are
identifiable is not trivial. We have studied this when considering a simple SIR model here [3]. In
other modelling approaches for COVID-19, groups estimate underreporting parameters using periods
of data that have a large number of tests with a small positivity rate and then this value to forecast
and backcast, or use the case-fatality ratio to estimate cases, see [4, 5]. For an extensive review of
ways to deal with underreporting for infectious disease modelling, see [6] and references therein.

In the codebase for the manuscript, we have given details on where we found the data and how to use
the Coronavirus Dashboard Application Programming Interface (API). Namely, in the folder named
“parameter estimation\data management”, we have written a markdown file called “data sources.md”
which details the data downloaded from the Coronavirus Dashboard and the ONS. For the Coron-
avirus Dashboard API, we have written a Python script called “coronavirus dashboard data.py” which
demonstrates how to use the Python requests library and Pandas library to obtain the data and store
it [7, 8]. In order to obtain the relevant information to use the API, such as metrics and location
codes, readers need to look in the script “run parameter estimation.py”, which can be found in the
root of the codebase.
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2 Parameter estimation

We now briefly explain the calibration procedure presented in [1]. For ease of exposition, we restate
the SEIR-D model Eq (1) to Eq (9) in the main manuscript here

Ṡ = −β
U + I

N
S, t ∈ (0, T ], S(0) = S0, (1)

Ė = β
U + I

N
S − γEE, t ∈ (0, T ], E(0) = E0, (2)

U̇ = p γEE − γUU, t ∈ (0, T ], U(0) = U0, (3)

İ = (1− p)γEE − γII, t ∈ (0, T ], I(0) = I0, (4)

Ḣ = γII − (γH + µH)H, t ∈ (0, T ], H(0) = H0 (5)

ṘU = (1−mU )γUU, t ∈ (0, T ], RU (0) = RU,0, (6)

ṘH = γHH, t ∈ (0, T ], RH(0) = RH,0, (7)

ḊU = mUγUU, t ∈ (0, T ], DU (0) = DU,0, (8)

ḊH = µHH, t ∈ (0, T ], DH(0) = DH,0. (9)

First, we utilise the linear relationship between the model description of hospital discharges and
hospital deaths and use linear regression analysis to calculate the ratio of discharges to deaths. One
can see that, in terms of the model and its parameters, the daily discharges can be written as

Dis(t) := γH

∫ t

t−1
H(s) ds, (10)

and the daily hospital deaths can be written as

DthH(t) := µH

∫ t

t−1
H(s) ds, (11)

which means we can estimate γHµ−1
H . Next, we rewrite equations Eq (1) to Eq (5) in terms of the

data, we call this the “observational” model, whereby Eq (6) to Eq (9) are not considered since they
are cumulative representations of the compartments in Eq (1) to Eq (5). One can see that the daily
admissions can be written as

Adm(t) := γI

∫ t

t−1
I(s) ds, (12)

and the daily deaths outside of hospital is

DthU (t) := γUmU

∫ t

t−1
U(s) ds. (13)

Thus, the observational model, as presented in [1], is

Ḣ = γII − γH

(
1 +

µH

γH

)
H, (14)

U̇ =
p

1− p

(
İ + γII

)
− γUU, (15)

...
I =

(
Ï + (γE + γI)İ + γEγII

)[
pγII

1− p
+

İ

1− p
− γUU − β

N
(U + I)2

]
(U + I)−1

− (γE + γI)Ï − γEγI İ . (16)

We solve the observational model, compute Eq (10), Eq (12) and Eq (13) and compare against the
datasets given. We use a maximum likelihood estimation approach by minimising a negative log-
likelihood with some constraints on the initial conditions and on the effective reproduction number.
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These constraints are needed to keep the feasible region of the parameters close to the realistic sets.
Without these constraints, the peak of the datasets could be explained by being close to herd immunity
(i.e., a lot of infections have already occurred before the lockdown) or a large value of Rt combined
with a small value of p. We note here that Eq (11) does not need to be used in the observational
model due to the linear regression and the fact that the resulting log-likelihood functions from the
regression and observational model are independent. This means that there is one less parameter to
infer from solving the observational model.

3 Results using interventions

3.1 Branching model results

Figure 1: Beds occupied using the branching process, using the England parameters and initial condi-
tions with varied values of ∆t. The mean of the branching process matches the SEIR-D model results
well for all values of ∆t. PR stands for percentile range.
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Figure 2: Beds occupied using the branching process, using the North West parameters and initial
conditions with varied values of ∆t. The mean of the branching process matches the SEIR-D model
results well for all values of ∆t. PR stands for percentile range.
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3.2 LoS model results

Figure 3: Beds occupied using the length of stay approach, using England parameters and initial
conditions with varied values for ∆t. The mean of the branching process matches the SEIR-D results
well for all values of ∆t.
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Figure 4: Beds occupied using the length of stay approach, using North West parameters and initial
conditions with varied values for ∆t. The mean of the branching process matches the SEIR-D results
well for all values of ∆t.
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3.3 The do-nothing approach results

Table 1: The do-nothing approach comparing the SEIR-D model with the branching process using
the England parameters. Displaying the maximum number of beds occupied (as a percentage of the
population) and what day the simulation reaches that maximum, taking ∆t = 0.25. BM stands for
the mean of the results from branching model and PR is the percentile range.

Max beds occupied (%N) Peak of beds occupied (day)

R0 SEIR-D BM (PR) SEIR-D BM (PR)

1.3 0.145% 0.145% (0.144%, 0.147%) 168.3 168.8 (164.0, 172.8)

1.4 0.222% 0.223% (0.221%, 0.224%) 143.6 144.1 (141.3, 147.0)

1.5 0.304% 0.304% (0.303%, 0.306%) 126.3 126.8 (125.0, 128.8)

1.6 0.386% 0.387% (0.385%, 0.389%) 113.6 114.2 (112.5, 115.8)

1.7 0.466% 0.468% (0.466%, 0.470%) 103.7 104.3 (103.3, 105.8)

1.8 0.544% 0.546% (0.544%, 0.548%) 95.6 96.5 (95.5, 97.5)

1.9 0.619% 0.621% (0.619%, 0.624%) 89.5 90.1 (89.3, 91.0)

2.0 0.690% 0.692% (0.690%, 0.695%) 84.1 84.7 (84.0, 85.5)

Table 2: The do-nothing approach comparing the SEIR-D model with the branching process using
the North West parameters. Displaying the maximum number of beds occupied (as a percentage of
the population) and what day the simulation reaches that maximum, taking ∆t = 0.25. BM stands
for the mean of the results from branching model and PR is the percentile range.

Max beds occupied (%N) Peak of beds occupied (day)

R0 SEIR-D BM (PR) SEIR-D BM (PR)

1.3 0.140% 0.141% (0.138%, 0.144%) 168.3 168.8 (160.7, 176.8)

1.4 0.214% 0.216% (0.212%, 0.220%) 143.6 144.1 (138.5, 149.8)

1.5 0.293% 0.295% (0.290%, 0.300%) 126.4 126.9 (122.8, 131.0)

1.6 0.372% 0.374% (0.369%, 0.380%) 113.6 114.2 (110.0, 117.5)

1.7 0.450% 0.452% (0.446%, 0.459%) 103.8 104.3 (101.8, 106.8)

1.8 0.525% 0.528% (0.522%, 0.535%) 95.9 96.5 (94.5, 98.8)

1.9 0.598% 0.601% (0.594%, 0.609%) 89.5 90.1 (88.0, 92.0)

2.0 0.666% 0.670% (0.662%, 0.677%) 84.1 84.7 (83.0, 86.5)
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3.4 Fixing the limit on demand results

Figure 5: Percentage of dead individuals corresponding to an R0 value using the hospital capacity
intervention approach and the England parameters. Here we have fixed Hl := 0.25Hu or Hl := 0.5Hu,
and set ∆t = 0.5. The thick line represents the results from the SEIR-D model, and the error bars
depict the result from the branching model. The black dashed line depicts the associated percentage
of dead individuals using the do-nothing approach. PR is the percentile range from the branching
model.

Figure 6: Percentage of dead individuals corresponding to an R0 value using the hospital capacity
intervention approach and the North West parameters. Here we have fixed Hl := 0.25Hu or Hl :=
0.5Hu, and set ∆t = 0.5. The thick line represents the results from the SEIR-D model, and the
error bars depict the result from the branching model. The black dashed line depicts the associated
percentage of dead individuals using the do-nothing approach. PR is the percentile range from the
branching model.
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Figure 7: Percentage of patients in hospitals per day using the hospital capacity intervention approach
and the England parameters. Here we have fixed Hl := 0.5Hu. The grey lines represent the times
when the simulation is in an intervention. We note that we have truncated the simulation to make
visualisation easier.

Figure 8: Percentage of patients in hospitals per day using the hospital capacity intervention approach
and the North West parameters. Here we have fixed Hl := 0.5Hu. The grey lines represent the times
when the simulation is in an intervention. We note that we have truncated the simulation to make
visualisation easier.
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Figure 9: Rt per day using the hospital capacity intervention approach and the South East parameters.
Here we have fixed Hl := 0.5Hu. The grey lines represent the times when the simulation is in
an intervention. The black dashed line represents herd immunity Rt = 1. We note that we have
truncated the simulation to make visualisation easier.

Figure 10: Rt per day using the hospital capacity intervention approach and the South East param-
eters. Here we have fixed Hl := 0.5Hu. The grey lines represent the times when the simulation is
in an intervention. The black dashed line represents herd immunity Rt = 1. We note that we have
truncated the simulation to make visualisation easier.

3.5 Varying lower limit of demand results
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Figure 11: Percentage of dead individuals corresponding to an R0 value using the hospital capacity
intervention approach and the England parameters. Here we have fixed R0 := 1.5 and set ∆t = 0.5.
The thick line represents the results from the SEIR-D model, and the error bars depict the result from
the branching model. The black dashed line depicts the associated percentage of dead individuals
using the do-nothing approach. PR is the percentile range from the branching model.

Figure 12: Percentage of dead individuals corresponding to an R0 value using the hospital capacity
intervention approach and the North West parameters. Here we have fixed R0 := 1.5 and set ∆t = 0.5.
The thick line represents the results from the SEIR-D model, and the error bars depict the result from
the branching model. The black dashed line depicts the associated percentage of dead individuals
using the do-nothing approach. PR is the percentile range from the branching model.
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Figure 13: Percentage of patients in hospitals per day using the hospital capacity intervention approach
and the England parameters. Here we have fixedR0 = 1.5. The grey lines represent the times when the
simulation is in an intervention. We note that we have truncated the simulation to make visualisation
easier.

Figure 14: Percentage of patients in hospitals per day using the hospital capacity intervention approach
and the North West parameters. Here we have fixed R0 = 1.5. The grey lines represent the times
when the simulation is in an intervention. We note that we have truncated the simulation to make
visualisation easier.

3.6 Uncertainty quantification of breaches
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Figure 15: Proportion of breaches against different proportions of Hu associated to the value of R0,
which have then been converted into a proportion of Hmax, using the hospital capacity intervention
approach (finishing after one intervention) and the England parameters, with ∆t = 0.25. PR stands
for the percentile range from the branching model and the thick lines represent the mean from the
branching model. The black dashed line represents the value of Hu associated to R0 found in Fig 18
in the manuscript.

Figure 16: Proportion of breaches against different proportions of Hu associated to the value of R0,
which have then been converted into a proportion of Hmax, using the hospital capacity intervention
approach (finishing after one intervention) and the South East parameters, with ∆t = 0.25. PR stands
for the percentile range from the branching model and the thick lines represent the mean from the
branching model. The black dashed line represents the value of Hu associated to R0 found in Fig 18
in the manuscript.
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Figure 17: Proportion of breaches against different proportions of Hu associated to the value of R0

using the hospital capacity intervention approach (finishing after one intervention) and the England
parameters, with ∆t = 0.25. PR stands for the percentile range from the branching model and the
thick lines represent the mean from the branching model.

Figure 18: Proportion of breaches against different proportions of Hu associated to the value of R0

using the hospital capacity intervention approach (finishing after one intervention) and the North
West parameters, with ∆t = 0.25. PR stands for the percentile range from the branching model and
the thick lines represent the mean from the branching model.
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Figure 19: Mdiff against different proportions of Hu associated to the value of R0 using the hospital
capacity intervention approach (finishing after one intervention) and the England parameters, with
∆t = 0.25. PR stands for the percentile range from the branching model and the thick lines represent
the mean from the branching model.

Figure 20: Mdiff against different proportions of Hu associated to the value of R0 using the hospital
capacity intervention approach (finishing after one intervention) and the North West parameters, with
∆t = 0.25. PR stands for the percentile range from the branching model and the thick lines represent
the mean from the branching model.
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Figure 21: Mmax against different proportions of Hu associated to the value of R0 using the hospital
capacity intervention approach (finishing after one intervention) and the England parameters, with
∆t = 0.25. PR stands for the percentile range from the branching model and the thick lines represent
the mean from the branching model. The black dashed line represents the value of Hu associated to
R0.

Figure 22: Mmax against different proportions of Hu associated to the value of R0 using the hospital
capacity intervention approach (finishing after one intervention) and the North West parameters, with
∆t = 0.25. PR stands for the percentile range from the branching model and the thick lines represent
the mean from the branching model. The black dashed line represents the value of Hu associated to
R0.

4 Verification of parameters for the agent-based approach

In order to verify that the length of stay agent-based approach was producing the same output on
average as the SEIR-D model (and thus the data) without having to do any parameter estimation, we
chose to check the following criteria:
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• is the mean of the output of the length of stay approach almost indistinguishable to the output
of the SEIR-D model?

• is the mean of the time spent in the states E, U and I close to the inverse of the associated rate
parameter?

• is the proportion of people going into U , DU and DH close to the associated probability param-
eters?

The first criterion was measured by plotting both approaches, the second criterion was calculated by
measuring the frequency of the length of stay of each agent in each compartment during the simulation,
and the third criterion was calculated by counting the number of agents who went along each decision.

When conducting this investigation we noticed that the lenght of stay approach quite significantly
overestimated the result, as can be seen in Fig 23, but converges towards the SEIR-D approach as we
reduce ∆t. When checking the rate parameters, we noticed that the observed mean was approximately
0.5∆t greater than the expected mean from the fitted parameters, which can be seen in Fig 24 and
Table 3 both by value and by the fact that the red line (the expected probability density function)
mostly goes through the next histogram column at the corner. We also noticed that this was indepen-
dent of the number of Monte Carlo realisations. This led us to add on a correction term to the fitted
parameters to reduce the observed mean towards the true value, namely by solving

1

γ + c
=

1

γ
− ∆t

2
,

which rearranges to Eq (26) in the manuscript. We note that c(γ; ∆t) → 0 as ∆t → 0. Using this
correction term, we see that the output of the length of stay approach matches the SEIR-D approach
better in Fig 25 and the observed means for the parameters are significantly more accurate in Fig 26
and Table 4. It is important to stress that whilst we do see convergence as ∆t tends to 0, significantly
more computational power is needed when reducing ∆t. By adding the correction term, we can use
a larger time step, and thus less computational power, whilst still maintaining accurate results. This
is particularly important when one could consider using a agent-based approach to model a complex
phenomena, say one which does not have an obvious equation-based approach, and still be able to
conduct parameter estimation. In Tables 3 and 4 we also demonstrate a 95% confidence interval
around the estimated parameters.

Table 3: Observed values, with confidence intervals, of the rate parameters using different values of
∆t to compare the observed value against the true value given the state and fitted parameter without
the correction term.

∆t (day)

Parameter 1 0.5 0.25 True value

γ−1
E 4.954 4.683 4.554 4.428

(4.945, 4.963) (4.675, 4.692) (4.546, 4.562)

γ−1
U 5.204 4.907 4.833 4.662

(5.078, 5.330) (4.795, 5.020) (4.726, 4.941)

As for the probability parameters, we noticed that as the number of Monte Carlo realisations
increased, the closer the probabilities got to the SEIR-D parameter, which can be seen in Table 5.
Intuitively, this is to be expected as the more decisions being made, the closer the probability should
be approximated. One also notices that the probabilities can be calculated at the end of the simulation
by manipulating the SEIR-D approach in the following way. To obtain mU , one integrates (6) and
rearranges to find

γU

∫ T

0
U(s) ds =

1

1−mU
(RU (T )−RU (0)),
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Figure 23: Beds occupied using the length of stay approach without the correct term, using South East
parameters and initial conditions with varied values of ∆t. The mean of the length of stay approach
is starting to get close to the SEIR-D result for small ∆t. PR stands for the percentile range.

Table 4: Observed values, with confidence intervals, of the rate parameters using different values of
∆t to compare the observed value against the true value given the state and fitted parameter with the
correction term.

∆t (day)

Parameter 1 0.5 0.25 True value

γ−1
E 4.451 4.435 4.434 4.428

(4.442, 4.460) (4.427, 4.444) (4.426, 4.443)

γ−1
U 4.656 4.680 4.770 4.662

(4.542, 4.770) (4.573, 4.788) (4.664, 4.877)

which, by integrating (8), inserting above and rearranging, gives

mU =
DU (T )−DU (0)

RU (T )−RU (0) +DU (T )−DU (0)
.
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Figure 24: Frequency density of lengths of stay of agents in states E and U without the use of the
correction term. The titles of each plot depict the associated parameter of the state in consideration
and the time step (in days). The first row corresponds to lengths of time agents spend in the E state,
which should correspond to an exponential distribution with mean γE , and the second row corresponds
to lengths of time agents spend in the U state, which should correspond to an exponential distribution
with mean γU . The first column uses a time unit of 1 day, the second column uses a time unit half a
day and the last column uses a time unit of a quarter of a day.

One can apply the same idea to get

mH =
DH(T )−DH(0)

RH(T )−RH(0) +DH(T )−DH(0)
,

and

p =
U(T )− U(0) + γU

∫ T
0 U(s) ds

U(T )− U(0) + γU
∫ T
0 U(s) ds+ I(T )− I(0) + γI

∫ T
0 I(s) ds

.
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Figure 25: Beds occupied using the length of stay approach, using the South East parameters and
initial conditions with varied values for ∆t. The mean of the length of stay approach matches the
SEIR-D results well for all values of ∆t. PR stands for the percentile range.
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Figure 26: Frequency density of lengths of stay of agents in states E and U with the use of the
correction term. The titles of each plot depict the associated parameter of the state in consideration
and the time step (in days). The first row corresponds to lengths of time agents spend in the E state,
which should correspond to an exponential distribution with mean γE , and the second row corresponds
to lengths of time agents spend in the U state, which should correspond to an exponential distribution
with mean γU . The first column uses a time unit of 1 day, the second column uses a time unit half a
day and the last column uses a time unit of a quarter of a day.

Table 5: Observed values, with percentile-ranges, of the probability parameters using a different
number of Monte Carlo iterations to compare the observed value against the true value given the state
and fitted parameter, where mH is the proportion of individuals who die in hospital (calculated by
µH(γH + µH)−1).

Monte Carlo iterations

Parameter 1 5 10 20 True value

p 0.9413 0.9409 0.9405 0.9407 0.9401
(0.9404, 0.9414) (0.9396, 0.9411) (0.9390, 0.9421)

mU 0.0013 0.0014 0.0013 0.0014 0.0013
(0.0013, 0.0015) (0.0012, 0.0014) (0.0012, 0.0015)

mH 0.3847 0.3850 0.3878 0.3844 0.3843
(0.3817, 0.3888) (0.3799, 0.3964) (0.3782, 0.3908)
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