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Eucalyptus 1s important for the forestry industry due to its excellent growth and wood properties. In
crop species, nested multi-parent populations have been used to increase the power and resolution of
quantitative trait loci (QTL) detection. These populations have predominantly been used in species
in which recombinant inbred lines can be generated and have not been fully exploited in outcrossing
species such as Eucalyptus. To determine if multi-parent mapping approach can be used effectively
for genetic dissection in Eucalyptus, we made use of an existing F; hybrid trial series, consisting nine
E. grandis pollen parents and eight E. urophylla seed parents. The population has many full-sib (FS)

families nested within half-sib (HS) families and was planted across four different sites.

The objectives of this MSc study were to 1) construct genetic linkage maps of one E. grandis pollen

parent and one E. urophylla seed parent of the multi-parent population, ii) analyse transmission ratio



DISSERTATION SUMMARY

distortion of mapped markers in the F; hybrid progeny to identify hybrid compatibility barriers, 1ii)

map QTLs underlying growth and wood properties in the two pure species parental maps.

We constructed framework genetic linkage maps for the E. grandis pollen parent and the E. urophylla
seed parent. A total of 388 (E. grandis HS family, n = 349) and 422 (E. urophylla HS family, n =
367) single nucleotide polymorphisms (SNP) markers were included in the linkage maps resulting in
an average marker density of 2.4 ¢cM. Using the genetic linkage maps, we identified 15 and 23 QTLs
underlying growth and wood properties for the E. grandis and E. urophylla HS family, respectively.
We identified large to medium effect QTLs, with the percentage of variance explained ranging from
3.06% to 36.58%. We identified different QTLs across the sites which suggests that the traits are
affected by genotype-by-environment interaction. We analysed segregation distortion of the markers
included in the framework genetic linkage maps within HS families, FS families and sites. We found
that there is a large amount of segregation distortion (between 0 — 29.38% distortion) and that the
patterns of distortion varied for individual FS families planted across multiple sites and single sites
with multiple FS families. We were also able to identify potential pre- and postzygotic barriers to
hybrid compatibility through the analysis of segregation distortion of dead and living trees. Taken
together, these results show that there are both parent specific interactions, that are dependent on the

environment, which underlie hybrid compatibility.

In this study, we applied an approach whereby genetic linkage maps can be constructed and QTL
identified in an outcrossing multi-parent mapping population. We show that multi-parent populations
hold promise for studying hybrid compatibility, as diverse founders are crossed resulting in a number
of F1 hybrid progeny. The results of this study show that this approach can be applied in existing F;
hybrid breeding trials for more fine scale genetic dissection of complex trait variation as well as

hybrid compatibility of E. grandis and E. urophylla.
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Eucalyptus 1s an important tree genus for hardwood plantation forestry due its desirable growth and
wood properties. It is commonly planted as interspecific hybrid clones to combine the favourable
characteristics of two species into a single genetic background. E. grandis has desirable wood and
growth properties, but is highly susceptible to fungal diseases. Therefore, E. grandis is commonly
crossed with E. urophylla, a tropical eucalypt species, that is more disease resistant. Despite the
success of the interspecific hybrid breeding approach, many specific parental crosses do not yield
any hybrid progeny. This can be due to pre- and postzygotic incompatibilities, the genetic factors of
which can be fixed or segregating in the parental species. Identification of loci underlying these
incompatibilities are important for breeding programmes as it will allow for breeders to determine

which trees to cross.

Interspecific hybrids are often used for genetic map construction because they maximise genetic
diversity available for linkage analysis. The first genetic linkage maps were constructed for E. grandis
and E. urophylla interspecific hybrids in 1994 (Grattapaglia et al. 1994). Since this study, many
genetic linkage maps have been constructed. However, due to the high linkage disequilibrium in
biparental crosses and a low marker density, the genetic linkage maps had low resolution for
quantitative trail loci (QTL) detection. In 2013, the first genome-wide association study (GWANS)
was reported in Eucalyptus (Cappa et al. 2013). However, due to the experimental design and small
population size, this study had a low resolution and power to detect marker-trait associations. Due to
a limited number of genomic resources available for Eucalyptus, there have been few subsequent
GWAS studies as a high marker coverage could not be achieved for a full GWAS in a population

with low linkage disequilibrium (LD).
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Many studies in crop species have also experienced the limitations with linkage analysis and GWAS.
Therefore, in 2008, the first multi-parent mapping populations were designed in maize to combine
the high power of linkage analysis in single families with the high resolution of GWAS at population
level (Yu et al. 2008). These populations are also advantageous as they result in a balanced
representation of allele variation as all alleles segregate in at least one family. This results in an
enhanced power and precision for estimating allelic effects. Since the first study, a number of
different types of multi-parent population designs have emerged. Despite differences in the designs,
the basic principle is the same, which is to cross a number of diverse founders and generate
recombinant inbred lines (RILs). Studies in multi-parent populations have shown to have high power
and high resolution to detect QTL. However, these studies have been limited to species in which RILs
can be generated and have not been fully explored in outcrossing genera such as Eucalyptus, despite
the fact that multi-parent crossing schemes are commonly used in Eucalyptus breeding, especially

hybrid breeding trials.

Recent advances in the development of Eucalyptus resources has opened the doors for genomic
dissection studies. The completion of the reference genome sequence of Eucalyptus grandis in 2014
(Myburg et al. 2014) enabled the generation of the Fucalyptus EUChip60K SNP chip (Silva-Junior
et al. 2015). This has provided a platform for large-scale genotyping of Eucalyptus populations.
Additionally, the crossing of multiple parents is a common practice in F; hybrid breeding trials for
Eucalyptus but these trials have not been fully explored for genetic dissection of complex traits. Sappi
Forest Research (Hilton, KZN, South Africa) have provided access to such a breeding trial that can
be used for half-sib (HS) family mapping with nested F; full-sib (FS) families, replicated over sites.
The trial was generated by crossing nine E. grandis pollen parents with eight E. urophylla seed
parents. This population therefore has a number of full-sib families nested within half-sib families.

This provides the opportunity to dissect quantitative traits across full and half-sibs. The population

Vi
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design also allows for the analysis of hybrid incompatibility as a large number of diverse founders

were crossed and not all the crosses yielded viable progeny.

The overall aim of this MSc was to determine the genetic architecture of growth and wood properties
segregating from pure species parents in F; hybrid progeny of E. grandis and E. urophylla and to
determine the genome-wide architecture of hybrid incompatibility between parental genomes. To
evaluate the possibility to achieve this in the context of a multi-parent F; hybrid breeding trial, we
had the following objectives: (1) construct genetic linkage maps for one E. grandis pollen parent and
one E. urophylla seed parent (2) analyse segregation distortion of SNP markers in the Fi hybrid
progeny and (3) map QTL controlling growth and wood properties in the two pure species parental
maps. We were able to apply existing methods to construct genetic linkage maps and identify QTL
in an outcrossing multi-parent mapping population. Furthermore, we were able to use segregation
distortion analysis to identify regions of the parental genomes potentially underlying hybrid

incompatibility.

Chapter 1 of this dissertation provides an overview of quantitative and hybrid genetics with a focus
on plants. For the quantitative genetics sections I discuss the advantages and disadvantages of
previous methods that have been used to dissect quantitative traits, and then how recent advances in
population design has allowed for the advantages of previous methods to be combined in a single
method. In addition, I review the theory behind heterosis and hybrid incompatibility to determine
where we are with understanding the genetics underlying these mechanisms. I then give an overview
of Eucalyptus hybrid breeding and genetic dissection studies in Eucalyptus. Furthermore, I discuss
recent advances in the development of Eucalyptus genetic and genomic resources with focus on how
these can be used to improve our understanding of FEucalyptus quantitative traits and hybrid

compatibility.

Vii
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In Chapter 2, I describe the construction of genetic linkage maps in a Eucalyptus F1 multi-parent
mapping population. Furthermore, I identify quantitative trait loci (QTL) underlying growth and
wood properties across different environments and show that genotype-by-environment interactions
affect the identified QTLs. The results demonstrate that multi-parent mapping approaches can be

used in outcrossing plants such as Eucalyptus to identify marker-trait associations.

For Chapter 3, I analyse the segregation distortion patterns of markers included in the parental
genetic linkage maps from Chapter 2. Due to the population design, segregation distortion analysis
is performed within half-sib families, full-sib families and sites. I show that this can be used to
identify specific interactions between the parental genomes which are also dependent on interactions
with the environment. Furthermore, I analyse the segregation patterns of dead and living trees within
an intersecting full-sib family (sharing the pollen and seed parent for which genetic linkage maps
were constructed) which enables us to identify of regions of the parental genome underlying potential
pre- and postzygotic incompatibilities. Overall, the results of this chapter show that there are complex
genetics underlying hybrid incompatibility which multi-parent mapping approaches can start to

identify and resolve.

This MSc dissertation was undertaken from January 2018 to December 2019 in the Department of
Biochemistry, Genetics and Microbiology and the Forestry and Agricultural Institute (FABI) at the
University of Pretoria. This study was completed under the supervision of Prof. A.A. Myburg and
co-supervised by Prof. E. Mizrachi. The multi-parent mapping population used in this study was
constructed and maintained by Sappi Forest Research (Hilton, KZN, South Africa). Chapter 2 of this
study has been prepared in the format of an independent manuscript for submission to a peer-reviewed

journal (Tree Genetics and Genomes).
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Chapter 1: Literature Review

Methods for genetic dissection of quantitative traits and hybrid

compatibility in plants



LITERATURE REVIEW

1.1 Introduction

Genomics is an integral part of understanding the relationship between phenotype and genotype,
which in turn is important for plant breeding programmes. With an increase in the human population,
more resources are required from plants, such as food, wood and biofuels. To optimally obtain these
products, efficient plant breeding programmes need to be in place. In order to do this, an
understanding of the genetics underlying important traits is required. Many agronomically important
traits are complex and controlled by multiple quantitative trait loci (QTL). QTLs have the ability to
interact with each other as well as with the environment to cause variation in the phenotype (Mackay
2001). It 1s therefore important to understand both the genetics underlying a trait of interest as well
as the influence of the environment on the trait. Genomics can be used to identify loci underlying a

trait of interest.

Marker-trait associations are used to identify QTLs underlying complex traits and the information
can be used for marker-assisted selection (MAS, Collard ef al. 2005). MAS is advantageous as it
allows for the tracking and combining of favourable alleles as well as the ability to monitor the genetic
diversity present in the population. The application of MAS in breeding programs is challenging
because it depends on the heritability of the trait, the genetic architecture of the trait and the number
of loci affecting the trait (Abiola ef al. 2003). The method by which marker-trait associations are
detected also plays an important role in the success of MAS. Two commonly used methods for
identifying marker-trait associations are linkage analysis and genome-wide association studies
(GWAS). However, due to limitations of these methods, their application in breeding programmes
have been limited. A more recent experimental design, multi-parent populations, have combined the

advantages of both linkage analysis and GWAS and show promise for improvements in MAS.

Hybrid populations are commonly used to identify marker-trait associations and are used in breeding

programmes. Interspecific hybrids are advantageous because they allow for the combining and
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tracking of favourable alleles into single genetic backgrounds. Hybrids commonly exhibit heterosis,
which is where they outperform their parents. This makes hybrids important for crop species as they
have the potential to improve crop yields. However, not all hybrid combinations are successful due
to hybrid incompatibility. Genetic dissection studies can be used to identify marker-trait associations
with loci underlying hybrid incompatibility. The results can then be used to determine which parental
genotypes to combine to yield the best hybrid progeny. Despite the importance of hybrids in breeding

programmes, the underlying causes of heterosis and hybrid compatibility are not fully understood.

Eucalyptus 1s widely planted for commercial purposes due to its growth and wood properties. In
commercial plantations, Eucalyptus is commonly planted as hybrids to allow for the combination of
desirable characteristics from two species to be present in a single genetic background. Due to the
high heterozygosity and limited genomic resources of Eucalyptus, genetic dissection studies have
had a limited success in breeding programmes. Recent advances in genomic resources for Eucalyptus,
such as the completion of the reference genome (Myburg ef al. 2014), the development of the
EUChip60K SNP chip (Silva-Junior et al. 2015) and the development of a multi-parent population,

will allow for an improved understanding of complex traits and hybrid genetics of Eucalyptus.

This review will focus on approaches used to identify QTLs in plant species and the use of hybrids
in breeding programmes. We will discuss the advantages and disadvantages of linkage analysis and
GWAS and how the advantages can be combined in multi-parent populations. An overview of multi-
parent populations as well as their limitations will be given We will briefly discuss hybrid
(in)compatibility, but as there are many reviews on this topic we will not go into a great amount of
detail. At the end, an overview of how these methods have been applied in Eucalyptus will be given.
The focus on Eucalyptus will shed light on why genetic dissection studies in Eucalyptus are lagging

behind other crop species and the efforts that are being made to advance the field.
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1.2 Molecular genetic dissection of quantitative traits

1.2.1 Linkage analysis

The traditional approach to identify the location of QTLs is through linkage analysis. Genetic linkage
maps are first constructed by analysing the recombination frequency between genetic markers (Pierce
2014), which is used to determine the genetic distance (measured in centimorgan, cM) between
markers. The markers are then ordered in the genetic linkage maps based on the genetic distances
between them. One recombination event in 100 meiosis will result in a genetic distance of 1 cM (1
cM = 1% recombination). Therefore, the higher the recombination frequency between two markers,

the further away the markers will be from each other in genetic distance.

The genetic linkage maps are then used to identify QTLs underlying traits of interest relative to
marker positions in the maps, in a process known as QTL mapping. The principle behind QTL
mapping is discussed in detail by Collard et al. 2005. Briefly, if a marker is found to be associated
with a trait, the QTL underlying the trait will be near the marker in the genome. This is because
markers that are in linkage with the QTL will segregate together. Linkage analysis has the ability to
identify many regions of the genome underlying a trait of interest because the whole genome is
analysed at once. This makes it well suited to identify regions underlying complex traits, which are

controlled by multiple loci.

Linkage analysis is typically performed using biparental crosses, where two diverse parents are
crossed and the Fi progeny are analysed (Figure 1.1). An advantage of these populations is the high
power to detect marker-trait associations, due to only two parental alleles segregating in a 50:50 ratio
within the population (Mackay 2001). Therefore, if allele is linked to a QTL, a strong association can
be made as half the progeny will contain the allele and QTL. This increases the probability of
detecting an allele which is rare in a natural population, as it will be present in 50% of the progeny

in a biparental cross. Although the segregation of two alleles allows for a high power to detect marker-
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trait associations, it limits the diversity analysed to that present in the parents (Flint-Garcia et al.
2003). This is not representative of the genetic diversity present within the species, which can result
in many QTLs not being detected. This has also caused the results of studies to differ due to different

parents being used.

Biparental populations have large linkage disequilibrium (LD) blocks due to the limited amount of
recombination (Flint-Garcia et al. 2003). The large LD blocks are both advantageous and
disadvantageous for genetic map construction. The first advantage is that a low marker density is
required in order to capture all of the LD blocks. This is especially advantageous in non-model
organisms in which the identification of markers can be challenging. However, this is largely a
historical problem as new state-of-the-art technologies, such as single nucleotide polymorphisms
(SNP) chips and third-generation sequencing, allow for maker identification in non-model organisms.
The second advantage is a high power to identify marker-trait associations. Due to the large LD
blocks, a marker on one side of an LD block will be linked to a QTL on the opposite side of the LD
block which will allow for an association between the marker and QTL, even though they may be far
apart (Collard et al. 2005). However, the disadvantage of large LD blocks, is a low resolution because
the genomic regions where there is an association with a trait are large (Mackay 2001). Therefore, a
QTL can be identified in a large region, but the exact location, or causative gene, cannot be

determined.

One way in which the resolution of biparental populations can be increased is through the use of Fa,
backcross and Advanced Intercross Lines (AIL). In F» and backcross lines, recombination is
increased through additional rounds of meiosis. This results in progeny with smaller LD blocks. In
AlIL, the F; are intercrossed for a few generations to increase the amount of recombination (Darvasi
and Soller 1995). While, AIL does increase the amount of recombination, the population size needs

to be at least 100 individuals and is limited to species which have short generation times as many
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generations are required for the intercrossing step. While F», backcross and AIL can increase the
amount of recombination to some extent, these populations are still derived from two parents which

has its own limitations.

1.2.2 Genome-wide association studies

Association mapping is another approach used to identify markers associated with traits. Candidate
gene association was first used to fine map QTLs following linkage analysis (Risch and Merikangas
1996). Here, a QTL region first needs to be identified using linkage analysis and then the QTL region
is analysed separately with a larger number of markers. The theory behind association mapping is
similar to linkage analysis in that a marker which is close to a QTL will be more likely to segregate
with the QTL during recombination. Therefore, by having a higher marker density, the position of
the QTL can be determined more accurately. Candidate gene association was initially used as large
numbers of markers could not be identified genome-wide. With advances in technology, large
numbers of polymorphic markers could be identified genome-wide and this led to the development

of genome-wide association studies (GWAS).

In GWAS, markers across the entire genome are analysed to determine if they are associated with a
trait (Hirschhorn and Daly 2005). An advantage of GWAS, is that it is performed in large, natural
populations which have a high amount of genetic diversity and historical recombination (Figure 1.2).
The high genetic diversity is advantageous as it allows for a large amount of variation to be analysed,
which is more representative of the species (Zhu et al. 2008). Due to the large amount of historical
recombination, the LD blocks are small, which results in a higher resolution for identifying QTLs.
However, GWAS does not come without limitations of its own. The first limitation is the low power
to detect markers associated with a trait (Mackay et al. 2009). This is due to alleles having a low
frequency in natural populations with large amounts of genetic diversity. This is especially true for

alleles which are rare in a population. In order to increase the power, larger samples sizes are required
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which are often not feasible to obtain and genotype (Hirschhorn and Daly 2005). Population
substructure of natural populations, is another limitation in GWAS. Population substructure can lead
to an allele being at a higher frequency in a population subgroup. This can result in a false-positive
association between the allele and a trait (Lander and Schork 1994; Hirschhorn and Daly 2005).
Therefore, the effects of population substructure need to be detected and corrected prior to association

analysis.

1.2.3 Multi-parent mapping populations

In the past ten years, multi-parent mapping populations have been constructed to combine the high
power of linkage analysis and high resolution of GWAS. These populations have many advantages
besides the high power and resolution, such as the control of population structure and the ability to
analyse a large amount of variation through the use of diverse founders (McMullen et al. 2009). They
are also advantageous as recombinant inbred lines (RILs) are generated which results in a large
amount of recombination and also an eternal resource for studying genetic dissection. While these
populations have been successful in many plants, they have been limited to species in which self-
fertilization can take place. Multiparent Advanced Generation Intercross (MAGIC) and Nested

Association Mapping (NAM) are two common designs of multi-parent populations.

MAGIC populations are constructed by intercrossing a large number of diverse founders, followed
by intercrossing of the progeny for a few generations and then generating RILs (Figure 1.3). MAGIC
lines of Arabidopsis thaliana were one of the first multiparent mapping populations constructed in
plants (Kover et al. 2009). The population was constructed through four generations of intermating
between 19 accessions, followed by six generations of inbreeding. The population design limits the
amount of population structure and any population structure present, had a limited effect on QTLs.
MAGIC lines are ideal for QTL analysis as they show a large amount of phenotypic and genetic

variation as well as high recombination rates. Kover et a/ (2009), were able to use the MAGIC lines
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to map QTLs with a higher accuracy and resolution when compared with previous biparental and
Recombinant Inbred Lines (RIL) populations. Since the first MAGIC population, many variations of
these mapping populations have been constructed in wheat (Huang et al. 2012), rice (Bandillo ef al.
2013), tomato (Pascual et al. 2015), barley (Sannemann et al. 2015) and maize (Dell’Acqua et al.

2015).

Nested Association Mapping (NAM) is another type of multiparent mapping population (Figure 1.4).
The first NAM population was constructed in maize by crossing 25 diverse founders to a single
founder and the progeny were inbred for 5 generations (Yu ef al. 2008). The maize NAM population,
which consisted of 5000 RIL, had a high level of allelic richness and a large amount of recombination.
The LD blocks were small due to the generation of RILs and the historical recombination present in
the diverse founders. The maize NAM population had some population substructure present, but it
was found that when the structure was ignored, the risk of false-positives did not increase due to
balanced families being produced and the shuffling of founder genomes during RIL development.
NAM was first used to determine the genetic architecture underlying flowering time in maize
(Buckler et al. 2009). It was found that joint linkage QTL analysis across all the families, was able
to identify almost twice as many significant effects when compared to the single-family (biparental)
analyses. NAM has since been used to successfully identify QTLs for many traits in maize. Since the
initial maize NAM study, this population type has been used in barley (Maurer et al. 2015), wheat
(Bajgain et al. 2016), rice (Fragoso et al. 2017), sorghum (Bouchet ef al. 2017) and soybean (Song
et al. 2017). These NAM studies have been successful in identifying QTLs controlling many traits

and show that NAM can be successfully applied to different types of crops.
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1.3 Hybrid genetics

1.3.1 Heterosis

Heterosis occurs when hybrid progeny display improved traits when compared to the parents. This
was first observed in 1908 by Shell (1908), who found that inbred maize lines had reduced vigour
and growth properties. When these inbred lines were intercrossed, the vigour and growth properties
of the hybrids exceeded that of the parents. Through the years, many crosses between different parents
were performed to try to better understand how heterosis occurs. There are three hypotheses for the
genetic basis of heterosis namely dominance, overdominance and epistasis. Dominance occurs when
the superior allele mask the effect of the alternative allele in heterozygotes, while overdominance
occurs when the heterozygote progeny is superior to the homozygote parents (Pierce 2014). Epistasis
is the interaction between different loci and results in heterosis when the alleles interact in a
favourable manner. Despite the advances in technology, the mechanism behind heterosis is still not

fully understood.

Different combinations of the three mechanisms have been identified to play a role in heterosis. In a
study using an immortalized F» population of maize, 13 heterotic loci for grain yield and its various
components were identified (Tang et al. 2010). They were also able to identify 143 digenic
interactions which showed that both dominance and epistasis played a role in heterosis for grain yield
and its components. In another study, the genetic basis of rice yield was analysed in an immortalized
F> population (Zhou ef al. 2012). They analysed both epistasis and single-locus effects contributing
to heterosis genome-wide. The results showed that the underlying cause of heterosis was trait-specific
with overdominance affecting heterosis of yield while epistasis affected tillers per plant. Both of these
mechanisms were found to be important in grain weight heterosis. These studies show that all three
mechanisms can underlie heterosis which suggests that heterosis is caused by many complex

interactions and the mechanism may be trait and species-specific.
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1.3.2  Hybrid incompatibility

Despite hybrids commonly exhibiting heterosis, some hybrid combinations are incompatible. This
can result in no hybrid progeny and hybrid necrosis. In this review we will focus on hybrid
incompatibility and its effect on hybrid breeding programmes, however, speciation is an important
phenomenon which readers should take into account and readers are directed to a review of plant
speciation by Rieseberg and Blackman (2010). Hybrid incompatibility can either be prezygotic or
postzygotic (Figure 1.5). Prezygotic mechanisms include flowering time and colour (Rieseberg and
Blackman 2010), habitat, temporal barriers and pollen tube formation and growth rate (Snow et al.
2000; Rieseberg and Blackman 2010). Prezygotic barriers in plants are challenging to study as allele
frequencies are required before and directly after fertilisation which had limited the studies performed

on prezygotic mechanisms.

Postzygotic hybrid incompatibility can be caused by genic interactions, chromosome structure, gene
transposition and reciprocal gene loss (Burke and Arnold 2001, Maheshwari and Barbash 2011).
Chromosome structure can include chromosome re-arrangements, gene transposition and reciprocal
gene loss. Chromosome re-arrangements can affect crossing over during meiosis and cause the
production of gametes which are aneuploid or sterile (Maheshwari and Barbash 2011). Gene
transposition can result in a gene being lost, especially in later generation hybrids due to random
segregation (Moyle et al. 2010). If the gene lost codes for essential functions, the hybrid can have a
reduction in fitness. Reciprocal gene loss is common in plants which have undergone whole genome
duplication (WGD) as has been shown in Arabidopsis and rice (Mizuta et al. 2010; Bikard et al.
2019). In these plants, hybrid incompatibility will result when different species, sharing a common

ancestor which underwent WGD, have alternative genes silenced during lineage specific evolution.

The genic mechanism underlying hybrid incompatibility follows the definition of Dobzhansky-

Muller (DM) diverged genes. The DM model suggests that incompatibility is caused by the

10
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interaction between two loci. In the ancestor, the two loci are compatible, but due to divergence
during evolution of two lineages, the loci become incompatible when combined again in a hybrid
(Dobzhansky 1937; Muller 1942). The interaction between the loci can either be lost or it can cause
the gain of a negative interaction depending on how the orthologs have evolved. The Dobzhansky-
Muller model be expanded to multiple loci but it is not yet known whether multiple loci interact

together or whether the interactions are a combination of two independent interactions.

Two methods that are commonly used to identify hybrid incompatibility are QTL mapping and the
analysis of segregation distortion in hybrids. QTL mapping makes use of genetic linkage maps to
identify specific hybrid incompatibility traits such as hybrid sterility (Rieseberg and Carney 1998).
The advantage of this approach is that a large number of loci can be identified genome-wide
underlying the trait. The power of this method was seen in a recent study where four QTL were found
to underlie hybrid sterility in rice (Yu ef al. 2018). Further analysis of these regions identified two
tightly linked genes, one which causes pollen abortion while the other protects pollen from abortion.
When the gene which protects from pollen abortion is not present in the progeny, segregation
distortion is seen in the progeny. In another study, hybrid incompatibility, in the form of hybrid
weakness, was assessed in F; interspecific Arabidopsis hybrids (Burkart-Waco et al. 2012). A total
of seven QTLs underlying hybrid weakness were identified, all of which were shown to interact with
at least one other QTL. Further analysis of the network of QTLs identified showed that there are a
large number of small effect loci which interact and control hybrid viability and growth in
Arabidopsis. These studies showed that QTL mapping allows for the identification of QTLs as well

as the underlying mechanism of hybrid incompatibility.

Segregation distortion is the deviation of allele frequencies from expected Mendelian ratios. Regions
which show significant segregation distortion can be used to identify genes underlying hybrid

incompatibility. This method allows for the whole genome to be analysed and no prior information

11
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regarding a specific trait is required. Harushima et al. (2001) analysed genome-wide segregation
distortion patterns in an F» intra-specific rice population. From the analysis, they were able to identify
33 reproductive barriers. A total of 15 of the barriers were found to affect allele transmission at the
gametophyte stage while the remaining 18 affected the viability of the zygote. In another study,
segregation distortion was analysed in both intra- and interspecific hybrids of oak trees (Bodénes et
al. 2016). A total of nine significantly distorted loci were identified. The patterns of segregation
distortion suggested that gametic incompatibility was a major barrier to hybridisation between oak
species. The results of these studies show the power that segregation distortion analysis has to identify

regions of the genome which underlie pre- and postzygotic incompatibility loci.

1.4 Eucalyptus

1.4.1  Eucalyptus domestication and hybrid breeding

Eucalyptus is planted worldwide and consists of over 700 species (Ladiges et al. 2003). This genus
is predominantly native to Australia, with some native to neighbouring islands such as New Guinea
and Timor. Due to the fast growth and wood properties of Eucalyptus, breeding of Eucalyptus
increased rapidly in the 1960’s (Eldridge et al. 1993). Eucalyptus is predominantly an outcrossing
species (Gaiotto et al. 1997), therefore, when it was found that some eucalypts could undergo
vegetative propagation in the 1970s, the industry grew rapidly. In plantations, Eucalyptus is
predominantly planted as interspecific hybrids. This allows for favourable traits from different

species to be combined into a single genetic background.

However, not all interspecific hybrid crosses yield successful progeny (Griffin ef al. 1988). Hybrid
incompatibility in Eucalyptus can occur on a pre- and postzygotic level. Not considering spatial and
temporal prezygotic barriers to hybridisation, two main prezygotic barriers have been identified in
Eucalyptus; a structural barrier and a physiological barrier to pollen tube formation. Gore et al. (1990)

demonstrated the structural barrier of pollen tube length in E. nitens and E. globulus. They found that

12
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the pollen tubes of E. nitens could not grow the entire length of the E. globulus style as the E. globulus
flowers are larger than E. nitens. Therefore, species with different flower sizes can be difficult to
cross in Eucalyptus. The physiological barrier occurs within the pistil where the pollen tube is
inhibited resulting termination of pollen tube growth. Ellis et al. (1991) performed a number of intra-
and inter-specific crosses as well as intergeneric crosses in Eucalyptus. When analysing the inter-
specific crosses they found pollen-tube abnormalities in the style resulting in pre-zygotic isolation.
They also found that the severity of the abnormality was correlated with the taxonomic distance of
the parental species. The results of this study suggest that a prezygotic barrier in Eucalyptus is
between the pollen and pistil and that the severity increases with an increase in taxonomic distance.
These studies show the importance of both structural and physiological barriers on pre-zygotic hybrid

incompatibility in Eucalyptus.

Postzygotic hybrid incompatibilities can occur in different stages of the trees lifecycle.
Incompatibility may be seen in early stages such as a reduction in seed viability, slow germination of
hybrid seed, reduced survival of germinated seed and abnormal seedling phenotype (Tibbits 1988;
Lopez et al. 2000). Tibbits (1988) performed a number of inter- and intra-specific crosses with E.
nitens mothers. They found that while most of the inter-specific crosses germinated, they had higher
rates of abnormalities. This suggests a postzygotic barrier affecting interspecific hybrids. Lopez et
al. (2000) performed analysis of hybrid viability over a ten year period. A number of intra- and inter-
specific crosses between E. ovata and E. globulus were generated. The results showed that the inter-
specific hybrids had a reduction in viability at all life stages over the ten year period. Taken together,
these studies show that there is postzygotic hybrid incompatibility in Eucalyptus and it is important
to analyse hybrid incompatibility throughout the life cycle to ensure the best performing trees are

selected for further breeding.
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Despite hybrid incompatibilities between Eucalyptus, there are many successful hybrid combinations
which combine favourable traits of different species into a single genetic background. Eucalyptus
grandis crossed with E. urophylla are one of the successful interspecific crosses in Eucalyptus (Bison
et al. 2006). E. grandis is widely planted as it grows rapidly and has desirable wood properties which
makes it important for pulp production (Retief and Stanger 2009), however, E. grandis is susceptible
to many diseases (Wingfield ef al. 1989, 1993). E. urophylla has been found to be more resistant than
E. grandis to diseases (Retief and Stanger 2009), therefore, hybridisation combines the desirable pulp
properties of E. grandis with the disease resistance of E. urophylla making this hybrid combination

desirable for the pulp and paper industry.

1.4.2  Genetic dissection studies in Eucalyptus

The first genetic linkage maps for Eucalyptus were constructed using an F; biparental population, of
a cross between E. grandis and E. urophylla (Grattapaglia and Sederoff 1994). The mapping
population consisted of 62 interspecific hybrids and genetic maps were constructed for the E. grandis
and E. urophylla parents. A total of 240 RAPD markers for E. grandis and 251 RAPD markers for
E. urophylla were identified, of which only 59% and 47% respectively could be included in the
genetic maps. This resulted in a low marker density of 27 ¢cM which limited the resolution of the
genetic linkage maps. For the E. urophylla genetic map, 11 linkage groups were identified which
correspond to the 11 chromosomes in Eucalyptus. A total of 14 linkage groups were identified for E.
grandis which could be due to the limited number of markers and the stringent parameters used for
genetic map construction. Despite the ability to construct genetic linkage maps, this study concluded
that a larger population and more markers would be needed to increase the power and accuracy of

the genetic maps.

In order to identify QTLs controlling vegetative propagation in the Eucalyptus, the genetic maps

constructed by Grattapaglia and Sederoftf (1994) were re-constructed using a larger population of 112
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individuals (Grattapaglia ef al. 1995). The increase in population size resulted in 10% of the markers
changing order. It was also seen that there was breakage and merging between linkage groups in the
E. grandis genetic map, which resulted in a total of 11 linkage groups instead of 14 in the previous
study. This demonstrates the important effect that sample size has on marker order and linkage group
identification. A total of 20 QTLs were identified and placed on the genetic maps however, the QTLs
had confidence intervals between 30-50 cM. It was therefore concluded that QTLs could only be
assigned to a linkage group instead of a more precise location in the genome. To achieve more
accurate locations of QTLs, the sample size and number of markers needed to be increased but this

was not feasible at the time.

Many studies were conducted to improve genetic linkage maps in Eucalyptus after the first genetic
linkage maps were constructed. The studies mainly used RAPD, AFLP and microsatellite markers.
Comparisons between the studies for the same species (Table 1.1, 1.2, focus on E. grandis and E.
urophylla), showed that there was a large difference in the total map length. This could be due to
differences in the populations as well as the number and type of markers used. In general the earlier
studies had a low marker density, low reproducibility of the markers and small samples sizes which
limited the application of the genetic linkage maps. It was only once the Eucalyptus genome sequence

became available that high density genetic linkage maps were constructed (Bartholomé et al. 2015).

In 2014, the Eucalyptus genome sequence was published (Myburg et al. 2014) which led to the
development of a Eucalyptus SNP array containing 6000 markers (Bartholomé et al. 2015). Using
the SNP array, Bartholomé et al. (2015), were able to genotype 1025 individuals of an E. grandis x
E. urophylla interspecific cross. This resulted in high density genetic maps consisting of 2551 and
2491 markers for E. grandis and E. urophylla respectively. The average marker density was 0.36 for
both E. grandis and E. urophylla, which was a significant improvement when compared with the first

genetic maps constructed for Eucalyptus. Due to the high marker density and high resolution, the
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genetic maps were used to improve the Eucalyptus reference genome. This study showed that in order
to construct genetic linkage maps in a highly outcrossing species, with a high power and resolution,

large populations and a high number of markers are required.

The above-mentioned studies focused on linkage analysis using biparental mapping populations but,
association mapping in natural populations, has also been applied in Eucalyptus. The first association
mapping study in Eucalyptus was a candidate gene association study, which made use of an open
pollinated Eucalyptus nitens population, to identify alleles and haplotypes associated with microfibril
angle (MFA, Thumma et al. 2005). The study identified two haplotypes within a gene controlling
stiffness and strength in Arabidopsis. This allowed for a more detailed analysis of the region and how
it controls MFA. While this study was able to identify marker-trait associations, it was not a genome-
wide association study and prior information regarding the candidate region was required. Based on
the findings of this study, it was concluded that for a genome-wide association study to take place, a

larger number of markers would be needed.

In 2015, the first GWAS was performed in Eucalyptus (Cappa et al. 2013). A total of 303 individuals
from an open-pollinated population of Eucalyptus globulus were genotyped using a 7,680 DArT
marker array. They were able to obtain 2,364 high quality, dominant SNPs which resulted in a marker
density of one marker every 260 kbp or 0.5 cM. In total 18 marker-trait associations were identified.
However, this study had a low power due to the small sample size which resulted in the identification
of QTL with large effects only. Therefore, it was concluded that larger sample sizes would be needed
to increase the power to detect small effect QTL. Since this study there have been a limited number
of GWAS in Eucalyptus. This is due to Eucalyptus being an outcrossing species and having a high
rate of LD decay. Therefore, a large number of markers are required to identify all the LD blocks and

until the recent development of the EUChip60K SNP chip, this was not feasible.
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1.4.3  Genetic and genomic resources available for Eucalyptus

In 2014, the complete genome assembly of E. grandis was published based on the genome sequence
of a 17-year-old Eucalyptus grandis tree produced from one generation of self-fertilization (Myburg
et al. 2014). Sanger shotgun sequencing and paired bacterial artificial chromosome (BAC)-end
sequencing were used to sequence the genome. It was estimated that 94% of the genome was
assembled and the remaining 6% consisted of repeat-rich regions or regions of heterozygosity.
Despite this, the assembly was largely successful and allowed for the development of new tools for

Eucalyptus such as the Eucalyptus SNP chip (Silva-Junior et al. 2015).

The EUChip60K SNP chip was developed by Silva-Junior et al. (2015) and is a multispecies SNP
chip. To construct the chip, 241 trees from 12 different Fucalyptus species were sequenced and a
total of 64 639 SNPs were identified for inclusion in the chip. One concern with multispecies SNP
chips is ascertainment bias, which occurs when one species is represented more often whilst making
the chip. Ascertainment bias of the EUChip60K SNP chip was limited due to the data being used
from many different Eucalyptus species. Therefore, the EUChip60K is suitable for genotyping many

different Eucalypts, making it useful for GWAS and other molecular breeding strategies.

The use of multiple parents is common in hybrid breeding programmes, but have not been utilised
for genetic dissection of growth and wood properties. These populations can possibly be used in a
similar manner to how nested multi-parent populations have been used in crop species, as a large
number of parents are crossed resulting in many F; hybrid progeny. Towards this, Sappi Forest
Research (Hilton, KZN, South Africa) have provided access to a Fi hybrid trial. The population
consists of eight E. grandis pollen parents crossed with nine E. urophylla seed parents resulting in 17
half-sib (HS) families and 72 full-sib (FS) families. However, not all the crosses were successful and
some resulted in no progeny. This provides the opportunity to analyse the parental haplotypes of

successful crosses and compare them with the parental haplotypes that did not yield progeny. Marker
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assisted breeding can then be used to identify parental species which are compatible and underlie

desirable traits.

1.5 Conclusion

Identification of QTLs underlying quantitative traits is key for improvements in breeding
programmes. Advances in mapping populations and marker identification technology have allowed
for improvements in QTL identification. Multi-parent mapping populations allow for the benefits of
linkage analysis and GWAS to be combined into a single population. This has allowed for high power
and high resolution genetic mapping studies which have been able to identify a large number of
QTLs. However, these populations have predominantly been used in species in which inbreeding can

occur and have not been fully exploited in outcrossing species such as Eucalyptus.

Interspecific hybrid breeding allows for traits of different species to be combined in a single genetic
background, which is especially useful in breeding programs. Hybrids often exhibit heterosis,
resulting in them performing better than the parental species and this can be exploited in breeding
programmes. However, not all hybrid combinations are compatible and this can be due to pre- or
postzygotic incompatibilities. This can result in a loss of genetic diversity in hybrid breeding
programmes due to incompatibility. It is therefore important to understand the mechanisms
underlying hybrid incompatibility and to determine combinations of parental genotypes which are

compatible.

While many studies have been performed in Eucalypts to dissect quantitative traits, these studies have
limitations, resulting from lack of genomic resources, limited technology available and mapping
populations which do not simultaneously have a high power and high resolution. Therefore, questions
still remain regarding QTLs underlying specific traits. Despite the recent advantages in technology

and techniques to analyse the quantitative traits in Eucalyptus, it is still not fully understood how
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different combinations of QTLs in the parents combine and affect the phenotype of the progeny. With
the development of the Eucalyptus 60K SNP chip and access to the Eucalyptus multi-parent mapping

population (hybrid trial series), we can start to answer these questions.

The aim of this study is to dissect the genetic architecture of growth and wood properties as well as
hybrid incompatibility from pure species parents into F; hybrid progeny. We will use a E. grandis
HS family and a E. urophylla HS family from a Eucalyptus F1 hybrid trial developed by Sappi Forest
Research (Hilton, KZN, South Africa). Genetic linkage maps will be constructed for one E. grandis
HS family and one E. urophylla HS family and QTLs controlling growth and wood properties
identified. Segregation distortion of the mapped markers will be analysed as this will indicate regions
of the parental genomes which underlie hybrid incompatibility. We hypothesize that there is a large
amount of diversity present in the parents resulting in phenotypic variation within the F; progeny.
We also hypothesize that there regions underlying pre- and postzygotic hybrid incompatibility
between parental genomes will manifest as segregation distortion within the Fi hybrid progeny. This
study is the first step towards being able to fully utilize and exploit the advantages of multi-parent

mapping populations in Eucalyptus.
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1.6 Figures

Meiosis and crossing over |
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Figure 1.1 Bi-parental cross used for linkage analysis. Two parents are crossed and the F; progeny are
analysed. Due to only one generation of mating, there is a limited amount of recombination resulting in large
LD blocks (black horizonal lines). Few markers (red triangles) are required to capture all the LD blocks. A
QTL (beige block) can easily be detected if it is in the same LD block as a maker as it segregates equally

throughout the progeny
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Figure 1.2 Natural population used for Genome-Wide Association Studies (GWAS). A large natural
population is analysed after many generations of open pollination. This results in a large number of mutations
(coloured blocks differing from pink and blue) resulting in a high allelic diversity. There are more than two
alleles present resulting in rare alleles and the QTL (beige block) may only be present in a small proportion of
the analysed trees. Due to many generations, the LD blocks are small (black horizontal lines) and a large

number of markers (red triangles) are required to capture all of the LD blocks.
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Figure 1.3 Multi-Advanced Generation Inter-Cross (MAGIC) population. Constructed by intercrossing a
large number of diverse founders. Only one possible combination is shown here, dotted lines represent other
possible combinations. The F, and F, progeny are intercrossed and then recombinant inbred lines are generated
through selfing resulting in a high resolution. The intercrossing increases the recombination resulting in smaller
LD blocks. The use of diverse founders results in a high allelic diversity with potential for rare alleles in the
entire MAGIC population, but an allele will not be rare in a single RIL. Therefore this population has a high

power to detect marker-trait associations.
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Figure 1.4 (Legend on page 24)

23



LITERATURE REVIEW

Figure 1.4 Nested Association Mapping (NAM) population. NAM populations are constructed by
crossing a single founder to a number of diverse founders. The use of diverse founders increases the genetic
diversity under study. Recombinant inbred lines are then generated which increases the amount of
recombination resulting in a large number of LD blocks (black horizontal lines) within in the NAM
population. This increases the resolution of the population. Within a single RIL, there are smaller LD blocks
and only two alleles, resulting in a high power to detect marker-trait associations. Due to the population

design, an equal number of RILs are produced, limiting the population substructure.
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Figure 1.5 Pre- and post-zygotic barriers to hybrid compatibility (adapted from Rieseberg and Blackman 2010). Pre-zygotic mechanisms include different
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habitats, flowering times (temporal), pollinators and pollen tube growth rates. These are barriers which act prior to fertilisation and zygote formation. Post-zygotic

barriers include structural differences and genic interactions (negative interaction) between the parental genomes. These can result in hybrid necrosis (such as

stunted growth or death of hybrids), hybrid sterility and the hybrids not surviving in the habitat.
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1.7 Tables

Table 1.1 Summary of genetic linkage maps constructed for E. grandis

Population Size of Number of Number of Average marker
type population Marker type markers linkage groups Map length (cM) density (cM) Reference
F1 hybrid Grattapglia and
(GxU) 62 RAPD 240 14 1552 6.47 Sederof 1994
F1 hybrid Verhaegen et al.
(GxU) 93 RAPD 236 11 1415 6.00 1997
F1 hybrid SSR (mapped to Grattapaglia Mapped to Grattapaglia and .
(GxU) o4 and Sederoff 1994) 20 1 Sederof 1994) NA Brondani ef al. 1998
F1 hybrid SSR (mapped to Brondani et .
(GxU) 92 al. 1998) 50 new SSR 11 2088 33.14 Brondani et al. 2002
E. grandis
BC 156 AFLP 138 11 1335 9.67 Myburg et al. 2003
Fi1 hybrid 92 SSR 202 1 1814.5 8.98 Brondani ez al. 2006
(GxU)
E. grandis 180 DA:T and SSR 957 DAIT, 34 11 924.7 0.93 Kullan et al. 2012a
BC SSR
F1 hybrid Bartholome ef al.
(GxU) 1025 SNP 2551 11 912.59 0.36 2015
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Table 1.2 Summary of genetic linkage maps constructed for E. urophylla

. . . Number of linkage Average marker
Population type Size of population Marker type Number of markers aroups Map length (cM) density (cM) Reference
. Grattapglia and
F hybrid (GxU) 62 RAPD 251 11 1101 439 Sedome 1904
. Verhaegen and
F1 hybrid (GxU) 93 RAPD 269 11 1331 4.95 Plomion 1996
Mapped to .
F1 hybrid (GxU) 94 SSR 20 11 Grattapaglia and NA Bronilgglget al
Sederof 1994)
SSR (Mapped to .
F1 hybrid (GxU) 92 Brondani et al. 50 new SSR 10 1804 20.45 Brondani et al.
2002
1998)
F1 hybrid (UxT) 82 RAPD 220 23 1504.6 6.84 Gan et al. 2003
F1 hybrid (GxU) 92 SSR 160 1 11334 7.08 Brongggge’ al
E. urophylla BC 367 DArT and SSR 912 DATrT, 46 SSR 11 1107.3 1.16 Kullan et al. 2012a
F hybrid (GxU) 1025 SNP 2491 11 903.99 0.36 Bartholome et al.

2015
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2.1 Abstract

As demonstrated in crop species, multi-parent mapping approaches can provide increased power and
resolution for identifying marker-trait associations compared to genome-wide association studies
(GWAS) and linkage (quantitative trait loci (QTL)) analysis. This strategy has not been fully
exploited in outcrossing forest tree species. As a test of feasibility, we performed genetic dissection
of growth and wood traits in a nested, multi-parent Eucalyptus grandis x E. urophylla Fi hybrid trial.
The population was constructed by crossing nine E. grandis pollen parents with eight E. urophylla
seed parents and planted across four sites. From this population, one E. grandis half-sib (HS) family
and one (intersecting) E. urophylla HS family were used in this study. A total of 349 and 367
individuals for the E. grandis and E. urophylla HS families, respectively, were genotyped using the
EUChip60K SNP chip. A total of 2124 and 2015 informative single nucleotide polymorphisms (SNP)
markers were identified for the E. grandis and E. urophylla HS families, respectively. The markers
were used to construct framework genetic linkage maps for each parent onto which QTLs were
mapped. A total of 15 and 23 QTLs underlying growth and wood properties were identified across
the four sites for the E. grandis and E. urophylla HS families respectively. The percentage of
phenotypic variance explained by the QTLs ranged from 3.06% and 36.58%. Genotype-by-
environment interaction possibly affected trait expression as different QTLs were identified in the
sites for most traits. This study represents an important first step towards genetic dissection of

complex trait variation in E. grandis x E. urophylla multi-parent F; hybrid trials.

2.2 Introduction

Quantitative genetics is important for understanding the relationship between genotype and
phenotype. Complex traits are affected by many QTL each of which have varying effects on the
phenotype and is modified by the environment. It is important to identify markers which are
associated with QTLs so that the markers can be used for marker assisted breeding (MAB) in breeding

programmes. MAB is especially important in species which have long generation times as it allows
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for early selection as well as the monitoring of the genetic diversity present in breeding programmes.

Marker-trait associations are typically identified using linkage analysis or GWAS.

Linkage analysis traditionally makes use of bi-parental crosses to identify markers linked to a trait of
interest (Mackay 2001). Due to only two alleles of each parent segregating in the population, linkage
analysis has high statistical power to detect marker-trait associations. However, due to the limited
amount of recombination, linkage disequilibrium (LD) blocks are large which limits the resolution
of linkage analysis in biparental crosses. GWAS typically use large, natural populations to identify
markers associated with a trait of interest. This is advantageous as there is a large amount of historical
recombination in natural populations, resulting in small LD blocks which gives GWAS a high
resolution and highly variable allele frequencies (Hirschhorn and Daly 2005). However, due to the
large amount of allelic diversity segregating in natural populations, the power to detect marker-trait

associations, especially for rare alleles, is limited.

Multi-parent mapping approaches aim to combine the high power of linkage analysis with the high
resolution of GWAS. Two commonly used multi-parent population types are nested association
mapping (NAM, Yu et al. 2008) and multi-parent advanced generation intercross (MAGIC, Kover et
al. 2009). These populations have been constructed by crossing a number of diverse founders
followed by the generation of recombinant inbred lines (RIL). A number of studies have used such
approaches in crop species and have been able to identify larger number of QTLs of varying effects
when compared with previous population types. For example, in the first Arabidopsis MAGIC
population, QTLs were identified with a higher precision and resolution for germination data and
bolting time when compared with previous studies (Kover et al. 2009). However, these mapping
approaches have been limited to species in which RILs can be developed and the approach has not

been fully utilised in outcrossing species.
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In order for marker assisted selection (MAS) to be successful, the environment also needs to be taken
into consideration as MAS has been shown to be affected by the environment. Peng-yuan et al. (2006)
used models to determine the effect of the environment on MAS. They found that when one
environment was used to identify markers for MAS, the application of these markers had a reduced
success. However, when QTLs were identified across multiple sites, MAS was more successful. This
is due to genotypes interacting differently with each environment through genotype-by-environment
(GxE) interaction. Therefore, in order to apply MAS to breeding programmes, it is valuable to use
multiple environments to develop marker-trait associations, especially if MAS will be used across

multiple environments.

Eucalyptus 1s an outcrossing genus which is planted globally in tropical, subtropical and some
temperate regions. Eucalyptus is often planted as interspecific Fi hybrid clones as this allows for
favourable traits from two species to be combined in a single genetic background (de Assis 2000).
One of the most commonly planted interspecific hybrid combinations in subtropical sites is
Eucalyptus grandis x E. urophylla. E. grandis has desirable growth and wood properties (Retief and
Stanger 2009), however, it is highly susceptible to disease (Wingfield ef al. 1989). Therefore, E.

grandis 1s crossed with E. urophylla which is more disease resistant (Retief and Stanger 2009).

The Eucalyptus genome was published in 2014 (Myburg et al. 2014) which enabled the development
of the Eucalyptus EUChip60K SNP chip (Silva-Junior et al. 2015). The SNP chip provides a high
throughput genotyping platform which enables large populations to be genotyped. This has enabled
advances in population genomic studies in Eucalyptus (Grattapaglia et al. 2018). Eucalyptus hybrid
breeding programmes generate Fi hybrid trials by crossing a large number of diverse individuals.
However, these populations have not been explored as possible multi-parent mapping populations for
genetic dissection of quantitative traits. Recently, a Fucalyptus multi-parent mapping population was

obtained from a F; hybrid trial constructed by Sappi Forest Research (Hilton, KZN, South Africa).
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The population was constructed by crossing nine E. grandis pollen parents with eight E. urophylla
seed parents. The population was planted across four different sites which enables QTL analysis

within and across environments.

This study focused on one E. grandis HS family and one E. urophylla HS family of the Eucalyptus
F1 hybrid breeding trial. The aim of this study was to construct framework genetic linkage maps for
the E. grandis pollen parent and the E. urophylla seed parent and to map QTLs underlying growth
and wood properties in the two HS families. This study represents an important first step towards
genetic dissection of hybrid combining ability and complex trait variation in E. grandis X E. urophylla

multi-parent F; hybrid trials.

2.3 Methods

2.3.1 Plant material and DNA isolation

A Eucalyptus multi-parent population was constructed by crossing nine E. grandis pollen parents
with eight E. urophylla seed parents to generate F; hybrid progeny (Sappi Forest Research, South
Africa, Table 2.1). This study focused on one E. grandis HS family and one E. urophylla HS family
(Table 2.1). The population was planted across four different sites in South Africa (Supplementary
Table 2.1). DNA was isolated from leaf and wood tissue using the NucleoSpin® Plant II DNA

extraction kit (Machery-Nagel, Germany) with some modifications to the protocol.

2.3.2 Trait data

A total of six traits were analysed at four years of age; diameter at breast height (DBH), height,
volume, wood density, near-infrared range (NIR) dissolving pulp yield (dPY) and NIR S:G ratio
(S:G). A two-way ANOVA was performed for the trait data for each HS family with full-sib (FS)
family and site being the two variables analysed. A one-way ANOVA was performed on each site

with FS family as a variable. Data was standardized across the sites ((mean of site — individual value)
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/ standard deviation of site). A two-way and one-way ANOVA was performed on the corrected data
for each HS and each site. Data was analysed for normality using the Shapiro-Wilk. Correlations
between the different traits were analysed on the corrected data using both Pearson’s and Spearman’s

correlation.

2.3.3 Parentage analysis

To confirm the parents of the individuals of the E. grandis HS family, 10 microsatellite markers were
used. Microsatellite markers were PCR amplified using the Qiagen® Multiplex PCR kit (Qiagen, MD,
USA). GeneScan™ fragment length analysis was performed at the University of Pretoria DNA
Sequencing Facility, using the LIZ™ 500 size standard, G5 filter set and an ABI3500XL DNA
sequencer (Applied Biosystems, CA, USA). The allele sizes of the microsatellite fragments were
analysed using GeneMarker® 1.95 (Softgenetics, State College, PA, USA) and the results were

exported to Excel for further analyses.

Discrete allele matching was used to determine if the allele sizes of the seedlings matched that of the
expected parent. The data was further analysed in CERVUS v 3.0.7 (Kalinowski et al. 2007), using
the default settings, to confirm parentage and to identify alternative parents where the progeny
mismatched parents. COLONY v2.0.6.4 (Jones and Wang 2010) was used to determine pedigree

structure as it identifies HS and full-sib (FS) relationships (Supplementary Table 2.2).

Parentage analysis for the E. urophylla HS family was performed with SNP markers using identity
by decent (IBD) analysis. Markers with a HWE P > 103 were removed and the Identity by Decent
(IBD) Estimation function in SVS 8.7.1 (SVS, Golden Helix®, Inc. Bozeman, MT) was used. The
IBD estimation was calculated using: Output PI = P(Z=1)/2 +P(Z=2) and all pairs where the PI was

>= () were recorded.
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2.3.4 SNP genotyping

Samples were genotyped using the Fucalyptus EUChip60K SNP chip (Silva-Junior et al. 2015) at
GeneSeek® (Neogen, Lincoln, NE USA). Genotypic classes were identified using GenomeStudio®
2.0 (Illumina, CA, USA) as described by Silva-Junior et al. (2015). Briefly, for each HS family, 70
samples were selected with each FS family represented equally. Samples and SNPs which met the
following criteria were used to identify the cluster positions and a cluster position file was generated:
(a) samples with a call rate > 0.8, (b) SNPs with cluster separation values > 0.3, (¢) SNPs with mean
normalized intensity values for the heterozygous cluster > 0.2, (d) SNPs with mean normalized theta
value for the heterozygous cluster > 0.2 and < 0.8, (e) removed markers which showed deviation
from the expected inheritance patterns (Parent-Parent-Child (P-P-C) > 50). Cluster position files were

generated and applied to the entire HS families data.

Following reclustering, a final report was generated and quality control performed in Golden Helix
SVS 8.7.1 (SVS8, Golden Helix®, Inc., Bozeman, MT). A physical map was applied to the genotypic
data for all markers with unique positions in the version 2.0 Eucalyptus grandis genome assembly

(https://phytozome.jgi.doe.gov/). SNPs with a call rate < 0.9 and a minor allele frequency (MAF) <

0.05 were removed. Samples with a call rate < 0.9 were excluded.

2.3.5 Species discrimination

A principal component analysis (PCA) was performed using the full set of SNP data in order to
confirm the species and hybrid status of the FS families. Prior to the PCA, markers were retained if
they met the following criteria in SVS 8.7.1: call rate > 0.9 and MAF > 0.05. The Genotype Principal
Component Analysis function in SVS 8.7.1 was used to construct the PCA for each HS family. The
following parameters were selected: number of components was set to the maximum number of
subpopulations expected, additive genetic model selected and each marker was normalised by its

theoretical standard deviation under Hardy-Weinberg Equilibrium (HWE). The results of the analysis
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were visualised by plotting the two highest Eigenvalues as a scatter plot. Reference datasets
(Reynolds et al. 2019 unpublished) for E. grandis, E. nitens, E. urophylla and E. dunnii were included

in this analysis.

2.3.6 Identification of informative SNPs

Informative markers were markers with the following criteria: markers heterozygous in the common
parent (MAF > 0.4) and homozygous in the other parents (MAF < 0.01). SNP markers were removed
from the mapping dataset if two homozygous classes were present in the progeny. SNP markers
which were segregating within 90% of the progeny of each FS family and markers which had a 90%
call rate in each FS family were retained. SNP markers were removed if more than two FS family
parents had a missing genotype for that marker or if two homozygous classes were present in the FS

parents.

2.3.7 Genetic map construction

Genetic maps were constructed in JoinMap® 4.1 (Van Ooijen 2006) using a pseudo-test-cross
mapping strategy (Grattapaglia and Sederoff 1994). The informative markers were coded according
to the segregation class <nnxnp>, with an expected segregation ratio of 1:1. A cross pollinated (CP)
population type was selected and a logarithm-of-the-odds was used to define the linkage groups. A
recombination frequency of 0.4 and regression mapping using Kosambi’s mapping function with the

default parameters was used to order the loci.

Identical loci were removed in JoinMap using the “Remove Identicals” function under the population
node. The y? test in JoinMap 4.1 was used to evaluate Mendelian segregation rates. After each round
of mapping the markers were analysed using the genotype probability function and markers with a
Nearest Neighbour fit (N.N fit) > 3 ¢cM were removed. Markers were then re-ordered and the process

continued until all markers met the parameters. Full genetic linkage maps were constructed to contain
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the maximum number of SNP markers possible. The R package LinkageMapView 2.1.2 (Ouellette
et al. 2018) was used to visualise and compare the collinearity of the genetic linkage maps with the
physical map based on version 2 of the FEucalyptus grandis genome assembly

(https://phytozome.jgi.doe.gov/).

Framework genetic linkage maps were subsequently constructed with the aim to achieve an average
marker spacing of 2 cM to facilitate QTL detection. The same parameters used for the construction
of the high density genetic linkage maps were used here, with additional criteria were that marker
intervals should not be smaller than 1 cM or larger than 10 cM. The framework genetic linkage map
and the physical position map were visualised using LinkageMapView 2.1.2 (Ouellette ef al. 2018).
The coverage of the framework genetic linkage maps were calculated using the formula from (Lange

and Boehnke 1982).

2.3.8 QTL mapping

QTL Cartographer v1.17 (Basten et al. 1994, 2004) was used to identify QTLs. A backcross (BC1)
population model type was used by converting markers scored nn to 1 and np to 0. The likelihood
ratio test statistic (LR) threshold was determined using a composite interval permutation test of 1000
permutations. Composite interval mapping (Zeng 1993, 1994) was performed with forward and
backward elimination (P-value = 0.1) and a walking speed of 1 cM. The HS families were analysed
separately and each HS was analysed across all sites with more than 80 individuals. Other traits (o-
traits) included in the QTL model were site (only when mapping in HS families) and family (when
mapping in HS families and across the sites). QTL peaks which were more than 20 cM apart were
considered as separate QTLs. QTL peak profiles were visualised in R and the QTLs were visualised

on the framework genetic linkage maps using LinkageMapView 2.1.2 (Ouellette ef al. 2018).
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For identified growth QTLs in significantly distorted regions, the marker closest to the peak was
identified. The trait data was separated into two groups based on the genotypic classes of the marker
(0,1). The mean trait value was calculated and visualised using a dot and box plot. The number of

individuals in each genotypic class was visualised using a bar plot.

2.4 Results

2.4.1 Parentage confirmation

We used microsatellite markers to confirm the parentage of 591 seedlings from the E. grandis HS
family. We found that the seed parent of one FS family was not the seed parent, but the 96 progeny
were shown to be full-siblings matching the pollen parent and therefore retained in the mapping
dataset. In total, we were able to confirm the parentage of 518 samples for the E. grandis HS family.
For the E. urophylla HS family we genotyped 393 seedlings. Following IBD analysis, we found that
24 samples did not belong to FS families in this study and four samples were re-assigned to a different

family. A total of 369 individuals in the E. urophylla HS family had parentage confirmed.

2.4.2 Species identification

We performed a PCA to confirm that the individuals of this population are E. grandis x E. urophylla
(GU) hybrids. From the PCA (Supplementary Figure 2.1), we confirmed that 12 of the FS families
were E. grandis x E. urophylla hybrids (five FS families for the E. grandis HS family and seven FS
families for the E. urophylla HS family). We found that one E. urophylia seed parent was a E. grandis
x E. urophylla F1 hybrid and we removed the seedlings of this parent (F» backcross) from the study.
We observed that the seedlings from the FS family, for which we could not identify the seed parent
using microsatellite markers, clustered with E. grandis references. These results show that the seed
parent was most likely E. grandis individual instead of E. urophylla and we removed the samples
from the study. Altogether, we confirmed the species of 349 individuals for the E. grandis HS family

and 369 individuals for the E. urophylla HS family.
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2.4.3 SNP genotyping and identification of informative SNPs

Next we performed stringent filtering criteria to identify informative SNP markers. We reclustered
the 349 confirmed GU hybrid samples of the E. grandis HS family, to obtain an accurate genotypic
assignment. For the SNP markers assayed, we obtained a mean GenTrain score of 0.69 and a mean
call rate 0f 0.93. We identified a total of 23 241 polymorphic markers out of the 64 639 SNPs assayed.
Of these, 2124 were informative (heterozygous) for the pollen parent (and homozygous in all of the
seed parents, Supplementary File 2.1). For the E. urophylla HS family, we reclustered SNP data of
the 369 confirmed GU samples. We obtained a mean GenTrain score of 0.68 and mean call rate of
0.94. We identified a total of 23 787 polymorphic markers in the mapping dataset. Of these SNPs,
2015 were seed-parent informative (heterozygous in the seed parent and homozygous in all of the

pollen parents, Supplementary File 2.1).

2.4.4 Genetic linkage maps

We constructed genetic linkage maps for the E. grandis pollen parent and E. urophylla seed parent
separately. Of the 2124 pollen-parent informative makers and the 2015 seed-parent informative
markers, we identified 430 and 362 markers respectively as identical (no recombination) and removed
them using JoinMap® 4.1 (Supplementary Files 2.2, 2.3). We defined a total of 11 linkage groups at
a logarithm of the odds score (LOD) of 5.0 (E. grandis) and LOD of 4.0 (E. urophylla) with 1694
and 1653 markers included respectively. The final full genetic linkage maps contained 1610 and 1584
markers for E. grandis and E. urophylla parents, resulting in a total map length of 896 cM and 982
cM respectively (Table 2.2, 2.3; Supplementary Figure 2.2, 2.3; Supplementary Files 2.4, 2.5). The
average marker interval for both of the parental full genetic maps was 0.6 cM. There was high
contiguity between the physical and genetic linkage maps for both parents, but there were some
markers with marker order changes (Supplementary Figure 2.2, 2.3). We found that a total of 32

markers for the E. grandis map and 20 for the E. urophylla map, mapped to different linkage groups
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than was expected based on the physical positions in the E. grandis v2 genome sequence

(Supplementary Table 2.3, 2.4; https://phytozome.jgi.doe.gov/).

We constructed framework genetic linkage maps which contained a total of 388 (E. grandis) and 422
(E. urophylla) markers (Figure 2.1, 2.2; Table 2.2, 2.3; Supplementary files 2.3, 2.4). The total map
lengths were 898 cM (E. grandis) and 978 cM (E. urophylla), resulting in an average marker interval
of 2.4 cM for both framework genetic linkage maps. The largest marker interval was 11.1 cM (E.
grandis) and 7.52 ¢cM (E. urophylla). We found that the marker order was conserved between the
genetic and physical maps (Supplementary Figure 2.4, 2.5). We identified a total of four markers in
the E. grandis and three markers for the E. urophylla framework genetic linkage maps, which mapped
to a different linkage group compared to what was expected based on their physical positions in the

E. grandis v2 genome sequence (Supplementary Table 2.3, 2.4; https://phytozome.jgi.doe.gov/).

These markers could indicate small fragments which are not assembled correctly in the Eucalyptus

v2 genome or which are duplicated within the genome.

We identified a total of 14.95% and 29.38% of the markers in the framework genetic linkage maps
for E. grandis and E. urophylla HS families respectively, which showed significant deviation from
the expected Mendelian segregation ratio at a 0.05 significance level. We expected this as segregation
distortion is common in interspecific crosses (Myburg et al. 2003; Brondani et al. 2006).
Additionally, Zuo et al. (2019) showed that segregation distortion has little effect on the construction
of genetic linkage maps Therefore, we retained markers showing significant segregation distortion in
the genetic linkage maps as removing them would have resulted in a large gaps in the maps, especially

in regions where there were clusters of distorted markers.

We compared the framework genetic linkage maps with the physical position map to determine the

map coverage. Based on the physical positions of the SNP makers, the genetic linkage maps captured
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a total of 598.67 Mbp and 599.4 Mbp for E. grandis and E. urophylla respectively. This resulted in a

99.98% of the genome within a distance of 10 ¢cM from the closest DNA marker.

2.4.5 Trait data

We analysed the following traits; DBH, height, volume, wood density and S:G (trait data summarised
in Supplementary Table 2.5, 2.6). We observed a site effect from the distribution of the trait data
(Supplementary Figure 2.6, 2.7). The results of the two-way and one-way ANOVA’s showed that
site and/or family were significantly affecting traits within the E. grandis HS and the E. urophylla

HS families (Supplementary Table 2.7, 2.8, 2.9, 2.10).

We standardised the data for site effect. The standardised trait data is summarised in Table 2.4 and
Table 2.5. The two-way and one-way ANOVA’s for the E. grandis and E. uropylla HS families
showed that there was no significant effect of site, while family as well as site and family affected

some traits (Supplementary Table 2.11, 2.12, 2.13, 2.14).

Next we analysed the standardised data for normality using the Shapiro-Wilk test (Table 2.4, 2.5).
We observed that most of the traits were not normally distributed, but there were some traits which
were normally distributed on some sites. We also analysed the standardised data correlation using
Spearman’s and Pearson’s correlation (Supplementary Figure 2.8). We found that for both the E.
grandis HS family and E. urophylla HS family, DBH, height and volume were highly correlated with

r>0.81 and rho > 0.75. This is expected as these traits are dependent on each other.

2.4.6 QTL mapping
We used the standardised phenotypic data for QTL mapping. The permutation test for the significant
threshold resulted in a LR threshold of 12.9 for both HS families and was applied across all sites. We

analysed QTLs in the two HS families and for each HS family within sites that had more than 80
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individual. We included site (for each HS family) and family (for each HS family and each HS family
across the different sites) as other traits (o-traits, Supplementary File 2.6). We did not observe any
difference in the results when using the cofactors versus not using the cofactors. We mapped the

QTLs detected onto the framework genetic linkage maps (Figure 2.1, 2.2).

For the E. grandis HS family, we detected QTLs for all traits except for S:G, however, we did not
detect QTLs for all of the traits across each site (Figure 2.1, Table 2.6). We observed that the
percentage of phenotypic variance explained by the detected QTLs ranged from 5.01% (across the
entire HS family) to 36.58% (on site168, Table 2.6). We found that the QTL profiles varied greatly
across sites with no QTLs for the same trait overlapping across the sites (Supplementary Figure 2.9).
For the E. urophylla HS family, we detected QTLs for all traits with the same QTL for DBH, height
and volume detected on linkage group 3 across all sites and the whole HS family (Figure 2.2; Table
2.7). Additionally, we found a QTL for wood density which co-located with the QTLs for DBH,
height and volume on linkage group 3, across the E. urophylla HS family and on site 167. The allelic
effect for all these QTLs were in the same direction (Table 2.7; Supplementary Figure 2.10). We did
not observe other QTLs for a single trait showing overlap across sites, and the QTL profiles varied
greatly across sites (Supplementary Figure 2.10). The percentage of phenotypic variance explained
by the QTLs ranged from 3.06% (across the entire FS family) to 19.71% (on sitel167,Table 2.7).

These results show that we could detect medium to large effect QTLs.

We compared the location of detected QTLs with regions of significant segregation distortion across
the HS families and the sites. We found that the QTLs for height (Chr10) across the entire E. grandis
HS family and the QTL for NIR predicted dissolving pulp yield (Chr11) for the E. grandis HS family
in site165, were in regions of significant distortion. In the E. uropylla HS family and across all sites,
the QTLs detected on Chr3 for DBH, height and volume were in regions of significant distortion.

Additionally, we found that the QTLs for wood density on Chr3 and Chr6 as well as the QTLs for
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S:G lignin ratio in the full E. urophylla HS family and the QTLs for wood density (Chr3) for site167

were in regions of significant distortion.

Nest we analysed the trait data of individuals and the number of individuals of each genotypic class
to determine if a biological reason could explain the growth QTLs identified in regions of significant
segregation distortion (Supplementary Figure 2.11). For the E. grandis height QTL identified in a
significantly distorted region, we found that the genotypic class which was more prevalent in the
population actually had smaller trait values, opposite to expectation. For all of the E. urophylla
growth QTL detected in significantly distorted regions, we found that the genotypic classes with
higher trait values were the genotypic classes which were favoured within the population. These
results suggest that the hybrid compatibility barriers underlying segregation distortion in the E.
urophylla FS families could be due to a postzygotic factor which affects early seedling survival and

has a growth effect in the surviving individuals.

2.5 Discussion

Genetic linkage maps can be used to identify molecular markers underlying traits of interest which
has applications such as MAB. To improve the power and resolution for identifying marker-trait
associations, multi-parent mapping populations have been used in many crop species (Buckler et al.
2009; Kover et al. 2009). Towards this, we constructed framework genetic linkage maps of one E.
grandis pollen parent and one E. urophylla seed parent of a Eucalyptus F1 hybrid breeding trial and

mapped QTLs controlling growth and wood properties.

The main limitation of this study was the small sample size at the site and FS family level. The sample
sizes are of heightened concern in this study due to the complexity of the population used. The
population contained a number of nested FS families and was planted across sites. In order to take

into consideration both FS family and site effects, larger sample sizes are needed, with a balanced
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representation of FS families per site. We could not perform QTL mapping within all sites as there
were not enough individuals present on all the sites. Even within the sites which we did map QTLs,
the sample size ranged from 83 to 114 individuals. This limited the power to detect QTLs and the

effect of FS family was not taken into consideration.

2.5.1 Identification of informative markers

Informative markers in this study were classified as heterozygous in the common (HS) parent and the
same homozygous class across all other parents, which limited the number of informative markers
identified. Difficulty in identifying informative markers can be due to the common parent having
homozygous markers where heterozygous markers are required. Additionally, markers in the other
parents need to be the same homozygous class across all of the parents which is not always possible.
This resulted in some regions in the genetic linkage maps having larger marker intervals than desired
(> 10 cM). However, despite these limitations, we were still able to identify enough informative
markers to have a high average marker density in the full genetic linkage maps and good coverage in

the framework linkage maps for QTL detection.

2.5.2 Genetic linkage maps

The full and framework genetic linkage maps for both parents contained 11 linkage groups which
correspond to the haploid number of chromosomes in Eucalyptus (n = 11). Previous genetic linkage
maps for E. grandis and E. urophylla had map lengths between 822 — 1815 ¢cM and 886 — 1505 cM
respectively (Gan ef al. 2003; Brondani et al. 2006; Kullan ef al. 2012b; Bartholomé et al. 2015).
The framework genetic linkage maps in this study had total map lengths of 896 cM (E. grandis) and
982 cM (E. urophylla) which are towards the lower end of map lengths for Eucalyptus. This could
mean that this study was able to generate more accurate genetic linkage maps as they also have a high
contiguity with the physical position maps which suggests accurate marker placements. However,

different mapping programmes, algorithms, markers used and mapping populations can influence
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map length and could be the reason why there some variation in map length between different studies
(Kullan et al. 2012b). Additionally, the positions of markers at the end of chromosomes can affect
the map length as there may not be sufficient marker coverage at the ends of the chromosomes. In
this study, we had the physical positions of the last markers on the genetic linkage maps and the
average physical distance from the terminal genetic markers was 0.6 Mbp for both parental maps.
This shows that the terminal ends of the chromosomes do have sufficient marker coverage, making

the total map length more accurate.

Despite the high contiguity between the genetic and physical positions, there were some markers in
both parental maps which mapped to a different linkage group to what was expected based on the
Eucalyptus v2 genome (Supplementary Table 2.3 and 2.4). This could be due to a number of reasons;
the genome sequence assembly containing these markers may be incorrect, the markers may be
replicated within the genome, or the markers may be transposed within the parental genomes. Further
investigations such as re-sequencing the parental genomes could help determine the cause of the

differences.

The comparison of the framework genetic linkage maps with the physical position maps allowed us
to evaluate genome coverage. All markers included in the genetic linkage maps have unique map
positions within the Eucalyptus v2 genome, of which 641 Mb is assembled into contigs. Therefore,
99.98% of the genome was within 10 cM of the nearest marker for both framework genetic linkage
maps. This is similar to the genome coverage of Bartholome ef al/ 2015 (97.2% - 98.3%) which shows

that we were able to identify enough informative markers to achieve a high map coverage.

Segregation distortion occurs when the observed genotypic ratios differ from what is expected under
Mendelian segregation ratios. Markers in both the E. grandis and E. urophylla framework linkage

maps showed significant segregation distortion (at a 0.05 significance level). Segregation distortion
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in F; hybrids can be caused by both pre- and postzygotic hybrid incompatibility factors. In
Eucalyptus, segregation distortion has previously been reported for interspecific crosses (Grattapaglia
and Sederoff 1994; Myburg ef al. 2003; Kullan ef al. 2012b) and was therefore expected in this study.

Segregation distortion and hybrid compatibility is discussed in more detail in Chapter 3.

2.5.3 QTL mapping

We were able to detect QTLs for growth and wood properties segregating in the F; hybrid progeny,
with the percentage of phenotypic variance explained by the QTLs ranging from 3.06 % - 36.5%,
which shows that both large effect and moderate effect QTLs were detected. Due to different mapping
population and different markers being used in this study it is challenging to compare results with
previous studies. There were some linkage groups (LG) which had QTLs for the same traits detected
in previous studies, such as LG1 for wood density in E. grandis and LG3, LG6, LG8 and LG9 for
wood density in E. urophylla (Kullan et al. 2012a). However, we cannot determine if these are the

same QTLs due to the different marker systems used in the studies.

Due to the population being generated as an F; hybrid breeding trial, we were initially only going to
perform QTL mapping in the entire HS families which had a sufficient number of individuals to have
a high statistical power. However, the discovery of genotype-by-environment interaction led us to
perform QTL mapping within each site. When mapping within the sites, the power was limited due
to the small sample size across each site, which varied between 83 — 141 individuals. This can be
seen by QTL peaks which do not reach the significance threshold (Supplementary Figure 2.9, 2.10).
While the percentage of variation explained by QTL detected in this study ranged from 3.06% —
36.5%, the smallest percentage was obtained for the E. urophylla HS family across all sites which
had the largest number of individuals (n = 367). With the small population size, the Beavis effect also
applies which means that the percentage of variation explained by a QTL may be overestimated

(Beavis 1998). Therefore, we expect that an increase in sample size in each site will allow for the
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detection of more small effect QTLs and greater precision for the allele effects that are detected.
Wood density had the largest number of QTLs detected in both the E. grandis (8§ QTLs) and E.
urophylla HS (9 QTLs) as well as within the sites. These results are consistent with previous studies
which found a higher number of QTLs for wood density than DBH (Kullan ef al. 2012a). This is due
to growth traits such as height, volume and DBH having a lower heritability than wood density, which

results in smaller effect QTLs (Kullan ef al. 2012a).

Previous studies found that segregation distortion can have an effect on QTL mapping. Xu (2008)
found that segregation distortion had a negative effect on QTL detection 44% of the time for QTLs
with dominant effects. Zhang et al. (2010) found that the power of QTL detection can be reduced in
significantly distorted regions. However, the same study concluded that in large populations, the
effect on the position and false-positive detection rate of QTLs would not be affected by segregation
distortion. In the current study, some of the QTLs detected were found to be in significantly distorted
regions. Due to the small sample size of this study, there is a chance that the position of the QTLs
detected in those regions are false-positives. Future studies would need to be conducted in larger

populations to confirm these results.

We hypothesised that segregation distortion could have an effect on growth traits. To determine if
there could be a biological reason for the QTLs detected in significantly distorted regions, we
analysed the trait data and number of individuals for each genotypic class for the detected growth
QTLs in distorted regions. For the E. urophylla QTLs, the genotypic classes that were more prevalent
contained individuals with higher growth trait values. This could mean that the hybrid incompatibility
factor (or hybrid viability factor) causing the segregation distortion is providing a growth advantage,
or more likely the individuals carrying the alternative allele are have their growth affected and are
therefore smaller. For the E. grandis height QTL on chromosome 10, the opposite was seen. Here

individuals carrying the more prevalent allele were smaller than the individuals carrying the
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alternative allele. This QTL should therefore be treated with caution as it could be a false positive
QTL caused by the segregation distortion. These results suggest that including significantly distorted
loci in QTL mapping studies can help to better understand the effect of hybrid incompatibility on

growth traits.

2.5.4 Genotype-by-environment effect on QTL

GxE has been detected in previous studies in Eucalyptus when analysing QTLs across different
environments. The GXE interaction has been identified for both growth and wood properties (e Silva
et al. 2006; Freeman et al. 2013). In the current study, different QTLs were detected across individual
sites which suggests that GXE plays a role. For the E. grandis HS family, there was no overlap
between QTLs identified on the different sites. This shows that there could be environment dependent
interactions which affect growth and wood property traits. We however, could not directly estimate
the GXE effects on QTLs and sample size limitations made QTL detection within single sites prone

to false-negatives.

QTLs for DBH, height and volume were detected on chromosome 3, for the E. urophylla HS family
and across the two sites. These traits were highly correlated (r = 0.81 — 0.96, which is expected as
they are mathematically dependent on each other) so it can be expected that the QTLs would be
located on the same region of the genome. The detection of QTLs in the same region across the
different sites suggests that these QTLs are expressed on all sites and possibly not affected by the
environment. Therefore, markers underlying this region could be possible targets for marker-assisted
breeding. Additionally, we found a QTL for wood density which co-located with the QTLs for DBH,
height and volume on chromosome 3 for the E. urophylla HS family and across site 167. These QTLs
all had allelic effects in the same direction. Wood density was also found to be positively correlated
with DBH, height and volume (r = 0.30 — 0.36). These results suggest that higher growth is associated

with higher wood density. Therefore, within this QTL region, there could be one gene controlling all
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of the above traits or multiple tightly linked genes. Previous studies have also identified the co-
location of QTLs for growth traits and wood density in Eucalyptus (Grattapaglia et al. 1996, Thumma
et al. 2010). However, Thumma et al. (2010) found that there was a negative correlation between
wood density and DBH. Therefore, there could be many complex interactions between multiple genes
which affect growth and wood density traits. The QTLs for all the wood properties in the E. urophylla

HS family were site specific which suggests that these traits are affected by environment.

While we were able to map QTLs across sites, the effect of FS family was not taken into
consideration. During QTL mapping we did add FS family as a co-factor but this did not change the
outcome of the analysis. This could be due to the small sample sizes on each site and limited
representation of FS families per site. Therefore, future studies will need to be done using balanced
FS families (equal number of progeny per FS family) so that the effect of family can be taken into

account.

2.6 Conclusions

We were able to construct framework genetic linkage maps in a Eucalyptus multi-parent population
with an average marker interval of 2.4 ¢cM for an E. grandis pollen parent and E. urophylla seed
parent. QTLs were identified for growth and wood properties in HS families and within different
sites, with each QTL explaining between 3.06 % and 36.58%,. This study shows that a multi-parent
mapping approach can work in an outcrossing species such as Fucalyptus. However, larger sample
sizes are required at the FS family and site level, with balanced FS families. The ability to use this
approach in Eucalyptus is advantageous as these types of populations already exist as Fi hybrid

breeding trials and can now be exploited for genetic dissection of quantitative traits.
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2.8 Tables

Table 2.1 Eucalyptus multi-parent mapping population. Nine E. grandis pollen parents were crossed with eight E. urophylla seed parents. This study focused on
one E. grandis half-sib (HS) family and one E. urophylla HS family (bold).

E. grandis pollen parents

FK592 FK604 FK593 FK605 FK594 FK595 FK596 FK597 FK608
a - - - . . . d d d E. urophylla HS
Provenances Australia Australia Australia SAFRI SAFRI SAFRI Zululand' Zululand' Zululand' individuals
FK606 Lomblen 0 0 0 60 0 112 0 112 24 308
FK598 Lomblen 0 0 102 0 63 75 0 103 0 343
» FK607 Lomblen 53 0 0 0 30 0 74 22 0 179
5
& FK599 Timor 115 111 105 79 104 52 113 109 0 788
=S FK600 Timor 77 48 26 0 105 111 82 75 0 524
=
~
S
§ FK601 Flores 132 113 104 47 51 113 59 30 0 649
S3)
FK602 Flores 84 60 84 108 107 110 81 0 0 634
FK603 Flores 103 103 97 25 30 81 30 48 0 517
E. grandis HS 564 435 518 319 490 654 439 499 24

individuals

2 Provenances show where the original seed was sourced from. The E. urophylla seed parents had seed sourced from Indonesian Islands as shown
b Seed sourced from a seed orchard in Australia

¢ Seed sourced from the South African Forestry Research Institute (SAFRI) E. grandis breeding program

¢ Seed sourced from E. grandis bred specifically for the Zululand regions by the South African pulp and paper industry (Sappi) breeding program
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Table 2.2 Summary of SNP markers mapped for each linkage group in the E. grandis HS family

Linkage E. grandis HS family
group
Full genetic linkage map Framework genetic linkage map
No. of
informative Mean Largest Mean Largest
No. of No. . .

informative ma.lrkers. after markers Size in oM distance marker No. Size in oM distance marker

markers identical mapped between interval markers between interval
markers markers (cM) (cM) markers (cM) (cM)

removed

1 181 144 143 77.54 0.54 3.33 35 76.95 2.26 3.86
2 251 175 168 83.13 0.50 10.49 31 82.67 2.76 10.44
3 120 94 90 89.02 1.00 11.77 27 92.18 3.55 11.06
4 176 136 111 61.09 0.56 8.90 29 63.43 2.27 4.88
5 210 172 165 74.74 0.46 5.08 35 74.73 2.20 5.68
6 273 227 227 102.86 0.46 2.71 52 102.71 2.01 3.61
7 167 149 145 61.28 0.43 5.01 29 61.34 2.19 5.04
8 237 194 191 109.56 0.68 5.59 49 107.87 2.25 5.54
9 146 121 98 68.68 0.71 9.16 25 68.17 2.84 8.74
10 158 127 124 78.74 0.64 5.47 35 78.47 2.31 5.54
11 205 155 148 89.08 0.61 4.66 41 89.24 2.23 4.63
Total 2124 1694 1610 895.71 0.60 11.77 388 897.75 2.44 11.06
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Table 2.3 Summary of SNP markers mapped for each linkage group in the E. urophylla HS family

Linkage i
gr0u§ E. urophylla HS family
Full genetic linkage map Framework genetic linkage map
No. of
No. of informative No. Mean Largest Mean Largest
. . markers after . distance marker No. . distance marker
informative . . markers Size in cM . Size in cM .
markers identical mapped between interval markers between interval
markers markers (cM) (cM) markers (cM) (cM)
removed
1 195 152 149 80.89 0.55 4.73 36 80.68 2.31 4.74
2 139 120 119 81.61 0.69 6.74 34 81.45 2.47 6.90
3 198 158 155 104.79 0.68 7.21 40 104.16 2.67 7.52
4 154 129 126 73.53 0.59 543 33 73.68 2.30 5.48
5 100 92 90 72.06 0.81 4.32 31 71.95 2.40 431
6 280 225 198 116.68 0.59 4.30 52 115.87 2.27 5.44
7 137 123 117 75.12 0.65 3.83 35 74.76 2.2 4.36
8 247 200 192 109.39 0.57 6.76 42 108.73 2.65 6.80
9 213 172 166 75.90 0.46 3.18 35 75.59 2.22 3.70
10 175 120 137 90.42 0.67 4.76 40 89.75 2.30 4.53
11 177 138 135 101.29 0.76 443 44 100.90 2.35 5.60
Total 2015 1629 1584 981.68 0.64 7.21 422 977.51 2.38 7.52
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Table 2.4 Summary statistics of the corrected trait data of the E. grandis HS family. Traits analysed were
diameter at breast height (DBH), height, volume, wood density, NIR dissolving pulp yield (dPY) and NIR S:G
lignin ratio (S:G). Minimum (min) and maximum values were calculated for each trait in the E. grandis HS

family and across the four sites. Shapiro-Wilk test for normality was performed for each trait.

E. grandis HS family corrected data (n = 349)
Shapiro-Wilk W Test

Trait Min Max W p-value
DBH -2.69 3.45 0.97 6.44E-06*
Height -2.01 4.12 0.89 2.51E-13%*
Volume -4.14 2.1 0.99 8.76E-03*
Density -2.57 291 1 4.96E-02*
dPY 2.3 5.09 0.92 9.44E-11*
SG -3.1 3.03 0.99 3.10E-02*
E. grandis Sitel65 corrected data (n=105)
DBH -2.69 2.58 0.96 4.60E-03*
Height -1.53 3.53 0.87 4.57E-07*
Volume -4.14 1.67 0.94 9.40E-04*
Density -2.57 1.74 0.97 7.62E-2
dPY -2.11 5.09 0.9 6.43E-06*
SG -2.96 243 0.99 8.63E-01
E. grandis Sitel66 corrected data (n = 62)
DBH -1.86 2 0.94 2.12E-02*
Height 2.1 1.81 0.96 1.06E-01
Volume -2.19 1.62 0.97 2.24E-01
Density -1.82 2.37 0.96 8.82E-02
dPY -1.53 3.15 0.92 3.15E-03*
SG -3.1 1.89 0.93 6.83E-03*
E. grandis Sitel67 corrected data (n =99)
DBH -1.85 2.78 0.96 1.15E-02*
Height -1.52 3.63 0.9 9.84E-06*
Volume -2.04 2.06 0.98 1.91E-01
Density -2.32 291 0.98 1.70E-01
dPY 2.3 2.33 0.95 6.04E-03*
SG -1.88 3.03 0.96 2.85E-02*
E. grandis Site168 corrected data
DBH -1.67 3.45 0.94 1.67E-03*
Height -0.84 4.12 0.73 5.67E-10*
Volume -2.17 2.1 0.99 7.76E-01
Density -2.16 2.15 0.97 1.60E-01
dPY -1.17 3.31 0.79 2.79E-08*
SG -2.79 1.21 0.84 5.47E-07*

* Statistically significant at P < 0.05
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Table 2.5 Summary statistics of the corrected trait data of the E. urophylla HS family. Traits analysed
were diameter at breast height (DBH), height, volume, wood density, NIR dissolving pulp yield (dPY) and
NIR S:G lignin ratio (S:G). Minimum (min) and maximum values were calculated for each trait in the F.

urophylla HS family and across the four sites. Shapiro-Wilk test for normality was performed for each trait.

E. urophylla HS family corrected data (n = 367)
Shapiro-Wilk W test

Trait Min Max W p-value
DBH -2.14 4.56 0.97 1.52E-06*
Height -1.98 7.32 0.88 2.00E-15%*
Volume -3.24 2.21 0.99 5.98E-03*
Density -2.95 3.21 1 9.57E-01
dPY -2.19 4.16 0.96 1.64E-07*
SG -4.13 3.34 0.99 2.93E-03*
E. urophylla Site165 corrected data (n = 100)

DBH -2.14 2.66 0.94 4.60E-04*
Height -1.31 3 0.85 1.83E-08*
Volume -3.24 1.66 0.97 2.35E-02*
Density -2.95 2 0.97 3.99E-02*
dPY -2.19 3.09 0.99 4.31E-01

SG -3.82 1.73 0.97 1.83E-02*
E. urophylla Site166 corrected data (n = 67)
DBH -1.85 2.49 0.97 2.28E-01
Height -1.94 242 0.98 3.74E-01
Volume 2.2 2.76 0.97 1.46E-01
Density -1.98 1.6 0.96 6.43E-01
dPY -1.67 4.16 0.91 9.13E-04*
SG -4.13 1.91 0.9002 5.58E-04*
E. urophylla Site167 corrected data (n = 141)
DBH -1.94 4.56 0.96 5.35E-04*
Height -1.98 7.32 0.86 9.02E-10*
Volume -2.36 1.99 0.98 1.50E-02*
Density -2.26 3.21 0.99 4.74E-01
dPY -1.58 3.19 0.92 2.08E-06*
SG -1.96 3.34 0.95 1.86E-04*
E. urophylla Site168 corrected data (n = 59)
DBH -1.54 3.48 0.93 4.789E-03*
Height -0.76 4.46 0.65 1.04E-09*
Volume -2.03 2.21 0.98 7.45E-01
Density -2.16 2.15 0.98 4.35E-01
dPY -1.36 2.84 0.85 4.61E-05*
SG 2.4 1.99 0.96 1.41E-01

* Statistically significant at P < 0.05
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Table 2.6 QTL detected for the E. grandis HS family pollen parent. QTL analysis was performed across
three sites and the entire HS family. QTL were detected (at a 0.05 threshold) for height, wood density,
diameter at breast height (DBH), volume, and NIR dissolving pulp yield (dPY). Composite interval mapping

(CIM) in QTLCartographer v1.17 (Basten et al 1998, 2000) was used to detect QTL.

: 2
Peak position Variance (R%)

Trait Linkage group (cM) LR Additive effect explained by
QTL (%)
E. grandis HS (n = 349)

Height 10 42.59 15.63 -0.45 5.01
Wood density 1 3.11 16.67 0.45 5.10
Wood density 10 21.80 24.29 -0.78 7.50

E. grandis site165 (n = 105)
DBH 8 105.04 12.97 0.66 10.44
Wood density 9 58.23 17.75 0.79 14.32
dPY 5 51.13 13.74 0.69 11.02
dPY 11 19.02 18.95 1.21 13.87

E. grandis site167 (n = 99)
DBH 11 37.87 14.99 1.19 14.47

Volume 3 29.85 15.13 0.99 15.86
Wood density 1 3.11 16.53 0.74 13.26
Wood density 6 52.73 26.74 -1.00 23.05

E. grandis site168 (n = 83)

Volume 3 40.92 32.88 -1.55 36.58
Wood density 8 38.73 22.61 1.45 21.51
Wood density 10 21.80 21.62 -1.10 22.44
Wood density 10 50.91 17.90 0.95 17.44
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Table 2.7 QTL detected for the E. urophylla HS family seed parent. QTL analysis was performed across
two sites and across the HS family. QTL were detected (at a 0.05 threshold) for diameter at breast height
(DBH), height, volume, wood density, NIR dissolving pulp yield (dPY) and NIR S:G lignin ratio (S:G).

Composite interval mapping (CIM) in QTLCartographer v1.17 (Basten et al 1998, 2000) was used to detect

QTL.
. . Peak position . Variar?ce (R)
Trait Linkage group (cM) LR Additive effect explained by
QTL (%)
E. urophylla HS (n =367)
DBH 2 70.05 12.92 0.48 3.06
DBH 3 53.70 70.52 -0.94 18.25
Height 3 53.70 40.50 -0.76 10.71
Volume 3 53.70 66.34 -0.90 17.05
Wood density 1 2.33 15.19 0.42 4.36
Wood density 3 42.02 14.97 -0.43 4.10
Wood density 3 64.48 17.26 -0.46 4.71
Wood density 6 60.47 13.59 0.40 3.78
Wood density 11 70.69 14.04 -0.41 4.06
dPY 11 94.70 24.61 -0.53 6.88
S:G 4 6.65 16.12 -0.63 4.93
S:G 6 50.46 17.36 -0.48 5.01
E. urophylla site165 (n = 100)
DBH 3 53.70 27.35 -0.90 19.30
Height 3 53.70 23.75 -1.22 18.49
Volume 3 53.70 22.89 -0.81 15.50
Wood density 8 89.12 14.63 -0.65 11.05
Wood density 11 75.84 25.18 -0.86 19.68
E. urophylla site167 (n = 141)
DBH 3 49.54 34.22 -0.98 18.96
Height 3 51.54 20.29 -0.84 11.37
Volume 3 49.54 37.28 -0.98 19.71
Wood density 3 63.97 16.52 -0.62 9.02
Wood density 9 32.57 19.62 -1.07 10.52
dPY 11 79.30 13.38 -0.57 8.02
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2.9 Figures
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Figure 2.1 (Legend on page 63)
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Figure 2.1 Framework genetic linkage map with QTL segregating in the E. grandis HS family pollen parent. The maps were constructed in JoinMap®
4.1 (Van Ooijen 2005) and visualized using LinkageMapView 2.1.2 (Ouellette et al. 2018). A total of 388 markers were mapped over 11 linkage groups,
resulting in a total map length of 898 cM. The average marker distance is 2.4 cM and the largest marker interval is 11 ¢cM. The marker positions are shown on
the left of each linkage group (cM Kosambi) and marker names are shown on the right of each linkage group. QTLs were identified for the following traits;
diameter at breast height (DBH), height, volume, wood density, NIR dissolving pulp yield (dPY) and NIR S:G lignin ratio (S:G). QTLCartographer v1.17
(Basten et al 1994, 2004) was used to identify significant QTL (genome-wide threshold of 0.05), using composite interval mapping (CIM). The colour of the
bars represent the test population in which the QTL were detected; green is the entire E. grandis HS family, pink is site165, purple is site167 and orange is

site168.
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Figure 2.2 (Legend on page 63)
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Figure 2.2 Framework genetic linkage map with QTL segregating in the E. urophylla HS family. The maps were constructed in JoinMap®4.1 (Van Ooijen
2006) and visualised using LinkageMapView 2.1.2 (Ouellette et al. 2018). A total of 11 linkage groups, containing 422 markers were mapped. Marker names are
shown on the left and marker positions on the right (cM, Kosambi). The largest marker interval was 7.5 cM and the average marker distance was 2.4 cM. QTL were
identified for the following traits; diameter at breast height (DBH), height, volume, wood density, NIR dissolving pulp yield (dPY) and NIR S:G lignin ratio (S:G)
in the E. urophylla HS family seed parent. QTLCartographer v1.17 (Basten et al 1994, 2004) was used to identify significant QTL (genome-wide threshold of 0.05),
using composite interval mapping (CIM). The colour of the bars represent the population in which the QTL were detected; blue is the entire E. urophylla HS family,

pink is site165 and purple is site167.
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2.11 Supplementary Figures
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Supplementary Figure 2.1 PCA showing the clustering of SNP genotypes of FS families in the E.
grandis and E. urophylla HS families. E. grandis and E. urophylla reference sets were used. A total of
six FS families in the E. urophylla HS family cluster half-way between the E. urophylla seed parent
(FK602) and the E. grandis pollen parents (FK592, FK593, FK594, FK596, FK604, FK605) which
suggests that these are E. grandis x E. urophylla F, hybrids. The intercept FS family (orange) cluster half-
way between the E. urophylla seed parent (FK602) and the E. grandis pollen parent (FK595) which is
consistent with the family being a GU F; hybrid. Of the seven E. grandis FS families, four clustered
between the E. grandis pollen parent (FK595) and the E. urophylla seed parents (FK599, FK600, FK601,
and FK603) consistent with being GU F; hybrids. One E. urophylla seed parent (FK598) is half-way
between the E. grandis and E. urophylla references which suggests it is a GU F; hybrid. The FS family
FK598 clusters half-way between seed parent FK598 and the E. grandis pollen parent (FK595) which
suggests that the FS family is most likely GUXG backcross. The family in which the seed parent was
unknown (inferred family) clusters near the E. grandis pollen parent (FK595) which suggests the seed
parent is a pure E. grandis individual and therefore the FS family is the result of a GxG cross. The inferred
family and family FK598 were removed from the study, resulting in five FS families within the E. grandis

HS family.
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Supplementary Figure 2.2 (Legend on page 73).
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Supplementary Figure 2.2 E. grandis full genetic linkage map and physical map. The full genetic linkage
map (left) and the physical position map (right) were visualised using LinkageMapView 2.1.2 (Ouellette et al.
2018). The marker positions (cM Kosambi) and marker names are shown on the left and right of the linkage
groups respectively. A total of 1610 SNP markers are included in the genetic map resulting in a total map length

of 896 cM. The largest marker interval was 11.8 cM and the average.
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Supplementary Figure 2.3 (Legend on page 78).
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Supplementary Figure 2.3 (Continued, legend on page 78)
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Supplementary Figure 2.3 (Continued, legend on page 78).
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Supplementary Figure 2.3 (Continued, legend on page 78).
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IDENTIFICATION OF QTLS UNDERLYING GROWTH AND WOOD PROPERTIES

Supplementary Figure 2.3 E. urophylla full genetic linkage map and physical map. The full genetic linkage
map (right) and the physical position map (left) was constructed using 1653 seed parent informative markers. The
marker names are shown on the right with the position (Kosambi, cM) on the left. The genetic linkage maps were
visualised using LinkageMapView 2.1.2 (Ouellette et al. 2018). The maps contained 11 linkage groups with a

total map distance 982 ¢cM . The largest marker interval was 7.2 ¢cM and the average marker distance was 0.6 cM.
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Supplementary Figure 2.4 Framework genetic linkage map and physical map for the E. urophylla seed parent. The marker order is generally conserved between

the physical map (Mbp, right) and the framework genetic linkage map (cM, left).
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Supplementary Figure 2.4 (Continued).
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Supplementary Figure 2.5 Framework genetic linkage map and physical position map for E. grandis pollen parent. The marker order is generally conserved

between the physical position map (Mbp, right) and the framework genetic linkage map (cM, left).
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Supplementary Figure 2.5 (Continued).
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Supplementary Figure 2.6 (Legend on page 84)
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Supplementary Figure 2.6 Trait distribution for the E. grandis HS family across the different sites. The x-axis represents the values of each trait while
the y-axis represents the frequency (number of individuals). A. Diameter at breast height (DBH) B. NIR S:G lignin ratio (SG) C. Wood density D. Volume
E. Height (HGT) F. NIR dissolving pulp yield (dPY). The graphs on the left are for the corrected data ((individual value — mean of site) / SD of site) and
the graphs on the right are for the raw data. The mean and SD of the corrected data is 0 and 1 respectively. From the raw data it can be seen that there was a

site effect.
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Supplementary Figure 2.7 (Legend on page 86)
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Supplementary Figure 2.7 Trait distribution for the E. urophylla HS family across the different sites. The x-axis represents the values of each trait
while the y-axis represents the frequency (number of individuals). A. Diameter at breast height (DBH) B. NIR S:G lignin ratio (SG) C. Wood density D.
Volume E. Height (HGT) F. NIR dissolving pulp yield (dPY). The graphs on the left are for the corrected data ((individual value — mean of site) / SD of
site) and the graphs on the right are for the raw data. The mean and SD of the corrected trait data is 0 and 1 respectively. From the raw data it can be seen

that there was a site effect.
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Supplementary Figure 2.8 Phenotypic correlations for all corrected trait data. Correlation performed
with Pearson (r) and Spearman (rho) tests for E. grandis HS family (A) and E. urophylla HS family (B).
Traits analysed are diameter at breast height (DBH), height (HGT), volume, wood density, NIR dissolving
pulp yield (dPY) and NIR S:G lignin ratio (S:G). In both the E. grandis and E. urophylla HS families, DBH,

height and volume are highly correlated.
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Supplementary Figure 2.9 QTL profiles for E. grandis HS family jointly and across three sites. QTLs
were identified using QTLCartographer (Basten et al. 1994, 2004) and the profiles visualised using R. The
experiment-wide LR threshold of 12.9 was determined using a permutation test. The LR values and additive
effect values (a (H1)) are shown on the y-axis. The x-axis represents the genome with the positions in
centimorgan. Shaded regions indicate QTL peaks that cross the LR threshold. A. Diameter at breast height
(DBH) B. NIR predicted dissolving pulp yield (dPY) C. Wood density D. Height (HGT) E. NIR S:G lignin

ratio (SG) F. Volume.
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Supplementary Figure 2.10 QTL profiles for the E. urophylla HS family jointly and across two sites.
QTLs were identified using QTLCartographer (Basten et al. 1994, 2004) and the profiles visualised using R.
The genome-wide LR threshold of 12.9 was determined using a permutation test (at o = 0.05). The LR values
and additive effect values (a (H1)) are shown on the y-axis. The x-axis represents the genome with the positions
in centimorgan. The shaded regions indicate QTL peaks which cross the LR threshold. A. Diameter at breast
height (DBH) B. NIR predicted dissolving pulp yield (dPY) C. Wood density D. Height (HGT) E. NIR S:G

lignin ratio (SG) F. Volume.
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IDENTIFICATION OF QTLS UNDERLYING GRWOTH AND WOOD PROPERTIES

Supplementary Figure 2.11 Trait data and number of individuals of each genotypic class for growth
QTL detected in regions of significant segregation distortion. The dot and box plots represent the
standardised trait data for individuals in each genotypic class. Trait data was standardised for site using the
following formula; (mean trait value on a site — individual value)/standard deviation of site. Therefore,
smaller standardised trait values in the graph correspond to larger actual trait values. The bar plots represent
the number of individuals in each genotypic class. A. Height QTL detected in the E. urophylla HS family
on chromosome 3. B. Volume QTL detected in the E. urophylla HS family on chromosome 3. C. Height
QTL detected for the E. urophylla HS family chromosome 3 on site165. D. Diameter at breast height QTL
detected for the E. urophylla HS family chromosome 3 on site165. E. Diameter at breast height QTL detected
for the E. urophylla HS family chromosome 3 on site167. F. Volume QTL detected for the E. urophylla HS
family chromosome 3 on site165. G. Height QTL detected for the E. urophylla HS family chromosome 3 on
site 167. H. Volume QTL detected for the E. urophylla HS family chromosome 3 on site167. I. Diameter at
breast height QTL detected for the E. urophylla HS family chromosome 3. J. Height QTL detected for the

E. grandis HS family chromosome 10.

104



2.12 Supplementary Tables

Supplementary Table 2.1 Site information for the four sites across which the multi-parent population was planted.

Mean Annual

Mean Annual

Trial number Location Land type (SQ) Altitude (masl) Latitude Longitude Temperature (°C)  Precipitation (mm)
165 KwamagTT)‘mberS 003 (1) 60 28°36' 46.40" S 32°09'45.11"E 214 1191.4
166 Palm Ridge 002 (I1I) 39 28°18'22.79" S 32°16'35.10" E 21.8 913.8
167 Clan 113 (I) 822 29°22'15.38" S 30°23'41.13"E 17.6 1195.3
168 Sabey 123 (I1I) 978 25°36'27.67" S 30°49' 14.49" E 18.3 951
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IDENTIFICATION OF QTLS UNDERLYING GROWTH AND WOOD PROPERTIES

Supplementary Table 2.2 Colony run settings.

Setting Criteria
Empirical Male and Female polygamous, without inbreeding or clones
Species Monoecious
Length of run Medium
Analysis Full likelihood
Likelihood precision Medium
Update allele frequency No
Sibship size scaling Yes
Random number seed and sibship prior Default
Markers 9
Allele frequency Unknown
Number of males and females 0
Number of known maternal/paternal sibs 0
Number excluded maternal/paternal sibships 0

Run

Number of threads = 1
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IDENTIFICATION OF QTLS UNDERLYING GROWTH AND WOOD PROPERTIES

Supplementary Table 2.3 Markers which mapped to a different linkage group in the E. grandis genetic
linkage map compared to E. grandis V2 genome assembly. Genetic positions of markers in the full and
framework genetic linkage maps were compared with their physical positions in the E. grandis v2 reference

genome (https.//phytozome.jgi.doe.gov/).

Locus Chromosome in . Linkage group Present in
grandis V2 assembly framework/full/both
genetic linkage maps

EuBR03s16773516 3 1 Full
EuBRO1s51570286 7 1 Full
EuBR08s707846 8 2 Full
EuBR06s23537926 6 2 Full
EuBR02s12531252 4 2 Full
EuBR07519312362 7 2 Full
EuBR02s532599377 6 2 Full
EuBR03553640626 5 3 Full
EuBR06s991307 6 3 Full
EuBR06s1421821 6 3 Full
EuBR06s1152592 6 3 Full
EuBR02s41739709 2 5 Full
EuBR03s61635633 3 5 Both
EuBR04s3782009 4 5 Full
EuBR04s11810383 4 5 Full
EuBR03s1472848 3 5 Full
EuBR04s41704829 4 5 Both
EuBR03s79886124 3 5 Full
EuBR05574058904 5 6 Full
EuBR07552199270 3 7 Full
EuBR07552232983 3 7 Both
EuBR07546525870 11 7 Full
EuBR0753765369 8 7 Full
EuBR03s5400509 3 7 Full
EuBR08s555309610 8 7 Full
EuBR07549302025 7 8 Both
EuBR05537951602 5 8 Full
EuBR04524468179 8 9 Full
EuBR0855215966 8 10 Full
EuBR0855217929 8 10 Full
EuBR06s547505963 6 10 Full
EuBR03s37188589 3 11 Full
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IDENTIFICATION OF QTLS UNDERLYING GROWTH AND WOOD PROPERTIES

Supplementary Table 2.4 E. urophylla markers which mapped to a different linkage group compared
to the chromosome position in the E. grandis V2 reference genome assembly. Genetic positions of markers

in the full and framework genetic linkage maps were compared with their physical positions in the E. grandis

v2 reference genome (https://phytozome.jgi.doe.gov/).

Locus Chromosome in . Linkage group Present in
grandis V2 assembly framework/full/both
genetic linkage maps

EuBR08539496756 8 2 Full
EuBR06s1297770 6 3 Full
EuBRO06s1480294 6 3 Full
EuBR04534499660 2 4 Full
EuBR 11510662569 11 5 Both
EuBR07512765217 11 5 Full
EuBR05523227843 5 6 Full
EuBR03513990906 6 Full
EuBRO7515234370 7 6 Both
EuBR 10514434683 10 6 Both
EuBR02552970568 2 7 Full
EuBR03s17960592 3 7 Full
EuBR04s28655644 4 7 Full
EuBRO08s41408832 8 7 Full
EuBRO8s68713843 8 7 Full
EuBR08s57907223 11 7 Full
EuBRO1529775581 1 3 Full
EuBRO6519317853 6 8 Full

EuBRO7s171841 7 9 Full
EuBR05s3053916 5 1 Full

108



IDENTIFICATION OF QTLS UNDERLYING GROWTH AND WOOD PROPERTIES

Supplementary Table 2.5 Summary statistics of the raw trait data of the E. grandis HS family. Traits
analysed were diameter at breast height (DBH), height, volume, wood density, NIR dissolving pulp yield
(dPY) and NIR S:G lignin ratio (S:G). Mean, standard deviation (SD) minimum (min) and maximum values
were calculated for each trait in the E. grandis HS family and across the four sites. Shapiro-Wilk test for

normality was performed for each trait.

E. grandis HS family raw data (n = 349)

Shapiro-Wilk W Test

Trait Mean SD Min Max Y p-value
DBH 14.01 4.07 2.10 30.00 0.99 0.02*
Height 15.42 4.11 3.20 25.20 0.97 3.55E-06*
Volume 0.12 0.10 0.00 0.72 0.81 <2.00e-16*
Wood density 0.44 0.04 0.34 0.55 0.99 0.12
dPY 45.50 2.04 37.34 50.16 0.96 1.53E-06*
SG 2.67 0.26 2.07 3.73 0.95 3.13E-08*
E. grandis Sitel165 raw data (n = 105)
DBH 16.99 4.85 4.50 30.00 0.96 4.00E-03*
Height 20.06 3.36 8.20 25.20 0.87 4.57E-07*
Volume 0.21 0.12 0.01 0.72 0.94 9.41E-04*
Wood density 0.41 0.04 0.35 0.50 0.97 0.08
dPY 47.50 1.26 41.08 50.16 0.90 6.43E-06*
SG 2.58 0.21 2.07 3.19 1.00 0.86
E. grandis Site166 raw data (n = 62)
DBH 12.20 2.85 6.50 17.50 0.04 0.02*
Height 213.20 1.81 9.90 16.80 0.96 0.12
Volume 0.07 0.03 0.01 0.14 0.97 0.22
Wood density 0.46 0.03 0.38 0.52 0.96 0.09
dPY 44.57 1.47 39.94 46.81 0.92 3.00E-03*
SG 2.58 0.22 2.16 3.27 0.93 0.01*
E. grandis Sitel167 raw data (n =99)
DBH 13.20 2.59 6.00 18.00 0.96 0.01%*
Height 14.99 1.79 8.50 17.70 0.90 9.85E-06*
Volume 0.09 0.04 0.01 0.17 0.98 0.19
Wood density 0.46 0.04 0.34 0.55 0.98 0.17
dPY 44.68 1.22 41.84 47.49 0.95 6.00E-03*
SG 2.74 0.20 2.15 3.11 0.96 0.03*
E. grandis Site168 raw data
DBH 12.48 3.01 2.10 17.50 0.94 2.00E-03*
Height 11.67 2.06 3.20 13.40 0.73 5.67E-10*
Volume 0.06 0.03 0.00 0.13 0.99 0.78
Wood density 1.45 0.05 0.35 0.55 0.97 0.16
dPY 44.57 2.19 37.34 47.12 0.79 2.79E-08*
SG 2.77 0.34 2.35 3.73 0.84 5.47E-07*

* Statistically significant at P < 0.05
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Supplementary Table 2.6 Summary statistics of the raw trait data of the E. urophylla HS family. Traits
analysed were diameter at breast height (DBH), height, volume, wood density, NIR dissolving pulp yield
(dPY) and NIR S:G lignin ratio (S:G). Mean, standard deviation (SD) minimum (min) and maximum values
were calculated for each trait in the E. urophylla HS family and across the four sites. Shapiro-Wilk test for

normality was performed for each trait.

E. urophylla HS family raw data (n = 367)

Shapiro-Wilk W test

Trait Mean SD Min Max W p-value
DBH 14.08 4.53 2.10 30.00 0.98 1.00E-03*
Height 15.78 4.24 3.20 26.10 0.94 1.36E-10*
Volume 0.13 0.11 0.00 0.72 0.80 <2.20E-16*
Wood density 0.45 0.04 0.35 0.57 1.00 0.68
dPY 45.60 2.21 35.83 50.59 0.95 3.94E-09*
SG 2.66 0.23 2.14 3.57 0.97 1.50E-05*
E. urophylla Site165 raw data (n = 100)
DBH 17.66 5.77 2.30 30.00 0.94 4.58E-04*
Height 20.51 4.27 7.70 26.10 0.85 1.83E-08*
Volume 0.25 0.15 0.01 0.72 0.97 0.02*
Wood density 0.42 0.04 0.35 0.53 0.97 0.04*
dPY 47.78 1.28 43.81 50.59 0.99 0.43
SG 2.57 0.13 2.34 3.07 0.97 0.02*
E. urophylla Site166 raw data (n = 67)
DBH 12.55 2.95 5.20 18.00 0.97 0.23
Height 13.42 1.74 9.20 16.80 0.98 0.37
Volume 0.07 0.04 0.01 0.16 0.97 0.15
Wood density 0.46 0.03 0.41 0.52 0.96 0.06
dPY 45.15 1.25 39.94 47.24 0.91 9.13E-04*
SG 2.49 0.18 2.15 3.25 0.90 5.58E-04*
E. urophylla Site167 raw data (n = 141)
DBH 12.63 2.76 6.70 17.60 0.97 0.01%*
Height 14.79 2.06 8.30 18.50 0.95 1.98E-04*
Volume 0.08 0.04 0.01 0.17 0.97 0.01*
Wood density 0.46 0.04 0.35 0.55 0.99 0.47
dPY 44.83 1.58 39.95 47.77 0.92 2.08E-06*
SG 2.73 0.19 2.14 3.11 0.95 1.86E-04*
E. urophylla Site168 raw data(n = 59)
DBH 12.77 3.07 2.10 17.50 0.93 0.01*
Height 11.92 1.95 3.20 13.40 0.65 1.03E-09*
Volume 0.07 0.03 0.00 0.13 0.98 0.75
Wood density 0.47 0.05 0.36 0.57 0.98 0.44
dPY 44.08 291 35.83 48.04 0.85 4.16E-05*
SG 2.81 0.32 2.17 3.57 0.96 0.14

* Statistically significant at P < 0.05
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Supplementary Table 2.7 Two-way ANOVA of phenotypic data for the E. grandis HS family. The

following traits were analysed; diameter at breast height (DBH), height, volume, wood density, NIR dissolving

pulp yield (dPY) and S:G lignin ratio (S:G).

E. grandis HS (n = 349)

Variable df SumSq MeanSq F-value Pr(>F)
Diameter at breast height (DBH)

Family 1 84.00 84.40 2.03 0.16
Site 1 612.00 612.00 14.69 1.50E-04*

Family and site 1 6.00 6.00 0.14 0.70

Height

Family 1 112.00 112.10 2.53 0.11
Site 1 1961.00 1961.40 44.28 1.12E-10

Family and site 1 1.00 1.40 0.03 0.86

Volume

Family 1 0.02 0.02 2.66 0.10
Site 1 0.68 0.68 85.65 <2e-16*

Family and site 1 0.00 0.00 0.04 0.85

Wood density

Family 1 0.11 0.11 3.20 0.07

Site 1 0.02 0.02 0.70 0.40

Family and site 1 0.01 0.01 0.40 0.53

Dissolving pulp yield (dPY)

Family 1 159.00 158.70 0.47 0.49

Site 1 509.00 509.00 1.51 0.22

Family and site 1 40.00 40.10 0.12 0.73

S:G lignin ratio

Family 1 1.70 1.71 1.42 0.24

Site 1 0.80 0.83 0.69 0.41

Family and site 1 0.00 0.00 0.00 0.99

* Statistically significant at P < 0.05
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Supplementary Table 2.8 One-way ANOVA of the phenotypic data, with FS family as the condition
tested for the E. grandis HS family across sites. The following traits were analysed; diameter at breast height
(DBH), height, volume, wood density, NIR dissolving pulp yield (dPY) and NIR S:G ratio (S:G). Significance

was tested at a 0.05 threshold. Family did not affect the means across the sites.

Trait Variable df Sum Sq Mean Sq F-value Pr(>F)
E. grandis HS site165 (n = 105)
DBH Family 1 9.00 8.89 0.15 0.70
Height Family 1 20.00 19.68 0.29 0.59
Volume Family 1 0.01 0.01 0.61 0.44
Density Family 1 0.02 0.02 0.57 0.45
dPY Family 1 2.00 1.80 0.01 0.94
S:G Family 1 0.76 0.76 0.71 0.40
E. grandis HS site166 (n = 62)
DBH Family 1 37.90 37.92 1.21 0.28
Height Family 1 29.00 28.96 0.91 0.34
Volume Family 1 6.2E-03 6.2E-03 3.76 0.06
Density Family 1 3.0E-04 3.2E-04 0.01 0.93
dPY Family 1 0.00 0.30 1.0E-03 0.98
S:G Family 1 0.00 4.6E-03 4.0E-03 0.95
E. grandis HS site167 (n = 99)
DBH Family 1 28.00 27.85 0.83 0.37
Height Family 1 103.00 103.24 2.68 0.11
Volume Family 1 3.1E-03 3.1E-03 1.30 0.26
Density Family 1 0.07 0.07 1.91 0.17
dPY Family 1 394.00 393.70 1.13 0.29
S:G Family 1 1.62 1.62 1.21 0.27
E. grandis HS site168 (n = 83)
DBH Family 1 27.00 27.05 0.91 0.34
Height Family 1 10.00 10.01 0.44 0.51
Volume Family 1 3.4E-03 3.4E-03 2.55 0.12
Density Family 1 0.05 0.05 1.32 0.25
dPY Family 1 16.00 15.60 0.05 0.83
S:G Family 1 0.33 0.33 0.24 0.63
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Supplementary Table 2.9 Two-way ANOVA of raw data for the E. urophylla HS family using family,
site and family within site as the conditions. The following traits were tested; diameter at breast height

(DBH), height, volume, wood density, NIR dissolving pulp yield (dPY) and S:G lignin ratio (S:G).

E. urophylla HS (n =367)

Variable df SumSq MeanSq Fvalue Pr(>F)
Diameter at breast height (DBH)
Family 1 540.00 89.90 3.05 6.47E-03*
Site 1 2222.00 740.70 25.08 1.06E-14*
Family and site 1 428.00 32.90 1.12 0.34
Height
Family 1 1178.00 196.30 7.74 7.99E-08*
Site 1 3915.00 1304.90 51.47 2.00E-16*
Family and site 1 388.00 29.80 1.18 0.30
Volume
Family 1 0.14 0.02 2.90 9.13E-03*
Site 1 1.98 0.66 83.81 2.00E-16*
Family and site 1 0.07 0.01 0.69 0.78
Wood density
Family 1 0.70 0.12 5.04 5.74E-05%*
Site 1 0.25 0.08 3.64 1.31E-02*
Family and site 1 0.68 0.05 2.25 7.83E-03*
Dissolving pulp yeild (dPY)
Family 1 8188.00 1364.60 5.78 9.55E-06*
Site 1 3436.00 1145.40 4.85 2.56E-03*
Family and site 1 5876.00 452.00 1.91 2.77E-02*
S:G lignin ratio
Family 1 31.74 5.29 6.66 1.11E-06*
Site 1 14.75 4.92 6.19 4.18E-04*
Family and site 1 27.03 2.08 2.62 1.73E-03*

* Statistically significant at P < 0.05
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Supplementary Table 2.10 One-way ANOVA for phenotypic data of the E. urophylla HS family across
site. Family was the condition used and the significance threshold was 0.05. The following traits were
analysed; diameter at breast height (DBH), height, volume, wood density, NIR dissolving pulp yield (dPY)

and NIR S:G lignin ratio (S:G).

Trait Variable df SumSq MeanSq F-value Pr(>F)
E. urophylla site165 (n = 100)
DBH Family 1 131 26.19 0.55 0.74
Height Family 1 172 34.42 0.91 0.48
Volume Family 1 0.08 1.59E-02 0.67 0.65
Density Family 1 0.10 2.07E-02 1.02 0.41
dPY Family 1 1457 291.40 1.20 0.31
S:G Family 1 4.54 0.91 1.28 0.28
E. urophylla site166 (n = 67)
DBH Family 1 64.50 21.51 0.64 0.59
Height Family 1 84.70 28.22 0.86 0.47
Volume Family 1 0.00 0.00 0.20 0.90
Density Family 1 0.16 0.05 1.35 0.27
dPY Family 1 1016 338.6 0.82 0.49
S:G Family 1 2.39 0.80 0.62 0.60
E. urophylla site167 (n = 141)
DBH Family 1 282 47.00 3.05 7.84E-03*
Height Family 1 389.9 64.99 4.33 4.99E-04*
Volume Family 1 0.01 0.00 1.09 0.37
Density Family 1 0.53 0.09 7.38 7.80E-07*
dPY Family 1 4476 745.90 6.16 1.00E-05*
S:G Family 1 16.57 2.76 5.80 2.14E-05*
E. urophylla site168 (n = 59)
DBH Family 1 220.1 44.01 1.57 0.19
Height Family 1 166.8 33.35 1.60 0.18
Volume Family 1 0.01 0.00 1.25 0.30
Density Family 1 0.43 0.09 2.30 0.06
dPY Family 1 4774 954.80 3.10 1.59E-02*
S:G Family 1 26.85 5.37 4.60 1.47E-03*

* Statistically significant at P < 0.05
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Supplementary Table 2.11 Two-way ANOVA of corrected phenotypic data for the E. grandis HS family.
The following traits were analysed; diameter at breast height (DBH), height, volume, wood density, NIR
dissolving pulp yield (dPY) and NIR S:G lignin ratio (S:G). Family, site and family within site were the two

conditions tested.

E. grandis HS (n = 349)

Variable df SumSq MeanSq F-value Pr(>F)
Diameter at breast height (DBH
Site 1 0.00 0.00 0.00 1.00
Family 1 1.20 1.20 1.48 0.23
Site and family 1 2.47 0.82 1.01 0.39
Height
Site 1 0.00 0.00 0.00 1.00
Family 1 6.00 6.00 7.52 6.42E-03
Site and family 1 2.07 0.69 0.86 0.46
Volume
Site 1 0.00 0.00 0.00 1.00
Family 1 4.60 4.60 5.75 0.02
Site and family 1 2.58 0.86 1.08 0.36
Wood density
Site 1 0.00 0.00 0.00 1.00
Family 1 25.13 25.13 35.38 6.72E-09
Site and family 1 5.68 1.89 2.67 0.05
Dissolving pulp yield (dPY)
Site 1 0.00 0.00 0.00 1.00
Family 1 0.06 0.06 0.08 0.78
Site and family 1 2.15 0.72 0.90 0.44
S:G lignin ratio
Site 0.00 0.00 0.00 1.00
Family 8.39 8.39 11.11 9.54E-04
Site and family 7.98 2.66 3.52 0.02

* Statistically significant at P < 0.05
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Supplementary Table 2.12 One-way ANOVA for corrected phenotypic data for the E. grandis HS family
across site. the following traits were analysed; diameter at breast height (DBH), height, volume, wood density,
NIR dissolving pulp yield (dPY) and NIR S:G lignin ratio (S:G). Family was the condition being tested at a

0.05 significance threshold. Family was the condition being tested.

Trait Variable df Sum Sq Mean Sq F-value Pr >F)
E. grandis site165 (n = 105)
DBH Family 1 0.00 0.00 0.00 0.97
Height Family 1 0.11 0.11 0.13 0.72
Volume Family 1 0.35 0.35 0.42 0.52
Density Family 1 10.20 10.20 14.23 2.70E-04*
dPY Family 1 0.02 0.02 0.03 0.87
S:G Family 1 15.17 15.17 22.71 6.21E-06*
E. grandis HS site166 (n = 62)
DBH Family 1 1.90 1.90 2.47 0.12
Height Family 1 2.69 2.69 3.56 0.06
Volume Family 1 3.72 3.72 5.04 0.03*
Density Family 1 0.00 0.00 0.00 0.95
dPY Family 1 1.93 1.93 247 0.12
S:G Family 1 0.49 0.49 0.60 0.44
E. grandis HS site167 (n = 99)
DBH Family 1 0.02 0.02 0.03 0.86
Height Family 1 4.32 4.32 5.68 0.02*
Volume Family 1 0.22 0.22 0.27 0.60
Density Family 1 7.42 7.42 10.65 1.52E-03*
dPY Family 1 0.17 0.17 0.22 0.64
S:G Family 1 0.02 0.02 0.02 0.89
E. grandis HS site168 (n = 83)
DBH Family 1 1.74 1.74 2.13 0.15
Height Family 1 0.95 0.95 1.15 0.29
Volume Family 1 2.90 2.90 3.61 0.06
Density Family 1 13.19 13.19 20.62 1.93E-05*
dPY Family 1 0.08 0.08 0.10 0.75
S:G Family 1 0.70 0.70 0.88 0.35

* Statistically significant at P < 0.05
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Supplementary Table 2.13 Two-way ANOVA of corrected phenotypic data for the E. urophylla HS
family. The following traits were analysed; diameter at breast height (DBH), height, volume, wood density,
NIR dissolving pulp yield (dPY) and NIR S:G lignin ratio (S:G). Site, family and the interaction between

family and site were tested.

E. urophylla HS (n =367)

Variable df SumSq MeanSq F-value Pr(>F)
Diameter at breast height (DBH)
Site 1 0.40 0.13 0.14 0.94
Family 1 20.00 3.33 3.53 2.09E-03*
Site and family 1 8.90 0.69 0.73 0.74
Height
Site 1 0.30 0.10 0.10 0.96
Family 1 25.30 4.22 4.11 5.33E-04*
Site and family 1 12.20 0.94 0.91 0.54
Volume
Site 1 1.00 0.34 0.37 0.78
Family 1 18.00 3.01 3.22 4.29E-03*
Site and family 1 7.20 0.55 0.59 0.86
Wood density
Site 1 2.14 0.71 0.82 0.48
Family 1 13.20 2.20 2.54 0.02*
Site and family 1 9.64 0.74 0.86 0.60
Dissolving pulp yield
Site 1 1.08 0.36 0.45 0.72
Family 1 17.84 2.97 3.72 1.34E-03*
Site and family 1 14.12 1.09 1.36 0.18
S:G lignin ratio
Site 1 0.73 0.24 0.29 0.83
Family 1 6.70 1.12 1.32 0.25

—

Site and family 18.74 1.44 1.70 0.06

* Statistically significant at P < 0.05
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Supplementary Table 2.14 One-way ANOVA of corrected data for the E. urophylla HS family. The
following traits were analysed; diameter at breast height (DBH), height, volume, wood density, NIR dissolving
pulp yield (dPY) and NIR S:G lignin ratio (S:G). The test was performed across different sites with family as

the condition being tested at a 0.05 significance level.

Trait Variable df SumSq MeanSq F-value Pr(>F)
E. urophylla HS site 165 (n = 100)
DBH Family 1.00 6.80 1.36 1.47 0.21
Height Family 1.00 5.59 1.12 1.19 0.32
Volume Family 1.00 5.71 1.14 1.22 0.31
Density Family 1.00 4.93 0.99 1.13 0.35
dPY Family 1.00 20.39 4.08 5.76 1.12E-04*
S:G Family 1.00 11.18 2.24 2.77 0.02*
E. urophylla HS site 166 (n = 67)
DBH Family 1.00 5.13 1.71 2.30 0.09
Height Family 1.00 8.77 2.92 4.26 8.37E-03*
Volume Family 1.00 5.08 1.69 2.28 0.09
Density Family 1.00 6.44 2.15 3.11 0.03*
dPY Family 1.00 3.19 1.06 1.49 0.23
S:G Family 1.00 2.90 0.97 1.35 0.27
E. urophylla HS site 167 (n = 141)
DBH Family 1.00 10.29 1.72 1.55 0.17
Height Family 1.00 17.93 2.99 2.25 0.04*
Volume Family 1.00 8.08 1.35 1.26 0.28
Density Family 1.00 3.65 0.61 0.60 0.73
dPY Family 1.00 4.88 0.81 0.89 0.51
S:G Family 1.00 4.98 0.83 0.83 0.55
E. urophylla HS site 168 (n = 59)
DBH Family 1.00 6.68 1.34 1.67 0.16
Height Family 1.00 5.21 1.04 1.26 0.30
Volume Family 1.00 6.37 1.27 1.58 0.18
Density Family 1.00 7.83 1.57 2.29 0.06
dPY Family 1.00 3.52 0.70 0.92 0.48
S:G Family 1.00 6.38 1.28 1.80 0.13

* Statistically significant at P < 0.05
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ANALYSIS OF HYRBID INCOMPATIBLITY

3.1 Abstract

Understanding hybrid compatibility is important for efficient interspecific hybrid breeding
programmes and for understanding natural speciation processes. Pre- and postzygotic reproductive
barriers are two mechanisms affecting hybrid compatibility. Segregation distortion of DNA marker
alleles, which is a deviation from expected Mendelian inheritance, can be used to identify regions of
parental genomes underlying hybrid incompatibility. Multiparent populations, constructed by
crossing a number of diverse founders, provide a resource for dissecting pre- and postzygotic barriers
segregating in multiple parental genomes within half-sib (HS) and full-sib (FS) families. A
Eucalyptus multi-parent mapping population was constructed by crossing nine E. grandis pollen
parents and eight E. wurophylla seed parents. This provided the opportunity to analyse the
compatibility of parental alleles of one species across multiple families of a second species. In this
study, we analysed segregation distortion patterns of SNP markers included in framework genetic
linkage maps for one E. grandis pollen parent and one E. urophylla seed parent. Segregation
distortion was analysed within HS families, FS families and in different environments (sites). The
percentage of distorted SNP markers varied greatly between HS and FS families as well as within the
different sites. Analysis of segregation patterns within sites suggested that environment-dependent
interactions between parental genomes result in unique patterns of segregation distortion. We also
used the segregation patterns of dead and living individuals of a single FS family to further dissect
pre- and postzygotic reproductive barriers. This study showed that a large number of regions underlie

hybrid compatibility of E. grandis and E. urophylla.

3.2 Introduction

According to Mendelian inheritance, alleles at heterozygous loci segregate in equal proportions from
parents to progeny. Segregation distortion (SD) occurs when parental alleles deviate from the
Mendelian expectation of equal segregation. Analysis of significantly distorted DNA markers in

interspecific crosses can be used to obtain genome-wide evidence of pre- and postzygotic factors
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contributing to hybrid incompatibility. Hybrid incompatibility is a type of natural reproductive
barrier, but here we will discuss hybrid incompatibility from the perspective of plant hybrid breeding.
Prezygotic barriers include habitat, flowering time, pollen germination and pollen tube formation
which prevent fertilization (Rieseberg and Blackman 2010). Postzygotic barriers include differences
in chromosome structure or genic interactions which result in hybrid sterility, necrosis or a reduction

in fitness (Maheshwari and Barbash 2011).

Different evolution of genes as well as chromosomal rearrangements in species can cause barriers to
hybrid compatibility (Burke and Arnold 2001). When two genes evolve independently in different
species, they can cause negative genic interactions when combined in hybrids. This type of
incompatibility follows the Dohzhansky-Muller model (Dobzhansky 1937; Muller 1942) which
states that two loci interact in a negative manner and can result in hybrid necrosis. Chromosomal
rearrangements can be due to insertions, deletions and inversions within the two species genomes.
When the genomes are combined in a hybrid individual, the chromosomal rearrangements can affect
meiosis in the hybrids resulting in hybrid sterility (Maheshwari and Barbash 2011). Therefore, for
plant breeding, it is important to identify the causes and regions of the genome underlying hybrid

incompatibility, to determine which parents can be crossed and will result in viable progeny.

A commonly used method for identifying hybrid incompatibility loci is the mapping of quantitative
trait loci (QTL) underlying a hybrid incompatibility trait. Using this approach, QTL underlying seed
viability in a F; interspecific cross in Arabidopsis were identified (Burkart-Waco et al. 2012). In the
study, seed survival, of hybrid seed, was assessed to identify QTL underlying postzygotic hybrid
incompatibility. A total of seven QTL were identified in the study, all of which had epistatic
interactions detected. The authors concluded that there are multiple loci which interact and underlie
hybrid seed survival in Arabidopsis. In another study, Yu ef al. (2018), used this method to identify

QTL underlying hybrid male sterility in rice. Using a F» backcross population of two diverged rice
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species, they were able to identify four QTL underlying hybrid male sterility. This information was
then used to identify the causal genes and the mechanisms underlying hybrid male sterility. While
this study was successful in being able to identify QTL, QTL mapping can be limited due to the low
resolution of most genetic linkage mapping studies, although experimental designs such as multi-
parent populations can increase the power and resolution (Yu et al. 2008; Kover ef al. 2009). Another
limitation is that only traits of interest are analysed and not all QTL underlying barriers to hybrid

incompatibility will be identified.

Another method to identify hybrid incompatibility loci is the analysis of segregation distortion. This
allows for the identification of regions of the genome which may be harbouring genetic factors
contributing to reproductive barriers. In a study by Li et al. (2019), nine F; inter-subspecific
populations of rice were analysed for segregation distortion. A total of 61 significantly distorted
regions were identified, of which 37 had previously been shown to underlie hybrid sterility. This
study demonstrates the power that analysing segregation distortion has to identify a large number of
genome-wide barriers to hybrid compatibility. Segregation distortion analysis can be used to identify
both pre- and postzygotic barriers to hybrid compatibility. In a study by Bodénés et al. (2016),
segregation distortion was used to identify possible prezygotic incompatibility loci in oak trees. The
study made use of two intra- and two interspecific Fi FS families to construct genetic linkage maps
and analyse segregation distortion. A total of 79% of significantly distorted markers had a paternal
origin which reflects that the segregation distortion of these markers are due to pollen
incompatibilities. Therefore, the analysis of segregation distortion allows for the mechanisms

underlying hybrid incompatibility to be identified.

Genotype-by-environment interaction is an important phenomenon in quantitative genetics and is
known to affect many plant traits. However, most studies which aim to dissect hybrid incompatibility

have been performed on single sites and have not taken into account the effect of the environment on

122



ANALYSIS OF HYRBID INCOMPATIBLITY

reproductive barriers. In a study, Chen et al. (2014) identified a two-locus interaction causing a
reproductive barrier which was affected by temperature. They analysed an F; interspecific population
inrice and found that a negative interaction between two loci caused hybrid weakness. The interaction
was only induced at high temperatures which shows that the incompatibility barrier was environment-
dependent. Therefore, hybrid incompatibility studies should be performed across multiple

environments to determine environment dependent interactions contributing to hybrid compatibility.

Nested association mapping (NAM) populations are constructed by crossing a number of diverse
founders. These populations are advantageous for studying hybrid compatibility as a large number of
Fi hybrids can be generated from a small number of diverse parents and full-sib families are nested
within half-sib families. Multi-parent mapping populations have been shown to exhibit segregation
distortion (McMullen et al. 2009; Song et al. 2017). McMullen et al. (2009) found that 17% of
markers in the maize intraspecific NAM population were significantly distorted at a 0.05 significance
level. The authors also found that of the five most highly distorted regions, four could be explained
by previously identified genetic factors. Song et al. (2017) analysed an intraspecific soybean NAM
population for segregation distortion. They found that the segregation distortion varied between the
families and that there was an average of 3.75% of significantly distorted loci at a 0.01 significance
level. These studies show that, due to the population design, segregation distortion is present in multi-
parent populations and can be analysed within HS and FS families. These studies were performed in
intraspecific hybrids. We expect to see much more segregation distortion within multi-parent
mapping populations of interspecific hybrids as interspecific hybrid populations have been shown to

have higher amounts of segregation distortion (Kullan ez al. 2012b; Bodénes et al. 2016)

Eucalyptus is commonly planted as F; interspecific hybrid clones in commercial plantations. One of
the most common hybrid combinations is between E. grandis and E. urophylla (Bison et al. 2006).

This is due to the good growth and wood properties of E. grandis and the higher amount of disease
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resistance in E. urophylla (Retief and Stanger 2009). There have been studies which have analysed
segregation distortion within Eucalyptus hybrids (Grattapaglia and Sederoff 1994; Myburg et al.
2004; Freeman et al. 2006; Kullan et al. 2012b). Myburg et al. (2004) analysed segregation distortion
patterns in E. grandis and E. globulus F» interspecific hybrid families to identify postzygotic barriers
to hybridisation. They found that 27.7% of the AFLP markers analysed, were significantly distorted
at a 0.05 level of significance. From this the authors concluded that postzygotic barriers were
underlying interspecific hybrid incompatibility. Limitations of previous studies in Eucalyptus to
identify genetic factors underlying hybrid compatibility is that they were performed across single
environments and only included a few parental genotypes. The development of a replicated
Eucalyptus interspecific hybrid multi-parent population enables the analysis of genome-wide
transmission ratio distortion patterns of parental alleles within Fy hybrid progeny in HS families, FS

families and in different replicated environments.

This study aimed to analyse segregation patterns of SNP markers included in framework genetic
linkage maps of a E. grandis pollen parent and a E. urophylla seed parent used in a nine by eight
nested Fi hybrid crossing design. Due to the population design, we were able to analyse segregation
patterns within HS families, FS families and different environments. We also used segregation
distortion patterns in genotyped dead and living trees of an intersecting FS family to distinguish
between pre- and postzygotic incompatibilities. We hypothesized that hybrid incompatibility will
manifest as segregation distortion across the genome and that specific interactions between parental
genomes as well as with environmental factors, will cause different patterns of segregation distortion
for the FS families in different environments. Here we show that there is significant segregation
distortion of varying patterns within the HS families, FS families and different environments and that
there is likely a genotype-by-environment effect on hybrid compatibility factors. These results
suggest that hybrid incompatibility involves complex genetic interactions as well as genotype-by-

environment effects.
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3.3 Materials and Methods

3.3.1 Plant material and SNP genotyping

This study focused on SNP markers included in framework genetic linkage maps of one E. grandis
HS and one E. urophylla HS family of the Eucalyptus multi-parent mapping population described in
Chapter 2. Briefly, leaf or wood (cambium) tissue were collected from different living trees between
three months to four years of age and genomic DNA extracted. Samples were SNP genotyped using
the Fucalyptus EUChip60K SNP chip (Silva-Junior et al. 2015), paternal or maternal informative
markers were identified and framework genetic linkage maps constructed in JoinMap®41 (Van
Ooijen 2006). We used SNP genotypes for five FS families within the E. grandis HS family and
seven FS families in the E. urophylla HS family. The population was planted across four sites in
South Africa as part of a commercial F; hybrid trial series (Supplementary Table 2.1, Supplementary
Table 3.1, 3.2). The phenotype of the trees were recorded at four years of age, at which time trees
were classified as dead or alive. We therefore had the genotypes of both dead and living trees as we

had sampled living trees which died between sampling and phenotyping.

3.3.2 Segregation distortion analysis

SNP markers included in the framework genetic linkage maps from Chapter 2 were re-phased
following genetic map construction. Individuals with a phase of 1 (output of JoinMap®4.1 (Van
Ooijen 2006) had genotypes converted from nn to np and np to nn. Individuals were separated into
the following categories; HS families, FS families, HS family per site, and the intersecting FS family
was separated into dead and living trees (classified during phenotyping at four years). Segregation
distortion was quantified for each category by: (np allele frequency — 0.5) x 100 (Myburg et al. 2004).
A chi-square test was performed, at a 0.05 significance level, to compare the observed genotypic ratio

of each SNP marker with that of the expected genotypic ratio.
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3.4 Results

3.4.1 Segregation distortion within HS families

A large amount of variation was observed in seed set from the current set of crosses and a very similar
pattern was observed in a repeat of a subset of crosses (results not shown, Sappi Forest Research,
Kwambonambi, South Africa) suggested differential compatibility of the parental genotypes used for
Fi hybrid progeny trials. We therefore investigated whether such incompatibility manifested as
segregation distortion in the genetic maps of the parents which may point to specific loci which could
underlie such incompatibilities. We first investigated whether there was segregation distortion within
each of the paternal E. grandis or maternal E. urophylla alleles segregating in the two HS families.
We analysed a total of 388 and 422 SNP markers in 349 and 367 individuals for segregation distortion
for the E. grandis and E. urophylla HS families, respectively (Supplementary File 3.1 and 3.2). We
observed that 14.95% (E. grandis HS) and 29.38% (E. urophylla HS) of the SNP markers deviated
significantly from what was expected under Mendelian segregation, at a 0.05 significance level
(Table 3.1). These results represent the average segregation distortion in each HS family because
each HS family consists of different FS families and were planted across multiple sites. We found
that the segregation patterns differed between the E. grandis paternal and the E. urophylla maternal
HS families. Linkage groups 6, 8, 9 and 10 in the E. grandis HS family had severely distorted regions
(Figure 3.1), while linkage groups 3, 5, 6 and 10 had significant distortion in the E. urophylla HS
family (Supplementary Figure 3.1). The regions of significant distortion on linkage group 6 and 10
in both HS families are in different genomic regions. These results suggest that there is a complex

genetic basis underlying segregation distortion in this Fi hybrid population.

3.4.2 Segregation distortion within FS families
Next we investigated whether the segregation distortion patterns differed between the FS families
within each HS family regardless of site. We analysed SNP markers for segregation distortion in 27

to 104 individuals within each FS family across the four sites (Supplementary Table 3.1 and 3.2;
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Supplementary File 3.1 and 3.2). We observed significant distortion (chi-square, o = 0.05) between
3.09% and 20.10%, of the progeny in each FS family (Table 3.1). We found that the patterns of
segregation distortion varied among FS families (Figure 3.1, Supplementary Figure 3.1).
Additionally, we saw that in some FS families the segregation patterns of significantly distorted
markers were in opposite directions (in some FS families, one allele was favoured, while in other
families the alternative allele was favoured (e.g. blue blocks in Figure 3.1)). We found that these
effects were often cancelled out in the HS family segregation pattern, which shows the importance
of analysing each FS family separately. These results suggest that there are specific genetic

interactions between the different parental genomes.

3.4.3 Segregation distortion within sites

Next, we assessed whether segregation distortion patterns were similar across the four sites for each
HS family (Figure 3.2, Supplementary Figure 3.2, Supplementary File 3.3 and 3.4). The number of
individuals analysed per site were between 59 to 141 and the percentage of significantly distorted
markers, at a 0.05 significance level, ranged from 1.55% to 15.64% (Table 3.1). We observed that
the patterns of distortion varied across the different sites in both the E. grandis and E. urophylla HS
families, and no sites had the same patterns of distortion across the entire genome. These results
suggest that each site has a different effect on the interaction between the parental genomes. However,
not every FS family was planted on each site so we could not make inferences for all families.
Additionally, we do see some regions (e.g. Chromosome 6, Figure 3.2.) which has significantly
distorted loci across all sites and in the same direction which suggests that this region is not affected

by the environment and may be of large effect.

3.4.4 Segregation distortion across site and FS family
Next, we wanted to investigate possible genotype-by-environment effects by analysing the

segregation distortion for each FS family within every site. We asked whether the segregation
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distortion patterns were similar for FS families on the same site as well as for individual FS families
planted across multiple sites. The number of individuals per individual FS family on one site ranged
between 15 to 30 (minimum number of individuals was set at 15 for these analyses, Supplementary
Table 3.1 and 3.2). We observed between 0 — 16.24% of the SNP markers to be significantly distorted
at a 0.05 significance level in single FS families per site (Table 3.1, Figure 3.3, Supplementary Figure
3.3, 3.4, 3.5, 3.6, Supplementary Files 3.5 and 3.6). The segregation patterns varied greatly for a
single FS family across multiple sites and different FS families on the same site. We also observed
genomic regions which had opposite alleles favoured between FS families or sites such as Chr5 for
site165 with multiple families and Chr6 for FS family FK593 across two sites (Figure 3.3). Together
these results show that there are genetic interactions as well as environment dependent interactions
(all of which should be postzygotic interactions) between the two genomes of different seed and

pollen parents,.

3.4.5 Dissemination of pre- and postzygotic incompatibilities

Next we wanted to determine whether we could disseminate pre- and postzygotic factors contributing
to hybrid compatibility. To do this, we analysed the segregation distortion of the parental alleles in
26 dead and 67 living trees of the intersecting FS family (FS family FK602 for paternal alleles, and
FS family FK595 for maternal alleles. This is one FS family numbered differently for the maternal
and paternal alleles, Supplementary File 3.7), which shares both of the parents analysed in this study
(Figure 3.4). The rationale behind this is that the comparison of patterns of segregation distortion
between dead and living trees, can help to identify potential pre- and postzygotic incompatibility
factors. We observed that in some regions, the segregation distortion was in the same direction for
dead and living trees (e.g. Chr3 of E. urophylla seed parent, Figure 3.4). We hypothesize that these
regions could underlie a prezygotic barrier because the same allele was favoured in dead and living
trees, suggesting that this allele passed through a prezygotic barrier. DNA was extracted from living

trees of between 3 months to 4 years of age and trees were classified as dead or living upon
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phenotyping at four years. Therefore postzygotic, pre-sampling selection is another possible
explanation when we observe this pattern of segregation distortion between the dead and living trees.
We also identified regions which showed segregation distortion in the opposite direction between
dead and living trees (e.g. Chrl of E. urophylla seed parent, Figure 3.4). We hypothesize that a
postzygotic incompatibility barrier could underlie these regions, because living trees carrying one
allele seemed to have a fitness advantage, while those carrying the alternative allele had a poor chance
of survival. Due to both alleles being present in the plants at the time of sampling, a prezygotic factor

could be ruled out, therefore the segregation distortion was likely due to a postzygotic factor.

From Figure 3.4, it can be seen that pre- and postzygotic barriers possibly operate in the parents and
progeny. These results suggests that there may be many complex pre- and postzygotic interactions
between parental genotypes which affect hybrid compatibility and viability. It is important to note
that the intersecting family was planted across different sites, but site was not considered in this
section due to small sample sizes. Site should not affect prezygotic incompatibilities, as the
population was created through controlled crosses in a single site (nursery). However, site will most
likely affect postzygotic incompatibilities as site was shown to affect segregation distortion in this
study. We also expected that a genomic region underlying a prezygotic incompatibility would show
the same segregation distortion pattern in the same FS family planted across multiple sites as
environment should not affect prezygotic selection in this study. However, we do not observe any
such pattern, therefore the results suggest mostly postzygotic, pre-sampling barriers as a more likely

explanation when a ‘prezygotic’ pattern of segregation distortion is observed.

3.5 Discussion

Many studies have shown the value of multi-parent mapping populations for genetic dissection of
complex traits. This study showed that multi-parent mapping populations can also be used for the

analysis of reproductive barriers affecting hybrid compatibility. The population design of the
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Eucalyptus multi-parent population allowed for the analysis of segregation distortion within HS
families, FS families and different environments (sites). Numerous segregation distortion regions
were identified with varying patterns across FS families, sites and FS families within sites. This
suggests that hybrid compatibility involves many complex genetic interactions between parental

genomic variation and environment.

This study was limited by the small sample size of FS families within sites. While the sample size
was sufficient when analysing the segregation patterns across FS families, or across sites, these
analyses did not take into consideration the genotype-by-environment effect. Therefore, the
segregation distortion of single FS families within each site were analysed to determine the
interaction between the parental genotypes and the environment. These results represent a more
complete picture of how segregation distortion is affected by both the genetic interaction between the

parental genotypes as well as the interaction with the environment.

Nevertheless, for these analyses, the sample sizes were small (between 15 — 30 individuals). When
the sample size is small for a FS family on a site, there is the possibility that by chance, more
individuals of one genotype were planted on a site than the alternative genotype which will result in
false-positives for segregation distortion. The magnitude of the segregation distortion may also be
inflated when the sample size is small, which further results in false-positive segregation distortion.
Additionally, we may not have the statistical power to detect significant segregation distortion due to
the small sample size. Therefore, while the results of this study can provide an insight into the way
in which parental genomes interact with each other and with the environment, further studies with
larger sample sizes are required to gain a more accurate understanding and fine-scale detection of the

genetic basis underlying hybrid compatibility.
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In this study, each marker was treated as independent, however, due to linkage, markers are not
independent. Therefore, one could argue that the p-value should have been adjusted to account for
multiple testing. Identifying regions of the genome that are in linkage and segregate together, was
challenging in this population due to the large amount of variability present. A previous study by
Myburg et al. (2004), used the assumption that each chromosome consists of two independent
chromosome arms resulting in approximately 22 independent genomic regions in Eucalyptus (n =
11). The p-value was determined at a genome-wide threshold of 0.05/22 = 0.00227. However, even
within each independent chromosome arm, there may be regions which segregate independently from
each other. Previous studies on segregation distortion have used an uncorrected p-value of 0.05.
Therefore, due to the challenges of identifying independent chromosomal regions, and in order to
compare the results with previous studies, a p-value of 0.05 was used in this study. We are however,
aware that this p-value may not be stringent enough and may result in many false-positive segregation

distortion observations.

It is also important to note that epistatic interactions between loci were not analysed in this study. In
Eucalyptus, Myburg et al. (2004) identified epistatic interactions in E. grandis and E. globulus
backcross populations. Therefore, we expect that there will be epistatic interactions which will affect
hybrid compatibility as it has been shown to play a role in Eucalyptus and other plant species
(Rieseberg et al. 1996; Myburg et al. 2004). Therefore, future studies on segregation distortion in

this population will need to analyse epistasis to improve our understanding of hybrid compatibility.

3.5.1 Identification of segregation distortion

We found that the percentage of segregation distortion within the HS families (14.95% E. grandis
and 29.38% E. urophylla) of this study were slightly lower than previous segregation distortion
studies which reported segregation distortion ranging from 27.5% to 36.3% (Myburg et al. 2004;

Kullan et al. 2012b; Bartholomé et al. 2015). This could be due to this study consisting of a number
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of FS families within each HS family and the population being planted across sites, whereas the
previous studies have focused on single bi-parental crosses on a single site. When we analysed the
segregation patterns within FS families and sites, we saw that there are regions in which one allele
was favoured in one FS family/site while the alternative allele was favoured in another FS family/site.
This resulted in the direction of segregation distortion averaging out in the HS families resulting in
fewer significantly distorted markers. We observed a large variation in the percentage of significantly
distorted markers of individual FS families on a single site. These results suggest interaction of

genetic variation in parental genomes and environment.

A comparison of the results of this study with previous studies was limited due to different population
designs and type of markers used. Despite this, we compared our results with that of the most recent
genetic linkage maps for E. grandis and E. urophylla in which segregation distortion was analysed
in a single, large FS family (Bartholomé et al. 2015). This study found that chromosomes 5, 6, 7 and
11 for E. urophylla, and chromosomes 1 and 3 for E. grandis had significantly distorted regions. In
the current study, we found that for the E. urophylla HS family, significant distortion was seen on
chromosomes 3, 5, 6 and 10, while significant distortion on chromosomes 7 and 11 were only seen
when analysing individual FS families. No significant distortion was seen on chromosome 1 or 3 for
the E. grandis HS family, but there was significant distortion on these chromosomes in some FS
families. Regions which show similar patterns of segregation distortion across multiple studies and
FS families, could indicate regions underlying common incompatibility loci, while regions which are
unique to each FS family could indicate specific genetic interactions between parental genomes. The
comparison of these studies again suggest that segregation distortion patterns vary between crosses
of different parental genotypes suggesting that hybrid compatibility factors segregate in both parental

species.
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3.5.2 Causes of segregation distortion

Segregation distortion of alleles can occur due to pre- and postzygotic mechanisms as well as genetic
load and meiotic drive. Genetic load occurs when there is an accumulation of deleterious alleles
which can result in segregation distortion. In order to determine whether genetic load is the cause of
segregation distortion, both intra and interspecific hybrids need to be analysed which was outside of
the scope of this study (Bodénes et al. 2016). Meiotic drive is the when one allele is favoured over
another allele during meiosis which will cause segregation distortion at the locus. In order to
determine if segregation distortion is due to meiotic drive, the fertility of hybrids need to be analysed
(Fishman and Willis 2005), which again was outside the scope of this study. In the current study,
while we refer to hybrid incompatibilities, it is important to note that prezygotic mechanisms result
in hybrid incompatibility while postzygotic mechanisms are more likely to result in hybrid viability.
Causes of prezygotic hybrid incompatibility which can result in segregation distortion include pollen
tube growth rate (Rieseberg and Blackman 2010), meiotic drive (Cameron and Moav 1956) and
gametophytic incompatibility (Lin ef al. 1992). Through the analysis of patterns of segregation
distortion of dead and living trees of the intersecting family, we were able to identify regions

underlying potential prezygotic hybrid incompatibility barriers.

It is important to note that we cannot directly distinguish between prezygotic and postzygotic but pre-
sampling incompatibilities in this study. This is because we do not have the allele frequencies before
and directly after fertilisation. We also do not have significant information regarding the survival of
the trees (and age of death) prior to sampling to determine how much of the distortion could be due
to postzygotic, pre-sampling incompatibilities. Sampling of different trees was performed at various
life-stages of the trees (between 3 months to four years), which limits our ability to determine at
which stage the postzygotic, pre-sampling barrier could have occurred. However, we would expect
that genomic regions underlying prezygotic compatibility barriers would be seen across individual

FS families on different sites, as the environment in which the progeny is planted would not affect
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prezygotic barriers. In this study, we did not see any evidence of this. This could be due to the small
sample size which limited our ability to detect segregation distortion. Additionally, it is possible that
some chromosomal regions are affected by overlapping pre- and postzygotic factors (where one allele
is favoured in the prezygotic stage and the alternative in favoured in the postzygotic stage). This
could result in the masking of either the pre- or postzygotic factor. Therefore, future studies focused
on identifying segregation distortion at different life stages can help to identify the causes of hybrid

incompatibility.

Postzygotic incompatibility can include genetic incompatibility and chromosome structural variation
(this usually has more of an effect on F» progeny) between the parental genomes. In this study, it was
more likely that the cause of postzygotic barrier was due to genetic incompatibility between the
parental genomes rather than structural differences. Although we could not compare the order of
markers between the two parental maps due to different markers being used (by default), comparison
of the marker order with the FEucalyptus grandis v2  genome  assembly

(https://phytozome.jgi.doe.gov/) showed that there was high collinearity. There were some regions

which showed marker order changes or markers which mapped to different linkage groups to what
was expected. However, when these markers were found to be significantly distorted, the markers
surrounding them were also found to be significantly distorted with higher chi-square values. This
suggests that chromosomal rearrangements potentially only have a small, if any, effect on segregation
distortion. These results are in agreement with a previous which did not find any major chromosomal
rearrangements between E. grandis and E. globulus and which support genic incompatibilities rather

than structural incompatibilities (Hudson et al. 2012; Myburg et al. 2014).

Genic incompatibility between the parental genomes is a mechanism that can result in postzygotic
barriers. This type of incompatibility often follows the Dobzhansky-Muller (DM) diverged genes

model which states that loci which are compatible in the ancestral state, diverge independently during
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evolution, resulting in a negative interactions when combined in interspecific hybrids (Dobzhansky
1937; Muller 1942). This could result in segregation distortion as only some genetic combinations
are compatible. In the current study, we cannot determine negative genic interactions between
multiple loci of the parental genomes (epistasis) by looking at the segregation distortion patterns
alone and we did not analyse epistatic interactions. However, this type of incompatibility has
previously been shown in E. grandis and E. globulus (Myburg et al. 2004) and we expect it will also

be present within this population.

Genotype-by-environment interactions observed in this study suggests postzygotic barriers because
the population was constructed by controlled pollination on a single site. The seeds were germinated
and planted in the same nursery before planting on four different sites. Therefore, we hypothesize
that observed differences in segregation patterns of individual FS families across multiple sites are
likely due to postzygotic factors. These post-zygotic factors are potentially influenced by the
environment (seen by the different patterns of segregation distortion across sites) and result in
differences in hybrid viability across the sites. For example, analysis of the FS family FK593 across
two sites show that in one region of significant distortion on Chr6, one allele is favoured in one site,
while the alternative allele is favoured on the other site. This suggests that the environment is
affecting the segregation distortion at this region. We do not see many examples of this, which again
could be due to the small sample size. Therefore, future studies with larger samples sizes are required

to determine the effect of environment on hybrid compatibility.

3.5.3 Application for industry

Understanding the genetic basis of hybrid compatibility is important for the forestry industry as it
will allow the design of more efficient hybrid breeding programs. Artificial hybridisation between
species which do not naturally occur together is important for breeding programs as it increases the

genetic diversity and allows for combining of favourable traits into a common genetic background.
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However, many interspecific crosses in Eucalyptus are not successful (Griffin et al. 1988). Therefore,
if we could improve our understanding of hybrid incompatibility in Eucalyptus it would allow us to

make more informed decisions about which species or even individual trees to cross.

From the Eucalyptus multi-parent population, we can see that there is a large amount of variability
in the success of the crosses between different E. grandis pollen parents and E. urophylla seed
parents. The Eucalyptus multi-parent population contains a number of diverse parents, however, due
to hybrid incompatibility, a large proportion of this diversity is likely lost in the Fi progeny.
Therefore, the ability to determine which parental genotypes are compatible and will result in
successful progeny in specific or a wide variety of environments is important for monitoring genetic
diversity and improving the efficiency of hybrid breeding programmes. Additionally, it will be
important to identify regions underlying hybrid incompatibility factors which are fixed versus
segregating in the population. In this study, the factors identified are segregating due to the nature of
informative markers analysed (heterozygous markers). We also selected the two HS families which
yielded the highest number of progeny. This suggests that the crosses analysed in this study were the
most successful and had the least lethal incompatibility factors when compared to the rest of the
population. Therefore, we can use the segregating loci to identify combinations which are successful

and yield viable progeny.

3.6 Conclusion and future prospects

This study was able to use genome-wide SNP linkage maps and analysis of segregation distortion to
identify regions of parental genomes which possibly underlie hybrid incompatibility. The ability to
analyse segregation patterns across multiple FS families and environments provided an insight into
how genetic interactions between parental genomes may differ and how the environment can affect
these interactions. We were also able to identify potential pre- and postzygotic incompatibilities,

based on segregation distortion patterns of dead and living trees. This study suggests that hybrid
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incompatibility is affected by complex genetic interactions, and that multi-parent populations can
allow dissection and identification of compatible genotypes. However, larger sample sizes are

required in order to improve our understanding of hybrid compatibility.
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3.8 Tables

Table 3.1 Summary of significantly distorted markers for each FS family per site. Segregation distortion
was analysed for FS families with more than 15 individuals on a site with a significance threshold of 0.05. The
overall family and overall site values are the percentage of distorted markers within the entire FS family or
across families within the entire site (regardless of the number of individuals for each FS family on a site) and
is not simply the total of the column or row. The value in the cell of both the overall family and overall site is

the percentage of distorted markers in the entire HS family.

Distorted markers (%)

Site Site165 Site166 Site167 Site168 Overall Family
Family E. grandis HS family
FK599 5.67 - 12.11 - 5.67
FK600 0.52 6.19 2.06 4.38 3.09
FK601 14.95 6.44 1.29 9.79 20.10
FK602 8.76 5.15 3.09 0.00 7.99
FK603 16.24 - - - 8.51
Overall Site/HS 4.65 8.51 7.47 1.55 14.95
Family E. urophylla HS family
FK592 4.03 - 5.45 - 9.48
FK593 8.53 - 6.87 - 11.85
FK594 5.69 2.37 - - 6.64
FK595 5.45 4.27 11.14 7.58 10.43
FK596 - - 13.03 - 4.03
FK604 - - 3.08 - 5.45
FK605 - - 15.88 - 9.48
Overall Site/HS 11.09 11.14 15.64 1.9 29.38
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3.9 Figures

Figure 3.1 (Legend on page 140)
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Figure 3.1 Segregation distortion patterns for each FS family within the E. grandis HS family. A. The
outer track in black represents the 11 chromosomes and the white lines represent the markers included in the
framework genetic linkage map with distance in cM. B-F represent the segregation distortion in each FS family
(Supplementary File 3.1). Each green bar represents a region surrounding a marker and shows the direction
and percentage deviation calculated by (np allele frequency — 0.5) x 100 (Myburg et al. 2004). The straight
black line represents the chi-square critical value at a 0.05 significance level. The grey line with red segments
represents the chi-square test statistic for deviation from the expected 1:1 segregation ratio for each marker.
The red segments of the line and the shaded red regions show regions with significant distortion. B. FS family
FK599. C. FS family FK600. D. FS family FK601. E. FS family FK602. F. FS family FK603. G. Entire E.
grandis HS family. The blue rectangles show regions with opposite directions of segregation distortion in
some FS families. Red rectangles represent regions which show the same direction of segregation distortion

in all FS families.
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Figure 3.2 Segregation distortion patterns for the E. grandis HS across four sites. A. Black outer track
represents the 11 linkage groups and the white lines represent the markers included in the framework genetic
linkage map with distance in cM. B-F represent the segregation distortion patterns in each of the four sites and
the entire HS family (Supplementary File 3.3). Each coloured bar represents a region surrounding a marker
and shows the direction and percentage distortion of the marker calculated by (allele frequency — 0.5) x 100
(Myburg et al. 2004). The straight grey line represents the chi-square critical value at a 0.05 significance level.
The grey line with red segments represent the test statistic for deviation from the expected 1:1 segregation
distortion for each marker, with the red regions representing significant distortion. B. Site165. C. Site166. D.

Site167. E. Site168. F. Entire E. grandis HS family across sites.
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Figure 3.3 Segregation distortion magnitude, direction and distribution of a single site with multiple FS
families and a single FS family across multiple sites. Each vertical bar represents the direction and percentage
deviation calculated by (allele frequency —0.5) x 100 (Myburg et al 2004, primary y-axis). The black horizontal
line represents the chi-square critical value of 3.841 and the red line represents the chi-square test statistic for
deviation from the expected 1:1 segregation distortion for each marker (secondary y-axis). A. Segregation
distortion of one site with five FS families for the E. grandis HS family (Supplementary File 3.5). In some
regions (e.g. Chromosome 5), one allele is favoured in FS family FK601, while the alternative allele is favoured
in FS family FK603. B. Segregation distortion of a single E. urophylla FS family across two sites
(Supplementary File 3.6). In some regions (e.g. Chromosome 6), one allele is favoured in site165 while the

alternative allele is favoured in site167.
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Figure 3.4 Identification of regions underlying pre- and postzygotic incompatibilities based on segregation distortion patterns in dead and alive trees. A.
Segregation distortion patterns of SNP markers in dead (orange) and living trees (green for E. grandis and blue for E. urophylla) of the E. grandis pollen alleles (top
pane) and E. urophylla seed parent alleles (bottom pane) for the intersecting FS family (FS family FK602 for the E. grandis pollen alleles and FS family FK595 for
the E. urophylla seed parent alleles. This is one FS family, numbered differently based on which alleles are analysed, Supplementary File 3.7). Each bar represents a
SNP marker and is ordered by chromosome (x-axis). The primary y-axis represents the absolute distortion (i.e. the number of individuals more than expected carrying
an allele). The chi-square value of each marker for the living trees is represented by the red line and by the blue line for dead trees with the chi-square value represented
on the secondary y-axis. The critical value (3.841) for the chi-square test at a 0.05 significance is represented by the black dotted horizontal line. B. Putative postzygotic
barrier acting on the seed parent alleles. The segregation pattern of the dead trees (orange) show that trees carrying one allele (B allele) were more likely to die while
the segregation patterns of the living trees (blue) show that trees carrying the alternative allele (A allele) were more likely to be alive. This suggests a postzygotic
barrier. As is illustrated in the diagram where the seed parent tree (blue) carries the alleles A and B which are equally transmitted to the progeny. In the hybrid progeny
(two-colored trees), trees carrying the A allele (tree with green and blue) are more likely to survive, while the trees carrying the B allele (grey trees) are more likely to
die. C. Putative prezygotic (or postzygotic, pre-sampling) barrier on the seed parent alleles. The segregation distortion pattern show that the same allele (B allele) is
more common in dead and living trees. This suggests that there was possibly unequal transmission of the seed parent alleles, which could be due to prezygotic or
postzygotic, pre-sampling barriers that caused the B allele to be favored. This is visualized in the diagram where the seed parent (blue tree) is heterozygous (carrying
A and B allele) but the trees carrying the B allele is seen more often in the progeny (blue, green and grey tree) when compared with trees carrying the A allele. D.
Possible combination of pre- and postzygotic barriers of the pollen and seed parent alleles and progeny can be used to identify combinations of alleles which
preferentially combine and survive. The segregation distortion of the pollen parent alleles (C and D alleles) suggests a post-zygotic barrier affecting the pollen alleles,
resulting in trees carrying the A alleles surviving more often than those carrying the D allele. The segregation patterns of the seed parent alleles (A and B alleles)
suggests prezygotic or pre-sampling barrier affecting these alleles with the A allele preferentially passing through the barrier. The diagram represents the result of the
combination of the seed parent (blue tree) and pollen parent (green tree) alleles in the progeny. The pollen alleles segregate equally within the progeny (black arrows),
trees carrying the D allele (grey trees) are more likely to die resulting in trees carrying the AC allele combination more likely to survive (green and blue tree and black
text). The seed parent alleles do not segregate equally within the progeny (grey arrows), resulting in more trees carrying the A allele (green and blue tree and black

text) than the B allele. Therefore, the most common allele combination in the progeny is AC.

145



ANALYSIS OF HYBRID INCOMPATIBLITY

3.10 References

Bartholomé J, Mandrou E, Mabiala A, Jenkins J, Nabihoudine I, Klopp C, Schmutz J, Plomion C,
Gion J. 2015. High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome
assembly. New Phytologist 206: 1283—1296.

Bison O, Ramalho MAP, Rezende GDSP, Aguiar AM, de Resende MDV. 2006. Comparison between
open pollinated progenies and hybrids performance in Eucalyptus grandis and Eucalyptus urophylla.
Silvae Genetica 55: 192—-196.

Bodénés C, Chancerel E, Ehrenmann F, Kremer A, Plomion C. 2016. High-density linkage mapping
and distribution of segregation distortion regions in the oak genome. DNA Research 23: 115-124.

Burkart-Waco D, Josefsson C, Dilkes B, Kozloff N, Torjek O, Meyer R, Altmann T, Comai L. 2012.
Hybrid incompatibility in Arabidopsis is determined by a multiple-locus genetic network. Plant
Physiology 158: 801-812.

Burke JM, Arnold ML. 2001. Genetics and the fitness of hybrids. Annual Review of Genetics 35: 31—
52.

Cameron DR, Moav R. 1956. Inheritance in Nicotiana tabacum XXVII. pollen killer, an alien genetic
locus inducing abortion of microspores not carrying it. Genetics 42: 326-335.

Chen C, Chen H, Lin YS, Shen JB, Shan JX, Qi P, Shi M, Zhu MZ, Huang XH, Feng Q, ef al. 2014.
A two-locus interaction causes interspecific hybrid weakness in rice. Nature Communications 5:
3357.

Dobzhansky T. 1937. Genetics and the origin of species. New York: Columbia University Press.

Fishman L. and Willis JH. 2005. A novel meiotic drive locus almost completely distorts segregation
in Mimulus (Monkeyflower) hyrbids. Genetics 169: 347-353

Freeman JS, Potts BM, Shepherd M, Vallancourt RE. 2006. Parental and consensus linkage maps of
Eucalyptus globulus using AFLP and microsatellite markers. Silvae Genetica 55: 202-217.

Grattapaglia D, Sederoff R. 1994. Genetic linkage maps of Eucalyptus grandis and Eucalyptus
urophylla using a pseudo-testcross: Mapping strategy and RAPD markers. Genetics 137: 1121-1137.

Griffin AR, Burgess IP, Wolf L. 1988. Patterns of natural and manipulated hybridisation in the genus
Eucalyptus 1’Herit - a review. Australian Journal of Botany 36: 41-66.

Hudson CJ, Freeman JS, Kullan ARK, Petroli CD, Sansaloni CP, Kilian A, Detering F, Grattapaglia
D, Potts BM, Myburg AA, et al. 2012. A reference linkage map for Eucalyptus. BMC Genomics 13.

146



ANALYSIS OF HYBRID INCOMPATIBLITY

Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R.
2009. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis
thaliana. PLoS Genetics 5: €¢1000551.

Kullan ARK, van Dyk MM, Jones N, Kanzler A, Bayley A, Myburg AA. 2012. High-density genetic
linkage maps with over 2,400 sequence-anchored DArT markers for genetic dissection in an F2
pseudo-backcross of Eucalyptus grandis x E. urophylla. Tree Genetics and Genomes 8: 163—175.

Li G, Jin J, Zhou Y, Bai X, Mao D, Tan C, Wang G, Ouyang Y. 2019. Genome-wide dissection of
segregation distortion using multiple inter-subspecific crosses in rice. Science China Life Science 62:
507-516.

Lin SY, Ikehashi H, Yanagihara S, Kawashima A. 1992. Segregation distortion via male gametes in
hybrids between Indica and Japonica or wide-compatibility varieties of rice (Oryza sativa L).
Theoretical and Applied Genetics 84: 812—818.

Maheshwari S, Barbash DA. 2011. The genetics of hybrid incompatibilities. Annual Review of
Genetics 45: 331-355.

McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-garcia S, Thornsberry J,
Acharya C, Bottoms C, ef al. 2009. Genetic properties of the maize nested association mapping
population. Science 325: 737-740.

Muller HJ. 1942. Isolating mechanisms, evolution and temperature. Biology Symposium 6: 71-125.

Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist
E, Tice H, Bauer D, et al. 2014. The genome of Eucalyptus grandis. Nature 510: 356-362.

Myburg AA, Vogl C, Griffin AR, Sederoff RR, Whetten RW. 2004. Genetics of postzygotic isolation
in Eucalyptus : Whole-genome analysis of barriers to introgression in a wide interspecific cross of
Eucalyptus grandis and E . globulus. Genetics 166: 1405-1418.

Van Ooijen JW. 2006. JoinMap ® 4, Software for the calculation of genetic linkage maps in
experimental populations.

Retief ECL, Stanger TK. 2009. Genetic parameters of pure and hybrid populations of Eucalyptus
grandis and E. urophylla and implications for hybrid breeding strategy. Southern Forests: a Journal
of Forest Science 71: 133-140.

Rieseberg LH, Blackman BK. 2010. Speciation genes in plants. Annals of Botany 106: 439—-455.
Rieseberg LH, Sinervo B, Linder CR, Ungerer MC, Ungerer MC, Arias DM. 1996. Role of gene

interactions in hybrid speciation : Evidence from ancient and experimental hybrids. Science 272:
741-745.

147



ANALYSIS OF HYBRID INCOMPATIBLITY

Silva-Junior OB, Faria DA, Grattapaglia D. 2015. A flexible multi-species genome-wide 60K SNP
chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species. New
Phytologist 206: 1527—-1540.

Song Q, Yan L, Quigley C, Jordan BD, Fickus E, Schroeder S, Song B-H, Charles An Y-Q, Hyten
D, Nelson R, ef al. 2017. Genetic characterization of the soybean nested association mapping
population. The Plant Genome 10: 2.

Yu J, Holland JB, McMullen MD, Buckler ES. 2008. Genetic design and statistical power of nested
association mapping in maize. Genetics 178: 539-551.

Yu X, Zhao Z, Zheng X, Zhou J, Kong W, Wang P, Bai W, Zheng H, Zhang H, LiJ, et al. 2018. A
selfish genetic element confers non-Mendelian inheritance in rice. Science 360: 1130-1132.

148
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Supplementary Figure 3.1 Genome-wide patterns of segregation distortion for the E. urophylla FS and HS families. Each vertical blue bar represents the
direction and percentage deviation calculated by (np allele frequency — 0.5) x 100 (Myburg et al 2004, primary y-axis). The black horizontal line represents the
chi-square critical value of 3.841 and the red line represents the chi-square test statistic for deviation from the expected 1:1 segregation distortion for each
marker (secondary y-axis). Red shaded regions under the chi-square line represent regions of significant distortion. Blue rectangle shows regions where one
allele is favoured in some FS families, while the alternative allele is favoured in other FS families. Regions which show significant distortion in one FS family,

but no distortion in another FS family are shown in the red rectangle (Supplementary File 3.2).
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Supplementary Figure 3.2 Genome-wide patterns of segregation distortion for the E. urophylla HS family across the four different sites. Each coloured
vertical bar represents the direction and percentage deviation calculated by (np allele frequency — 0.5) x 100 (Myburg et al 2004, primary y-axis). The black
horizontal line represents the chi-square critical value of 3.841 and the red line represents the chi-square test statistic for deviation from the expected 1:1
segregation distortion for each marker (secondary y-axis). Solid red shaded regions under the chi-square line represent regions of significant distortion

(Supplementary File 3.4).
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Supplementary Figure 3.3 Genome-wide patterns of segregation distortion for each FS family in the
E. grandis HS family across four sites. Each coloured vertical bar represents the direction and percentage
deviation calculated by (np allele frequency — 0.5) x 100 (Myburg et al 2004, primary y-axis). The black
horizontal line represents the chi-square critical value of 3.841 and the red line represents the chi-square
test statistic for deviation from the expected 1:1 segregation distortion for each marker (secondary y-axis).
Red shading below the red chi-square line shows regions which are significantly distorted. A. E. grandis
FS families across site 168. B. E. grandis FS families across site167. C. E. grandis FS families across
site166. Boxes show regions which have significant distortion is some FS families, but no significant

distortion in other FS families (Supplementary File 3.5).
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ANALYSIS OF HYBRID INCOMPATIBILITY

Supplementary Figure 3.4 Genome-wide segregation distortion patterns for each FS family in E. grandis
HS family, across the different sites. Each coloured vertical bar represents the direction and percentage
deviation calculated by (np allele frequency — 0.5) x 100 (Myburg et al 2004, primary y-axis). The black
horizontal line represents the chi-square critical value of 3.841 and the red line represents the chi-square test
statistic for deviation from the expected 1:1 segregation distortion for each marker (secondary y-axis). Regions
shaded in red show significantly distorted markers. A. E. grandis FS family FK599 across two sites. B. E.
grandis FS family FK600 across four sites. C. E. grandis FS family FK601 across four sites. D. E. grandis FS

family FK602 across four sites (Supplementary File 3.5).
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Supplementary Figure 3.5 Genome-wide patterns of segregation distortion for each FS family in E.
urophylla HS family, across the four sites. Each vertical bar represents the direction and percentage
deviation, calculated by (np allele frequency — 0.5) x 100 (Myburg et al 2004, primary y-axis), of the SNP
markers. The black horizontal line represents the chi-square critical value of 3.841 and the red line represents
the chi-square test statistic for deviation from the expected 1:1 segregation distortion for each marker
(secondary y-axis). Red shading represents markers with significant distortion. A. E. urophylla FS family
FK592 across two sites. B. E. urophylla FS family FK595 across four sites. C. E. urophylla FS family K594

across two sites (Supplementary File 3.6).
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Supplementary Figure 3.6 Genome-wide patterns of segregation distortion of each FS family in E.
urophylla HS family, across four sites. Each vertical bar represents the direction and percentage
deviation, calculated by (np allele frequency — 0.5) x 100 (Myburg et al 2004, primary y-axis), of SNP
marker. The balck horizontal line represents the chi-square critical value of 3.841 and the red line
represents the chi-square test statistic for deviation from the expected 1:1 segregation distortion for each
marker (secondary y-axis). Red shading shows regions of significant distortion. A. E. urophylla FS
families across site 165. B. E. urophylla FS families across site 166. C. E. urophylla FS families across

site 167 (Supplementary File 3.6).
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3.12 Supplementary Tables

Supplementary Table 3.1 Number of individuals per FS family, of the E. grandis HS family, on each of the

four sites.

FS family Site 165 Site 166 Site 167 Site 168 All

FS family FK599 22 - 27 - 49

FS family FK600 15 16 17 27 75

FS family FK601 26 23 25 30 104

FS family FK602 21 23 23 26 93

FS family FK603 21 - 7 - 28

All 105 62 99 83 349

Supplementary Table 3.2 Number of individuals per FS families, of the E. urophylla HS family, on each of

the four sites.

FS family Site 165 Site 166 Site 167 Site 168 All

FS family FK592 19 - 25 6 50
FS family FK593 19 - 22 7 48
FS family FK594 16 18 14 9 57
FS family FK595 21 23 23 26 93
FS family FK596 12 12 16 - 40
FS family FK604 . - 20 7 27
FS family FK605 13 14 21 4 52
All 100 67 141 59 367
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CONCLUDING REMARKS

The overarching question of this study was: Can we use multi-parent populations in outcrossed plants
such as Eucalyptus to dissect quantitative traits and hybrid compatibility? Using an interspecific F;
hybrid Eucalyptus multi-parent mapping population, we performed genome-wide dissection of
growth and wood properties as well as hybrid compatibility. We were able to construct framework
genetic linkage maps for one E. grandis pollen parent and one E. urophylla seed parent of the F;
hybrid population. We used the framework genetic linkage maps to identify QTLs underlying growth
and wood properties as well as to identify regions of segregation distortion. Due to the population
design, we were able to infer possible genotype-by-environment effects on both the QTLs and
segregation distortion. However, there were limitations to the study which will limit the direct
application of the results of this study in breeding programmes, mainly the small sample size, planting
over multiple sites with no controls and the classification of informative markers. Despite this, we
can use the results and inferences to determine how best to design and use multi-parent mapping

approaches in Eucalyptus for future studies.

The first limitation of this study was the small sample size at the level of FS families and within the
sites. This affected the power and resolution to detect QTLs as well as the power and accuracy of
detecting segregation distortion. Previous multi-parent populations have used thousands of RILs
which resulted in a high power and resolution for QTL analysis (Fragoso et al. 2017). While we
cannot generate RILs in Eucalyptus, we can create families with large sample sizes. For the QTL
analysis, we found that the smallest percentage of variance explained by a QTL was detected when
analysing the entire E. urophylla HS family which had the most individuals (n = 367). Therefore, for
future studies, we suggest that larger sample sizes are used, with equal numbers of progeny per FS

family (ideally 300 - 500 individuals).

The second limitation of this study was that there was not equal representation of the FS families

across all of the sites. We also did not have the same controls planted on the sites, so we could not
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accurately determine the effect of the site despite standardising the data. Despite this, the analysis of
QTLs across multiple environments provided us with the opportunity to start to infer genotype-by-
environment interaction. Additionally, analysis of segregation distortion across different sites
provided us with an insight of how the environment may affect the expression of hybrid compatibility
factors. However, we suggest first fully understanding how to best utilise the outcrossing multi-parent
population on a single site before adding in the effect of the environment because these populations

contain a large amount of genetic complexity.

The classification of HS parent informative markers was a third challenge for this study. We classified
an informative marker as heterozygous in the common parent and the same homozygous class across
all other parents. We also set stringent filtering criteria in order to ensure that the markers used met
the informative marker criteria. Despite this, we were able to construct framework genetic linkage
maps with an average marker interval of 2.4 cM. However, there were still regions of the genetic
linkage maps with marker intervals larger than 10 cM. In future, we propose using SNP haplotypes
as markers which have also been shown to have a higher power for QTL identification (N ’Diaye et
al. 2017). Additionally, the identification of haplotypes present in the parents will allow for the
tracking of haplotypes within the hybrid progeny which can potentially be used to determine which

parental haplotypes combine favourably.

Taking these limitations into consideration, a new F; multi-parent mapping population has been
developed. The population was constructed by crossing three of the best performing (most
compatible) E. grandis and E. urophylla parents from this study. The population contains a larger
number of individuals per FS family (approximately 300 to 400 individuals per FS family) and was
planted in a common garden trial. Using the methods developed in this study, the new population
will first be used for genetic linkage map construction, QTL mapping and segregation distortion

analysis. Additionally, long range DNA sequencing (Oxford Nanopore) is currently being used to
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sequence the parents included in the population. This will allow for the identification of haplotypes
present in the parents and the tracking of the haplotypes within the F; hybrid progeny. Due to the new
population design, questions which arose in this study can be answered. These questions include; Is
there a better method for informative marker identification? Can we identify parental genotypic
combinations which are compatible and can the genes underlying hybrid incompatibility be

identified?

In conclusion, the approach used in this study can be used for genetic linkage map construction and
QTL analysis in outcrossed multi-parent populations. The results of this study together with the
limitations, provided the opportunity to make improve our design of a multi-parent mapping
population in Eucalyptus. Multi-parent mapping approaches have been highly successful in crop
species and the ability to use them in outcrossing species has the potential to advance breeding
programmes. Therefore, studies such as this one, where we explore the possibilities and limitations
of multi-parent mapping populations in Eucalyptus are an important step towards exploiting and

utilising existing Fy hybrid breeding trials for the advancement of Eucalyptus genomics.
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