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A B S T R A C T

In this paper, we introduce the flexible interpretable gamma (FIG) distribution, with origins
in Weibulisation, power weighting, and a stochastic representation. The FIG parameters have
been verified graphically, mathematically, and through simulation as having separable roles in
influencing the left tail, body, and right tail shape. The generalised gamma (GG) distribution
has become a standard model for positive data in statistics due to its interpretable parameters
and tractable equations. Although there are many generalised forms of the GG that can provide
a better fit to data, none of them extend the GG so that the parameters are interpretable. We
conduct simulation studies on the maximum likelihood estimates and respective sub-models of
the FIG. Finally, we assess the flexibility of the FIG relative to existing models by applying the
FIG model to hand grip strength and insurance loss data.

. Introduction

The best known form of the generalised gamma (GG) distribution was defined by Stacy and Hoshkin [1]. Before this, a precursor
odel had been analysed by Amoroso in 1925 for income distribution modelling purposes [2]. The GG contains numerous sub-
odels, including the exponential, gamma, Weibull, and log-normal, as limiting cases. The probability density function (PDF) of

he standard (unscaled) GG is given below:

𝑓 (𝑧; 𝑝, 𝑑) =
𝑝

𝛤 (𝑑∕𝑝)
𝑧𝑑−1e−𝑧𝑝 , (1)

here 𝑧, 𝑑, 𝑝 > 0, 𝛤 (⋅) is the gamma function, and is denoted as 𝑍 ∼ 𝐺𝐺(𝑝, 𝑑). Note that (1) is equivalent to having 𝑎 = 1 in
he PDF of Stacy and Hoshkin [1]. This is done as a simplification, with the knowledge that a simple scaling can be applied after
eneralisation. The role of the GG distribution shape parameters becomes apparent when considering the derivative of the log of
he kernel in (1),

𝑑(𝑧; 𝑝, 𝑑) = 𝜕
𝜕𝑧

ln
(

𝑧𝑑−1𝑒−𝑧
𝑝
)

= 𝑑 − 1
𝑧

− 𝑝𝑧𝑝−1. (2)

he left tail behaviour for GG is determined by 𝑑. Considering the case where, 𝑑 ≠ 1 and lim𝑧→0+ 𝑑(𝑧; 𝑝, 𝑑) in (2), the first term
ominates as the second approaches zero making 𝑑 the primary shape determinant. If 𝑑 = 1, it has no effect on the left tail shape.
ig. 1 illustrates these GG PDF properties in relation to 𝑑. The right tail behaviour for the GG is influenced by 𝑝. Considering the
ase where, lim𝑧→∞ 𝑑(𝑧; 𝑝, 𝑑) in (2), the first term approaches zero while the second dominates, thus making 𝑝 the primary shape
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Fig. 1. The GG PDF for different values of left tail shape parameter 𝑑 and fixed right tail shape 𝑝 = 1.

Fig. 2. The GG PDF for different values of the right tail shape parameter 𝑝 and fixed left tail shape 𝑑 = 1.5.

determinant. Fig. 2 illustrates these GG PDF properties in relation to 𝑝. The broad range of distribution shapes for the GG can model
has led to widespread application, such as in survival analysis [3], time series [4], phonemic segmentation [5], wireless fading
models [6], drought [7], statistical size [8], demographic research [9], and economics [2]. Building on the success of the GG many
authors have improved the applicability of the GG by the addition of parameters through generalisation. Generally speaking, the
main excitement of these generalisations is their focus on superior fit in niche applications. In Table 1 a timeline of GG generalisations
is given for completeness. The demands of new models today have a wider focus than simply better fit. The following authors, Ley
[10], Jones [11], McLeish [12], Punzo and Bagnato [13], Wagener et al. [14], Ley et al. [15] specify these sometimes overlooked
desirable qualities for new generalisations:

• A low number of interpretable parameters: These include parameters that control the distribution shape qualities such as or
similar to location, scale, skewness, and kurtosis.

• Favourable estimation properties: It is important that the parameters can be estimated properly to ensure correct predictions
and inferences from the model. Inferentially speaking, a generalised model for use in diagnosing distribution departure from
a common baseline distribution.

• Simple mathematical tractability: Closed-form expressions and simple formulae aid in implementation, computational speed,
and providing insight into the data.

• Finite moments: Most real-world measurements require this property.

Upon review of the literature in Table 1, only one of the generalisations, the 𝜅-GG, has parameters that are easily interpreted. This is
due to these parameters having overlapping influence in distribution shape, which then obfuscates their role in achieving a certain
fit. The 𝜅-GG is such a distribution because it has an extra right tail parameter which gives geometric instead of exponential tails.
Another disadvantage of these distributions is that they lack simple formulas. This is due to the complex design of their generating
2

mechanisms. The latter two points are viewed as an opportunity to develop a generalisation of the GG distribution.
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Table 1
The timeline of the GG, its generalisations, and their number of parameters (including a scaling parameter).
Distribution Number of parameters Author/s Year

GG 3 Amoroso [2], Stacy and Hoshkin
[1]

1925,1962

quotients of GG 3 or 9𝑖𝑘 for 𝑖, 𝑘 =
1, 2, 3,…

Malik [16], Saieed et al. [17],
Bilankulu et al. [18]

1967,2020,2021

log-GG 3 Consul and Jain [19], Prentice
[20], Bell [21]

1971,1974,1988

unified GG 4 Agarwal and Kalla [22] 1996
composite Weibullised GG 5 Pauw et al. [23] 2010
exponentiated GG 4 Cordeiro et al. [24] 2011
Kumaraswamy GG 5 De Pascoa et al. [25] 2011
beta GG 5 Cordeiro et al. [26] 2012
Kummer beta GG 6 Cordeiro et al. [27] 2014
transmuted GG 4 Lucena et al. [28] 2015
weighted GG 6 Priyadarshani and Oluyede [29] 2015
𝜅−GG 4 Vallejos et al. [30], Kaniadakis

[31]
2018,2021

Marshall–Olkin GG 4 Barriga et al. [32] 2018
double truncated GG 5 Bakery et al. [33] 2021

Here, we systematically construct a generalisation of the GG distribution that possesses interpretable parameters, favourable
stimation, simple formulae, and finite moments because of its generating mechanism and setup. This is done by power weighting
he body-tail generalised normal distribution (BTN) [14] in order to have specific parameters for left tail shape, body shape, and
ight tail shape.

The paper is structured as follows. Section 2 illustrates the operations involved in generating positive real line distributions
rom symmetric distributions using Weibullisation and power weighting, and additionally, provides a stochastic representation of
he flexible interpretable gamma distribution (FIG). Section 3 introduces the FIG, generated by the power weighting of the BTN
aseline distribution; The section further presents derivations of the PDF, cumulative probability function (CDF), moments, moment
enerating function (MGF). Section 4 gives background information on maximum likelihood (ML) estimation. The roles of the FIG
ail parameters are mathematically compared to the GG in Section 5. In Section 6 the parameters are proven to be identifiable.
ection Section 7 evaluates the ML estimation of FIG sub-models, such as the flexible body exponential (FBE) and the flexible body
amma (FBG) sub-models, through simulation experiments. Section 8 applies the FIG to hand grip strength and insurance loss data.
ection 9 summarises the results and key findings.

. Origins of gamma-like distributions

In this section, we investigate three different situations that give rise to gamma-like distributions. This insight may then be used
o guide an expansion of GG, with the aim of maintaining the shape and interpretable roles of the shape parameters.

eibullisation

The Weibullisation for a given baseline distribution of a random variable 𝑍 occurs when considering the random variable 𝑍1∕𝜈

for 𝜈 > 0 [34]. If the baseline distribution is selected to be symmetrical, the Weibullisation of the random variable |𝑍| yields a
ositive distribution which has a direct relationship to the shape of the baseline distribution. This process is illustrated for the GG
istribution and its PDF in (1). As |𝑍| is mathematically equivalent to one side or half of the baseline distribution due to symmetry,
ur analysis will continue with the latter. The GG distribution emerges when 𝑍 follows a generalised normal (GN) distribution,
ee [35]. The PDF of the half-GN is given as:

𝑓 (𝑧; 𝑠) = 𝑠

𝛤
(

1
𝑠

) e−𝑧𝑠 , (3)

where 𝑧, 𝑠 > 0. Note that the half-GN contains the half-normal, half-Laplace, and uniform distributions for shape parameter values
equal to 𝑠 = 2, 𝑠 = 1, and 𝑠 = ∞, respectively [35]. Let 𝑦 = 𝑧1∕𝜈 , then the PDF of the random variable 𝑌 = 𝑍1∕𝜈 is given by:

𝑓 (𝑦; 𝑠, 𝜈) = 𝑠

𝛤
(

1
𝑠

) 𝑦𝜈−1e−𝑦
𝑠𝜈
, (4)

here 𝑦, 𝑠 > 0. Comparing (1) and (4) shows that 𝑌 follows a GG distribution with parameters 𝑑 = 𝜈 and 𝑝 = 𝑠𝜈. In the kernel of (4),
he right tail is determined by e−𝑦𝑠𝜈 and the left tail by 𝑦𝜈−1, refer to Section 1. A visual representation of this generating process
f (4) is given in Fig. 3. Observe that 𝑑 affects the left tail shape, for 𝑑 = 1 we have no change to the half baseline distribution, for
< 1 the left tail density is increased, and for 𝑑 > 1 the left tail density is decreased. The left tail shape does not influence the right

ail, apart from a change of overall scale in the Weibullised distribution. The behaviour of the right tail is left to be determined by
he half baseline distribution kernel from (3) in this instance.
3



Results in Applied Mathematics 22 (2024) 100461M. Wagener et al.

s

w

S

d
F

P
𝐼

Fig. 3. Examples of different Weibullisations of the half-GN equivalent to GG with different left tail shapes 𝑑 and body shapes 𝑝.

Power weighted distributions

The GG distribution (1) also arises in the power weighted kernel of the integrand of the 𝑟th absolute moments of the GN
distribution. In general, if the absolute 𝑟th moments of a distribution 𝑍 exist and are finite, a positive distribution 𝑌 can be generated
from it. Consider the absolute 𝑟th moment of 𝑍:

𝐸(|𝑍|

𝑟) = ∫R
|𝑧|𝑟𝑓 (𝑧)𝑑𝑧, (5)

where 𝑟 > 0. The integrand is a valid kernel for a positive support distribution since its integral is finite by definition. Therefore, a
new PDF can be generated by normalising the integrand function with the actual value of the integral, with the new PDF given by:

𝑓 (𝑦; 𝑟) =
𝑦𝑟𝑓 (𝑦)
𝐸(|𝑍|

𝑟)
, (6)

where 𝑦, 𝑟 > 0 and 𝑓 (⋅) is the original PDF of 𝑍. To generate the GG PDF in this manner, 𝑍 is taken as the GN distribution. By
ubstituting (3) into (6) the generated PDF of 𝑌 is given by:

𝑓 (𝑦; 𝑟, 𝑠) = 𝑠

𝛤
(

𝑟
𝑠

) 𝑦𝑟e−𝑦
𝑠
, (7)

here 𝑦, 𝑟, 𝑠 > 0. Subsequently, from (7), we have that 𝑌 follows a GG distribution with 𝑑 = 𝑟 + 1 and 𝑝 = 𝑠.

cale mixture model

The FIG distribution also arises through a scale mixture of power-function (PF) distributions, which is a special case of the beta
istribution [36]. Even if this kind of mixture cannot represent the GG, we still include it in this section, since it gives rise to the
IG distribution, which has gamma-like properties. The PDF of the scaled PF distribution is given below:

𝑓 (𝑥; 𝑢, 𝜈) = 𝜈
𝑢𝜈
𝑥𝜈−1, (8)

where 0 < 𝑥 ≤ 𝑢, 𝑢 > 0, 𝜈 > 0, and is denoted as 𝑋 ∼ 𝑃𝐹 (𝑢, 𝜈).

Theorem. Let 𝑍 ∼ 𝑃𝐹 (𝑢, 𝜈) and 𝑢 ∼ 𝐺𝐺(𝛽, 𝛼), then the PDF of 𝑍 is given by:

𝑓 (𝑧; 𝛼, 𝛽, 𝜈) = 𝜈𝑧𝜈−1

𝛤
(

𝛼+𝜈
𝛽

)𝛤
(

𝛼
𝛽
, 𝑧𝛽

)

. (9)

roof. Using the pre-defined random variables 𝑍 and 𝑈 , noting that 𝑍 < 𝑈 by definition, and employing the indicator variable
(⋅) we have the following:

𝑓 (𝑧; 𝛼, 𝛽, 𝜈) = ∫R
𝐼 (𝑧 ≤ 𝑢) 𝜈

𝑢𝜈
𝑧𝜈−1 𝑢

𝛼+𝜈−1𝑒−𝑢𝛽

𝛤
(

𝛼+𝜈
𝛽

) 𝑑𝑢 (10)

= 𝜈𝑧𝜈−1

𝛤
(

𝛼+𝜈
) ∫𝑧

𝑢𝛼−1𝑒−𝑢
𝛽
𝑑𝑢 (11)
4

𝛽
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= 𝜈𝑧𝜈−1

𝛤
(

𝛼+𝜈
𝛽

)𝛤
(

𝛼
𝛽
, 𝑧𝛽

)

, (12)

hich concludes the proof.

onclusion

In the selection of a baseline distribution, it is important to consider the existing roles of shape parameters and symmetry. This is
rucial since any ambiguous roles pertaining to the baseline distribution parameters will inevitably be transferred to the distributions
hat are subsequently generated. Hence, it is not recommended to use asymmetric distributions due to the uncertainty of the effects of
he asymmetry parameter following generalisation. This section presented three different methods of obtaining GG type distributions.
o derive the FIG distribution, our preference lies with the power weighted and scale mixture origins’ parameterisations, details of
hich will be extensively discussed in the subsequent section.

. The flexible interpretable gamma distribution

This section consists of the motivation for the chosen FIG baseline distribution and the derivations of the PDF, CDF, moments,
nd MGF for the standard and scaled FIG distribution.

aseline distribution

The baseline distribution for the FIG is the BTN distribution. The BTN distribution is a generalisation of the GN and normal
istribution which has interpretable parameters, simple mathematical tractability, and finite moments. The latter desirable properties
ill be transferred to the FIG distribution in the same way the power weighting of the GN transferred its properties to the GG. The
DF of the BTN is:

𝑓 (𝑧; 𝛼, 𝛽) =
𝛤
(

𝛼
𝛽 , |𝑧|

𝛽
)

2𝛤
(

𝛼+1
𝛽

) , (13)

where 𝑧 ∈ R, 𝛼, 𝛽 > 0, and 𝛤 (⋅, ⋅) is the upper incomplete gamma function [37, p. 899]. The parameters have clear roles, where 𝛼
determines body shape and 𝛽 determines the tail shape of the distribution. Note that, for 𝛼 = 𝛽 = 𝑠, (13) is equivalent to (3), making
the GN and its nested models a subset of the BTN; for more details refer to [14]. Due to the latter fact, the power weighting of the
BTN will therefore contain the GG distribution for 𝛼 = 𝛽 as discussed in Section 2. The absolute moments of the BTN are given by:

𝐸(|𝑍|

𝑟) =
𝛤
(

𝛼+𝑟+1
𝛽

)

(𝑟 + 1)𝛤
(

𝛼+1
𝛽

) , (14)

where 𝑟 > 0; see [14]. In Fig. 4 the different body shapes for a fixed tail shape can be seen. Similarly, in Fig. 5 the different tail
shapes for a given body shape is shown. The additional body shape parameter of the BTN specifically enhances the body shape of
the GG distribution through power weighting in the FIG distribution. Therefore, the additional 𝛼 parameter has an interpretation
and provides information about the body shape of the FIG. Fig. 6 illustrates this process of power weighting and the effect of the
body shape parameter 𝛼. Here, the GG and its fixed body shape is shown for 𝛼 = 𝛽 = 2. Notice that in the region of the body,
0.5 < 𝑧 < 1, the shape is determined by 𝛼. In the region of the left tail, 𝑧 < 0.5, the shape is determined by 𝜈. In the region of the
ight tail, 𝑧 > 1, the shape is determined by 𝛽. Importantly, note that both the tail shapes stay markedly the same for different body
hapes 𝛼.

The FIG has extended the GG body shapes to ‘‘steeper" and ‘‘flatter" for body shapes where 𝛼 ≠ 𝛽, while endeavouring to maintain
the roles of the left and right tail parameters, 𝜈 and 𝛽, as closely as possible. Changes in body shape do marginally affect the tail
shapes since altering the body shape redistributes probability density across different regions of the domain. The rationale behind
the separability of the parameters and their functions is validated through visual confirmation as described above, quantifying the
difference of the derivatives of the log-PDF in the left and right tails of the distribution (Section 5). Then ensuring the FIG model is
mathematically identifiable (Section 6). Additionally, simulating sub-models of the FIG offers insight into the separability of the body
shape from the left and right tail parameters in the data, while also determining the sample size required for accurately identifying
the body shape (Section 7).

In summary, the FIG distribution derives its unique properties from the BTN. The main property of interest is that each shape
parameter controls either the left tail, body, or right tail behaviour of the FIG. The FIG provides for greater flexibility in conjunction
5

with numerically interpretable values for the cause of deviation from the GG.
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Fig. 4. Examples of BTN PDFs for different values of body shape 𝛼 and fixed tail shape 𝛽 = 2.

Fig. 5. The BTN PDF for different values of tail shape 𝛽 and fixed body shape 𝛼 = 2.

PDF

The FIG PDF is derived by substituting (13) and (14) into (6) and is given below:

𝑓 (𝑧; 𝛼, 𝛽, 𝜈) = 𝜈𝑧𝜈−1

𝛤
(

𝛼+𝜈
𝛽

)𝛤
(

𝛼
𝛽
, 𝑧𝛽

)

, (15)

here 𝑧, 𝛼, 𝛽, 𝜈 > 0 denoted as 𝑍 ∼ 𝐹𝐼𝐺(𝛼, 𝛽, 𝜈). We note that if 𝛼 = 𝛽, then we have the standard GG distribution with parameters
𝑝 = 𝜈 and 𝑑 = 𝛼. A depiction of the FIG PDF (15) and corresponding baseline PDF is given in Fig. 6. The PDF of the scaled FIG,
denoted as 𝑋 ∼ 𝐹𝐼𝐺(𝜎, 𝛼, 𝛽, 𝜈), is obtained using the transformation 𝑋 = 𝜎𝑍:

𝑓 (𝑥; 𝜎, 𝛼, 𝛽, 𝜈) = 𝜈𝑥𝜈−1

𝜎𝜈𝛤
(

𝛼+𝜈
𝛽

)𝛤
(

𝛼
𝛽
,
( 𝑥
𝜎

)𝛽
)

, (16)

here 𝜎 > 0.

DF

The CDF of the standard FIG is derived with the definition of a CDF and (15):

𝐹 (𝑧; 𝛼, 𝛽, 𝜈) = ∫

𝑧

−∞

𝜈𝑡𝜈−1

𝛤
(

𝛼+𝜈
𝛽

)𝛤
(

𝛼
𝛽
, 𝑡𝛽

)

𝑑𝑡

= 𝜈

𝛤
(

𝛼+𝜈
)

[

∫

∞

0
𝑡𝜈−1𝛤

(

𝛼
𝛽
, 𝑡𝛽

)

𝑑𝑡 − ∫

∞

𝑧
𝑡𝜈−1𝛤

(

𝛼
𝛽
, 𝑡𝛽

)

𝑑𝑡
]

.

6
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Fig. 6. The baseline BTN and generated FIG PDFs for different body and left tail shape parameters with fixed right tail shape (𝛽 = 2) are shown in the first
row (half baseline distributions) and second row (corresponding generated distributions).

Applying Lemma 2 of the Appendix to both integrals, we have that:

𝐹 (𝑧; 𝛼, 𝛽, 𝜈) = 𝜈

𝛤
(

𝛼+𝜈
𝛽

)

⎡

⎢

⎢

⎢

⎣

lim
𝑡→0+

𝛤
(

𝛼+𝜈
𝛽 , 𝑡𝛽

)

𝑡𝜈𝛤
(

𝛼
𝛽 , 𝑡

𝛽
)

𝜈
−
𝛤
(

𝛼+𝜈
𝛽 , 𝑧𝛽

)

− 𝑧𝜈𝛤
(

𝛼
𝛽 , 𝑧

𝛽
)

𝜈

⎤

⎥

⎥

⎥

⎦

=
𝛾
(

𝛼+𝜈
𝛽 , 𝑧𝛽

)

+ 𝑧𝜈𝛤
(

𝛼
𝛽 , 𝑧

𝛽
)

𝛤
(

𝛼+𝜈
𝛽

) , (17)

where 𝛾(⋅, ⋅) is the lower incomplete gamma function [37, p.899]. Subsequently, the CDF of 𝑋 ∼ 𝐹𝐼𝐺(𝜎, 𝛼, 𝛽, 𝜈) is given by the
substitution of 𝑧 = 𝑥

𝜎 in (17).

IG sub-models

The scaled FIG distribution, an extension of the FIG, incorporates various sub-models detailed in Table 2. These sub-models offer
ractical utility in applications requiring specific distributions either based on prior knowledge or for model simplicity. Notable
xamples of such sub-models include exponential, gamma, half-normal, and Weibull distributions. In these sub-models, if 𝛼 ≠ 𝛽 the

body shape is enhanced, enabling the FIG distribution to effectively model diverse datasets while maintaining simplicity.
The relevant statistical properties for the sub-models in Table 2 can be obtained by substituting the relevant parameters into the

FIG distribution equations. In Section 7, the focus will be on two specific sub-models, namely the flexible body exponential (FBE);
7
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Table 2
A summary of nested models of the FIG distribution.
Distribution 𝜎 𝛼 𝛽 𝜈

Chi-squared 2 1 1 𝑑𝑓∕2
Exponential 1∕𝜆 1 1 1
Gamma 𝜃 1 1 𝑘
GG 𝑎 𝑝 𝑝 𝑑
Half-BTN 𝜎 𝛼 𝛽 1
Half-PN 𝜎 𝑠 𝑠 1
Half-normal

√

2𝜎 2 2 1
Maxwell–Boltzmann

√

2𝑎 2 2 3
Rayleigh

√

2𝜎 2 2 2
Uniform 1 ∞ ∞ 1
Weibull 𝜆 𝑘 𝑘 𝑘

(𝑋 ∼ 𝐹𝐵𝐸(𝜎, 𝛼)) and the flexible body gamma (FBG); (𝑋 ∼ 𝐹𝐵𝐺(𝜎, 𝛼, 𝜈)), notable for their emphasis on altering the body shape
ather than the left or right tails.

ode

The maximum of the standard FIG PDF is given by the maximum of the FIG kernel in (15). We consider two cases for obtaining
he mode of the FIG. For 𝜈 ≤ 1 we have that

lim
𝑧→0+

𝑧𝜈−1𝛤
(

𝛼
𝛽
, 𝑧𝛽

)

= ∞, (18)

nd

lim
𝑧→∞

𝑧𝜈−1𝛤
(

𝛼
𝛽
, 𝑧𝛽

)

= 0, (19)

hich implies that the mode is zero. For 𝜈 > 1 we have that

𝜕
𝜕𝑧
𝑧𝜈−1𝛤

(

𝛼
𝛽
, 𝑧𝛽

)

= (𝜈 − 1)(𝑧𝜈−2)𝛤
(

𝛼
𝛽
, 𝑧𝛽

)

+ 𝑧𝜈−1
(

−𝑧𝛽(
𝛼
𝛽 −1)𝑒−𝑧

𝛽
𝛽𝑧𝛽−1

)

= (𝜈 − 1)(𝑧𝜈−2)𝛤
(

𝛼
𝛽
, 𝑧𝛽

)

− 𝑧𝜈−2
(

𝑧𝛼𝑒−𝑧
𝛽
𝛽
)

= 𝑧𝜈−2
[

(𝜈 − 1)𝛤
(

𝛼
𝛽
, 𝑧𝛽

)

− 𝛽𝑧𝛼𝑒−𝑧
𝛽
]

. (20)

xamining the elements inside the brackets in (20), we find that for

lim
𝑧→0+

(𝜈 − 1)𝛤
(

𝛼
𝛽
, 𝑧𝛽

)

= (𝜈 − 1)𝛤
(

𝛼
𝛽

)

> lim
𝑧→0+

𝛽𝑧𝛼𝑒−𝑧
𝛽
= 0, (21)

which implies (20) is greater than zero for some 𝑧. Since both terms in (20) are greater than zero for all 𝑧, we investigate the rate
of decrease for these functions as 𝑧 increases. The relative rate of decrease for the left and right terms in (20) with respect to 𝑧 is
given by

𝜕
𝜕𝑧 𝛽𝑧

𝛼𝑒−𝑧𝛽

𝜕
𝜕𝑧 (𝜈 − 1)𝛤

(

𝛼
𝛽 , 𝑧

𝛽
) =

𝛽
[

𝛼𝑧𝛼−1𝑒−𝑧𝛽 + 𝑧𝛼𝑒−𝑧𝛽
(

−𝛽𝑧𝛽−1
)

]

(𝜈 − 1)
(

−𝛽𝑧𝛼−1𝑒−𝑧𝛽
)

=
𝛽𝑧𝛽 − 𝛼
𝜈 − 1

, (22)

which implies that 𝛽𝑧𝛼𝑒−𝑧𝛽 decreases geometrically faster than (𝜈 − 1)𝛤
(

𝛼
𝛽 , 𝑧

𝛽
)

for 𝑧 > ln(𝛼)−ln(𝛽)
𝛽 . Noting that (𝜈 − 1)𝛤

(

𝛼
𝛽 , 𝑧

𝛽
)

is
monotonically decreasing, and 𝛽𝑧𝛼𝑒−𝑧𝛽 is increasing and then decreasing but at a slower relative rate for all 𝑧 we have that (20) is
negative from some 𝑧 onward. Therefore, we have that PDF of the is first increasing and then decreasing for 𝜈 > 1 implying a mode
which can be numerically calculated by setting (20) to zero.

Moments

The 𝑟th moment of the standard FIG is derived from (15), and Lemma 3 in the Appendix:

𝐸(𝑍𝑟) =
𝜈𝛤

(

𝛼+𝜈+𝑟
𝛽

)

(𝜈 + 𝑟)𝛤
(

𝛼+𝜈
𝛽

) . (23)

Subsequently, the 𝑟th moment of 𝑋 ∼ 𝐹𝐼𝐺(𝜎, 𝛼, 𝛽, 𝜈) is given by (23), and the identity 𝐸(𝑋𝑟) = 𝜎𝑟𝐸(𝑍𝑟).
8
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Moment generating function

From the definition of a MGF, (15) and the series expansion of the incomplete gamma function [37, p. 901]. The MGF of the
tandard FIG is derived by:

𝑀𝑧(𝑡) =
𝜈

𝛤
(

𝛼+𝜈
𝛽

)

∞
∑

𝑛=0

𝑡𝑛𝛤
(

𝜈+𝑛+𝛼
𝛽

)

𝑛!(𝜈 + 𝑛)
. (24)

Subsequently, the MGF of 𝑋 ∼ 𝐵𝑇𝑁(𝜇, 𝜎, 𝛼, 𝛽) is given by (24), and the identity 𝑀𝑋 (𝑡) = e𝑡𝜇𝑀𝑍 (𝑡𝜎).

4. FIG maximum likelihood equations

The log-likelihood (LL) for a random sample 𝑥1, 𝑥2,… , 𝑥𝑛 from 𝑋 ∼ 𝐹𝐼𝐺(𝜎, 𝛼, 𝛽, 𝜈) observations is

LL(𝜎, 𝛼, 𝛽, 𝜈; 𝑥1, 𝑥2,… , 𝑥𝑛) =
𝑛
∑

𝑖=1

[

ln (𝜈) − ln(𝜎) + (𝜈 − 1) ln (𝑧𝑖)

+ ln
(

𝛤
(

𝛼
𝛽
, 𝑧𝛽𝑖

))

− ln
(

𝛤
(

𝛼 + 𝜈
𝛽

))]

, (25)

here 𝑧𝑖 = 𝑥𝑖∕𝜎. The derivatives of the individual terms in (25) with respect to the FIG parameters are given by:

𝜕𝐿𝐿
𝜕𝜎

= − 𝜈
𝜎
−
𝛽𝑧𝛽𝑖 𝜓2

(

𝛼
𝛽 , 𝑧

𝛽
𝑖

)

𝜎𝛤
(

𝛼
𝛽 , 𝑧

𝛽
𝑖

)

𝜕𝐿𝐿
𝜕𝛼

=
𝜓1
(

𝛼
𝛽 , 𝑧

𝛽
𝑖

)

𝛽𝛤
(

𝛼
𝛽 , 𝑧

𝛽
𝑖

) −
𝜓
(

𝛼+𝜈
𝛽

)

𝛽

𝜕𝐿𝐿
𝜕𝛽

=
𝜓3
(

𝛼
𝛽 , 𝑧

𝛽
𝑖 , 𝛽

)

𝛤
(

𝛼
𝛽 , 𝑧

𝛽
𝑖

) +
𝜓
(

𝛼+𝜈
𝛽

)

(𝛼 + 𝜈)

𝛽2

𝜕𝐿𝐿
𝜕𝜈

= 1
𝜈
+ ln

(

𝑧𝑖
)

−
𝜓
(

𝛼+𝜈
𝛽

)

𝛽
,

where

𝜓1(𝑢, 𝑣) =
𝜕
𝜕𝑢
𝛤 (𝑢, 𝑣) = 𝛤 (𝑢, 𝑣) ln 𝑣 + 𝐴(𝑢, 𝑣),

𝜓2(𝑢, 𝑣) =
𝜕
𝜕𝑣
𝛤 (𝑢, 𝑣) = −𝑣𝑢−1e−𝑣,

𝜓3(𝑢, 𝑣,𝑤) = 𝜓1(𝑢, 𝑣)
𝜕
𝜕𝑤

𝑢 + 𝜓2(𝑢, 𝑣)
𝜕
𝜕𝑤

𝑣,

𝐴(𝑢, 𝑣) = 𝐺3,0
2,3

(

𝑣
|

|

|

|

|

1, 1

0, 0, 𝑢

)

,

𝜓(⋅) is the digamma function, and 𝐺 is the Meijer’s G function [37, p.850,902].

. FIG tail parameter behaviour

To examine the behaviour of the left and right tail of the FIG in comparison to the GG, we examine the derivative of the difference
f log-kernel functions between the FIG and GG as follows:

𝑑(𝑧; 𝛼, 𝛽, 𝜈) = 𝜕
𝜕𝑧

[

ln
(

𝑧𝜈−1𝛤
(

𝛼
𝛽
, 𝑧𝛽

))

− ln
(

𝑧𝜈−1𝑒−𝑧
𝛽
)

]

= 𝜕
𝜕𝑧

[

ln
(

𝛤
(

𝛼
𝛽
, 𝑧𝛽

))

− 𝑧𝛽
]

=
−
(

𝑧𝛽
)
𝛼
𝛽 −1 𝑒−𝑧𝛽

(

−𝛽𝑧𝛽−1
)

𝛤
(

𝛼
𝛽 , 𝑧

𝛽
) − 𝛽𝑧𝛽−1

=
−𝛽𝑧𝛼−1𝑒−𝑧𝛽

𝛤
(

𝛼
𝛽 , 𝑧

𝛽
) − 𝛽𝑧𝛽−1. (26)
9
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Comparing the left tail behaviour of the FIG to the GG, we evaluate

lim
𝑧→0+

𝑑(𝑧; 𝛼, 𝛽, 𝜈) = 0 × 1 − 0 = 0, (27)

which suggests that the left tail behaviour of the FIG approximates the shape of the GG distribution for small 𝑧. This property is
isually confirmed by the bottom left sub-figure of Fig. 6. Regarding, the right tail behaviour, we first concentrate on the first term
n (26) for large values of 𝑧. The limit is of the form zero divided by zero, for which we apply L’Hôpital’s rule:

lim
𝑧→∞

−𝛽𝑧𝛼−1𝑒−𝑧𝛽

𝛤
(

𝛼
𝛽 , 𝑧

𝛽
)

𝐿′𝐻
= lim

𝑧→∞

−𝛽
[

(𝛼 − 1)(𝑧𝛼−𝑧𝑒−𝑧𝛽 ) + (𝑧𝛼−1𝑒−𝑧𝛽 )
(

−𝛽𝑧𝛽−1
)

]

−𝛽𝑧𝛼−1𝑒−𝑧𝛽

= lim
𝑧→∞

(𝛼 − 1)𝑧−1 − 𝑧𝛽−1

= −𝑧𝛽−1. (28)

ubstituting the result from (28) into lim𝑧→∞ 𝑑(𝑧; 𝛼, 𝛽, 𝜈) = 0, we conclude that the FIG right tail behaviour approximates the shape
of the GG distribution for large 𝑧. Similarly, this property is visually confirmed by the bottom right sub-figure of Fig. 6. It is worth
noting that the body shape parameter 𝛼 does not influence calculated left and right tail limits, suggesting that the left and right tail
arameters have maintained their roles and interpretation.

. FIG identifiability

The FIG distribution is derived with the intent of gaining insights from the fitted parameters to data. It is, therefore, important
hat the parameters of the FIG PDF (16) are mathematically identifiable.

heorem. Let 𝑋 ∼ 𝐹𝐼𝐺(𝜎, 𝛼, 𝛽, 𝜈). If 𝜎1, 𝜎2 > 0, 𝛼1, 𝛼2 > 0, 𝛽1, 𝛽2 > 0, 𝜈1, 𝜈2 > 0 such that 𝑓
(

𝑥; 𝜎1, 𝛼1, 𝛽1, 𝜈1
)

= 𝑓
(

𝑥; 𝜎2, 𝛼2, 𝛽2, 𝜈2
)

,∀𝑥 > 0
then 𝜎1 = 𝜎2, 𝛼1 = 𝛼2, 𝛽1 = 𝛽2, 𝜈1 = 𝜈2.

Proof. The proof follows by the method of contradiction, assume the parameters of the FIG are not identifiable. That is, there exist
parameters 𝜎1 ≠ 𝜎2, 𝛼1 ≠ 𝛼2, 𝛽1 ≠ 𝛽2, 𝜈1 ≠ 𝜈2 such that

𝑓
(

𝑥; 𝜎1, 𝛼1, 𝛽1, 𝜈1
)

= 𝑓
(

𝑥; 𝜎2, 𝛼2, 𝛽2, 𝜈2
)

, (29)

where 𝜎1, 𝜎2, 𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝜈1, 𝜈2 > 0. From the hypothesis (29) and substitution of (16) we have that

𝜈1𝑥𝜈1−1𝛤
(

𝛼1
𝛽1
,
(

𝑥
𝜎1

)𝛽1
)

𝜎𝜈11 𝛤
(

𝛼1+𝜈1
𝛽1

) =
𝜈2𝑥𝜈2−1𝛤

(

𝛼2
𝛽2
,
(

𝑥
𝜎2

)𝛽2
)

𝜎𝜈22 𝛤
(

𝛼2+𝜈2
𝛽2

) ,∀𝑥 > 0,

from which we obtain

𝑥𝜈1−𝜈2𝛤
(

𝛼1
𝛽1
,
(

𝑥
𝜎1

)𝛽1
)

𝛤
(

𝛼2
𝛽2
,
(

𝑥
𝜎2

)𝛽2
) =

𝜈2𝜎
𝜈1
1 𝛤

(

𝛼1+𝜈1
𝛽1

)

𝜈1𝜎2𝜈2𝛤
(

𝛼2+𝜈2
𝛽2

) ,∀𝑥 > 0. (30)

Assuming for contradiction that 𝜈1 ≠ 𝜈2. It would now be possible that

lim
𝑥→0+

𝑥𝜈1−𝜈2𝛤
(

𝛼1
𝛽1
,
(

𝑥
𝜎1

)𝛽1
)

𝛤
(

𝛼2
𝛽2
,
(

𝑥
𝜎2

)𝛽2
) =

{

0+ se 𝜈1 > 𝜈2
+∞ se 𝜈1 < 𝜈2,

which is in contradiction with the equality in (29) where
𝜈2𝜎

𝜈1
1 𝛤

( 𝛼1+𝜈1
𝛽1

)

𝜈1𝜎2𝜈2𝛤
( 𝛼2+𝜈2

𝛽2

) ∈ R+. Therefore, it must necessarily be that 𝜈𝟏 = 𝜈𝟐. We

herefore substitute 𝜈 = 𝜈1 = 𝜈2 from here on forward. From (29), it follows that:

𝛤

(

𝛼1
𝛽1
,
(

𝑥
𝜎1

)𝛽1
)

=
𝜎𝜈1𝛤

(

𝛼1+𝜈
𝛽1

)

𝜎𝜈2𝛤
(

𝛼2+𝜈
𝛽2

)𝛤

(

𝛼2
𝛽2
,
(

𝑥
𝜎2

)𝛽2
)

,∀𝑥 > 0,

𝛤

(

𝛼1
𝛽1
,
(

𝑥
𝜎1

)𝛽1
)

= 𝑘𝛤

(

𝛼2
𝛽2
,
(

𝑥
𝜎2

)𝛽2
)

,∀𝑥 > 0, (31)
10
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where 𝑘 =
𝜎𝜈1𝛤

( 𝛼1+𝜈
𝛽1

)

𝜎𝜈2𝛤
( 𝛼2+𝜈

𝛽2

) > 0. Taking the derivative of both sides of (31) with respect to 𝑥, we obtain

−
(

𝑥
𝜎1

)𝛽1
( 𝛼1
𝛽1

−1
)

e−
(

𝑥
𝜎1

)𝛽1 𝛽1
𝜎1

(

𝑥
𝜎1

)𝛽1−1
= −𝑘

(

𝑥
𝜎2

)𝛽2
( 𝛼2
𝛽2

−1
)

e−
(

𝑥
𝜎2

)𝛽2 𝛽2
𝜎2

(

𝑥
𝜎2

)𝛽2−1

,∀𝑥 > 0.

After rearranging, it follows that

𝑥𝛼1−𝛼2e
(

𝑥
𝜎2

)𝛽2−
(

𝑥
𝜎1

)𝛽1

=
𝑘𝛽2𝜎

𝛼1
1

𝛽1𝜎
𝛼2
2

,∀𝑥 > 0. (32)

Assuming for contradiction that 𝛼1 ≠ 𝛼2. It would now be possible that

lim
𝑥→0+

𝑥𝛼1−𝛼2e
(

𝑥
𝜎2

)𝛽2−
(

𝑥
𝜎1

)𝛽1

=
{

0+ if 𝛼1 > 𝛼2
+∞ if 𝛼1 < 𝛼2,

which is in contradiction with the equality in (32), since 𝑘𝛽2𝜎1𝛼1
𝛽1𝜎2𝛼2

∈ R+. Therefore, it must necessarily be that 𝛼𝟏 = 𝛼𝟐. We therefore
ubstitute 𝛼 = 𝛼1 = 𝛼2. Consequently, (32) simplifies to:

e
(

𝑥
𝜎2

)𝛽2−
(

𝑥
𝜎1

)𝛽1

=
𝑘𝛽2𝜎𝛼1
𝛽1𝜎𝛼2

,∀𝑥 > 0. (33)

Assuming for contradiction that 𝛽1 ≠ 𝛽2. It would now be possible that

lim
𝑥→+∞

e
(

𝑥
𝜎2

)𝛽2−
(

𝑥
𝜎1

)𝛽1

=
{

0+ if 𝛽1 > 𝛽2
+∞ if 𝛽1 < 𝛽2,

which is in contradiction with the equality in (33), since 𝑘𝛽2𝜎1𝛼

𝛽1𝜎2𝛼
∈ R+. Therefore, it must necessarily be that 𝛽1 = 𝛽2. We therefore

substitute 𝛽 = 𝛽1 = 𝛽2 from here on forward. Consequently, (33) simplifies to:

e
(

𝑥
𝜎2

)𝛽
−
(

𝑥
𝜎1

)𝛽

=
𝑘𝜎𝛼1
𝜎𝛼2

,∀𝑥 > 0. (34)

Assuming for contradiction that 𝜎1 ≠ 𝜎2. It would now be possible that

lim
𝑥→+∞

e
(

𝑥
𝜎2

)𝛽
−
(

𝑥
𝜎1

)𝛽

= lim
𝑥→+∞

e
𝜎𝛽1 −𝜎2𝛽
𝜎2𝛽𝜎1𝛽

𝑥𝛽
=
{

+∞ if 𝜎1 > 𝜎2
0+ if 𝜎1 < 𝜎2,

hich is in contradiction with the equality in (34), since
𝑘𝜎𝛼1
𝜎𝛼2

∈ R+. Therefore, it must necessarily be that 𝜎1 = 𝜎2. In summary, it
has been proven that 𝜎1 = 𝜎2, 𝛼1 = 𝛼2, 𝛽1 = 𝛽2, 𝜈1 = 𝜈2 which completes the proof.

7. Simulation study

In this section, we explore the properties of ML estimates for the FBE and FBG distributions, which are flexible versions derived
from the exponential and gamma distributions. Metrics including bias and root mean squared error (RMSE) are calculated for samples
generated using the stochastic representation (9). The numerical estimation starting parameters will be the ML of the exponential
distribution, as the exponential distribution is a sub-model of FBE and FBG. The simulation is implemented using the NumPy [38]
and SciPy [39] libraries in Python.

The simulation focuses on 𝑋 ∼ 𝐹𝐵𝐸(10, 4) and 𝑋 ∼ 𝐹𝐵𝐺(10, 4, 0.9), highlighting how the FBE and FBG distributions offer
improved modelling near the distribution mode compared to standard exponential and gamma distributions. Fig. 7 illustrates the
selected simulation distributions with 10000 points for each, along with fitted exponential and gamma distributions for visual
comparison.

In the following simulation investigations, particular attention is given to smaller sample sizes, 𝑛 < 1000, essential for sub-model
analysis and for comparing fitting performance in cases where larger models could lead to overfitting the data.

7.1. Flexible body exponential

The summary statistics for the ML estimates are presented in Table 3 for the respective experiments. These estimates are obtained
from 1000 samples drawn from the 𝑋 ∼ 𝐹𝐵𝐸(10, 4) distribution. It is apparent that the 𝛼 parameter estimate exhibits the largest
bias and RMSE for all sample sizes. This bias and RMSE could be potentially problematic compared to the exponential distribution
body shape of 𝛼 = 1 for 𝑛 < 250. However, for larger sample sizes, 𝑛 ≥ 250, the mean of the fitted 𝛼 estimates approaches 4, with
RMSE values below or equal to 1, which can be considered significantly different to the exponential body shape of 𝛼 = 1. As the
11

sample size increases typically both, the bias decreases in absolute value and the RMSE decreases.
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Fig. 7. Histogram of a sample of 10000 data points from the 𝑋 ∼ 𝐹𝐵𝐸(10, 4) and 𝑋 ∼ 𝐹𝐵𝐺(10, 4, 0.9) distributions, accompanied by their respective theoretical
PDF as well as fitted exponential and gamma PDFs for a visual comparison.

Table 3
Summary statistics of fitted ML estimates for simulated FBE distribution samples.

Parameter Mean Median RMSE Bias 𝑛

𝜎 10 9.98158 9.98446 0.73030 −0.02098 100
𝛼 4 4.89531 4.29067 2.27048 0.76626 100

𝜎 10 9.97820 9.94519 0.43892 −0.02337 250
𝛼 4 4.30607 4.09371 1.17272 0.26747 250

𝜎 10 10.00728 10.01625 0.32881 0.00686 500
𝛼 4 4.13984 4.03276 0.75055 0.12396 500

𝜎 10 10.00448 10.00255 0.25424 0.00417 750
𝛼 4 4.10181 4.04988 0.63314 0.09373 750

Table 4
Summary statistics of fitted ML estimates for simulated FBG distribution samples.

Parameter Mean Median RMSE Bias 𝑛

𝜎 10 9.96374 9.95726 0.78203 −0.03626 100
𝛼 4 4.96960 4.17904 3.49751 0.96960 100
𝜈 0.9 0.96335 0.91335 0.20629 0.06335 100

𝜎 10 10.00214 9.99936 0.49268 0.00214 250
𝛼 4 4.35579 4.08605 1.64725 0.35579 250
𝜈 0.9 0.91477 0.90614 0.09314 0.01477 250

𝜎 10 9.99968 9.99205 0.34208 −0.00032 500
𝛼 4 4.24371 4.11546 1.07965 0.24371 500
𝜈 0.9 0.90437 0.90203 0.05930 0.00437 500

𝜎 10 9.99986 10.00552 0.28968 −0.00014 750
𝛼 4 4.10922 4.02772 0.83267 0.10922 750
𝜈 0.9 0.90571 0.90272 0.04898 0.00571 750

7.2. Flexible body gamma

The summary statistics for the ML estimates are presented in Table 4 for the respective experiments. These estimates are obtained
from 1000 samples drawn from the 𝑋 ∼ 𝐹𝐵𝐺(10, 4, 0.9) distribution. It is evident that the body shape parameter 𝛼 shows a larger
RMSE and bias compared to the scale parameter 𝜎 and the left tail shape parameter 𝜈 for all sample sizes. The bias and RMSE could
be potentially problematic compared to the gamma distribution body shape of 𝛼 = 1 for 𝑛 < 250. For sample sizes of 𝑛 ≥ 500, the
mean of the estimated 𝛼 values is close to 4, with RMSE values below or close to 1, which may be considered significantly different
to the gamma body shape of 𝛼 = 1. As expected, generally the bias decreases in absolute value and the RMSE decreases as the
sample size increases.

8. FIG applications

In this section, the FIG is fitted to commonly available benchmark data to compare the flexibility with competing distributions.
The competitor models are the log-normal (LN), gamma (GA), inverse Gaussian (IG; [40]) and generalised inverse Gaussian
(GIG; [41]). These models are some of the most famous for modelling positive data; see [42] and the review paper [43]. For a detailed
list of where the IG has been successfully implemented, see [36,44]. The evaluation of fit is done by computing both in-sample and
12
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Table 5
Summary statistics for hand grip strength data.
Min Max Median Mean Std Pearson

skewness
Pearson
kurtosis

Count

7 60 24 25.71 8.85 0.81 3.41 3766

Table 6
In- and out-of-sample metrics of distributions fitted to hand grip strength data.
Distribution 𝐿𝐿𝑖𝑠 𝐴𝐼𝐶𝑖𝑠 𝐵𝐼𝐶𝑖𝑠 𝐿𝐿𝑜𝑠
LN −11976.363 23 956.726 23 968.983 −1346.750
IG −11974.224 23 952.447 23 964.704 −1352.182
GIG −11973.171 23 952.342 23 970.728 −1349.809
GA −11997.051 23 998.102 24 010.359 −1342.912
GG −11982.560 23 971.120 23 989.506 −1342.772
FIG −11976.559 23 961.118 23 985.633 −1344.217

Fig. 8. Histogram and fitted FIG PDF to Danish building fire loss data.

out-of-sample validation metrics. The in-sample statistics are the Akaike information criterion (𝐴𝐼𝐶𝑖𝑠) and Bayesian information
criterion (𝐵𝐼𝐶𝑖𝑠) computed on the subset of data used for estimation; see [45,46]. The out-of-sample LL (𝐿𝐿𝑜𝑠) is computed on a
10% subset of data excluded from estimation. This is done to ensure robust goodness of fit analysis and the prevention of overfit
of the final models [47]. The numerical estimation starting parameters will be the ML estimates of the GG distribution since it is
a sub-model of the FIG. The application is implemented using both R and Python, with the libraries NumPy [38], Scipy [39], and
mpmath [48] being used in Python. The inherent high abstraction of R and Python, combined with the evaluation of Meijer’s G
function, causes the estimation of parameters to run in minutes instead of seconds.

Hand grip strength

The data consists of the hand grip strength of English school boys. The data is provided in the gammlss.data package, available
online at https://cran.r-project.org/web/packages/gamlss.data, accessed 23 July 2022. The summary statistics of hand grip strength
are given in Table 5. The in-sample criterion and out-of-sample 𝐿𝐿𝑜𝑠 are tabulated in Table 6. In this application, the in-sample
metrics are the lowest for the IG and GIG. However, the 𝐿𝐿𝑜𝑠 favours the gamma, GG, and FIG because they are higher than the IG
and GIG. It can therefore be concluded that the distributions perform similarly, with preference to be given to the simpler log-normal
and gamma distributions due to parsimony. The fitting of the generalised models as competitors remains important since we would
not know whether a more complex model is necessary if we do not fit one.

Danish fire losses

The data consists of the Copenhagen Reinsurance fire losses for the period from 1980 to 1990. The claim amount in millions
of Danish Krone is divided into building, contents, and profit loss. The data is provided in the CASdatasets package, available at
http://cas.uqam.ca/, accessed 25 July 2022. The summary statistics of the different loss types are given in Table 7. An illustration
of the distributional shape shown by the histogram and fitted FIG PDF is shown in Fig. 8. It is worth noting that multiple views of
the histogram were attempted, but the current plot provides the best illustration.
13
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Table 7
Summary statistics for Danish fire losses data.
Type Min Max Median Mean Std Pearson

skewness
Pearson
kurtosis

Buildings 0.02 152.41 1.33 2.01 4.72 22.98 660.40 1990
Content 0.01 132.01 0.58 1.71 5.43 15.50 321.96 1679
Profit 0.01 61.93 0.28 0.88 3.06 15.23 292.13 616

Table 8
In- and out-of-sample metrics of distributions fitted to Danish fire losses data.
Type Distribution 𝐿𝐿𝑖𝑠 𝐴𝐼𝐶𝑖𝑠 𝐵𝐼𝐶𝑖𝑠 𝐿𝐿𝑜𝑠
Buildings LN −2646.000 5296.000 5306.987 −262.301

IG −2849.905 5703.811 5714.797 −278.373
GIG −2848.965 5703.930 5720.410 −277.869
GA −2964.218 5932.437 5943.423 −281.531
GG −2675.870 5357.739 5374.219 −263.656
FIG −2649.058 5306.117 5328.090 −260.759

Content LN −1862.040 3728.080 3738.707 −205.878
IG −2100.065 4204.129 4214.757 −213.877
GIG −2032.208 4070.415 4086.357 −220.340
GA −2185.560 4375.121 4385.748 −252.081
GG −1895.756 3797.512 3813.453 −212.069
FIG −1879.272 3766.544 3787.799 −209.191

Profit LN −283.271 570.542 579.154 −16.329
IG −327.101 658.203 666.815 −18.264
GIG −312.282 630.564 643.483 −18.597
GA −395.842 795.683 804.296 −32.108
GG −292.055 590.110 603.029 −17.962
FIG −288.890 585.780 603.005 −17.474

The in-sample criterion and out-of-sample 𝐿𝐿𝑜𝑠 are tabulated in Table 8. In this application, the FIG is a clear favourite in all
ypes of fire losses since the in- and out-sample metrics coincide. That is, the in-sample metrics are lowest for the FIG as well as
he highest for the out-of-sample metric 𝐿𝐿𝑜𝑠. It can therefore be concluded that for these loss data, a generalised model is more
ppropriate.

. Conclusions

In this paper, we address the need for more flexible distributions without compromising on desirable distribution traits for
ositive data (Section 1). The exploration of Weibullisation, power weighting, and a stochastic representation that give rise to
he FIG distribution is given (Section 2). The FIG has desirable properties such as a low number of interpretable parameters,
imple tractability, and finite moments. We provide many common statistical properties for using the FIG in practice. These are
he PDF, CDF, moments, MGF, and ML estimation equations (Sections 3 and 4). The roles of the tail parameters are investigated
athematically in Section 5. Regarding identifiability, a proof that the FIG parameters is an identifiable model is provided in

ection 6. An evaluation of the ML estimation of FIG sub-models, including the FBE and FBG sub-models, is done via simulation
Section 7). The applicability of the FIG is demonstrated on hand grip strength and insurance loss data where the FIG provides a
ompetitive fit in comparison to the IG and GIG distributions (Section 8). Points for further research may include finite mixture
odelling, kernel density smoothing, outlier detection, gamma regression, and reliability modelling. Further, in the future, to make

he code faster and more efficient, we plan on using compiled languages such as C or C++ instead of interpreted languages such as
or Python.
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ppendix. Lemmas

emma 1. Let 𝛼, 𝛽 > 0. Then the following limit holds true

lim
𝑥→∞

𝑥𝑘𝛤
(

𝛼
𝛽
, 𝑥𝛽

)

= 0 for 𝑘 ∈ R. (A.1)

If 𝑘 ≤ 0 both factors on the left-hand side of (A.1) tend to zero as 𝑥 tends to infinity. If 𝑘 > 0, by L’Hôpital’s rule

lim
𝑥→∞

𝑥𝑘𝛤
(

𝛼
𝛽
, 𝑥𝛽

)

= lim
𝑥→∞

𝑥𝛼+𝛽+𝑘−1

e𝑥𝛽
⋅
𝛽
𝑘
= 0

Lemma 2. Let 𝛼, 𝛽 > 0, then the following integral identity holds true

∫

∞

𝑥
𝑡𝑟𝛤

(

𝛼
𝛽
, 𝑡𝛽

)

𝑑𝑡 =
𝛤
(

𝛼+𝑟+1
𝛽 , 𝑥𝛽

)

− 𝑥𝑟+1𝛤
(

𝛼
𝛽 , 𝑥

𝛽
)

𝑟 + 1
. (A.2)

Let 𝑦 = 𝑡𝛽 , which implies 𝑡 = 𝑦
1
𝛽 . Integrating by parts, where 𝑣′(𝑦) = 𝑟+1

𝛽 𝑦
𝑟+1
𝛽 −1 and 𝑢(𝑦) = 𝛤 (𝛼∕𝛽, 𝑦). The latter implies that 𝑣(𝑦) = 𝑦

𝑟+1
𝛽

and 𝑢′(𝑦) = −𝑦
𝛼
𝛽 −1e−𝑦. The integral is evaluated as

∫

∞

𝑥
𝑡𝑟𝛤

(

𝛼∕𝛽, 𝑡𝛽
)

𝑑𝑡 = (𝑟 + 1)−1 𝑦
𝑟+1
𝛽 𝛤 (𝛼∕𝛽, 𝑦)

|

|

|

|

∞

𝑥𝛽
− (𝑟 + 1)−1 ∫

∞

𝑥𝛽
𝑦
𝑟+1
𝛽 ⋅

(

−𝑦
𝛼
𝛽 −1e−𝑦

)

𝑑𝑦.

Noting from Lemma 1 that lim𝑥→∞ 𝑦
𝑟+1
𝛽 𝛤 (𝛼∕𝛽, 𝑦) = 0 the result follows.

Lemma 3. Let 𝛼, 𝛽 > 0. Then the following integral identity holds true

∫

∞

0
𝑥𝑟𝛤

(

𝛼
𝛽
, 𝑥𝛽

)

𝑑𝑥 =
𝛤
(

𝛼+𝑟+1
𝛽

)

𝑟 + 1
. (A.3)

The result follows by evaluating the limit, lim𝑡→0+ , over the integral in Lemma 2.
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