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A B S T R A C T

Schistosomiasis is classified by WHO as a neglected tropical disease. Recent research works have
shown that large-scale development projects involving massive population displacement and wa-
ter irrigation, such as the construction of dams, lakes, and the development of agricultural areas,
favour the proliferation of bilharzia. These observations motivate us to propose a reaction–
diffusion model to assess the role of the displacements of humans, snails, cercaria, miracidia
in the transmission dynamics of Schistosomiasis. The model incorporates a general non-linear
contact functions and density-dependent parameters. The aim is to better understanding the
role of spatial interactions on the spread of Schistosomiasis, in order to propose appropriate
recommendations for the control of that silent threat. We characterize the basic reproduction
number 𝑅0 of the model. The uniform persistence theory, the maximum principle are used to
conduct an in-depth analysis of both the homogeneous and heterogeneous models. Theoretical
results are illustrated through numerical simulations.

. Introduction

Schistosomiasis or Bilharzia is an endemic disease, existing in about 51 countries in the world, with a strong presence in the
ropics and subtropics. It is the second most common parasitic disease after malaria [1]. Given its socio-economic impact, the WHO
onsiders it to be a neglected tropical disease (NTD). Indeed, causing about 200,000 deaths per year worldwide, it is estimated that
bout 241.3 million people needed preventive treatment against schistosomiasis in 2020 [1]. The African continent pays the highest
rice for this disease with about 90% of infections [1].

Schistosomiasis is an acute and chronic parasitic disease caused by worms (trematodes) of the genus Schistosoma [2]. Human
ehaviour is the main cause of the spread of the disease. Poor hygiene, agricultural activities, fish farming, domestic activities,
hildren’s play, and the movement of people are key factors in the spread of the disease [3]. The transmission of schistosomiasis
akes place in three stages. An infected individual releases eggs in his faeces and urine, which on contact with water, produce
iracidia, which will then penetrate an intermediate host (aquatic mollusc), and after some time, produce cercaria. Human beings

n contact with water contaminated by cercaria can be contaminated and the cycle starts again [2].
The WHO focuses its schistosomiasis control strategy on large-scale treatment of at-risk populations by various means: regular

nd targeted treatment with praziquantel, preventive chemotherapy for affected populations, access to safe drinking water, improved
anitation, health education and gastropod control [2].
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However, it is well documented that some human activities (storage, water irrigation and population migrations) can uncon-
ciously become divers for fast spread of schistosomiasis [4]. For instance, in Cameroon, during the year 1982, the construction of
he Lagdo dam and the Semry I, Semry II and Semry III projects in Yagoua, Maga and Kousseri, respectively, encouraged a strong
igration of populations from neighbouring countries and other regions of the country for fishing and farming activities. These

ctivities have increased the prevalence of the Schistosomiasis from 13% to almost 46% [5]. In Senegal, the construction of the
iama and Manantali dams in 1986 and 1988 respectively in the north have favoured the proliferation of cercaria. In the Pador
istrict, the presence of irrigation canals has favoured the appearance of sites conducive to the emergence of molluscs, leading to
he development of the disease. Moreover, in some villages, such as Aroudou, the prevalence of the disease increased from 6.8%

before construction to 50.5% only two years after construction [6]. In Nigeria the construction of the Kainji dam in 1970 increased
the prevalence from 20% to 62% in the surrounding villages [7]. In Ghana the construction of the Akoussomba dam in 1964, which
led to the formation of Lake Volta, increased the prevalence from 10% to 62% [8]. In Burundi, the construction of the Rusizi valley
in 1950 led to a major population influx, causing the prevalence to multiply after 15 years the number of cases by 30 [9]. All
these examples give a clear indication that the displacements of people and their settling around constructed dams, as well as their
movement around those dams for fishing play a crucial role in the exacerbated situation of schistosomiasis evolution. This calls for
a mathematical assessment of people and molluscs displacements on the dynamics of schistosomiasis.

Numerous mathematical models have been formulated to understand the dynamics of the disease and to evaluate different control
strategies. The very first model was that of Macdonald [10]. Subsequently, other authors have worked to improve this model. We
can mention the works of [11–13] which introduced periods of maturation in infected individuals (humans and snails), to better
reflect the transmission processes of the disease. We also have the works in [11,13] which dealt with age-structured models, aiming
to better understand the processes of transmission of schistosomiasis by highlighting the fact that children of school age seem to
be the most exposed. A handful of works considered climate change by accounting for seasonally forced periodic models [14–16].
However, very few mathematical models have taken into account the underlined displacement of populations and intermediate
molluscs.

Models along these lines have begun to be formulated. We can mention the works in [17,18], where the human population is
divided into two groups. They were further generalized in [19,20] by dividing the population into 𝑛 ≥ 3 groups (meta-population).
However, the problem remains that in the different groups, it is assumed that the populations are uniformly distributed, and the
heterogeneous feature of space is not accounted for. Hence the need to accurately describe the evolutionary dynamics of the disease
by a reaction–diffusion model to really capture the displacements of humans, molluscs (snails), cercariae and miracidia.

In that regards, we propose here a reaction–diffusion model to describe dynamics of the disease, which additionally takes into
account control strategies. The paper is structured as follows: Section 2 presents the construction of the reaction–diffusion model
with space-dependent parameters and general incidence functions, and addresses the existence and uniqueness of a unique positive
global solution for well-chosen initial conditions. In Section 3, we give a characterization of the basic reproduction number 𝑅0 and
prove the global attractiveness of the unique disease-free equilibrium for 𝑅0 < 1. In Section 4, we prove the uniform persistence
of the model by establishing that there are always a few infected individuals in the populations whenever 𝑅0 > 1. Section 5 deals

ith the homogeneous model, with space-independent parameters. The basic reproduction number is explicitly computed and the
xistence and uniqueness of an endemic equilibrium, as well as its global asymptotic stability when 𝑅0 > 1 are established. We
erform some numerical simulations in Section 6 to support our theoretical results, and conclude the work in Section 7.

. Model formulation and well-posedness

The development of the model is done based on the following main assumptions:

H1) The susceptible humans (𝐻𝑠) become infected through adequate contact with contaminated water containing cercariae (𝑃 )
released from infected intermediate molluscs (𝑀𝑖), and the disease incidence is modelled by the space-dependent function
𝐻𝑠𝑓 (𝑥, 𝑃 ). A human individual can die either naturally or due to the disease.

H2) Susceptible molluscs (𝑀𝑠) become infected by adequate contact with contaminated water containing miracidia (𝐾), shed from
faeces and urine of infected humans (𝐻𝑖), and the disease incidence follows the space-dependent function 𝑀𝑠𝑔(𝑥,𝐾). The death
of intermediate molluscs is only due to natural factors because the miracidia infection has no effect on them.

H3) There are some control actions by humans on the disease represented by the treatment with praziquantel at rate 𝜎 per unit
time.

H4) Some awareness and sensitization programs are run by local authorities and health-care workers such that sick individuals
who recovered will no longer exposed themselves to the disease.

H5) The study domain (the human’s living environment) is large enough so that no individual crosses its boundary, and snails
(molluscs), cercaria, miracidia remain in the dams present in the area where people live and work.

To build our model, let 𝑥 ∈ 𝛺 and 𝑡 > 0 be the position and time unit. We assume that the variation of susceptible human
population at location 𝑥 at time 𝑡, 𝐻𝑠(𝑥, 𝑡) with respect to time, is due to the diffusion process described by the term diffusion
∇.(𝑑1(𝑥)∇𝐻𝑠), in which the diffusion coefficient 𝑑1(𝑥) depends on the location 𝑥, always with the aim of properly reflecting the
non-homogeneity of the domain 𝛺, but also of the recruitment 𝜆ℎ(𝑥), infection 𝐻𝑠𝑓 (𝑥, 𝑃 ) and natural death 𝜇ℎ(𝑥)𝐻𝑠. The model’s
2

ariables and parameters, as well as their biological and epidemiological definitions are gathered in Table 1. We thus obtain the
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Table 1
States variables and Model parameters.

Variable Description

𝐻𝑠(𝑥, 𝑡) Density of Susceptible human population at location 𝑥 at time 𝑡
𝐻𝑖(𝑥, 𝑡) Density of Infected human population at location 𝑥 at time 𝑡
𝐾(𝑥, 𝑡) Density or concentration of miracidia at location 𝑥 at time 𝑡
𝑀𝑠(𝑥, 𝑡) Density of Susceptible mollusc population at location 𝑥 at time 𝑡
𝑀𝑖(𝑥, 𝑡) Density of Infected mollusc population at location 𝑥 at time 𝑡
𝑃 (𝑥, 𝑡) Density or concentration of cercariae population at location 𝑥 at time 𝑡

Parameter Description

𝜆ℎ(𝑥) Density-dependent per-capita recruitment rate of susceptible humans at location 𝑥
𝜆𝑚(𝑥) Density-dependent per-capita recruitment rate of susceptible molluscs at location 𝑥
𝜇ℎ(𝑥) Density-dependent mortality rate from means other than disease in humans at location 𝑥
𝜂(𝑥) Density-dependent mortality rate of infected humans due to the disease at location 𝑥
𝜎 Density-independent (homogeneous) recovery rate of infected humans
𝛼1(𝑥) Density-dependent rate of production of miracidia by infected humans at location 𝑥
𝛼2(𝑥) Density-dependent production rate of cercaria by infected molluscs at location 𝑥
𝜇𝑘(𝑥) Density-dependent natural mortality rate of miracidia at location 𝑥
𝜇𝑝(𝑥) Density-dependent natural mortality rate of cercaria at location 𝑥
𝜇𝑚(𝑥) Density-dependent natural mortality rate of molluscs at location 𝑥

partial differential equation governing the dynamics of evolution of susceptible humans. We do the same for other components and
we obtain the model.
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𝜕𝐻𝑠
𝜕𝑡

= ∇.(𝑑1(𝑥)∇𝐻𝑠) + 𝜆ℎ(𝑥) −𝐻𝑠𝑓 (𝑥, 𝑃 ) − 𝜇ℎ(𝑥)𝐻𝑠, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝐻𝑖
𝜕𝑡

= ∇.(𝑑2(𝑥)∇𝐻𝑖) +𝐻𝑆𝑓 (𝑥, 𝑃 ) − (𝜇ℎ(𝑥) + 𝜂(𝑥) + 𝜎)𝐻𝑖, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝐾
𝜕𝑡

= ∇.(𝑑3(𝑥)∇𝐾) + 𝛼1(𝑥)𝐻𝑖 − 𝜇𝑘(𝑥)𝐾, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑀𝑠
𝜕𝑡

= ∇.(𝑑4(𝑥)∇𝑀𝑠) + 𝜆𝑚(𝑥) −𝑀𝑠𝑔(𝑥,𝐾) − 𝜇𝑚(𝑥)𝑀𝑠 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑀𝑖
𝜕𝑡

= ∇.(𝑑5(𝑥)∇𝑀𝑖) +𝑀𝑠𝑔(𝑥,𝐾) − 𝜇𝑚(𝑥)𝑀𝑖, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑃
𝜕𝑡

= ∇.(𝑑6(𝑥)∇𝑃 ) + 𝛼2(𝑥)𝑀𝑖 − 𝜇𝑝(𝑥)𝑃 , 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑅
𝜕𝑡

= ∇.(𝑑7(𝑥)∇𝑅) + 𝜎𝐻𝑖 − 𝜇ℎ(𝑥)𝑅, 𝑥 ∈ 𝛺, 𝑡 > 0,

(2.1)

By virtue of assumption (H5), System (2.1) is appended with the following boundary conditions (Neumann condition).
𝜕𝐻𝑠
𝜕𝑛

=
𝜕𝐻𝑖
𝜕𝑛

= 𝜕𝐾
𝜕𝑛

=
𝜕𝑀𝑠
𝜕𝑛

=
𝜕𝑀𝑖
𝜕𝑛

= 𝜕𝑃
𝜕𝑛

= 𝜕𝑅
𝜕𝑛

= 0, 𝑥 ∈ 𝜕𝛺, 𝑡 > 0, (2.2)

nd the initial conditions :
𝐻𝑠(𝑥, 0) = 𝐻0

𝑠 (𝑥) > 0,𝐻𝑖(𝑥, 0) = 𝐻0
𝑖 (𝑥) ≥ 0, 𝐾(𝑥, 0) = 𝐾0(𝑥) ≥ 0, 𝑥 ∈ 𝛺,

𝑀𝑠(𝑥, 0) = 𝑀0
𝑠 (𝑥) > 0,𝑀𝑖(𝑥, 0) =𝑀0

𝑖 (𝑥) ≥ 0, 𝑃 (𝑥, 0) = 𝑃 0(𝑥) ≥ 0, 𝑥 ∈ 𝛺.
(2.3)

In our work, we make the following additional assumptions:

A1): 𝛺 is a bounded domain of R𝑛 𝑛 ≥ 1.
A2): 𝑑𝑖=1...7(.), 𝜆ℎ(.), 𝜆𝑚(.), 𝜇ℎ(.), 𝜂(.), 𝛼1(.), 𝛼2(.), 𝜇𝑘(.), 𝜇𝑝(.), 𝜇𝑚(.) ∈ 𝐶2(𝛺) are positive and bounded on 𝛺.
A3): 𝑑1(.) = 𝑑2(.) ∶= 𝑑(.) and 𝑑4(.) = 𝑑5(.) ∶= 𝑑′(.). This assumption supports that infection of individuals has no real impact on their

movements.
A4): 𝑓 (𝑥, 𝑃 ) > 0 and 𝑔(𝑥,𝐾) > 0 for all 𝑥 ∈ 𝛺 and 𝑃 ,𝐾 > 0, 𝑓 (𝑥, 0) = 0 et 𝑔(𝑥, 0) = 0 for 𝑥 ∈ 𝛺.
A5): 𝑓 (𝑥, 𝑃 ) and 𝑔(𝑥,𝐾) are twice differentiable with respect to (𝑥, 𝑃 ) ∈ 𝛺×R+ and (𝑥,𝐾) ∈ 𝛺×R+, and 𝜕𝑓 (𝑥, 𝑃 )

𝜕𝑃
> 0,

𝜕𝑔(𝑥,𝐾)
𝜕𝐾

> 0;
𝜕2𝑓 (𝑥, 𝑃 )
𝜕𝑃 2

≤ 0,
𝜕2𝑔(𝑥,𝐾)
𝜕𝐾2

≤ 0.

A6): 𝑓 (𝑥, 𝑃 ) ≤ 𝜕𝑓 (𝑥, 0)
𝜕𝑃

𝑃 and 𝑔(𝑥,𝐾) ≤ 𝜕𝑔(𝑥, 0)
𝜕𝐾

𝐾, for all 𝑥 ∈ 𝛺.
Some common examples for the incidence functions 𝑓 and 𝑔 used the literature are as follows:

𝑓1(𝑥, 𝑃 ) =
𝛽1(𝑥)𝑃

1 + 𝜏1(𝑥)𝑃
; 𝑓2(𝑥, 𝑃 ) = 𝛽1(𝑥) ln

(

1 + 𝑃
1 + 𝜏1(𝑥)𝑃

)

;

𝑔1(𝑥,𝐾) =
𝛽2(𝑥)𝐾 ; 𝑔2(𝑥,𝐾) = 𝛽2(𝑥) ln

(

1 + 𝐾
)

.

3

1 + 𝜏2(𝑥)𝐾 1 + 𝜏2(𝑥)𝐾
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Assumptions (A4), (A5) and (A6) capture the fact that the force of infection of the disease maybe increasing but must saturate
at some point in time and space.

In the rest of the paper, when we talk about the System (2.1), we refer to System (2.1) appended with the initial conditions given
by (2.2) and the boundary conditions highlighted in (2.3).

We then show that System (2.1) has a unique global solution in time.
To do this, for 𝑖 ∈ {1, 2,… , 7} and 𝜑 ∈ 𝐶1(𝛺) ∩ 𝐶2(𝛺), we define the operator 𝐴0

𝑖 by 𝐴0
𝑖 𝜑 ∶= ∇.(𝑑𝑖(.)∇𝜑), with the domain,

(𝐴0
𝑖 ) ∶= {𝜑 ∈ 𝐶2(𝛺) ∩ 𝐶1(𝛺) ∶ 𝐴0

𝑖 𝜑 ∈ 𝐶(𝛺),
𝜕𝜑
𝜕𝑛

= 0, 𝑥 ∈ 𝜕𝛺}.
Then, for 𝑖 = 1,… , 7, the closure 𝐴𝑖 of 𝐴0

𝑖 generates the 𝐶0-semi-group (𝑇𝑖(𝑡))𝑡≥0, and the function 𝑢𝑖(𝑡) = 𝑇𝑖(𝑡)𝜑 is the solution

f the equation 𝑢′𝑖(𝑡) = 𝐴𝑖𝑢𝑖(𝑡), 𝑡 > 0, with 𝑢𝑖(0) = 𝜑 ∈ 𝐷(𝐴𝑖), where 𝐷(𝐴𝑖) ∶= {𝜑 ∈ 𝐶(𝛺) ∶ lim𝑡→0
(𝑇𝑖(𝑡) − 𝐼𝑑)𝜑

𝑡
𝑒𝑥𝑖𝑠𝑡}. Here, 𝐼𝑑 is

identity operator.
We now define the non-linear functions 𝐹𝑖(𝑥, 𝑟), 𝑖 = 1,… , 7 on 𝛺 × R7 as follows :

𝐹1(𝑥, 𝑟) = 𝜆ℎ(𝑥) − 𝑟1𝑓 (𝑥, 𝑟6) − 𝜇ℎ(𝑥)𝑟1,

𝐹2(𝑥, 𝑟) = 𝑟1𝑓 (𝑥, 𝑟6) − (𝜇ℎ(𝑥) + 𝜂(𝑥) + 𝜎)𝑟2,

𝐹3(𝑥, 𝑟) = 𝛼1(𝑥)𝑟2 − 𝜇𝑘(𝑥)𝑟3,

𝐹4(𝑥, 𝑟) = 𝜆𝑚(𝑥) − 𝑟4(𝑥)𝑔(𝑥, 𝑟3) − 𝜇𝑚(𝑥)𝑟4,

𝐹5(𝑥, 𝑟) = 𝑟4𝑔(𝑥, 𝑟3(𝑥)) − 𝜇𝑚(𝑥)𝑟5,

𝐹6(𝑥, 𝑟) = 𝛼2(𝑥)𝑟5 − 𝜇𝑝(𝑥)𝑟6,

𝐹7(𝑥, 𝑟) = 𝜎𝑟2 − 𝜇ℎ(𝑥)𝑟7,

where, 𝑥 ∈ 𝛺, 𝑟 = (𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7) ∈ R7.

Let 𝑋𝑖 = 𝐶(𝛺,R), 𝑋+
𝑖 = 𝐶(𝛺,R+), 𝑖 = 1...7, 𝑋 =

∏7
𝑖=1𝑋𝑖, 𝑋+ =

∏7
𝑖=1𝑋

+
𝑖 . The sets 𝑋 and 𝑋+ are equipped with following norm,

∀𝜑 ∈ 𝑋, ‖𝜑‖𝑋 = max1≤𝑖≤7{sup |𝜑𝑖(𝑥)|, 𝑥 ∈ 𝛺}.
For the sake of presentation, we define the function

𝐹 (𝑥, 𝑟) = (𝐹1(𝑥, 𝑟), 𝐹2(𝑥, 𝑟), 𝐹3(𝑥, 𝑟), 𝐹4(𝑥, 𝑟), 𝐹5(𝑥, 𝑟), 𝐹6(𝑥, 𝑟), 𝐹7(𝑥, 𝑟)), (𝑥, 𝑟) ∈ 𝛺 × R7,

and the operators

𝐴 ∶=
7
∏

𝑖=1
𝐴𝑖, 𝐷(𝐴) ∶=

7
∏

𝑖=1
𝐷(𝐴𝑖), 𝑇 (𝑡) ∶=

7
∏

𝑖=1
𝑇𝑖(𝑡), 𝑡 > 0.

or any continuous functions 𝑓 defined from 𝛺 to R, let us defined 𝑓+ = max {𝑓 (𝑥) ∶ 𝑥 ∈ 𝛺} < +∞, 𝑓− = min {𝑓 (𝑥) ∶ 𝑥 ∈ 𝛺} < +∞.
With the above notations, System (2.1) takes the following compact form:

{

𝑢′(𝑡) = 𝐴𝑢(𝑡) +  (𝑢(𝑡)), 𝑡 > 0,
𝑢(0) = 𝜑 ∈ 𝐷(𝐴) ⊂ 𝑋,

where, 𝑢(𝑡) = (𝐻𝑠(., 𝑡),𝐻𝑖(., 𝑡), 𝐾(., 𝑡),𝑀𝑠(., 𝑡),𝑀𝑖(., 𝑡), 𝑃 (., 𝑡), 𝑅(., 𝑡)) ∈ 𝑋, 𝜑 = (𝐻0
𝑠 (.),𝐻

0
𝑖 (.), 𝐾

0(.),𝑀0
𝑠 (.),𝑀

0
𝑖 (.), 𝑃

0(.), 𝑅0(.)) ∈ 𝑋 and
 (𝜑)(𝑥) = 𝐹 (𝑥, 𝜑(𝑥)), 𝑥 ∈ 𝛺, 𝜑 ∈ 𝑋.

System (2.1) can also be written in the following integral form.
{

𝑢(𝑡) = 𝑇 (𝑡)𝜑 + ∫ 𝑡0 𝑇 (𝑡 − 𝑠) (𝑢(𝑠))𝑑𝑠, 𝑡 > 0,
𝑢(0) = 𝜑 ∈ 𝑋.

Using ([21] Corollary 7.3.2), we establish the following proposition, which guarantees the existence of the unique local solution of
System (2.1).

Proposition 2.1. Assume (A1)-(A6) hold, then for any 𝜑 ∈ 𝑋+, System (2.1) admits a unique and continuous local solution
𝑢(𝑡) = 𝑢(., 𝑡, 𝜑) ∈ 𝑋+ defined on [0, 𝑇𝜑[. Moreover, 𝑢(𝑡) is differentiable on ]0, 𝑇𝜑[, and if 𝑇𝜑 < +∞, then ‖𝑢(𝑡)‖𝑋 → +∞ when 𝑡→ 𝑇𝜑.

The following lemma, whose proof can be seen in ([22], Lemma 1) is instrumental for the proof of the existence of a global
solution of System (2.1).

Lemma 2.2. Consider the following problem,

⎧

⎪

⎨

⎪

⎩

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

= ∇.(𝑑(𝑥)∇𝑢(𝑥, 𝑡)) + 𝛽(𝑥) − 𝜌(𝑥)𝑢(𝑥, 𝑡), 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑢(𝑥)
𝜕𝑛

= 0, 𝑥 ∈ 𝜕𝛺, 𝑡 > 0.
(2.4)

If 𝛽(.) and 𝜌(.) are continuous and positive functions, then System (2.4) has a stationary solution 𝑢0(.), satisfying ∇.(𝑑(𝑥)∇𝑢0(𝑥)) + 𝛽(𝑥) −

(𝑥)𝑢0(𝑥) = 0, 𝑥 ∈ 𝛺,
𝜕𝑢0(𝑥) = 0, 𝑥 ∈ 𝜕𝛺, and which is globally asymptotically stable in 𝑋. If 𝛽(.) = 𝛽 and 𝜌(.) = 𝜌 then 𝑢0(.) =

𝛽 .
4
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Theorem 2.3. Assume (A1)-(A6) hold, then for all 𝜑 ∈ 𝑋+, the System (2.1) has a unique global solution, 𝑢(𝑡) = 𝑢(., 𝑡, 𝜑) ∈ 𝐷(𝐴), on
0,+∞[ with 𝑢(0) = 𝜑(.).

roof. By Proposition 2.1, it suffices to show that 𝑇𝜑 = +∞, 𝜑 ∈ 𝑋+.
Let us assume by contradiction that 𝑇𝜑 < +∞. Adding the first two equations of System (2.1) we have :

𝜕𝐻𝑠
𝜕𝑡

+
𝜕𝐻𝑖
𝜕𝑡

≤ ∇.(𝑑(𝑥)∇(𝐻𝑠 +𝐻𝑖)) + 𝜆ℎ(𝑥) − 𝜇ℎ(𝑥)(𝐻𝑠 +𝐻𝑖).

Therefore, 𝐻𝑠 +𝐻𝑖 is a sub-solution of the following linear problem,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢′𝑡 = ∇.(𝑑(𝑥)∇𝑢) + 𝜆+ℎ − 𝜇−ℎ 𝑢, 𝑥 ∈ 𝛺,
𝜕𝑢
𝜕𝑛

= 0, 𝑥 ∈ 𝜕𝛺,

𝑢(0, 𝑥) = 𝐻0
𝑠 (𝑥) +𝐻

0
𝑖 (𝑥), 𝑥 ∈ 𝛺.

(2.5)

According to the comparison theorem for parabolic equation, 𝐻𝑠(𝑡, 𝑥) + 𝐻𝑖(𝑥, 𝑡) ≤ 𝑣(𝑥, 𝑡), 𝑥 ∈ 𝛺, 𝑡 ∈ [0, 𝑇𝜙[, where 𝑣(𝑥, 𝑡) is the
olution of System (2.5).

By Lemma 2.2, lim𝑡→+∞ 𝑣(𝑥, 𝑡) = 𝜆+ℎ∕𝜇
−
ℎ , 𝑥 ∈ 𝛺, then there exists a constant 𝑀1 > 0 such that 𝐻𝑠(𝑡, 𝑥)+𝐻𝑖(𝑥, 𝑡) ≤𝑀1, 𝑥 ∈ 𝛺, 𝑡 ∈

[0, 𝑇𝜙[. This proves that 𝐻𝑠 and 𝐻𝑖 are bounded.
For the boundedness of the functions 𝑀𝑠 and 𝑀𝑖, it suffices to see that,

𝜕𝑀𝑠
𝜕𝑡

+
𝜕𝑀𝑖
𝜕𝑡

≤ ∇.(𝑑′(𝑥)∇(𝑀𝑠 +𝑀𝑖)) + 𝜆𝑚(𝑥) − 𝜇𝑚(𝑥)(𝑀𝑠 +𝑀𝑖),

nd perform a similar proof as above to obtain the desired result. On the other hand, an analogous reasoning, using the boundedness
f 𝐻𝑖, 𝑀𝑖, and 𝑀𝑠, already show, it is straightforward to prove the boundedness of 𝐾, 𝑃 and 𝑅. Thus, all the trajectories are bounded.

Now according to ([21], Theorem 3.1), if 𝑇𝜑 < +∞ then, ‖𝑢(𝑡)‖𝑋 → ∞ when 𝑡 → 𝑇𝜑, which is contradictory, so 𝑇𝜑 = +∞, ∀𝜑 ∈
𝑋+. ■

Corollary 2.4. Assume (A1)–(A6) hold true, then for any solution
𝑢(𝑡) = (𝐻𝑠(., 𝑡),𝐻𝑖(., 𝑡), 𝐾(., 𝑡),𝑀𝑠(., 𝑡),𝑀𝑖(., 𝑡), 𝑃 (., 𝑡), 𝑅(., 𝑡)), 𝑡 ≥ 0 of System (2.1) with the initial condition 𝜑 ∈ 𝑋+, we have:

lim sup𝑡→∞𝐻𝑠(𝑥, 𝑡) + 𝐻𝑖(𝑥, 𝑡) ≤
𝜆+ℎ
𝜇−ℎ

, lim sup𝑡→∞𝑀𝑠(𝑥, 𝑡) + 𝑀𝑖(𝑥, 𝑡) ≤
𝜆+𝑚
𝜇−𝑚

, lim sup𝑡→∞ 𝐾(𝑥, 𝑡) ≤
𝛼+1 𝜆

+
ℎ

𝜇−𝑘 𝜇
−
ℎ
, lim sup𝑡→∞ 𝐾(𝑥, 𝑡) ≤

𝛼+2 𝜆
+
𝑚

𝜇−𝑝 𝜇−𝑚
,

im sup𝑡→∞ 𝑅(𝑥, 𝑡) ≤
𝜎𝜆+ℎ
(𝜇−ℎ )

2
.

Proof. The proof is obtained from Theorem 2.3 and the comparison theorem by letting 𝑡 go to ∞. ■

Corollary 2.5. Assume (A1)-(A6) are satisfied. For any 𝜑 ∈ 𝑋+, System (2.1) generates a semi-flow {𝛷𝑡}𝑡≥0 ∶ 𝑋+ → 𝑋+, defined by
𝑡𝜑 = 𝑢(𝑡, 𝜑), 𝑡 ≥ 0. For any closed and bounded set 𝐵 ⊂ 𝑋+ then 𝛷𝑡𝐵 has compact closure in 𝑋+.

roof. The proof follows directly from ([21], Theorem 3.3). ■

In the rest of the paper, we discard the recovered compartment 𝑅, since it does not appear in remaining equations.
In the next section, we characterize the basic reproduction ratio 𝑅0 and prove the global attractiveness of the disease-free

quilibrium when 𝑅0 < 1.

. Global attractiveness of the disease-free equilibrium

We start this section by characterizing the basic reproduction ratio, using the method developed in [23]. At the equilibrium
oint, we have, 𝐻𝑖 =𝑀𝑖 = 𝐾 = 𝑃 ≡ 0, by substituting in the system we get,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇.(𝑑1(𝑥)∇𝐻𝑠) + 𝜆ℎ(𝑥) − 𝜇ℎ(𝑥)𝐻𝑠 = 0, 𝑥 ∈ 𝛺,

∇.(𝑑4(𝑥)∇𝑀𝑠) + 𝜆𝑚(𝑥) − 𝜇𝑚(𝑥)𝑀𝑠 = 0, 𝑥 ∈ 𝛺,
𝜕𝐻𝑠
𝜕𝑛

=
𝜕𝑀𝑠
𝜕𝑛

= 0, 𝑥 ∈ 𝜕𝛺.

(3.1)

hanks to Lemma 2.2, and after decoupling System (3.1), one can see that it admits unique positive solution (𝐻0(𝑥),𝑀0(𝑥)), for all
∈ 𝛺,. Hence the existence of our unique disease-free equilibrium

𝐸 = (𝐻 (.), 0, 0,𝑀 (.), 0, 0).
5
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Let 𝑢 = (𝐻𝑖,𝑀𝑖, 𝐾, 𝑃 ,𝐻𝑠,𝑀𝑠). we define the functions,  (𝑢) = (𝐻𝑠𝑓 (𝑥, 𝑃 ),𝑀𝑠𝑔(𝑥,𝐾), 0, 0, 0, 0), given the recruitment rate of newly
nfected individuals into the different compartments. Similarly, we define

(𝑢) = ((𝜇ℎ(𝑥) + 𝜂(𝑥) + 𝜎)𝐻𝑖, 𝜇(𝑥)𝑀𝑖, 𝜇𝑘(𝑥)𝐾 − 𝛼1(𝑥)𝐻𝑖, 𝜇𝑝(𝑥)𝑃
− 𝛼2(𝑥)𝑀𝑖, 𝜇ℎ(𝑥)𝐻𝑠 − 𝜆ℎ(𝑥), 𝜇𝑚(𝑥)𝑀𝑠 − 𝜆𝑚(𝑥)),

which gives the transfer rate of individuals into infected compartments by other means (e.g., births and immigrations), and the rate
movement of individuals out of infected compartments (e.g., death and/or recovery). The Jacobian matrices of  and  around the
disease-free equilibrium are respectively:

 (𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 𝐻0
𝜕𝑓 (𝑥, 0)
𝜕𝑃

0 0

0 0 𝑀0
𝜕𝑔(𝑥, 0)
𝜕𝐾

0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
(

𝐹 (𝑥) 0
0 0

)

,

nd

(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜇ℎ(𝑥) + 𝜂(𝑥) + 𝜎 0 0 0 0 0
0 𝜇𝑚(𝑥) 0 0 0 0

−𝛼1(𝑥) 0 𝜇𝑘(𝑥) 0 0 0
0 −𝛼2(𝑥) 0 𝜇𝑝(𝑥) 0 0
0 0 0 0 𝜇ℎ(𝑥) 0
0 0 0 0 0 𝜇𝑚(𝑥)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=
(

𝑉 (𝑥) 0
𝐽 (𝑥) −𝑀0(𝑥)

)

,

where,

𝐹 (𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 𝐻0
𝜕𝑓 (𝑥, 0)
𝜕𝑃

0 0 𝑀0
𝜕𝑔(𝑥, 0)
𝜕𝐾

0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝑉 (𝑥) =

⎛

⎜

⎜

⎜

⎜

⎝

𝜇ℎ(𝑥) + 𝜂(𝑥) + 𝜎 0 0 0
0 𝜇𝑚(𝑥) 0 0

−𝛼1(𝑥) 0 𝜇𝑘(𝑥) 0
0 −𝛼2(𝑥) 0 𝜇𝑝(𝑥)

⎞

⎟

⎟

⎟

⎟

⎠

.

Following [23], we consider the semi-group 𝑌 (𝑡) of the linear system,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕𝐻𝑖
𝜕𝑡

= ∇.(𝑑2(𝑥)∇𝐻𝑖) − (𝜇ℎ(𝑥) + 𝜂(𝑥) + 𝜎)𝐻𝑖, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑀𝑖
𝜕𝑡

= ∇.(𝑑5(𝑥)∇𝑀𝑖) − 𝜇𝑚(𝑥)𝑀𝑖, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝐾
𝜕𝑡

= ∇.(𝑑3(𝑥)∇𝐾) + 𝛼1(𝑥)𝐻𝑖 − 𝜇𝑘(𝑥)𝐾, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑃
𝜕𝑡

= ∇.(𝑑6(𝑥)∇𝑃 ) + 𝛼2(𝑥)𝑀𝑖 − 𝜇𝑝(𝑥)𝑃 , 𝑥 ∈ 𝛺, 𝑡 > 0.

(3.2)

Let 𝐘 =
∏4

𝑖=1𝑋
+
𝑖 , introducing the initial distribution of infective individuals described by 𝜑0(𝑥) = (𝐻0

𝑖 (𝑥),𝑀
0
𝑖 (𝑥), 𝐾

0(𝑥), 𝑃 0(𝑥))𝑇 ∈ 𝐘,
hen 𝑌 (𝑡)𝜑0(𝑥) represents the internal evolution of this population over time 𝑡. Thus, 𝐹 (𝑥)𝑌 (𝑡)𝜑0(𝑥) represents the distribution of
ew infective individuals at time 𝑡.

Define the operator, 𝐿 ∶ 𝐘 → 𝐘 as follows

𝐿(𝜑)(𝑥) ∶= ∫

+∞

0
𝐹 (𝑥)𝑌 (𝑡)𝜑0(𝑥)𝑑𝑡,

epresenting the total distribution of new infective individuals at position 𝑥 ∈ 𝛺. Thus, 𝑅0 is the spectral radius of 𝐿:

𝑅0 = 𝜌(𝐿).

ow, we prove the global stability of our disease-free equilibrium if 𝑅0 < 1.
For that, we consider the sub-model consisting only of the equations of the comportments with disease. That is:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

𝜕𝐻𝑖
𝜕𝑡

= ∇.(𝑑2(𝑥)∇𝐻𝑖) +𝐻𝑆𝑓 (𝑥, 𝑃 ) − (𝜇ℎ(𝑥) + 𝜂(𝑥) + 𝜎)𝐻𝑖, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝐾
𝜕𝑡

= ∇.(𝑑3(𝑥)∇𝐾) + 𝛼1(𝑥)𝐻𝑖 − 𝜇𝑘(𝑥)𝐾, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑀𝑖
𝜕𝑡

= ∇.(𝑑5(𝑥)∇𝑀𝑖) +𝑀𝑠𝑔(𝑥,𝐾) − 𝜇𝑚(𝑥)𝑀𝑖, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑃
𝜕𝑡

= ∇.(𝑑6(𝑥)∇𝑃 ) + 𝛼2(𝑥)𝑀𝑖 − 𝜇𝑝(𝑥)𝑃 , 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝐻𝑖 =
𝜕𝑀𝑖 = 𝜕𝐾 = 𝜕𝑃 = 0, 𝑥 ∈ 𝜕𝛺, 𝑡 > 0.

(3.3)
6
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System (3.3) linearized at (𝐻0, 0, 0,𝑀0, 0, 0) gives

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜕𝐻𝑖
𝜕𝑡

= ∇.(𝑑2(𝑥)∇𝐻𝑖) +𝐻0
𝜕𝑓 (𝑥, 0)
𝜕𝑃

𝑃 − (𝜇ℎ(𝑥) + 𝜂(𝑥) + 𝜎)𝐻𝑖, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝐾
𝜕𝑡

= ∇.(𝑑3(𝑥)∇𝐾) + 𝛼1(𝑥)𝐻𝑖 − 𝜇𝑘𝐾, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑀𝑖
𝜕𝑡

= ∇.(𝑑5(𝑥)∇𝑀𝑖) +𝑀0
𝜕𝑔(𝑥, 0)
𝜕𝐾

𝐾 − 𝜇𝑚(𝑥)𝑀𝑖, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑝
𝜕𝑡

= ∇.(𝑑6(𝑥)∇𝑃 ) + 𝛼2(𝑥)𝑀𝑖 − 𝜇𝑝(𝑥)𝑃 , 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝐻𝑖
𝜕𝑛

=
𝜕𝑀𝑖
𝜕𝑛

= 𝜕𝐾
𝜕𝑛

= 𝜕𝑃
𝜕𝑛

= 0, 𝑥 ∈ 𝜕𝛺, 𝑡 > 0.

(3.4)

By the principle of separation of variables, let us define

𝐻𝑖(𝑥, 𝑡) = 𝑒𝜆𝑡𝜓2(𝑥), 𝐾(𝑥, 𝑡) = 𝑒𝜆𝑡𝜓3(𝑥),𝑀𝑖(𝑥, 𝑡) = 𝑒𝜆𝑡𝜓5(𝑥), 𝑃 (𝑥, 𝑡) = 𝑒𝜆𝑡𝜓6(𝑥),

where, 𝜆 ∈ C and 𝜓𝑖(𝑖 = 2, 3, 5, 6) are positive functions of the variables 𝑥.
Substituting in System (3.4), we obtain,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜆𝜓2(𝑥) = ∇.(𝑑2(𝑥)∇𝜓2(𝑥)) +𝐻0
𝜕𝑓 (𝑥, 0)
𝜕𝑃

𝜓6(𝑥) − (𝜇ℎ(𝑥) + 𝜂(𝑥) + 𝜎)𝜓2(𝑥), 𝑥 ∈ 𝛺,

𝜆𝜓3(𝑥) = ∇.(𝑑3(𝑥)∇𝜓3(𝑥)) + 𝛼1(𝑥)𝜓2(𝑥) − 𝜇𝑘(𝑥)𝜓3(𝑥), 𝑥 ∈ 𝛺,

𝜆𝜓5(𝑥) = ∇.(𝑑5(𝑥)∇𝜓5(𝑥)) +𝑀0
𝜕𝑔(𝑥, 0)
𝜕𝐾

𝜓6(𝑥) − 𝜇𝑚(𝑥)𝜓5(𝑥), 𝑥 ∈ 𝛺,

𝜆𝜓6(𝑥) = ∇.(𝑑6(𝑥)∇𝜓6(𝑥)) + 𝛼2𝜓5(𝑥) − 𝜇𝑝(𝑥)𝜓5(𝑥), 𝑥 ∈ 𝛺,
𝜕𝜓3
𝜕𝑛

=
𝜕𝜓4
𝜕𝑛

=
𝜕𝜓5
𝜕𝑛

=
𝜕𝜓6
𝜕𝑛

= 0, 𝑥 ∈ 𝜕𝛺.

(3.5)

ystem (3.5) takes the simplified form

[𝐵 +𝑀]

⎛

⎜

⎜

⎜

⎜

⎝

𝜓2
𝜓3
𝜓5
𝜓6

⎞

⎟

⎟

⎟

⎟

⎠

= 𝜆

⎛

⎜

⎜

⎜

⎜

⎝

𝜓2
𝜓3
𝜓5
𝜓6

⎞

⎟

⎟

⎟

⎟

⎠

,

ith

𝐵 =

⎛

⎜

⎜

⎜

⎜

⎝

∇.(𝑑2(𝑥)∇) 0 0
0 ∇.(𝑑3(𝑥)∇) 0 0
0 0 ∇.(𝑑5(𝑥)∇) 0
0 0 0 ∇.(𝑑6(𝑥)∇)

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑎𝑛𝑑 𝑀 = 𝐹 − 𝑉 .

Lemma 3.1. System (3.5) has a principal eigenvalue, denoted 𝜆0, with the associated positive eigenfunction 𝜓0 = (𝜓0
2 , 𝜓

0
3 , 𝜓

0
5 , 𝜓

0
6 ), of the

same sign as 𝑅0 − 1.

Proof. Since 𝑑𝑖=1...6(.) are continuous, strictly positive and bounded on 𝛺, then there exists a positive constant 𝑑0 such that 𝑑𝑖(𝑥) ≥ 𝑑0,
for all 𝑥 ∈ 𝛺.

In addition, it is easily seen that the directed graph of 𝑀 is strongly connected, by virtue of the graph theory, 𝑀 is irreducible.
Moreover, since the elements out of its diagonal are positive, it is also cooperative, for all 𝑥 ∈ 𝛺. Then, by ([23], Theorem 2.2),
System (3.5) has a principal eigenvalue 𝜆0 ∶= 𝑠(𝐵 +𝑀), corresponding to a positive eigenfunction 𝜓0 = (𝜓0

2 , 𝜓
0
3 , 𝜓

0
5 , 𝜓

0
6 ).

On the other hand, according to ([23], Theorem 3.1), 𝑅0 − 1 has the same sign as 𝜆0 ∶= 𝑠(𝐵 +𝑀). ■

Theorem 3.2. Assume (A1)-(A6) hold true. If 𝑅0 < 1, then the disease-free equilibrium (𝐻0(.), 0, 0,𝑀0(.), 0, 0) ∈ 𝑋+ is globally attractive.

To do this, we show that if 𝑅0 < 1 then,

lim
𝑡→+∞

((𝐻𝑠(𝑥, 𝑡),𝐻𝑖(𝑥, 𝑡), 𝐾(𝑥, 𝑡),𝑀𝑠(𝑥, 𝑡),𝑀𝑖(𝑥, 𝑡)), 𝑃 (𝑥, 𝑡)) = (𝐻0(𝑥), 0, 0,𝑀0(𝑥), 0, 0), 𝑥 ∈ 𝛺.

Proof. We have
⎧

⎪

⎨

⎪

⎩

𝜕𝐻𝑠
𝜕𝑡

≤ ∇.(𝑑(𝑥)∇𝐻𝑠) + 𝜆ℎ(𝑥) − 𝜇ℎ(𝑥)𝐻𝑠,

𝜕𝐻𝑠
𝜕𝑛

= 0, 𝑥 ∈ 𝜕𝛺.

⎧

⎪

⎨

⎪

𝜕𝑀𝑠
𝜕𝑡

≤ ∇.(𝑑(𝑥)∇𝑀𝑠) + 𝜆𝑚(𝑥) − 𝜇𝑚(𝑥)𝑀𝑠,

𝜕𝑀𝑠 = 0, 𝑥 ∈ 𝜕𝛺.
7

⎩ 𝜕𝑛
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Thanks to Lemma 2.2 and the comparison theorem, there exist 𝐻0 and 𝑀0 such that we have, lim sup→∞𝐻𝑠(𝑥, 𝑡) ≤ 𝐻0(𝑥),
im sup𝑡→∞𝑀𝑠(𝑥, 𝑡) ≤𝑀0(𝑥), 𝑥 ∈ 𝛺.

From hypothesis (A6), we have,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕𝐻𝑖
𝜕𝑡

≤ ∇.(𝑑2(𝑥)∇𝐻𝑖) +𝐻0
𝜕𝑓 (𝑥, 0)
𝜕𝑃

𝑃 − (𝜇ℎ(𝑥) + 𝜂(𝑥) + 𝜎)𝐻𝑖, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝐾
𝜕𝑡

≤ ∇.(𝑑3(𝑥)∇𝐾) + 𝛼1(𝑥)𝐻𝑖 − 𝜇𝑘(𝑥)𝐾, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑀𝑖
𝜕𝑡

≤ ∇.(𝑑5(𝑥)∇𝑀𝑖) +𝑀0
𝜕𝑔(𝑥, 0)
𝜕𝐾

𝐾 − 𝜇𝑚(𝑥)𝑀𝑖, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑝
𝜕𝑡

≤ ∇.(𝑑6(𝑥)∇𝑃 ) + 𝛼2(𝑥)𝑀𝑖 − 𝜇𝑝(𝑥)𝑃 , 𝑥 ∈ 𝛺, 𝑡 > 0.

(3.6)

Thus, (𝐻𝑖, 𝐾,𝑀𝑖, 𝑃 ) is a sub-solution of the following linear problem,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜕𝑢1
𝜕𝑡

= ∇.(𝑑2(𝑥)∇𝑢1) +𝐻0
𝜕𝑓 (𝑥, 0)
𝜕𝑃

𝑢4 − (𝜇ℎ(𝑥) + 𝜂(𝑥) + 𝜎)𝑢1, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑢2
𝜕𝑡

= ∇.(𝑑3(𝑥)∇𝑢2) + 𝛼1(𝑥)𝑢1 − 𝜇𝑘(𝑥)𝑢2, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑢3
𝜕𝑡

= ∇.(𝑑5(𝑥)∇𝑢3) +𝑀0
𝜕𝑔(𝑥, 0)
𝜕𝐾

𝑢2 − 𝜇𝑚(𝑥)𝑢3, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑢4
𝜕𝑡

= ∇.(𝑑6(𝑥)∇𝑢4) + 𝛼2(𝑥)𝑢3 − 𝜇𝑝(𝑥)𝑢4, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑢1
𝜕𝑛

=
𝜕𝑢2
𝜕𝑛

=
𝜕𝑢2
𝜕𝑛

=
𝜕𝑢4
𝜕𝑛

= 0, 𝑡 > 0, 𝑥 ∈ 𝜕𝛺.

(3.7)

Moreover there exists a constant 𝑀 > 0 such that

(𝐻𝑖(𝑥, 0), 𝐾(𝑥, 0),𝑀𝑖(𝑥, 0), 𝑃 (𝑥, 0)) ≤𝑀𝜓0(𝑥), 𝑥 ∈ 𝛺,

nd since 𝑀𝜓0(𝑥)𝑒𝜆0𝑡 is a solution of the linear System (3.7) and thus an super-solution of System (3.7). As such, by the comparison
heorem we have:

(𝐻𝑖(𝑥, 𝑡), 𝐾(𝑥, 𝑡),𝑀𝑖(𝑥, 𝑡), 𝑃 (𝑥, 𝑡)) ≤𝑀𝜓0(𝑥)𝑒𝜆0𝑡, 𝑥 ∈ 𝛺, 𝑡 > 0.

ince 𝑅0 < 1 is equivalent to 𝜆0 < 0, so, for 𝑡→ +∞ we have:

(𝐻𝑖(𝑥, 𝑡), 𝐾(𝑥, 𝑡),𝑀𝑖(𝑥, 𝑡), 𝑃 (𝑥, 𝑡)) → (0, 0, 0, 0), 𝑥 ∈ 𝛺.

sing assumption (A6) and the fact that 𝑃 tends to 0, we then have for all 0 < 𝜖 ≤ min𝑥∈𝛺 𝜆ℎ(𝑥), there exists 𝑇 > 0: 𝐻𝑠𝑓 (𝑥, 𝑃 ) ≤

0
𝜕𝑓 (𝑥, 0)
𝜕𝑃

𝑃 ≤ 𝜖, for all 𝑥 ∈ 𝛺, 𝑡 > 𝑇 .
Then we have :

𝜕𝐻𝑠
𝜕𝑡

≥ ∇.(𝑑(𝑥)∇𝐻𝑠) + 𝜆ℎ(𝑥) − 𝜖 − 𝜇ℎ(𝑥)𝐻𝑠, 𝑥 ∈ 𝛺, 𝑡 > 𝑇 ,

and we show using Lemma 2.2 and the comparison theorem for parabolic PDEs that 𝐻𝑠(𝑥, 𝑡) ≥ 𝐻𝜖
0 (𝑥), for all 𝑥 ∈ 𝛺, 𝑡 > 𝑇 , where

𝐻𝜖
0 is the unique stationary solution of the System (3.8) below.

⎧

⎪

⎨

⎪

⎩

𝜕𝑣
𝜕𝑡

= ∇.(𝑑(𝑥)∇𝑣) + 𝜆ℎ(𝑥) − 𝜖 − 𝜇ℎ(𝑥)𝑣 𝑥 ∈ 𝛺, 𝑡 > 𝑇 ,

𝜕𝑣
𝜕𝑛

= 0, 𝑥 ∈ 𝜕𝛺.
(3.8)

e have shown that

𝐻𝜖
0 (𝑥) ≤ lim inf

𝑡→∞
𝐻𝑠(𝑥, 𝑡) ≤ lim sup

𝑡→+∞
𝐻𝑠(𝑥, 𝑡) ≤ 𝐻0(𝑥), 𝑥 ∈ 𝛺. (3.9)

inally, by letting 𝜖 go to zero in (3.9), and use the fact that lim𝜖→0𝐻𝜖
0 (𝑥) = 𝐻0(𝑥), we have 𝐻𝑠 → 𝐻0 when 𝑡 → +∞.

A similarly proof can be done to show that 𝑀𝑠 →𝑀0 when 𝑡 → +∞. Thus,

lim
𝑡→+∞

(𝐻𝑠(𝑥, 𝑡),𝐻𝑖(𝑥, 𝑡), 𝐾(𝑥, 𝑡),𝑀𝑠(𝑥, 𝑡),𝑀𝑖(𝑥, 𝑡), 𝑃 (𝑥, 𝑡)) = (𝐻0(𝑥), 0, 0,𝑀0(𝑥), 0, 0), 𝑥 ∈ 𝛺.

This ends the proof of the theorem. ■

Since, it very difficult (if not impossible) to compute explicitly the endemic equilibrium points, we alternatively establish the
uniform persistence of our system when 𝑅0 > 1.

4. Uniform persistence

Let 𝑌 (𝑡) be the semi-group defined by (3.2) and define 𝑅𝜖 = 𝜌(𝐿(𝜖)), where

𝐿(𝜖)𝜑(𝑥) =
+∞

𝐹 (𝑥, 𝜖)𝑌 (𝑡)𝜑(𝑥)𝑑𝑡, 𝑥 ∈ 𝛺,𝜑 ∈ 𝑋,
8

∫0
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𝛺
f

L
t

P

T

a

and

𝐹 (𝑥, 𝜖) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 (𝐻0 − 𝜖)
𝜕𝑓 (𝑥, 𝜖)
𝜕𝑃

0 0 (𝑀0 − 𝜖)
𝜕𝑔(𝑥, 𝜖)
𝜕𝐾

0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

Then, by the continuity, if 𝑅0 > 1, there exists a sufficiently small 𝜖 such that 𝑅𝜖 > 1.

Lemma 4.1. Assume that 𝑍(., 𝑡, 𝜑) is a solution of System (2.1) with condition 𝑍(., 0, 𝜑) = 𝜑 ∈ 𝑋+.

1. Then ∀𝜑 ∈ 𝑋+, we have 𝐻𝑠(𝑥, 𝑡, 𝜑) > 0 and 𝑀𝑠(𝑥, 𝑡, 𝜑) > 0, ∀𝑥 ∈ 𝛺, 𝑡 > 0 and there exists a constant 𝜌 > 0 such that,
lim inf 𝑡→+∞𝐻𝑠(𝑥, 𝑡, 𝜑) ≥ 𝜌 and lim inf 𝑡→+∞𝑀𝑠(𝑥, 𝑡, 𝜑) ≥ 𝜌 uniformly for 𝑥 ∈ 𝛺.

2. If there exists 𝑡1 > 0 such that 𝐻𝑖(., 𝑡1, 𝜑) ≠ 0, 𝑀𝑖(., 𝑡1, 𝜑) ≠ 0, 𝐾(., 𝑡1, 𝜑) ≠ 0 and 𝑃 (., 𝑡1, 𝜑) ≠ 0 then 𝐻𝑖(𝑥, 𝑡, 𝜑) > 0, 𝑀𝑖(𝑥, 𝑡, 𝜑) > 0,
𝐾(𝑥, 𝑡, 𝜑) > 0 and 𝑃 (𝑥, 𝑡, 𝜑) > 0, ∀𝑥 ∈ 𝛺, 𝑡 > 𝑡1.

Proof. It suffices to use Lemma 2.2 and the comparison theorem. ■

In the following, we pose:

𝛺0 = {(𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5, 𝜙6) ∈ 𝑋+ ∶ 𝜙2 ≠ 0, 𝜙3 ≠ 0, 𝜙5 ≠ 0, 𝑎𝑛𝑑 𝜙6 ≠ 0},

𝜕𝛺0 = {(𝜙1, 𝜙2, 𝜙3, 𝜙4, 𝜙5, 𝜙6) ∈ 𝑋+ ∶ 𝜙2 ≡ 0 𝑜𝑟 𝜙3 ≡ 0 𝑜𝑟 𝜙5 ≡ 0 𝑜𝑟 𝜙6 ≡ 0}.

0 and 𝜕𝛺0 are closed and convex subspaces of 𝑋+ and 𝑋+ = 𝛺0 ∪ 𝜕𝛺0; 𝛺0 ∩ 𝜕𝛺0 = ∅. By Lemma 4.1, 𝛺0 is invariant under the
low of System (2.1). That is 𝛷𝑡(𝛺0) ⊆ 𝛺0, 𝑡 > 0.

emma 4.2. Suppose that (A1)-(A6) hold. If 𝑅0 > 1, 𝐸0 = {(𝐻0(.), 0, 0,𝑀0(.), 0, 0)} is a uniform weak repeller for 𝛺0, in the sense that
here exists 𝜇0 > 0 such that,

lim sup
𝑡→+∞

∥ 𝛷𝑡𝜑 − 𝐸0 ∥𝑋≥ 𝜇0, ∀𝜑 ∈ 𝛺0.

roof. Let 𝜀 > 0, by contradiction, assume that there exists 𝜑0 ∈ 𝛺0 such that,

lim sup
𝑡→+∞

∥ 𝛷𝑡𝜑0 − 𝐸0 ∥𝑋< 𝜖.

hen there exists 𝑡1 > 0 such that, for any 𝑡 ≥ 𝑡1 and for any 𝑥 ∈ 𝛺, we have:

𝐻0 − 𝜖 ≤ 𝐻𝑠 ≤ 𝐻0 + 𝜖; 𝑀0 − 𝜖 ≤𝑀𝑠(𝑥, 𝑡) ≤𝑀0 + 𝜖; 𝐻𝑖(𝑥, 𝑡) ≤ 𝜖; 𝑀𝑖(𝑥, 𝑡) ≤ 𝜖; 𝐾(𝑥, 𝑡) ≤ 𝜖; 𝑃 (𝑥, 𝑡) ≤ 𝜖, (4.1)

nd consequently

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜕𝐻𝑖
𝜕𝑡

≥ ∇.(𝑑2(𝑥)∇𝐻𝑖) + (𝐻0 − 𝜖)
𝜕𝑓 (𝑥, 𝜖)
𝜕𝑃

𝑃 − (𝜇ℎ(𝑥) + 𝜂(𝑥) + 𝜎)𝐻𝑖, 𝑥 ∈ 𝛺, 𝑡 > 𝑡1,

𝜕𝐾
𝜕𝑡

≥ ∇.(𝑑3(𝑥)∇𝐾) + 𝛼1(𝑥)𝐻𝑖 − 𝜇𝑘𝐾, 𝑥 ∈ 𝛺, 𝑡 > 𝑡1,

𝜕𝑀𝑖
𝜕𝑡

≥ ∇.(𝑑5(𝑥)∇𝑀𝑖) + (𝑀0 − 𝜖)
𝜕𝑔(𝑥, 𝜖)
𝜕𝐾

𝐾 − 𝜇(𝑥)𝑀𝑖, 𝑥 ∈ 𝛺, 𝑡 > 𝑡1,

𝜕𝑃
𝜕𝑡

≥ ∇.(𝑑6(𝑥)∇𝑃 ) + 𝛼2(𝑥)𝑀𝑖 − 𝜇𝑝𝑃 , 𝑥 ∈ 𝛺, 𝑡 > 𝑡1,

𝜕𝐻𝑖
𝜕𝑛

= 𝜕𝐾
𝜕𝑛

=
𝜕𝑀𝑖
𝜕𝑛

= 𝜕𝑃
𝜕𝑛

= 0, 𝑥 ∈ 𝜕𝛺, 𝑡 > 𝑡1.

(4.2)

Let, 𝜓𝜆(𝜖) = (𝜓𝜆1 (𝜖), 𝜓𝜆2 (𝜖), 𝜓𝜆3 (𝜖), 𝜓𝜆4 (𝜖)) be the principal eigenfunction associated with the principal eigenvalue 𝜆0(𝜖) of the
following linearized system,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

𝜕𝑢1
𝜕𝑡

= ∇.(𝑑2(𝑥)∇𝑢1) + (𝐻0 − 𝜖)
𝜕𝑓 (𝑥, 𝜖)
𝜕𝑃

𝑢4 − (𝜇ℎ(𝑥) + 𝜂(𝑥) + 𝜎)𝑢1, 𝑥 ∈ 𝛺, 𝑡 > 𝑡1,

𝜕𝑢2
𝜕𝑡

= ∇.(𝑑3(𝑥)∇𝑢2) + 𝛼1(𝑥)𝑢1 − 𝜇𝑘(𝑥)𝑢2, 𝑥 ∈ 𝛺, 𝑡 > 𝑡1,

𝜕𝑢3
𝜕𝑡

= ∇.(𝑑5(𝑥)∇𝑢3) + (𝑀0 − 𝜖)
𝜕𝑔(𝑥, 𝜖)
𝜕𝐾

𝑢2 − 𝜇(𝑥)𝑢2, 𝑥 ∈ 𝛺, 𝑡 > 𝑡1,

𝜕𝑢4
𝜕𝑡

= ∇.(𝑑6(𝑥)∇𝑢4) + 𝛼2(𝑥)𝑢3 − 𝜇𝑝(𝑥)𝑢4, 𝑥 ∈ 𝛺, 𝑡 > 𝑡1,

𝜕𝑢1 =
𝜕𝑢2 =

𝜕𝑢3 =
𝜕𝑢4 = 0, 𝑥 ∈ 𝜕𝛺, 𝑡 > 𝑡 .

(4.3)
9

⎩ 𝜕𝑛 𝜕𝑛 𝜕𝑛 𝜕𝑛 1
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Then, the function

𝑣(𝑥, 𝑡) = (𝑣1(𝑥, 𝑡), 𝑣2(𝑥, 𝑡), 𝑣3(𝑥, 𝑡), 𝑣4(𝑥, 𝑡)) = 𝑒𝜆0(𝜖)𝑡𝜓𝜆(𝜖)(𝑥),

is a solution of System (4.3).
Moreover, since 𝑊 (𝑥, 𝑡) = (𝐻𝑖(𝑡, 𝑥, 𝜑0),𝑀𝑖(𝑡, 𝑥, 𝜑0), 𝐾(𝑡, 𝑥, 𝜑0), 𝑃 (𝑡, 𝑥, 𝜑0)) is a super-solution of System (4.3), then there exists a

constant 𝐶 > 0, such that

(𝐻𝑖(𝑡, 𝑥, 𝜑0),𝑀𝑖(𝑡, 𝑥, 𝜑0), 𝐾(𝑡, 𝑥, 𝜑0), 𝑃 (𝑡, 𝑥, 𝜑0)) ≥ 𝐶𝑒𝜆0(𝜖)𝑡𝜓𝜆(𝜖)(𝑥), 𝑥 ∈ 𝛺, ≥ 𝑡1.

Since 𝑅0 > 1 then 𝑅𝜖 > 1, by similar argument as in Lemma 3.1, 𝜆0(𝜖) > 0.
Letting 𝑡 goes to +∞ we get 𝐻𝑖(𝑡, 𝑥, 𝜑0) → +∞, 𝑀𝑖(𝑡, 𝑥, 𝜑0) → +∞, 𝐾(𝑡, 𝑥, 𝜑0) → +∞ and 𝑃 (𝑡, 𝑥, 𝜑0) → +∞, 𝑥 ∈ 𝛺. This contradicts

(4.1). ■

Lemma 4.3. Let

𝑀𝜕 = {𝜑 ∈ 𝜕𝛺0 ∶ 𝛷𝑡𝜑 ∈ 𝜕𝛺0, ∀𝑡 ≥ 0}

and 𝑤(𝜑), the omega-limit set of 𝜑, then
⋃

𝜑∈𝑀𝜕

𝑤(𝜑) = 𝐸0 = {(𝐻0(.), 0, 0,𝑀0(.), 0, 0)}.

Proof. Let 𝜑 ∈𝑀𝜕 , then 𝛷𝑡𝜑 ∈ 𝜕𝛺0, ∀𝑡 ≥ 0 and consequently, 𝐻𝑖(., 𝑡, 𝜑) ≡ 0 or 𝑀𝑖(., 𝑡, 𝜑) ≡ 0 or 𝐾(., 𝑡, 𝜑) ≡ 0 or 𝑃 (., 𝑡, 𝜑) ≡ 0 ∀𝑡 ≥ 0.
Suppose without lost of generality that 𝐻𝑖(., 𝑡, 𝜑) ≡ 0, ∀𝑡 ≥ 0, substituting this into the third equation of System (2.1), we have

⎧

⎪

⎨

⎪

⎩

𝜕𝐾
𝜕𝑡

= ∇.(𝑑3(𝑥)∇𝐾) − 𝜇𝑘(𝑥)𝐾, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝐾
𝜕𝑛

= 0, 𝑥 ∈ 𝜕𝛺.
(4.4)

hen we deduce from Lemma 2.2 that,

lim
𝑡→+∞

𝐾(𝑥, 𝑡) = 0, 𝑥 ∈ 𝛺.

The same is done to obtain

lim
𝑡→+∞

𝑀𝑖(𝑥, 𝑡) = 0, 𝑥 ∈ 𝛺.

e then show that

lim
𝑡→+∞

𝑃 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝛺.

ubstituting all this into the System(2.1) we get from Lemma 2.2 that,

lim
𝑡→+∞

𝐻𝑠(𝑥, 𝑡, 𝜑) = 𝐻0(𝑥), lim
𝑡→+∞

𝑀𝑠(𝑥, 𝑡, 𝜑) =𝑀0(𝑥), 𝑥 ∈ 𝛺.

We there fore have

𝑤(𝜑) = 𝐸0.

Now suppose 𝐻𝑖(𝑥, 𝑡1, 𝜑) ≠ 0, then by Lemma 4.1, 𝐻𝑖(𝑥, 𝑡, 𝜑) > 0, 𝑡 > 𝑡1.
Now 𝑀𝑖(., 𝑡, 𝜑) ≡ 0 or 𝐾(., 𝑡, 𝜑) ≡ 0 or 𝑃 (., 𝑡, 𝜑) ≡ 0, 𝑡 > 𝑡1.
Now suppose 𝑀𝑖(., 𝑡, 𝜑) ≡ 0, 𝑡 ≥ 𝑡1 then substituting into the fifth equation of System(2.1) we get 𝑀𝑠(𝑥, 𝑡, 𝜑) = 0 or 𝐾(𝑥, 𝑡, 𝜑) =

, 𝑥 ∈ 𝛺 𝑡 > 𝑡1.
If 𝑀𝑠 = 0, we have 𝜆𝑚(𝑥) = 0, for all 𝑥 ∈ 𝛺, which is contradictory.
If 𝐾 = 0 we have 𝜆ℎ(𝑥) = 0, for all 𝑥 ∈ 𝛺, which is also contradictory.
Thus, 𝑤(𝜑) = 𝐸0 for all 𝜑 ∈𝑀𝜕 , and thus ⋃

𝜑∈𝑀𝜕
𝑤(𝜑) = 𝐸0.

The same reasoning applies if either 𝑀𝑖(., 𝑡, 𝜑) ≡ 0, 𝐾(., 𝑡, 𝜑) ≡ 0 or 𝑃 (., 𝑡, 𝜑) ≡ 0, ∀𝑡 ≥ 0, to show that ⋃𝜑∈𝑀𝜕
𝑤(𝜑) = 𝐸0. ■

heorem 4.4. Assume (A1)-(A6) are satisfied. Let 𝑍(𝑥, 𝑡, 𝜑) be a solution of System (2.1), with 𝑍(., 0, 𝜑) = 𝜑 ∈ 𝛺0. If 𝑅0 > 1, then
here exists a real 𝑘 > 0 such that,

lim inf
𝑡→+∞

𝐻𝑠(𝑥, 𝑡, 𝜑) ≥ 𝑘, lim inf
𝑡→+∞

𝐻𝑖(𝑥, 𝑡, 𝜑) ≥ 𝑘, lim inf
𝑡→+∞

𝐾(𝑥, 𝑡, 𝜑) ≥ 𝑘,

lim inf
𝑡→+∞

𝑀𝑠(𝑥, 𝑡, 𝜑) ≥ 𝑘, lim inf
𝑡→+∞

𝑀𝑖(𝑥, 𝑡, 𝜑) ≥ 𝑘, lim inf
𝑡→+∞

𝑃 (𝑥, 𝑡, 𝜑) ≥ 𝑘,

𝛺.
10

uniformly for all 𝑥 ∈
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Proof. From lemma 4.2, we obtain that 𝐸0 is an isolated and invariant set for 𝜑 in 𝛺0 and that 𝑤𝑆 (𝐸0) ∩ 𝛺0 = ∅, where 𝑤𝑆 (𝐸0)
denotes the stable subspace of (𝐸0) for 𝜑.

From Lemma 4.3, we also note that any orbit that starts in 𝑀𝜕 converges to 𝐸0. Moreover there is no cycle from 𝐸0 to 𝐸0 in
𝜕𝛺0.

Consider the following function 𝑞 ∶ 𝑋+ → [0,+∞[ such that

𝑞(𝜑) = 𝑚𝑖𝑛{min
𝑥∈𝛺

𝜑2(𝑥),min
𝑥∈𝛺

𝜑3(𝑥),min
𝑥∈𝛺

𝜑5(𝑥),min
𝑥∈𝛺

𝜑6(𝑥)},

we have

𝑞−1(]0,+∞[) ⊂ 𝛺0.

Posing 𝑀 = { 𝐸0} we have :
∙
⋃

𝜑∈𝑀𝜕
𝑤(𝜑) = 𝐸0 ⊆ 𝑀 .

∙ There is no limit cycle from 𝐸0 to 𝐸0 in 𝑀𝜕 .
∙ 𝑀 is isolated in 𝑋+.
∙ ∀𝜑 ∈ 𝛺0 let 𝐿 = 𝑤(𝜑) it is clear that 𝐿 ⊈ 𝑀 = 𝐸0.
Then by ([24] Theorem 3), there exists 𝛿 > 0 such that min𝜙∈𝑤(𝜑) 𝑞(𝜙) > 𝛿,∀𝜑 ∈ 𝛺0.
Hence lim inf 𝑡→+∞𝐻𝑖(𝑥, 𝑡, 𝜑) ≥ 𝛿, lim inf 𝑡→+∞𝑀𝑖(𝑥, 𝑡, 𝜑) ≥ 𝛿, lim inf 𝑡→+∞ 𝐾(𝑥, 𝑡, 𝜑) ≥ 𝛿, lim inf 𝑡→+∞ 𝑃 (𝑥, 𝑡, 𝜑) ≥ 𝛿, ∀𝑥 ∈ 𝛺.
From Lemma 4.1 we know that there exists a 𝜌 > 0 such that, lim inf 𝑡→+∞𝐻𝑠(𝑥, 𝑡, 𝜑) ≥ 𝜌, lim inf 𝑡→+∞𝑀𝑠(𝑥, 𝑡, 𝜑) ≥ 𝜌. take

= min{𝛿, 𝜌} to conclude. ■

. Homogeneous model

In this section, we shall study the case where all parameters in system (2.1) are strictly positive. The main objective is to establish
he existence and global stability of a unique endemic equilibrium.

The assumptions (A1)-(A6) for system (2.1) become (B1)-(B6) below.
(B1): 𝛺 is a bounded domain of R𝑛, 𝑛 ∈ N∗.
(B2): 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑4, 𝑑6, 𝑑7, 𝜆ℎ, 𝜆𝑚, 𝜇ℎ, 𝜂, 𝜇𝑚 , 𝜇𝑝, 𝜇𝑘, 𝛼1 et 𝛼2 are strictly positive constants.
(B3): 𝑑1 = 𝑑2 and 𝑑4 = 𝑑5.
(B4): The functions 𝑓 and 𝑔 are continuous and twice derivable with respect to 𝑃 ∈ R+ and 𝐾 ∈ R+.
(B5): 𝑓 (0) = 𝑔(0) = 0 and 𝑓 (𝑃 ), 𝑔(𝐾) > 0, ∀𝑃 ,𝐾 > 0.
(B6): 𝑓 ′(𝑃 ), 𝑔′(𝐾) > 0 and 𝑓 ′′(𝑃 ), 𝑔′′(𝐾) ⩽ 0, ∀𝑃 ,𝐾 ≥ 0.
For the convenience of the reader, we recall System(2.1) with space-independent parameters in (5.1).

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕𝐻𝑠
𝜕𝑡

= 𝑑1𝛥𝐻𝑠 + 𝜆ℎ −𝐻𝑆𝑓 (𝑃 ) − 𝜇ℎ𝐻𝑠 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝐻𝑖
𝜕𝑡

= 𝑑2𝛥𝐻𝑖 +𝐻𝑆𝑓 (𝑃 ) − (𝜇ℎ + 𝜂 + 𝜎)𝐻𝑖, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝐾
𝜕𝑡

= 𝑑3𝛥𝐾 + 𝛼1𝐻𝑖 − 𝜇𝑘𝐾, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑀𝑠
𝜕𝑡

= 𝑑4𝛥𝑀𝑠 + 𝜆𝑚 −𝑀𝑠𝑔(𝐾) − 𝜇𝑀𝑠 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑀𝑖
𝜕𝑡

= 𝑑5𝛥𝑀𝑖 +𝑀𝑠𝑔(𝐾) − 𝜇𝑚𝑀𝑖, 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑃
𝜕𝑡

= 𝑑6𝛥𝑃 + 𝛼2𝑀𝑖 − 𝜇𝑝𝑃 , 𝑥 ∈ 𝛺, 𝑡 > 0,

𝜕𝑅
𝜕𝑡

= 𝑑7𝛥𝑅 + 𝜎𝐻𝑖 − 𝜇ℎ𝑅, 𝑥 ∈ 𝛺, 𝑡 > 0,

(5.1)

ystem (5.1) is appended with the following initial and boundary condition.

𝜕𝐻𝑠
𝜕𝑛

=
𝜕𝐻𝑖
𝜕𝑛

= 𝜕𝐾
𝜕𝑛

=
𝜕𝑀𝑠
𝜕𝑛

=
𝜕𝑀𝑖
𝜕𝑛

= 𝜕𝑃
𝜕𝑛

= 𝜕𝑅
𝜕𝑛

= 0, 𝑥 ∈ 𝜕𝛺, 𝑡 > 0, (5.2)

nd the initial condition:

𝐻𝑠(𝑥, 0) = 𝐻0
𝑆 (𝑥) > 0,𝐻𝑖(𝑥, 0) = 𝐻0

𝑖 (𝑥) ≥ 0, 𝐾(𝑥, 0) = 𝐾0(𝑥) ≥ 0, 𝑥 ∈ 𝛺,

𝑀𝑠(𝑥, 0) = 𝑀0
𝑆 (𝑥) > 0,𝑀𝑖(𝑥, 0) =𝑀0

𝑖 (𝑥) ≥ 0, 𝑃 (𝑥, 0) = 𝑃 0(𝑥) ≥ 0, 𝑥 ∈ 𝛺.
(5.3)

n the rest of this section, when we talking about the System (5.1), we refer to (5.1), supplemented by the initial conditions in (5.3)
nd the boundary conditions in (5.3).
11
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𝑀

5.1. Basic reproduction ratio and stability of disease free equilibrium

At the disease-free equilibrium, we have 𝐻𝑖 = 𝑀𝑖 = 𝐾 = 𝑃 = 0. By substituting in the system(5.1) we obtain 𝐻𝑠 = 𝜆ℎ∕𝜇ℎ and
𝑠 = 𝜆𝑚∕𝜇𝑚. It can therefore be deduced that

𝐸0 = (𝐻0, 0, 0,𝑀0, 0, 0) = (
𝜆ℎ
𝜇ℎ
, 0, 0,

𝜆𝑚
𝜇𝑚

, 0, 0)

is the only disease-free equilibrium in our system.
Here we use the method developed in [23], to determine the basic reproduction number 𝑅0, defined as the spectral radius of

the next generation matrix (𝐹𝑉 −1), where,

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 𝐻0𝑓 ′(0)
0 0 𝑀0𝑔′(0) 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

and 𝑉 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜇ℎ + 𝜂 + 𝜎 0 0 0
0 𝜇 0 0

−𝛼1 0 𝜇𝑘 0
0 −𝛼2 0 𝜇𝑝

⎞

⎟

⎟

⎟

⎟

⎠

,

Thus,

𝑅0 = 𝜌(𝐹𝑉 −1) =

√

𝛼1𝛼2𝐻0𝑓 ′(0)𝑀0𝑔′(0)
𝜇𝑚𝜇𝑘𝜇𝑝(𝜇ℎ + 𝜂 + 𝜎)

=

√

𝛼1𝐻0𝑓 ′(0)
𝜇𝑝(𝜇ℎ + 𝜂 + 𝜎)

×

√

𝛼2𝑀0𝑔′(0)
𝜇𝑚𝜇𝑘

= 𝑅𝐻0 × 𝑅𝑀0 .

Theorem 5.1. Suppose that (B1)-(B6) hold. If 𝑅0 < 1 then the disease-free equilibrium (𝐻0, 0, 0,𝑀0, 0, 0) is globally asymptotically stable.

We have shown in Theorem 3.2 that if 𝑅0 < 1 them,

lim sup
𝑡→+∞

(𝐻𝑠(𝑥, 𝑡),𝐻𝑖(𝑥, 𝑡), 𝐾(𝑥, 𝑡),𝑀𝑠(𝑥, 𝑡),𝑀𝑖(𝑥, 𝑡), 𝑃 (𝑥, 𝑡)) = (𝐻0, 0, 0,𝑀0, 0, 0), 𝑥 ∈ 𝛺.

5.2. Existence and stability of the endemic equilibrium

Here we will show the existence and global stability of the unique endemic equilibrium by constructing an appropriate Lyapunov
function.

Theorem 5.2. Assume (B1)-(B6) are satisfied. If 𝑅0 > 1, System (5.1) admits a unique endemic equilibrium (𝐻∗
𝑠 ,𝑀

∗
𝑠 , 𝐾

∗,𝐻∗
𝑖 ,𝑀

∗
𝑖 , 𝑃

∗).
Then this endemic equilibrium is globally asymptotically stable.

Proof. We start by proving the existence. At the point of endemic equilibrium we have

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜆ℎ −𝐻∗
𝑆𝑓 (𝑃

∗) − 𝜇ℎ𝐻∗
𝑆 = 0,

𝐻∗
𝑆𝑓 (𝑃

∗) − (𝜇ℎ + 𝜂 + 𝜎)𝐻∗
𝑖 = 0,

𝛼1𝐻∗
𝑖 − 𝜇𝑘𝐾∗ = 0,

𝜆𝑚 −𝑀∗
𝑠 𝑔(𝐾 ∗) − 𝜇𝑚𝑀∗

𝑠 = 0,

𝑀∗
𝑠 𝑔(𝐾

∗) − 𝜇𝑚𝑀∗
𝑖 = 0,

𝛼2𝑀∗
𝑖 − 𝜇𝑝𝑃 ∗ = 0,

(5.4)

Therefore,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐻∗
𝑠 =

𝜆ℎ − (𝜇ℎ + 𝜂 + 𝜎)𝐻∗
𝑖

𝜇ℎ
,

𝐾∗ =
𝛼1
𝜇𝑘
𝐻∗
𝑖 ,

𝑀∗
𝑖 =

𝜆ℎ𝑔(
𝛼1
𝜇𝑘
𝐻∗
𝑖 )

𝜇2𝑚 + 𝜇𝑚𝑔(
𝛼1
𝜇𝑘
𝐻∗
𝑖 )
,

𝑃 ∗ =
𝛼2
𝜇𝑝
𝑀∗

𝑖 ,

𝑀∗
𝑠 =

𝜆ℎ − 𝜇𝑚𝑀∗
𝑖

𝜇𝑚
,

0 = 𝐻∗
𝑆𝑓 (𝑃

∗) − (𝜇ℎ + 𝜂 + 𝜎)𝐻∗
𝑖 .

(5.5)
12
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Replacing 𝐻∗
𝑠 et 𝑃 ∗ in the last equation of (5.5) gives:

(𝜆ℎ − (𝜇ℎ + 𝜂 + 𝜎)𝐻∗
𝑖

𝜇ℎ

)

𝑓

⎛

⎜

⎜

⎜

⎝

𝛼2
𝜇𝑝

𝜆ℎ𝑔(
𝛼1
𝜇𝑘
𝐻∗
𝑖 )

𝜇2𝑚 + 𝜇𝑚𝑔(
𝛼1
𝜇𝑘
𝐻∗
𝑖 )

⎞

⎟

⎟

⎟

⎠

− (𝜇ℎ + 𝜂 + 𝜎)𝐻∗
𝑖 = 0.

e pose

ℎ(𝐻𝑖) =
(

𝜆ℎ − (𝜇ℎ + 𝜂 + 𝜎)𝐻𝑖
𝜇ℎ

)

𝑓

⎛

⎜

⎜

⎜

⎝

𝛼2
𝜇𝑝

𝜆ℎ𝑔(
𝛼1
𝜇𝑘
𝐻𝑖)

𝜇2𝑚 + 𝜇𝑚𝑔(
𝛼1
𝜇𝑘
𝐻𝑖)

⎞

⎟

⎟

⎟

⎠

− (𝜇ℎ + 𝜂 + 𝜎)𝐻𝑖.

e have ℎ(0) = 0 and ℎ
(

𝜆ℎ
𝜇ℎ

)

< 0. Moreover

ℎ′(0) =
𝜆ℎ
𝜇ℎ

[

𝛼1𝛼2𝜆𝑚𝜇𝑚
𝜇𝑝𝜇𝑘𝜇2𝑚

𝑔′(0)𝑓 ′(0)

]

− (𝜇ℎ + 𝜂 + 𝜎) = (𝜇ℎ + 𝜂 + 𝜎)[𝑅2
0 − 1] > 0.

Therefore, the equation ℎ(𝐻𝑖) = 0 admits a unique solution 𝐻∗
𝑖 ∈

(

0;
𝜆ℎ
𝜇ℎ

)

and thus the existence of our endemic equilibrium point.
Finally, we establish the global stability of endemic equilibrium point.
Let 𝛷(𝑦) = 𝑦 − 1 − 𝑙𝑛𝑦, 𝑦 > 0 and define the following Lyapunov candidate function.

𝑊 ≡ 𝑊 (𝐻𝑠,𝐻𝑖, 𝐾,𝑀𝑠,𝑀𝑖, 𝑃 ) = ∫𝛺
𝐿(𝐻𝑠,𝐻𝑖, 𝐾,𝑀𝑠,𝑀𝑖, 𝑃 )𝑑𝑥,

where,

𝐿(𝐻𝑠,𝐻𝑖, 𝐾,𝑀𝑠,𝑀𝑖, 𝑃 ) = 𝜉1𝐻∗
𝑠𝛷(

𝐻𝑠
𝐻∗
𝑠
) + 𝜉1𝐻∗

𝑖 𝛷(
𝐻𝑖
𝐻∗
𝑖
) + 𝜉2𝑀∗

𝑠𝛷(
𝑀𝑠
𝑀∗

𝑠
)

+ 𝜉2𝑀∗
𝑖 𝛷(

𝑀𝑖
𝑀∗

𝑖
) + 𝜉3𝐾∗𝛷( 𝐾

𝐾∗ ) + 𝜉4𝑃
∗𝛷( 𝑃

𝑃 ∗ ),
(5.6)

nd

𝜉1 = 𝜇𝑘𝜇𝑝𝑃
∗𝐾∗𝑀∗

𝑠 𝑔(𝐾
∗), 𝜉2 = 𝜇𝑘𝜇𝑝𝑃

∗𝐾∗𝐻∗
𝑠 𝑓 (𝑃

∗), 𝜉3 = 𝜇𝑝𝑃
∗𝐻∗

𝑠 𝑓 (𝑃
∗)𝑀∗

𝑠 𝑔(𝐾
∗), 𝜉4 = 𝜇𝑘𝐾

∗𝐻∗
𝑠 𝑓 (𝑃

∗)𝑀∗
𝑠 𝑔(𝐾

∗).

he derivative of 𝐿 along the solution trajectory of System (5.1) is calculated as given below.

𝑑𝐿
𝑑𝑡

= 𝜉1

(

1 −
𝐻∗
𝑠

𝐻𝑠

)

𝜕𝐻𝑠
𝜕𝑡

+ 𝜉1

(

1 −
𝐻∗
𝑖

𝐻𝑖

)

𝜕𝐻𝑖
𝜕𝑡

+ 𝜉2

(

1 −
𝑀∗

𝑠
𝑀𝑠

)

𝜕𝑀𝑠
𝜕𝑡

+ 𝜉2

(

1 −
𝑀∗

𝑖
𝑀𝑖

)

𝜕𝑀𝑖
𝜕𝑡

+ 𝜉3

(

1 − 𝐾∗

𝐾

)

𝜕𝐾
𝜕𝑡

+ 𝜉4

(

1 − 𝑃 ∗

𝑃

)

𝜕𝑃
𝜕𝑡

= 𝜉1𝐻∗
𝑠 𝑓 (𝑃

∗)
[

1 −
𝐻𝑠𝑓 (𝑃 )
𝐻∗
𝑠 𝑓 (𝑃 ∗)

−
𝐻∗
𝑠

𝐻𝑠
+
𝑓 (𝑃 )
𝑓 (𝑃 ∗)

]

+ 𝜉1𝐻∗
𝑠 𝑓 (𝑃

∗)
[

𝐻𝑠𝑓 (𝑃 )
𝐻∗
𝑠 𝑓 (𝑃 ∗)

−
𝐻𝑖
𝐻∗
𝑖
−
𝐻∗
𝑖 𝐻𝑠𝑓 (𝑃 )

𝐻𝑖𝐻∗
𝑠 𝑓 (𝑃 ∗)

+ 1
]

+ 𝜉1𝐻∗
𝑠 𝑓 (𝑃

∗)
[

1 −
𝑀𝑠𝑔(𝐾)
𝑀∗

𝑠 𝑓𝑔(𝐾∗)
−
𝑀∗

𝑠
𝑀𝑠

+
𝑔(𝐾)
𝑔(𝐾∗)

]

+ 𝜉1𝐻∗
𝑠 𝑓 (𝑃

∗)
[

𝑀𝑠𝑔(𝐾)
𝑀∗

𝑠 𝑔(𝐾∗)
−
𝑀𝑖
𝑀∗

𝑖
−
𝑀∗

𝑖 𝑀𝑠𝑔(𝐾)
𝑀𝑖𝑀∗

𝑠 𝑔(𝐾∗)
+ 1

]

+ 𝜉1𝐻∗
𝑠 𝑓 (𝑃

∗)
[

𝐻𝑖
𝐻∗
𝑖
− 𝐾
𝐾∗ −

𝐾𝐻𝑖
𝐾∗𝐻∗

𝑖
+ 1

]

+ 𝜉1𝐻∗
𝑠 𝑓 (𝑃

∗)
[

𝑀𝑖
𝑀∗

𝑖
− 𝑃
𝑃 ∗ −

𝑃 ∗𝐻𝑖
𝑃𝑀∗

𝑖
+ 1

]

+ 𝜉1

(

1 −
𝐻∗
𝑠

𝐻𝑠

)

(𝑑1𝛥𝐻𝑠) + 𝜉1

(

1 −
𝐻∗
𝑖

𝐻𝑖

)

(𝑑2𝛥𝐻𝑖) + 𝜉2

(

1 −
𝑀∗

𝑠
𝑀𝑠

)

(𝑑4𝛥𝑀𝑠)

+ 𝜉2

(

1 −
𝑀∗

𝑖
𝑀𝑖

)

(𝑑5𝛥𝑀𝑖) + 𝜉3

(

1 − 𝐾∗

𝐾

)

(𝑑3𝛥𝐾) + 𝜉4

(

1 − 𝑃 ∗

𝑃

)

(𝑑6𝛥𝑃 )

fter some algebraic simplifications, we obtain

𝑑𝐿
𝑑𝑡

= 𝜉1𝐻∗
𝑠 𝑓 (𝑃

∗)
[

6 −
𝐻∗
𝑠

𝐻𝑠
+
𝑓 (𝑃 )
𝑓 (𝑃 ∗)

−
𝐻∗
𝑖 𝐻𝑠𝑓 (𝑃 )

𝐻𝑖𝐻∗
𝑠 𝑓 (𝑃 ∗)

−
𝑀∗

𝑠
𝑀𝑠

+
𝑔(𝐾)
𝑔(𝐾∗)

−
𝑀∗

𝑖 𝑀𝑠𝑔(𝐾)
𝑀𝑖𝑀∗

𝑠 𝑔(𝐾∗)
− 𝐾
𝐾∗ −

𝐾𝐻𝑖
𝐾∗𝐻∗

𝑖
− 𝑃
𝑃 ∗ −

𝑃 ∗𝐻𝑖
𝑃𝑀∗

𝑖

]

+ 𝜉1

(

1 −
𝐻∗
𝑠

𝐻𝑠

)

(𝑑1𝛥𝐻𝑠) + 𝜉1

(

1 −
𝐻∗
𝑖

𝐻𝑖

)

(𝑑2𝛥𝐻𝑖) + 𝜉2

(

1 −
𝑀∗

𝑠
𝑀𝑠

)

(𝑑4𝛥𝑀𝑠)

+ 𝜉2

(

1 −
𝑀∗

𝑖
)

(𝑑5𝛥𝑀𝑖) + 𝜉3

(

1 − 𝐾∗)

(𝑑3𝛥𝐾) + 𝜉4

(

1 − 𝑃 ∗)

(𝑑6𝛥𝑃 )
13
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Using the properties of the 𝛷 function we have,

𝑑𝐿
𝑑𝑡

= 𝜉1𝐻∗
𝑠 𝑓 (𝑃

∗)
[

𝛷
(

𝑓 (𝑃 )
𝑓 (𝑃 ∗)

)

−𝛷
( 𝑃
𝑃 ∗

)

+𝛷
(

𝑔(𝐾)
𝑔(𝐾∗)

)

−𝛷
( 𝐾
𝐾∗

)

]

− 𝜉1𝐻∗
𝑠 𝑓 (𝑃

∗)
[

𝛷
(𝐻∗

𝑠
𝐻𝑠

)

+𝛷
( 𝐻∗

𝑖 𝐻𝑠𝑓 (𝑃 )
𝐻𝑖𝐻∗

𝑠 𝑓 (𝑃 ∗)

)

+𝛷
(𝑀∗

𝑠
𝑀𝑠

)

+𝛷
( 𝑀∗

𝑖 𝑀𝑠𝑔(𝐾)
𝑀𝑖𝑀∗

𝑠 𝑔(𝐾∗)

)

+𝛷
(

𝐾𝐻𝑖
𝐾∗𝐻∗

𝑖

)

+𝛷
(

𝑃 ∗𝐻𝑖
𝑃𝑀∗

𝑖

)]

+ 𝜉1

(

1 −
𝐻∗
𝑠

𝐻𝑠

)

(𝑑1𝛥𝐻𝑠) + 𝜉1

(

1 −
𝐻∗
𝑖

𝐻𝑖

)

(𝑑2𝛥𝐻𝑖) + 𝜉2

(

1 −
𝑀∗

𝑠
𝑀𝑠

)

(𝑑4𝛥𝑀𝑠)

+ 𝜉2

(

1 −
𝑀∗

𝑖
𝑀𝑖

)

(𝑑5𝛥𝑀𝑖) + 𝜉3

(

1 − 𝐾∗

𝐾

)

(𝑑3𝛥𝐾) + 𝜉4

(

1 − 𝑃 ∗

𝑃

)

(𝑑6𝛥𝑃 ).

sing the Green formulae, and the homogeneous Neumann condition, we obtain

∫𝛺
𝛥𝐻𝑠𝑑𝑥 = ∫𝛺

𝛥𝐻𝑖𝑑𝑥 = ∫𝛺
𝛥𝐾𝑑𝑥 = 0 = ∫𝛺

𝛥𝑀𝑠𝑑𝑥 = ∫𝛺
𝛥𝑀𝑖𝑑𝑥 = ∫𝛺

𝛥𝑃𝑑𝑥 = 0.

∫𝛺
(𝛥𝐻𝑠)

1
𝐻𝑠

𝑑𝑥 = ∫𝛺
∣ ▽𝐻𝑠 ∣2

𝐻2
𝑠

𝑑𝑥 ≥ 0,∫𝛺
(𝛥𝐻𝑖)

1
𝐻𝑖
𝑑𝑥 = ∫𝛺

∣ ▽𝐻𝑖 ∣2

𝐻2
𝑖

𝑑𝑥 ≥ 0,

∫𝛺
(𝛥𝐾) 1

𝐾
𝑑𝑥 = ∫𝛺

∣ ▽𝐾 ∣2

𝐾2
𝑑𝑥 ≥ 0,∫𝛺

(𝛥𝑀𝑠)
1
𝑀𝑠

𝑑𝑥 = ∫𝛺
∣ ▽𝑀𝑠 ∣2

𝑀2
𝑠

𝑑𝑥 ≥ 0,

∫𝛺
(𝛥𝑀𝑖)

1
𝑀𝑖

𝑑𝑥 = ∫𝛺
∣ ▽𝑀𝑖 ∣2

𝑀2
𝑖

𝑑𝑥 ≥ 0,∫𝛺
(𝛥𝑃 ) 1

𝑃
𝑑𝑥 = ∫𝛺

∣ ▽𝑃 ∣2

𝑃 2
𝑑𝑥 ≥ 0.

y virtue of hypothesis (B4), (B5) and (B6), we have

𝛷
(

𝑓 (𝑃 )
𝑓 (𝑃 ∗)

)

−𝛷
( 𝑃
𝑃 ∗

)

=
(

𝑓 (𝑃 )
𝑓 (𝑃 ∗)

− 𝑃
𝑃 ∗

)(

1 −
𝑓 (𝑃 )
𝑓 (𝑃 ∗)

)

≤ 0 𝑎𝑛𝑑 𝛷
(

𝑔(𝐾)
𝑔(𝐾∗)

)

−𝛷
( 𝐾
𝐾∗

)

=
(

𝑔(𝐾)
𝑔(𝐾∗)

− 𝐾
𝐾∗

)(

1 −
𝑔(𝐾)
𝑔(𝐾∗)

)

≤ 0.

Thus,
𝑑𝑊
𝑑𝑡

= ∫𝛺
𝜕𝐿(𝑥, 𝑡)
𝜕𝑡

𝑑𝑥

≤ ∫𝛺 𝜉1𝐻
∗
𝑠 𝑓 (𝑃

∗)
[

𝛷
(

𝑓 (𝑃 )
𝑓 (𝑃 ∗)

)

−𝛷
( 𝑃
𝑃 ∗

)

+𝛷
(

𝑔(𝐾)
𝑔(𝐾∗)

)

−𝛷
( 𝐾
𝐾∗

)

]

− 𝜉1𝐻∗
𝑠 𝑓 (𝑃

∗)
[

𝛷
(𝐻∗

𝑠
𝐻𝑠

)

+𝛷
( 𝐻∗

𝑖 𝐻𝑠𝑓 (𝑃 )
𝐻𝑖𝐻∗

𝑠 𝑓 (𝑃 ∗)

)

+𝛷
(𝑀∗

𝑠
𝑀𝑠

)

+𝛷
( 𝑀∗

𝑖 𝑀𝑠𝑔(𝐾)
𝑀𝑖𝑀∗

𝑠 𝑔(𝐾∗)

)

+𝛷
(

𝐾𝐻𝑖
𝐾∗𝐻∗

𝑖

)

+𝛷
(

𝑃 ∗𝐻𝑖
𝑃𝑀∗

𝑖

)]

𝑑𝑥

≤ 0.

Thus, 𝑊 is a strict Lyapunov function of the EE, and this concludes the proof. ■

6. Numerical simulations

In this section we will realize the numerical simulations to confirm our theoretical results using parameter values in Table 2.
To simplify the work, we will work in dimension 1: 𝛺 ⊂ R, and use the finite difference method to obtain discrete counterpart of
he model. For parabolic partial differential equations with constant diffusive coefficients, such discrete method is well-known to
uarantee the accuracy and convergence of numerical scheme.

To do this, for 𝛺 = [0,𝐻], we pose 𝑥𝑖+1 = 𝑥𝑖 + 𝛥𝑥 with 𝑥1 = 0, 𝑖 = 1...𝑚, 𝛥𝑥 = 𝐻∕𝑚.
For 𝑡 in interval [0, 𝑇𝑀𝑎𝑥], we set 𝑡𝑖+1 = 𝑡𝑖 + 𝛥𝑡 with 𝑡1 = 0, 𝑖 = 1...𝑛, 𝛥𝑡 = 𝑇𝑀𝑎𝑥∕𝑛.
Thus have the following approximations,

𝑢(𝑥𝑖, 𝑡𝑗 ) = 𝑢𝑖𝑗 , 𝑢𝑡(𝑥𝑖, 𝑡𝑗 ) =
𝑢𝑖𝑗 − 𝑢

𝑖
𝑗−1

𝛥𝑡
, 𝑢𝑥𝑥(𝑥𝑖, 𝑡𝑗 ) =

𝑢𝑖+1𝑗 − 2𝑢𝑖𝑗 − 𝑢
𝑖−1
𝑗−1

𝛥𝑥
.

We fix the following initial conditions.
We choose the following initial values. For, 𝑥 ∈ [0, 10],

𝐻0
𝑠 (𝑥) = 1000 × 1

0.5
√

2𝜋
𝑒
−(𝑥−5)2

2×0.52 , 𝐻0
𝑖 (𝑥) = 500 × 1

0.5
√

2𝜋
𝑒
−(𝑥−5)2

2×0.52 , 𝐾0(𝑥) = 0,

𝑀0
𝑠 (𝑥) = 200 × 1

0.4
√

2𝜋
𝑒
−(𝑥−5)2

2×0.42 , 𝑀0
𝑖 (𝑥) = 100 × 1

0.4
√

2𝜋
𝑒
−(𝑥−5)2

2×0.42 , 𝑃 0(𝑥) = 0.

n the following we consider

𝑓 (𝑥, 𝑃 ) =
𝛽1(𝑥)𝑃
1 + 𝑎𝑃

and 𝑔(𝑥,𝐾) =
𝛽2(𝑥)𝐾
1 + 𝑏𝐾

.

(.) ∈ 𝐶2(𝛺), 𝑖 = 1, 2 are strictly positive and bounded continuous functions on 𝛺 and (𝑎, 𝑏) = (10−6, 10−5).
14

𝑖



Results in Applied Mathematics 23 (2024) 100488F.E.T. Nkuimeni and B. Tsanou

W

Table 2
Parameters ranges and related references.

Parameter Values Range Source Dimension

𝜆ℎ 8000 [6000, 1000] Chiyaka et al. (2010) [25] day−1

𝜆𝑚 200 [150, 3000] Chiyaka et al. (2010) [25] day−1

𝜇ℎ 0.014 [0, 0.5] Chiyaka et al. (2010) [25] day−1

𝜂 0.01 [0.0001, 0.3] Feng et al. (2004) [26] day−1

𝜎 0.0075 [10−7, 0.01] Feng et al. (2004) [26] day−1

𝛼1 500 [300, 800] Mangal et al. (2008) [27] day−1

𝛼2 0.08 [0.03, 0.1] Mangal et al. (2008) [27] day−1

𝜇𝑘 2.52 [2, 10] Mangal et al. (2008) [27] day−1

𝜇𝑝 1 [1, 5] Mangal et al. (2008) [27] day−1

𝜇𝑚 0.001 [0.001, 0.04] Mangal et al. (2008) [27] day−1

Fig. 1. Solutions of the spatially homogeneous model for 𝑅0 = 0.9019 < 1. Here, 𝑑𝑖=1...6 = 1, 𝛽1 = 2.26 × 10−8, 𝛽2 = 10−8, 𝜎 = 0.0075.

6.1. The homogeneous case

Here we consider the homogeneous model: 𝛽𝑖(𝑥) = 𝛽𝑖 > 0, 𝑖 = 1, 2. We can then calculate 𝑅0 as in (5.1).
Then for 𝑑𝑖=1...6 = 1, 𝛽1 = 2.26 × 10−8, 𝛽2 = 10−8 we get 𝑅0 = 0.9019 < 1. We notice from Theorem 5.1 that the disease-free

equilibrium point 𝐸0 = (𝐻0, 0, 0,𝑀0, 0, 0) = (5.7143 × 105, 0, 0, 5 × 104, 0, 0) is globally asymptotically stable. Fig. 1 shows us that the
densities of infected individuals (𝐻𝑖); infected snails (𝑀𝑖); miracidia (𝐾) and cercariae (𝑃 ) all converge to zero. On the other hand,
the densities of humans and snails converge respectively to 𝐻0 and 𝑀0. For 𝑑𝑖=1...6 = 1, 𝛽1 = 4 × 10−8, 𝛽2 = 10−8 and 𝜎 = 0 we get
𝑅0 = 1.3746 > 1. Then from Theorems 5.2, we show that the system admits a endemic equilibrium point (𝐻∗

𝑠 ,𝑀
∗
𝑠 , 𝐾

∗,𝐻∗
𝑖 ,𝑀

∗
𝑖 , 𝑃

∗),
which is globally symptomatically stable. Fig. 2 shows us that the different trajectories converge towards sadly positive constants.

6.2. The heterogeneous case

Here, we consider spatially heterogeneous model by choosing:
𝛽1(𝑥) = 𝛽′1(1 + 𝑐1𝑐𝑜𝑠(2𝜋𝑥)) with 0 ≤ 𝑐1 ≤ 1; 𝛽2(𝑥) = 𝛽′2(1 + 𝑐2𝑐𝑜𝑠(2𝜋𝑥)) with 0 ≤ 𝑐2 ≤ 1, where 𝛽′1 > 0 and 𝛽′2 > 0 are strictly positive

constants, 𝑥 ∈ [0; 10].
Note here that, 𝑐1 and 𝑐2 represent intensity of spatial heterogeneity.
We use the method developed in [23] to give an estimation of the basic reproduction number 𝑅0.
For (𝛽′1, 𝛽

′
2) = (10−8, 1.7 × 10−8), 𝑑𝑖=1...6 = 1, 𝜎 = 0.0075 and 𝑐1 = 𝑐2 = 0.148, we obtain 𝑅0 = 0.9521 < 1. We notice from Theorem

3.2 that the disease-free equilibrium point 𝐸0 = (𝐻0, 0, 0,𝑀0, 0, 0) = (5.714 × 105, 0, 0, 5 × 104, 0, 0) is globally asymptotically stable.
Fig. 3 shows us that the densities of infected individuals (𝐻𝑖); infected snails (𝑀𝑖); miracidia (𝐾), cercariae (𝑃 ) all converge to zero.

hile the densities of humans and snails converge respectively to 𝐻0 and 𝑀0. For (𝛽′1, 𝛽
′
2) = (2 × 10−8, 2 × 10−8), 𝑑𝑖=1...6 = 1, 𝜎 = 0,

𝑐1 = 𝑐2 = 0.148, we obtain 𝑅0 = 1.1711 > 1. Then according to the Theorem 4.4, we know that the system is uniformly persistent.
Fig. 4 shows us that the different trajectories converge to sadly positive constants. Finally, we investigate the effect of the spatial
heterogeneity and control measures on the basic reproduction number 𝑅0.

We start by evaluating the effect of population diffusion, on 𝑅0. Using the method developed by Wendi Wang and Xia-Qiang
Zho [23] in the spatially heterogeneous case, 𝑅0 depends on the diffusion coefficients 𝑑2 and 𝑑3. Fig. 5 gives us an overview of the
variation of 𝑅 as a function of the diffusion coefficients. We show that 𝑅 is a decreasing function of 𝑑 and 𝑑 . Thus, diffusion of
15
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Fig. 2. Solutions of the spatially homogeneous model for 𝑅0 = 1.3746 > 1. Here 𝑑𝑖=1...6 = 1, 𝛽1 = 4 × 10−8 , 𝛽2 = 10−8 and 𝜎 = 0.

Fig. 3. Solutions of the spatially heterogeneous model for 𝑅0 = 0.9521 < 1. Here, we choose: (𝛽′1 , 𝛽
′
2) = (10−8 , 1.7×10−8), 𝑑𝑖=1...6 = 1, 𝜎 = 0.0075 and 𝑐1 = 𝑐2 = 0.148.

Fig. 4. Solutions of the spatially heterogeneous model for 𝑅0 = 1.1711 > 1. Here, we choose: (𝛽′1 , 𝛽
′
2) = (2 × 10−8 , 2 × 10−8), 𝑑𝑖=1...6 = 1, 𝜎 = 0, 𝑐1 = 𝑐2 = 0.148.
16
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Fig. 5. Impact of 𝑑2 on 𝑅0 with 𝑑3 = 1, 𝑑3 = 0.7, 𝑑3 = 0.3, 𝛽′1 = 10−8, 𝛽′2 = 10−8, 𝑐1 = 𝑐2 = 0.148 and 𝜎 = 0.

Fig. 6. Impact of 𝑐1 on 𝑅0 with 𝛽′1 = 5 × 10−8, 𝛽′2 = 5 × 10−8 and 𝑐2 = 0.148.

population may reduce the risk of spreading the disease. Next, we evaluated the effect of the spatial heterogeneity on 𝑅0, symbolized
here by 𝑐1 and 𝑐2 by perfoming Fig. 6 and Fig. 7. These figures show that 𝑅0 is increasing function of 𝑐1 and 𝑐2. Thus, the spatially
heterogeneous infection can induce the persistence of disease.

We end with the impact of control measures (treatment and awareness) on the basic reproduction number 𝑅0, characterized
here by 𝜎. We fix (𝛽′1, 𝛽

′
2) = (2 × 10−8, 4 × 10−8), 𝑑𝑖=1...6 = 1 and 𝑐1 = 𝑐2 = 0.148. Fig. 8 shows us that 𝑅0 is a decreasing function of 𝜎.

Thus, the more we increase the control measures, the more we reduce the risk of spreading the disease.

7. Conclusion

In this paper we have constructed and presented a reaction–diffusion model of schistosomiasis, to reflect the spatial movements
of humans, snails, miraciduim and cercaria, which are part of the disease transmission cycle. The model uses general impact
functions with spatial dependence to reflect the contacts between humans and cercariae, snails and miracidia. This is done in order
to understand and explain all the processes involved in the transmission of the disease, in particular the phenomena of storage,
water irrigation, and population migrations, which are crucial elements in the development of the disease [4,6,7].

To do this, we first studied the spatially heterogeneous model. The characterization of an epidemiological threshold (basic
reproduction number) 𝑅0 which is characterized as the spectral radius of the next generation operator. Mathematical results reveal
that if 𝑅0 < 1 the disease will die out, and disease will persist if 𝑅0 > 1. The numerical simulations has allowed us to confirm our
theoretical results. This also allowed us to show that population diffusion and treatment reduce the risk of disease spread, whereas
spatial heterogeneity accentuates disease spread. Then, we studied the spatially homogeneous model. There, we determined the exact
value of our biological threshold 𝑅0. Then we determined and showed the existence and global stability of an endemic equilibrium
for 𝑅0 > 1 using a Lyapunov function. Numerical simulations have also allowed us to confirm the result.

In the next steps of our work, we are planning to introduce advection/transport phenomenon in the previous model. This
will make our model more realistic as water flow may carry alone several individuals that influence the dynamics of the disease,
17
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Fig. 7. Impact of 𝑐2 on 𝑅0 with 𝛽′1 = 5 × 10−8, 𝛽′2 = 5 × 10−8 and 𝑐1 = 0.148.

Fig. 8. Impact of control measure 𝜎 on 𝑅0 with 𝛽′1 = 2 × 10−8, 𝛽′2 = 4 × 10−8 and 𝑐1 = 𝑐2 = 0.148.

notably: the intermediate molluscs, the cercaria and the miracidia. We are already working on building and analysing a non-standard
numerical scheme of the previous model with space-dependent diffusive coefficients, and conduct some comparisons at the level of
convergence with the analytical model.
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Appendix

For more information on the codes and numerical methods used, please consult, https://github.com/Franck202101/-Schistoso
iasisReactiondiffusion.git.
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