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Gs/GD H5Nx HPAI until 2017. In that year, the ecology 
of the virus changed somehow, and intra-African migratory 
ducks brought Gs/GD clade 2.3.4.4b H5N8 HPAI viruses 
further south into the region. The South African poultry 
industry was nearly decimated during the 2017–2018 H5N8 
HPAI outbreaks, and again in 2021–2023 by a second wave 
caused by clade 2.3.4.4b H5N1 HPAI viruses. Molecular 
analysis of H5N1 HPAI viruses from 2021 to 2022 revealed 
fifteen distinct sub-genotypes (SA1 to SA15) in the country, 
some of which were restricted to certain regions (Abolnik 
et al. 2019).

Prior to 2017, chicken production in South Africa (SA) 
had only ever been affected by an endemic strain of H6N2 
LPAI. The H6N2 virus emerged in the early 2000’s in the 
Kwa-Zulu-Natal (KZN) province, and eventually spread 
to other provinces via the movement of infected chickens. 
H6N2 causes respiratory signs and drops in egg production, 
compelling the use of a whole inactivated H6N2 vaccine, 
but this combined with the sale of live spent hens has con-
tributed to the continued endemic circulation of H6N2 in 

Introduction

Influenza A virus (IAV; family Orthomyxoviridae) is a 
single-stranded negative sense RNA virus with an eight-
segmented genome. Wild aquatic birds are the primordial 
reservoirs of antigenically diverse low pathogenicity avian 
influenza (LPAI) viruses (Webster et al. 1992), but in recent 
years, migratory aquatic birds became a reservoir for Goose/
Guangdong (Gs/GD) sub-lineages of H5Nx high pathoge-
nicity avian influenza (HPAI) viruses, that since 2006 have 
spread globally in multiple pandemic waves (Lee et al. 
2017). Due to its geographic position at the southernmost 
tip of the African continent, South Africa remained free of 
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some provinces for more than two decades now. The H6N2 
chicken-adapted virus has not been detected in wild birds 
over two decades of active surveillance in the country, nor 
have any of its genome segments reassorted with other wild 
bird LPAI viruses in the continent (Abolnik et al. 2023).

On the 25th of October 2022, while some regions in SA 
were still experiencing clade 2.3.4.4b H5N1 outbreaks, a 
small-scale farmer in the Msunduzi Local municipality of 
the KZN province reported the deaths of 58 of 200 chickens. 
Samples were taken by the state veterinarian, and surpris-
ingly, the cause was diagnosed as H5N2 HPAI by a national 
veterinary laboratory. The following month, H5N2 HPAI 
was again identified as the cause of increased mortalities in 
a commercial layer farm near Cato Ridge in the neighboring 
Mkhambathini Local Municipality. On that farm, a house 
tested positive on the 29th of November 2022, followed by a 
second house sampled a week later on the 6th of December 
2022. The entire farm was culled to stop the further spread 
of infection (Department of Agriculture, Land Reform and 
Rural Development, 2023). The purpose of this study was 
to perform genetic characterization to determine the epide-
miological origin/s of the H5N2 HPAI virus that caused the 
localized outbreak in KZN in late 2022. The genomes of 
H6N2 viruses from cases in poultry from 2019 to 2021 were 
also sequenced as part of this study.

Methods

Assurecloud Laboratory (Pty) Ltd received clinical samples 
(tracheal and cloacal swabs or tissues) from their clients and 
performed all RNA extractions, with IAV detection and sub-
typing by real-time reverse transcription PCR as described 
previously (Abolnik et al. 2019). Samples from chickens 
originated from commercial layer flocks in the Gauteng and 
KwaZulu-Natal provinces with a suspicion of IAV infec-
tion, where respiratory signs, drops in egg production or 
increased mortalities were noted (Table 1). Tracheal swabs 
from apparently healthy commercial ostriches in the West-
ern Cape province had been tested as part of routine sur-
veillance. Extracted RNA was forwarded to the University 

of Pretoria for further analysis. IAV genome amplification 
reverse transcription PCR, Ion Torrent Sequencing, and 
genome assembly were performed as described elsewhere 
(Abolnik et al. 2019, 2023). For convenience, IAV’s eight 
genome segments’ sequences are referred to as PB2 (seg-
ment 1; polymerase B2), PB1 (segment 2; polymerase B1), 
PA (segment 3; polymerase A plus PA-X), HA (segment 4; 
hemagglutinin), NP (segment 5; nucleocapsid), NA (seg-
ment 5; neuraminidase), M (segment 7; matrix 1 plus matrix 
2e) and NS (segment 8; non-structural 1 plus nuclear export 
protein).

MEGA-X (v10.2.5) (Kumar et al. 2018) was used to 
concatenate genome segment sequences. Multiple sequence 
alignments of the eight individual segments and concat-
enated segments were prepared using the MAFFT v.7 
(https://mafft.cbrc.jp/alignment/server/index.html; Katoh 
and Stadley, 2013) and BioEdit (Hall 1999). Blast homol-
ogy searches were conducted in the GISAID EpiFlu data-
base (https://platform.epicov.org/). Phylogenies were 
reconstructed using maximum likelihood (ML) analysis 
in IQ-Tree v2.0.3 with 1,000 ultrafast bootstrap replicates 
(Trifinopoulos et al. 2016), and the ML consensus trees 
were visualized using FigTree 1.4.4 (http://tree.bio.ac.uk/
software/figtree/).

The time to the most recent common ancestor (RCA) was 
inferred from the dated maximum clade credibility (MCC) 
tree in BEAST v.2 software (Bouckaert et al. 2019). The 
MCC tree was reconstructed using a Hasegawa–Kishino–
Yano nucleotide substitution model with a gamma distribu-
tion of substitution rates, a Coalescent Bayesian Skyline 
model and a Relaxed Lognormal clock. Markov chain 
Monte Carlo chains of 50 million iterations were performed 
and assessed with Tracer v1.7.2 (Rambaut et al. 2018) to 
ensure that an effective sample size of > 200 was achieved, 
with statistical uncertainty of the nodes reflected in values 
of the 95% highest posterior density (HPD). The consen-
sus MCC tree with common ancestor heights was summa-
rized in TreeAnnotator v.2.6.6 and visualized using FigTree 
v.1.4.2. Sequences generated in this study were deposited in 
the GISAID EpiFlu database under the accession numbers 
provided in Table 1.

Table 1  Viruses sequenced in this study
Strain Sampling date Location Accession number
A/chicken/South Africa/387,087/2019 (H6N2) 21 Oct 2019 Randburg, Gauteng province EPI_ISL_12864553
A/chicken/South Africa/636,697/2020 (H6N2) 6 May 2020 Camperdown, KwaZulu-Natal province EPI_ISL_12869978
A/ostrich/South Africa/647,367/2020 (H6N2) 6 Jun 2020 Calitzdorp, Western Cape province EPI_ISL_12869983a

A/ostrich/South Africa/644,344/2020 (H6N2) 17 Jun 2020 Oudtshoorn, Western Cape province EPI_ISL_12869982 a

A/chicken/South Africa/645,275/2020 (H6N2) 18 Jun 2020 Camperdown, KwaZulu-Natal province EPI_ISL_12869977
A/chicken/South Africa/654,182/2020 (H6N2) 13 Aug 2020 Camperdown, KwaZulu-Natal province EPI_ISL_12869980
A/chicken/South Africa/654,160/2020 (H6N2) 13 Aug 2020 Camperdown, KwaZulu-Natal province EPI_ISL_12869979 a

A/chicken/South Africa/69,103/2022 (H5N2, HPAI) 29 Nov 2022 Cato Ridge, KwaZulu-Natal province EPI_ISL_17837307
a Partial genomes
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Results and discussion

Seven H6N2 LPAI viruses in commercial poultry between 
October 2019 and August 2020 were sequenced in this study 
along with the reassortant H5N2 HPAI virus detected in lay-
ers in Cato Ridge, KZN, in November 2022. Phylogenetic 
analysis determined that the H6N2 viruses contained only 
H6N2-associated segments belonging to H6N2 sub-lineage 
I, and clustered according to their geographic location, i.e., 
a sub-clade comprised of strains from Gauteng and North-
West provinces, and a sub-clade for KZN (Supplemental 
Fig. 1(a); (Abolnik et al. 2019). The H6N2 viruses detected 
in commercial ostriches in the Western Cape province, A/
ostrich/South Africa/647,367/2020 and A/ostrich/South 
Africa/644,344/2020, are located within the KZN sub-clade, 
and within this subclade, the ostrich viruses shared an RCA 
with A/chicken/South Africa/654,160/2020 (this study) and 
A/chicken/South Africa/chicken/H44954/2016 (Abolnik et 
al. 2019) in the PB1, PA, NP, NA, M and NS genes. Thus, 
there is strong phylogenetic evidence that the H6N2 strain 

that affected ostriches in the Western Cape province in 
2020 originated in the KZN province sector, where there 
are no ostrich farms. Transmission from KZN to the West-
ern Cape province was likely via the transportation of spent 
hens, with fomite introduction into ostrich farms. Wild birds 
are not suspected to be reservoirs of the chicken-adapted 
H6N2 strain, because of the genetic purity of the lineage (a 
lack of reassortment with wild bird associated IAV genes), 
and the H6N2 virus has never been detected in wild birds 
during active surveillance. There were no genetic markers 
associated with prolonged circulation in ostriches (e.g., PB2 
E627K) (Abolnik et al. 2016). This is the first report of a 
spillover of the chicken-adapted H6N2 lineage to ostriches, 
more than two decades after it first emerged in South Africa.

Sequence analysis determined that in the reassortant 
virus A/chicken/South Africa/69,103/2022 (H5N2, HPAI), 
the HA, M and NS segments were derived from a clade 
2.3.4.4 H5N1 virus (Fig. 1, Supplemental Fig. 1(b), and the 
PB2, PB1, PA, NP and NA segments were derived from the 
chicken H6N2 lineage (Supplemental Fig. 1(a). The latter 

Fig. 1  (A) Schematic diagram of the origins of the genome segments 
of the reassortant H5N2 HPAI virus as determined by phylogenetic 
analysis. (B) Time-scaled maximum clade credibility tree of the con-
catenated HA, M and NS sequences of clade 2.3.4.4b H5N1 HPAI 
sub-genotype SA10 viruses from South Africa in 2021–2022, rooted 

with A/chicken/South Africa/26,683/2021 (sub-genotype SA1). The 
node values represent the posterior probability and the blue bars rep-
resent the 95% highest posterior probability range. The H5N2 HPAI 
reassortant virus is indicated in red. GAU- Gauteng province; KZN- 
KwaZulu-Natal province
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were completely unrelated to any clade 2.3.4.4b H5N1 
viruses, with nucleotide sequence identities of < 90%. 
In the H6N2-origin genes, three KZN viruses sequenced 
in this study, A/chicken/South Africa/636,697/2020, A/
chicken/South Africa/654,182/2020 and A/chicken/South 
Africa/645,275/2020, isolated from layer hens in the Cam-
perdown region (close to Cato Ridge), share an RCA with 
the H5N2 reassortant virus (Supplemental Fig.  1(a). To 
maximize the genetic information, the H5N1-derived HA, 
M and NS segments were concatenated and aligned with 
the H5N1 viruses from the South African outbreaks in 
2021–2022. The H5N2 reassortant virus clustered within 
the sub-genotype designated as SA10 (Fig. 1), comprising 
the strains isolated from the outbreaks from KZN from late 
June to early September 2021 and in early 2022 in Gauteng 
(Abolnik et al. 2023). The long branch of A/chicken/South 
Africa/69,103/2022 (H5N2) and its basal position to the sub-
cluster of SA10 viruses indicates that the ancestral H5N1 
virus had likely been circulating in the wild bird reservoir 
in KZN for some time. Although the posterior probability 
is low, the dating indicates the progenitor was already pres-
ent in the KZN region in late July 2021 (95% HPD July-
October 2021) (Fig. 1), but it was not associated with any 
outbreak that affected chickens at the time. Furthermore, A/
chicken/South Africa/69,103/2022 (H5N2) was unrelated to 
an H5N1 outbreak in a layer farm in the same Cato Ridge 
area just a month prior, on 18 September 2022 (Fig. 1).

In conclusion, H6N2 has continued to circulate in chick-
ens in South Africa for more than two decades, but this is 
the first time that the chicken-adapted strain was detected in 
ostriches. Ironically, the H6N2 chicken lineage originated 
in farmed ostriches in the Western Cape province, through a 
reassortment of H9N2 and H6N8 viruses in the late 1990’s, 
before spreading to the KZN province with spent hens 
(Abolnik et al. 2007). The reassortment event with clade 
2.3.4.4b H5N1 HPAI in 2022 is only known case involving 
the H6N2 endemic virus. H5N2 HPAI caused two localized 
outbreaks in October and November 2022 in a relatively 
small region of the KZN province, but since the index case 
wasn’t available for analysis, it was impossible to determine 
whether the second outbreak, sequenced here, was as the 
result of a fomite spread from the first outbreak, or whether 
reassortment events occurred independently. Nonetheless, 
no further spread of H5N2 HPAI was reported after Decem-
ber 2022.
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