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Abstract
The information age has been a critical driver in the impressive advancement of Natural

Language Processing (NLP) applications in recent years. The benefits of these applications have
been prominent in populations with relatively better access to technology and information. On
the contrary, low-resourced regions such as South Africa have seen a lag in NLP advancement
due to limited high-quality datasets required to build reliable NLP models. To address this
challenge, recent studies on NLP research have emphasised advancing language-agnostic models
to enable Cross-Lingual Language Understanding (XLU) through cross-lingual transfer learning.
Several empirical results have shown that XLU models work well when applied to languages with
sufficient morphological or lexical similarity. In this study, we sought to exploit this capability
to improve Tshivenda NLP representation using Sepedi and other related Bantu languages with
relatively more data resources.

Current state-of-the-art cross-lingual language models such as XLM-RoBERTa are trained
on hundreds of languages, with most being high-resourced languages from European origins.
Although the cross-lingual performance of these models is impressive for popular African lan-
guages such as Swahili, there is still plenty of room left for improvement. As the size of such
models continues to soar, questions have been raised on whether competitive performance can
still be achieved using downsized training data to minimise the environmental impact yielded
by ever-increasing computational requirements. Fortunately, practical results from AfriBERTa,
a multilingual language model trained on a 1GB corpus from eleven African languages, showed
that this could be a tenable approach to address the lack of representation for low-resourced
languages in a sustainable way.

Inspired by these recent triumphs in studies including XLM-RoBERTa and AfriBERTa, we
present Zabantu-XLM-R, a novel fleet of small-scale, cross-lingual, pre-trained language models
aimed at enhancing NLP coverage of Tshivenda. Although the study solely focused on Tshivenda,
the presented methods can be easily adapted to other least-popular languages in South Africa,
such as Xhitsonga and IsiNdebele. The language models have been trained on different sets of
South African Bantu languages, with each set chosen heuristically based on the similarity to
Tshivenda. We used a novel news headline dataset annotated following the International Press
Telecommunications Council(IPTC) standards to conduct an extrinsic evaluation of the language
models on a short text classification task.

Our custom language models showed an impressive average weighted F1-score of 60% in few-
shot settings with as little as 50 examples per class from the target language. We also found that
open-source languages like AfriBERTa and AFroXLMR exhibited similar performance, although
they had a minimal representation of Tshivenda and Sepedi in their pre-training corpora. These
findings validated our hypothesis that we can leverage the relatedness among Bantu languages
to develop state-of-the-art NLP models for Tshivenda. To our knowledge, no similar work has
been carried out solely focusing on few-shot performance on Tshivenda.

Keywords: Cross-Lingual Transfer Learning, Tshivenda, Low-resource NLP, XLM-Roberta,
Bantu languages
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Chapter 1

Introduction

1.1 Motivation

The development of large Pre-trained Language Models(PLM) has grown exponentially recently.
As researchers push towards building models that resemble human-like capabilities, adding more
data and computing seems viable. This approach has often shown promising results, especially for
high-resource languages like English, Spanish, or French. Unfortunately, these benefits cannot be
easily achieved for low-resource languages like Tshivenda. As a result, serious questions regarding
the systematic marginalisation of under-represented populations from modern technology have
been raised. Furthermore, there is growing environmental concern regarding the energy necessary
to train these gigantic models. As the world becomes increasingly conscious of the need to address
climate change, large corporations building models at these scales will come under increased
scrutiny from environmental lawmakers.

Fortunately, there has been some significant progress made in addressing these challenges. One
of the most prominent solutions is the movement towards building language-agnostic models by
leveraging the power of transfer learning to share the model behaviour learnt from high-resource
languages with low-resourced languages. This phenomenon is commonly referred to as cross-
lingual transfer modelling. Through this exciting approach, we can enhance the inclusiveness in
Natural Language Processing(NLP) applications while simultaneously reducing environmental
impact by training a single polyglot model instead of multiple models restricted to only one
language.

1.2 Problem statement

Modern NLP-powered applications like chat-bots, personal assistants, and search engines often
struggle to understand South African languages [Duvenhage et al., 2017a], which is worrying
given our increasing reliance on these tools for daily tasks. A growing number of enterprises
and governments are incorporating NLP features into their systems to reduce labour expenses

1
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and improve customer satisfaction. However, these interfaces are only available in English,
which is not the native language for the majority of South Africans [Lephoko, 2021]. This
issue disproportionately affects elderly citizens and disadvantaged communities in rural areas.
Consequently, nearly 70% of the South African population is at risk of missing out on the
benefits of NLP technology [Lephoko, 2021]. Even advanced NLP models like GPT-3 have yet
to convincingly comprehend most South African languages, although they seem to understand
popular ones like Zulu and Xhosa.

Tshivenda is the second-least spoken Language in South Africa [Marivate, 2020]. The language
is predominantly spoken in the Venda region of the Limpopo province, which the Vhavenda
people inhabit. Many people from Venda often migrate to metropolitan areas in South Africa
where Tshivenda is not commonly spoken. Despite the widespread use of technology and social
media in these regions, there is a lack of sufficient representation of the Tshivenda language on
digital platforms. This makes it a challenge to obtain high-quality corpora for NLP research.
Fortunately, there has been progress in improving NLP resources for other languages in South
Africa that are closely related to Tshivenda, particularly Sepedi, which shares similarities with
Tshivenda due to their geographical proximity and shared etymology [Finlayson, 1987; Hellen,
2018]. Moreover, annotated datasets for Tshivenda are limited compared to Sepedi, and cross-
lingual transfer learning has not yet been investigated as a means to accelerate the adoption of
NLP for Tshivenda.

1.3 Research questions

Considering these hurdles, the following research questions were formulated:

• Is it viable to leverage high NLP resources from Sepedi and other popular Bantu languages
in South Africa to improve the coverage of Tshivenda in NLP applications?

• What is the most effective method to develop word representations to maximise few-shot
performance between Tshivenda and Sepedi? i.e. monoglot versus polyglot representations

• Are the current Tshivenda data resources sufficient for training state-of-the-art NLP mod-
els?

1.4 Contributions

Inspired by the successful cross-lingual transfer learning results from XML-RoBERTa [Conneau
et al., 2020] and AfriBERTa [Ogueji et al., 2021], we plan to make the following contributions:

• Use established methods for collecting and pre-processing data to prepare a text corpus of
South African languages that can be used for training multilingual language models.

• Develop Tshivenda and Sepedi static word embeddings aligned through a semi-supervised
process using VecMap [Artetxe et al., 2017]
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• Train a fleet of multi-lingual South African language models from scratch using the XML-
RoBERTa [Conneau et al., 2020] architecture.

• Assess the quality of custom-trained language models versus state-of-the-art open-source
language models by conducting a topic classification fine-tuning task on a novel news
headlines dataset for Tshivenda and Sepedi.

• Review the efficiency of using multilingual models compared to monolingual and bilingual
models to improve the NLP performance for Tshivenda.

1.5 Outline

The rest of this paper is organised as follows:

• Chapter 2: Reviews the recent discoveries in advancing NLP research for low-resourced
languages.

• Chapter 3: This chapter discusses the methodology used to address the research questions,
encompassing the description of the experiment configuration and the criteria for model
evaluation.

• Chapter 4: Presents the findings from various experiments described in Chapter 3.

• Chapter 5: This chapter verifies the results’ reproducibility through robustness assess-
ments.

• Chapter 6: Analysis of Results and address limitations of the Study

• Chapter 7: Discusses the conclusions that can be drawn from the main findings



Chapter 2

Literature survey

In this chapter, we will briefly review the history of the journey towards truly language-agnostic
models through transfer learning. The main focus will be on studies about enhancing Tshivenda
representation in NLP applications by leveraging the plethora of resources of Bantu languages
closely related to Tshivenda.

The rest of this chapter is organised as follows: Section 2.1 will cover the background and
literature review of Transfer learning and how it is a catalyst for the success of cross-lingual
language modelling, followed by Section 2.2 where we do a study of Tshivenda language and
review existing NLP research and applications for Tshivenda. Finally, in Section 2.3, we will
touch on some recent work with a similar objective to ours and highlight the identified gaps that
can be addressed in this study.

2.1 Transfer learning

Transfer learning is a widely used machine learning technique that involves initialising model
weights in a low-resource setting using a pre-trained model trained on a relatively large and
similar dataset to improve performance. The nature of transfer learning can vary depending on
the specific knowledge being transferred, with domain transfer and task transfer learning being
two common methods identified in the NLP literature [Pikuliak et al., 2021]. For instance, if
we train a sentiment classification model using a corpus extracted from Twitter and apply it to
predict customer sentiment on e-business product reviews, we are doing domain transfer. We can
also adapt this procedure to transfer the model behaviour learned from a high-resourced language
to a low-resourced language [Pikuliak et al., 2021]. The high-resourced language is called the
“source” language because it is the main source of knowledge which must be transferred to the
low-resourced or “target” language. This is known as Cross-Lingual Learning (CLL), where
each language represents a unique domain and the domain shift transpires through zero-shot or
few-shot settings. Consequently, multilingual learning can be viewed as a special case of CLL in
which there is more than one source or target languages [Pikuliak et al., 2021].

4



Chapter 2. Literature survey 5

Some recent studies contend that instead of creating new models for each of the 6500 known
languages, it is more cost-effective to transfer existing knowledge from high-resourced languages
[Schuster et al., 2019; Khalid et al., 2021]. However, before this knowledge transfer occurs, the
source and target languages must be projected into a shared semantic vector space to ensure
comparability [Glavaš et al., 2017]. This presents a challenge of aligning similar word representa-
tions from various monolingual vector spaces. This challenge becomes more pronounced as more
languages are added to the model and the similarity between the languages and the domains of
their training corpora become more diverse [Pikuliak et al., 2021]. It has also been shown that
training with too many languages can sometimes lead to saturation which degrades downstream
performance [Pikuliak et al., 2021].

2.1.1 Cross-lingual transfer learning

Cross-lingual transfer learning is a sub-field within transfer learning that aims to create
a shared semantic vector space between two or more languages to allow models trained on one
language to be used on a new language with limited training data. One approach to achieving this
is to use established monolingual word embedding training tools like Word2Vec [Mikolov et al.,
2013a] to train embeddings for each language. A bilingual sentence-level or word-level dictionary
can then be utilised to train a transformation matrix that maps the monolingual embeddings
to a shared vector space [Ruder et al., 2019a; Glavaš et al., 2017]. Typically, the embedding
space for the source language is frozen, while a projection matrix is learned to transform the
target language embeddings into the shared space. For example, we could use a German-English
bilingual dictionary to induce a joint vector space for English and German embeddings, with
the English embedding space held fixed. However, creating high-quality bilingual dictionaries
is difficult for many low-resource language pairs. Furthermore, although a solution like Google
Translate1 can be used, the results may not be reliable, particularly for South African languages.
As a result, significant obstacles still need to be addressed to develop shared vector spaces for
languages with limited resources.

An additional benefit of inducing a shared embedding space is the automatic generation of word
translations, facilitating cross-lingual word meaning comparisons [Ruder et al., 2019a]. However,
as with any other supervised problem, obtaining a high-quality parallel corpus makes this hard
to attain in low-resource settings. Therefore, researchers have explored alternative methods for
obtaining cross-lingual representations, such as semi-supervised and unsupervised approaches.
Two notable open-source tools for inducing unified vector spaces between languages are VecMap
[Artetxe et al., 2017], and MUSE [Conneau et al., 2017]. While both can function without a
bilingual dictionary as a supervision signal, they have limitations as described in [Doval et al.,
2018]. To address these shortcomings, a post-tuning method has been proposed to remove the
constraint of keeping the initial monolingual embeddings unchanged. One such method, known
as the meet in the middle technique, has demonstrated success in multilingual settings [Doval
et al., 2018]. Alternatively, CLWE can be generated between two languages using an intermediary
language similar to both source and target language [Sannigrahi and Read, 2022]. However, it

1https://translate.google.com/
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should be noted that these techniques are still under active research and development, and their
effectiveness may vary depending on the specific languages and domains involved.

2.1.2 Static text embeddings

Word-level embeddings, such as those generated by Word2Vec, have been widely used to repre-
sent text in high-dimensional vector spaces. However, in cases where large corpora are available,
sentence embeddings can also be employed [Duong et al., 2016]. Sentence embeddings offer
improved contextual information than word-level embeddings, which can be beneficial for docu-
ment classification tasks with substantial word overlap among categories. Nonetheless, aligning
vector spaces using parallel corpora in cross-lingual settings is often infeasible, especially in low-
resource scenarios. Furthermore, the study of sentence embeddings is relatively limited compared
to word-level embeddings, posing challenges for objective evaluation [Mishra and Viradiya, 2019].

Another option is to consider document-level embeddings, which capture the similarity be-
tween entire documents rather than focusing solely on words or sentences [Azunre et al., 2021].
This representation is particularly useful for tasks like information retrieval and summarisation
of lengthy documents. In the case of short-text applications, n-gram level or Character-level
Word Embedding (CWE) techniques are commonly employed. CWE is especially helpful for
languages like Chinese, where distinct characters within a sentence carry semantic substance
on their own [Chen et al., 2015]. For morphologically rich languages like many indigenous lan-
guages in South Africa, subword level embeddings with tokens induced from Byte-Pair encoding
[Mesham et al., 2021] and WordPiece [Schuster and Nakajima, 2012] are recommended. These
methods can effectively handle the complexities of word structure in such languages.

Established frameworks like Word2Vec [Mikolov et al., 2013a] and FastText [Bojanowski et al.,
2017] generate monolingual embeddings that yield fixed global word representations, regardless
of the context. FastText, in particular, enhances Word2Vec by operating on the n-gram level,
enabling it to learn more accurate representations, including tokens that did not appear in the
training lexicon. However, both methods face challenges when dealing with polysemy, which
is prevalent in Bantu languages. For example, in the phrase “duvha li kho fhisa” (it is hot)
and “linwe duvha” (someday), the word “duvha” refers to “sun” and “day,” respectively. In
such cases, It is preferable for the term “duvha” to have distinct vector representations based
on its surrounding context. This can be easily handled by using dynamic embeddings that are
automatically generated in transformer-based models like BERT [Devlin et al., 2018], ELMO
[Peters et al., 2018], GPT [Radford et al., 2018], and other similar approaches. These models
capture contextual information and allow words to have varying vector representations depending
on their contextual usage.

2.1.3 Contextual word vector representation

The capability of contextualised embeddings can be extended to multiple languages through the
use of pre-trained multilingual models like mBERT [Devlin et al., 2018] and XML-R [Conneau
et al., 2020]. These models generate embeddings that are both contextual and partially aligned
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across languages. Contextual embeddings capture the representation of a word based on its
surrounding sequence, making them well-suited for handling polysemy [Liu et al., 2020]. One
of the key benefits of this approach is that the learning process is entirely unsupervised, allow-
ing it to be easily applied in low-resource settings. Supervised objectives like CoVe [McCann
et al., 2017] have also shown effectiveness by leveraging a machine translation trained model
to generate contextual embeddings. However, it is important to note that CoVe relies on an
English-German parallel dataset consisting of approximately 210k sentence pairs, which may be
challenging to obtain for most low-resource languages. Furthermore, it should be acknowledged
that the performance of multilingual representations may vary across different language pairs
due to structural and script disparities [Pires et al., 2019].

Pre-trained polyglot language models have earned significant popularity due to their impressive
zero-shot transfer ability [Conneau et al., 2020; Ogueji et al., 2021]. These models are trained on
massive amounts of text, ranging from hundreds of gigabytes to terabytes, collected from diverse
sources such as Common Crawl, Google Books, and Wikipedia [Devlin et al., 2018]. Under
certain conditions, they have demonstrated superior performance to monolingual embeddings
when applied to unseen languages [Pires et al., 2019; Wu and Dredze, 2020]. However, mixed
results have been observed for languages with non-latin scripts or languages with lower frequency
rates on the pre-training datasets [Wu and Dredze, 2020; Muller et al., 2021].

Other reports suggest that the performance of pre-trained multilingual models on truly low-
resource languages may be notably inferior to that of equivalent monolingual models [Hedderich
et al., 2020]. However, this only applies if there is sufficient low-resource data to train reliable
monoglot models. Interestingly, high-resource languages can also be negatively affected by the
joint learning approach employed in multingual training scenarios [Wu and Dredze, 2020]. Con-
trary to the initial promises of these models, some findings indicate that training monolingual
models may be more advantageous if a sufficient amount of data is available [Wu and Dredze,
2020; Schuster et al., 2019]. This tendency is particularly prominent in scenarios where the writ-
ing style of the target languages significantly differs from that of the source languages, such as
variations in the ordering of verbs, subjects, and objects [Pires et al., 2019; Muller et al., 2021].

Additionally, there is a lack of comprehensive research evaluating the applicability of pre-
trained multilingual models to indigenous languages in South Africa. The closest studies con-
ducted in this context are AfriBERTa [Ogueji et al., 2021] and [Mesham et al., 2021], which
investigated different language modelling techniques for African languages. The empirical re-
sults from these studies indicate that multilingual representations may be a promising avenue to
explore even with limited training data [Ogueji et al., 2021; Alabi et al., 2022].

AfriBERTa [Ogueji et al., 2021] represents a noteworthy advancement in evaluating the ap-
plicability of multilingual pre-trained models for African languages. This research builds upon
the foundations established by XML-R [Conneau et al., 2020] and mBERT [Devlin et al., 2018],
which do not provide adequate representation for African languages. While XML-R includes
five more African languages than mBERT, they constitute only 8% of the corpus, which is in-
sufficient given the immense linguistic diversity in Africa [Marivate, 2020]. Nevertheless, the
findings from [Ogueji et al., 2021] demonstrate that even with a corpus size of less than 1GB,
it is possible to achieve comparable performance to XLM-R on tasks such as entity recognition
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and document classification. The authors also emphasise that performance improvements were
particularly prominent in zero-shot evaluations conducted on languages that share structural
similarities. Similarly, [Khalid et al., 2021] suggest that shared vocabulary and typography play
vital roles in enabling effective transfer across languages. These findings align with the funda-
mental premise of traditional transfer learning, which emphasises the importance of similarity
between the source and target domains [Ruder et al., 2019b].

An approach proposed by [Makgatho et al., 2021] trains cross-lingual embeddings for Setswana
and Sepedi without using extensive bilingual resources. However, the applicability of this method
to distant language pairs remains uncertain, considering that Setswana and Sepedi belong to the
same language family. Nevertheless, this approach was fully unsupervised and yielded commend-
able intrinsic results, as evidenced by the Spearman correlation and wordsim-553 [Finkelstein
et al., 2001] metrics. Similarly, good progress has been made to adapt BERT models to Twi,
the most spoken language in Ghana [Azunre et al., 2021]. Unfortunately, the reliability of the
results was compromised due to the evaluation being conducted on exceedingly small sentiment
analysis datasets, comprising only 20 observations.

While substantial strides have been made in adapting cross-lingual learning techniques for
African languages, considerable work remains, especially in constructing robust benchmark
datasets and assessing the performance on more intricate tasks like question answering or en-
tailment. Moreover, there is a need for more research to explore the effectiveness of multilingual
pre-trained models on distantly related language pairs. We also not that the development of
transfer learning techniques for African languages is still in its early stages, and there is a need
for more research to address the challenges and limitations in this regard. Continued research
and development efforts to address these gaps can lead to substantial advancements in natural
language processing for African languages. By bridging these technological divides, we can en-
able greater linguistic diversity and inclusivity in Artificial Intelligence (AI), paving the way for
practical solutions and positive social impact.

2.1.4 Word embedding alignment

Word embedding alignment is highly desirable when working with embeddings within a
shared vector space. One of the notable advantages of large pre-trained language models is
their ability to automatically generate partial alignment at the token level without the need for
supervision [Pan et al., 2021]. However, when dealing with joint multilingual learning scenarios,
the training corpus often originate from diverse languages, each with its unique syntax, semantics
and word structure. As a result, a significant misalignment is usually observed within the induced
shared contextual embedding space [Huang et al., 2021]. Fortunately, numerous approaches have
been developed recently to improve these partial alignments through post-pre-training alignment
stages. Notably, post-aligned models have reported significant improvements, even in zero-shot
scenarios [Pan et al., 2021]. This process primarily involves utilising a Translation Language
Modelling objective at both the word and sentence levels [Ruder et al., 2019a].

According to [Ruder et al., 2019a], cross-lingual embedding models may vary in their imple-
mentation, but they aim to optimise a common objective. These models typically use mapping
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techniques to align independently trained embedding spaces into a unified space using a linear
projection matrix. While supervised approaches are practical when a parallel corpus is available
to train the matrix, there are instances when limited parallel corpora or bilingual dictionar-
ies make this approach infeasible. In such cases, self-learning techniques can be used to align
embedding spaces.

Unfortunately, most existing methods for word embedding alignment require large parallel cor-
pora, which poses a challenge for low-resource languages [Pan et al., 2021; Huang et al., 2021].
Additionally, aligning embeddings across different languages with varying sentence structures
can be difficult due to the dynamic nature of contextualised embeddings. To address this issue,
a potential solution involves utilising the first principal component from the contextualised em-
bedding space as a static representation for words with multiple meanings [Ethayarajh, 2019].
Although this results in static embeddings that lose some contextual information, they can still
be a good alternative to traditional static embeddings generated by methods like GloVe or Fast-
Text [Ethayarajh, 2019]. Moreover, integrating contextual embeddings with global embeddings
has demonstrated promising results in tasks such as bilingual lexicon induction [Zhang et al.,
2021].

Recent research has aimed to reduce the reliance on large parallel corpora for post-training
alignment of multilingual embeddings [Duong et al., 2016]. One approach to address this chal-
lenge is presented in [Artetxe et al., 2017], which proposes a self-learning method that requires
only a small number of word pairs (e.g., as little as 25) to generate word alignments. Although
this is useful when no parallel data is available, better results are typically achieved with larger
dictionaries [Artetxe et al., 2017]. Since post-training alignment is computationally expensive,
[Huang et al., 2021] Proposes a robust training methodology that incorporates adversarial train-
ing and random smoothing to improve the tolerance of contextualised embeddings to potential
word misalignment. The authors argue their approach is preferable to coerced alignments, which
may be infeasible to achieve perfectly in most cases. In other studies, human judgement is pro-
posed to fix the alignments using syntactic features; however, this approach may not scale well
[Huang et al., 2021].

2.1.5 Model size

Model Size In the era of pre-trained language models, the size of polyglot models has con-
tinued to expand in terms of trained parameters, computation time, and coverage of tokens.
Several studies have demonstrated that incorporating more training data, epochs, and languages
generally improves performance on downstream tasks. For instance, XML-R [Conneau et al.,
2020] achieved performance enhancements in cross-lingual topic classification, Entity Recogni-
tion (ER), and question answering compared to previous iterations like XLM and mBERT. These
improvements were attained by incorporating additional languages and utilizing approximately
2.5TB of text data. These findings indicate significant progress in developing a robust language
model capable of transferring knowledge to unseen languages [Khalid et al., 2021]. However,
concerns have emerged regarding language models’ escalating size and environmental impact
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due to prolonged computational hours. Subsequently, several studies have suggested that in-
cluding more languages in these models may result in performance saturation for downstream
tasks [Khalid et al., 2021; Artetxe et al., 2017]. Some authors have referred to this phenomenon
as the “curse of multilinguality” [Conneau et al., 2020; Khalid et al., 2021].

Some emerging studies in NLP have challenged the notion that machine learning models
perform better with larger training data. While large-scale pre-trained models such as GPT
[Radford et al., 2018] and RoBERTa [Liu et al., 2019] have achieved impressive results, some
researchers have shown that smaller monolingual models trained on limited data [Schuster et al.,
2019] can outperform their multilingual counterparts trained on massive datasets. For example,
state-of-the-art performance has been achieved for popular African languages using just a small
subset of the data used for large pre-trained models [Ogueji et al., 2021]. This discovery is
particularly significant for low-resourced languages with limited training data, as it allows for
training high-performing polyglot models using just a few megabytes of text data. However, the
extent to which we can improve multilingual models without compromising individual language
performance is still an open research question that requires further investigation.

New areas of research to reduce model sizes using compression have recently gained traction.
A study by [Ogueji et al., 2022] found that contrary to findings by previous studies, compression
may help improve the performance of multilingual models. The authors found that compressing
multilingual models can improve performance on less represented languages in models such as
mBERT. This is an exciting development as it offers a potential solution to the issue of increasing
model sizes while maintaining or improving performance, especially for low-resource languages.
However, further research is needed to fully understand the impact of compression on multilingual
models and determine the best compression techniques for different models and languages.

2.1.6 Model Evaluation

Benchmarking datasets play a critical role in reliably assessing the performance of cross-
lingual models in intrinsic and extrinsic settings. They are also valuable in comparing multiple
model versions which aim to solve similar problems. Currently, the scarcity of high-quality
benchmarking datasets hinders our ability to fully explore the capabilities of cross-lingual lan-
guage models, particularly in low-resource and high-resource settings [Cruz et al., 2020; Cruz
and Cheng, 2019]. Cross-Lingual Natural Language Inference (XNLI) [Conneau et al., 2018]
is a widely used dataset for extrinsic evaluation of cross-lingual language models across vari-
ous Cross-Lingual Understanding (XLU) tasks. While it includes some African languages, such
as Swahili and Urdu, support for Tshivenda is currently lacking. Additionally, WordSim-553
[Finkelstein et al., 2001] provides valuable resources for intrinsic evaluation, although Tshiv-
enda support is not yet available. Generally, most high-quality benchmarking datasets focus
on languages with higher resource availability. The development of benchmarking datasets for
low-resource languages, including local South African languages, is still in the early stages. This
is partly due to the prevalence of English or Afrikaans as the dominant languages for informa-
tion publication [Marivate et al., 2020]. Some authors attribute this limitation to the scarcity of
trained linguists who can create reliable bilingual resources for Bantu languages [Mashamaite,
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2010]. Traditionally, South Africa has emphasised bilingual dictionaries for translating English
or Afrikaans vocabulary to Bantu languages [Mashamaite, 2010]. However, limited efforts have
been made to develop similar resources for parallel Bantu-to-Bantu word and sentence pairs. A
hub-and-spoke model was proposed in [Mashamaite, 2010] to automate the induction of these
bilingual lexicons for Tshivenda and Sesotho. Unfortunately this has not been widely adopted
and extended to other Bantu language pairs yet.

However, with recent endeavours to enhance NLP resources for Africa by organisations includ-
ing Masakhane [Orife et al., 2020], North-West University [Barnard et al., 2014], and Knowledge
for All Foundation2, numerous high-quality datasets have been made publicly available for re-
search. Therefore, the number of local datasets is likely to increase soon. As an interim measure,
it is recommended to collect sufficient data from public sources, including local news media, the
Bible [Christodouloupoulos and Steedman, 2015], Common Crawl, or social media data [Khalid
et al., 2021] to develop baseline models. Valuable guidelines for curating evaluation datasets for
two South African languages, Setswana and Sepedi, were published by [Marivate et al., 2020]
considering that text processing methods for low-resource languages may differ from traditional
approaches used for English. Data augmentation is also a helpful tool to explore when dealing
with under-resourced languages given the limited sources for local corpora [Marivate et al., 2020].
Furthermore, new efforts must be made to promote participation from diverse economic sectors
in enhancing NLP datasets for South African languages by institutionalising the utilisation of
native languages whenever feasible. For example, valuable data can be sourced from government
records, public news broadcasts, and technical writings in the private sector [Marivate, 2020].

Another valuable approach to expanding indigenous datasets involves the application of auto-
matic language identification. As internet and social media users continue to grow, significant
volumes of indigenous text data are generated daily. Extensive resources like Common Crawl and
Wikipedia may also contain data from local languages. We can tap into these vast text resources
by leveraging automated scraping tools alongside native language identification models to enrich
our limited NLP resources. Bayesian classification models have been utilised with impressive
accuracy in identifying South African language families, as demonstrated in previous research
by [Duvenhage et al., 2017b]. However, it is worth noting that these models have certain limita-
tions. One prominent limitation is their struggle with high-dimensional feature spaces, which is
often encountered in NLP tasks.

Evaluating cross-lingual embeddings can be approached through intrinsic or extrinsic as-
sessments. Intrinsic methods focus on assessing the mathematical relationships between the word
vectors of different languages within a unified vector space. The assessment can be conducted
using manual evaluation through human judgement or by quantifying quality metrics such as
perplexity or cosine similarity. Similarity metrics are often measured between monolingual vec-
tors and a word similarity rating dataset like wordsim-553 [Finkelstein et al., 2001]. On the other
hand, extrinsic evaluation is preferred to measure the quality of cross-lingual representations.
This involves using the embeddings as inputs on a downstream task, such as bilingual lexical
induction or document classification [Ruder et al., 2019a]. For example, in document classifica-
tion, a model’s zero-shot or few-shot performance trained solely on the source language can be

2Knowledge For All Home - https://k4all.org/
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evaluated on an unseen language. If the downstream model demonstrates good performance in
zero-shot or few-shot scenarios, it signifies the efficacy of the cross-lingual embeddings.

Text classification is one of the fundamental tasks found in natural language processing
(NLP) that involves categorising text or documents into different topics or classes. It finds ap-
plications in various domains, such as news classification, sentiment analysis, website categori-
sation, and intent detection. However, advancements in text classification have predominantly
focused on languages with abundant resources, posing a challenge for low-resource languages.
Nonetheless, recent efforts have aimed to overcome this limitation. For example, a multi-class
news article classification was performed in a study by [Niyongabo et al., 2020] for two African
languages: Kirundi and Kinyarwanda. The study used cross-lingual transfer learning by leverag-
ing the similarity between these low-resource languages, utilising the relatively larger annotated
dataset available for Kinyarwanda. It is important to note that this approach may not be readily
applicable to inherently different languages, and it relies on the availability of resources in at
least one of the languages. Furthermore, the specific metrics used to assess the homogeneity
between the languages in the study have not been disclosed.

Traditional classification models like Logistic Regression, Support Vector Machines, and Mul-
tivariate Naive Bayes have commonly been employed as baseline models in text classification
tasks. Before the advent of transformer-based architectures, LSTM (Long Short-Term Memory)
models were popular due to their ability to capture long sequences to some extent. However, their
long-term memory capacity is limited compared to transformer models, which have emerged as
the state-of-the-art choice for most Natural Language Understanding (NLU) tasks [Wolf et al.,
2020]. It is common to encounter classification models that combine sequential models such
as Bi-LSTMs, CNNs (Convolutional Neural Networks), or Char-CNN (Character-level CNN).
These classic techniques typically utilise monolingual word embeddings, where each language
occupies a separate vocabulary space. This approach restricts the potential for cross-lingual
transfer unless the source and target languages are highly similar. In contrast, using multilin-
gual embeddings offers a more efficient learning process by training a single model that can be
applied to multiple languages. However, this approach requires more training data and a parallel
corpus for alignment [Oladipo et al., 2022].

2.2 Tshivenda and Southern Bantu Languages

In this section, we will explore the distinct characteristics of the Tshivenda language and its
connections with other Bantu languages used in South Africa.

2.2.1 Tshivenda

Tshivenda is recognised as one of the eleven official languages in the Republic of South Africa(RSA).
Its primary concentration of native speakers lies in Limpopo and Gauteng, while reports also
indicate the presence of Tshivenda speakers in neighbouring countries like Zimbabwe [Hellen,
2018]. Tshivenda is classified as a Bantu language alongside eight other official languages in
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South Africa (excluding English and Afrikaans). In contrast to better-known indigenous South
African languages, Tshivenda lacks extensive digital linguistic resources. While numerous bilin-
gual lexicons exist for Tshivenda to English and Tshivenda to Afrikaans, direct translations
between Tshivenda and other Bantu languages remain limited. Beyond the challenges posed by
data availability, NLP applications for Tshivenda require special consideration due to its dis-
tinctive characteristics, including euphemism, diacritics, and homonymy. Code-switching is also
prevalent in Tshivenda, similar to the other eight indigenous languages in South Africa, particu-
larly in urban areas with diverse populations. Compared to other native RSA languages such as
Zulu, Xhosa, and Sotho, Tshivenda is relatively under-resourced and does not receive coverage
from prominent language tools like Google Translate3.

2.2.2 South African Bantu languages

The native languages in South Africa can be organised into four major family groups: Nguni,
Sotho, Tswaronga, and Venda. These language families are widely believed to have derived from
a shared ancestral origin [Finlayson, 1987]. It is believed that urbanisation, mixed-race marriages
[Hellen, 2018], and industrial activities like farming and mining also play a crucial role in language
similarity, often leading to the borrowing of words among different cultures. For example, the
word “diphrofesenale” in Sepedi is directly borrowed from the English term “professionals”.
Similarly, the word enter is “dzhena” in Tshivenda, “ngena” in Zulu and “kena” in Sepedi. Some
compelling evidence by [Finlayson, 1987] also show the possibility of an intermediate ancestor
language between Nguni and Sotho languages and between Sotho and Tshivenda.

The connection between Venda and Sepedi is evident through the similarities in word sounds.
For example, the words “toropo” (Sepedi) and “dorobo” (Venda) both mean “town,” while “we-
lago” (Sepedi) and “welaho” (Venda) both mean “fell,” and “digwedi” (Sepedi) and “minwedzi”
(Venda) both refer to ”months”. Within the Nguni family, Zulu and Xhosa are considered
dialects, while Northern Sotho, Southern Sotho, and Setswana exhibit significant mutual intel-
ligibility. These linguistic interconnections make these languages suitable candidates for cross-
lingual language modelling. However, it’s important to note that Nguni languages tend to be
conjunctive, unlike Sotho and Venda, which are disjunctive [Mesham et al., 2021].

2.2.3 NLP coverage

The growing public awareness of the digital divide, which stems from unequal access to tech-
nology, has prompted the NLP community to re-evaluate the benefits of current state-of-the-art
methods, particularly in low-resource settings. Most existing methods in NLP focus on Indo-
European languages, and it remains uncertain whether these approaches perform equally well
on truly marginalised languages [Pikuliak et al., 2021]. Addressing this issue is crucial to miti-
gate social dilemmas arising from over-generalisation and implicit bias in high-resource datasets
lacking diverse cultural representation [Hovy and Spruit, 2016].

3https://translate.google.com/
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2.2.4 Language similarity

Linguistic features such as language relatedness, typology and grammar play an essential role
in selecting the correct NLP tool for different languages. For instance, language modelling for
RSA may work well with Byte-pair Encoding tokenisation compared to white space tokenisation,
given the morphology richness [Mesham et al., 2021]. Hence, when doing cross-lingual learning,
it is useful to explore how similar the source and target languages are to generate a insightful
hypotheses. So far, researchers are divided on the hypothesis that multilingual models exhibit
commendable zero-shot performance because of shared vocabulary, language similarity, or uni-
versal language features [Pikuliak et al., 2021]. However, It has been reported that downstream
performance can be enhanced by leveraging the similarity of languages, as cited in [Nyoni and
Bassett, 2021].

Language Relationships

Southern Bantu languages share close linguistic ties primarily due to their shared origins.
However, it is beneficial to establish a metric system that measures the impact of this relationship
in cross-lingual settings to facilitate reliable performance comparisons. For instance, the concept
of cognacy was utilised in a study by [Borland, 1986] to assess the homogeneity among Nguni,
Venda, Tswaronga, and Shona language families. Cognacy refers to the presence of shared root
terms among different languages. One approach involves computing the taxonomic distance
coefficient [Sokal, 1966] on a small basic word vocabulary list to determine the percentage of
cognacy between two languages [Borland, 1986]. Another convenient method for evaluating
similarity is using the World Atlas of Language Structures (WALS) [Dryer and Haspelmath,
2013], which offers valuable information on language families, origins, and countries where the
languages are spoken.

According to the findings of [Borland, 1986], Venda exhibits a high degree of cognacy with the
Tswaronga and Nguni language families. There was also a significant cognacy observed between
Tshivenda and Shona, which is likely attributed to borrowing [Borland, 1986], geographical prox-
imity between Limpopo and Zimbabwe, migration patterns [Finlayson, 1987], or other historical
factors. Additionally, it is essential to acknowledge that globalisation has increased interactions
and coexistence among individuals from diverse cultures and languages. Moreover, historical
migration patterns contribute to the linguistic similarities observed across various African lan-
guages, as demonstrated in a study on languages in Cameroon [Tikeng et al., 2021]. Furthermore,
some studies suggest that the overall homogeneity among most African languages implies the
existence of a common ancestral language until recently [Finlayson, 1987].

2.3 Related work

Cross-lingual language model training, aimed at advancing low-resource language representa-
tion, has garnered significant attention in NLP research. A recent development in this area
is AfroXLMR [Alabi et al., 2022], a large pre-trained model developed from MLM adaptation
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on XLMR for 17 African languages. While the model includes three South African Bantu lan-
guages in the training set (Sesotho, IsiXhosa, and IsiZulu), it does not yet cover less popular
Bantu languages such as Tshivenda. Other similar studies have focused on developing less data-
intensive techniques to overcome the challenge of limited access to high-quality training corpora
[Lee et al., 2021]. For example, empirical results by [Lee et al., 2021] have shown that utilising
domain adaptation on a large language model pre-trained in English yields superior performance
in downstream tasks compared to monolingual training or multilingual LM fine-tuning while
using fewer data points.

Image-based techniques have also emerged as a promising alternative in cross-lingual language
representation learning. For instance, in [Rust et al., 2022], the authors employed an image-
based approach that utilises character pixels to learn cross-lingual representations rather than
the traditional masked language modelling. This method aims to overcome the challenge of
increasing vocabulary size as more languages are included in large language models. Specifically,
the approach leverages the script symbol through the co-activation of pixels on text images.
However, it is worth noting that this approach underperforms compared to BERT architectures
on Latin scripts, although it outperforms BERT in some zero-shot settings.

Although the reasons why LLMs are effective for multilingual tasks are still debated [Pires
et al., 2019], numerous studies have suggested that language similarity plays a crucial role. For
instance, in another study, it was shown that fine-tuning using multiple Indo-Aryan languages
from the same language families produced better results than fine-tuning each language indi-
vidually [Dhamecha et al., 2021]. It was further indicated that not all related languages benefit
from downstream task performance, hence a forward or backward selection process is necessary
to get the best combination of languages. In cases where scripts differ, transliteration is used to
normalise the text to use the same set of symbols, although this was shown to have an insignif-
icant impact on the performance. Although most of these works show promising results, they
focus only on a subset of languages. However, it is plausible to believe that these techniques
should also be easily transferable to other language families.

2.4 Summary

This section presented a comprehensive literature review on cross-lingual methods focused on
low-resource languages. Additionally, we highlight related work that has been published in the
field of Natural Language Processing for the Tshivenda language and other African languages.
Our review focuses on techniques, including transfer learning, multilingual embeddings, and
other related methods to enhance low-resource language coverage in NLP tools. Furthermore,
we discuss the evaluation metrics used to measure the performance of NLP systems. This review
provides a foundation for our proposed methodology, which will implement cross-lingual learning
techniques to advance Tshivenda NLP applications. The next section will discuss the proposed
methodology enacted to achieve the research objectives presented in Section 1.4.
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Research methodology

3.1 Overview

This section will discuss the methods used to address the primary research question of whether
cross-lingual language models can improve Tshivenda’s coverage in modern NLP applications. It
will highlight the process we followed to achieve our objectives, including collecting and analysing
data, modelling, designing experiments, and evaluating results. Our study uses a quantitative
approach, a widely accepted standard in NLP research, allowing for reasonable comparisons with
related works.

3.2 Data collection

Data collection encompasses the tools, platforms, and licenses used to acquire data from public or
private sources. To achieve the research objectives, two distinct groups of datasets were prepared.
The first group was used for creating word embeddings and training transformer-based language
models. In contrast, the second data group was used for training topic classification models to
evaluate the quality of the embedding models.

3.2.1 Representation learning corpora

The primary datasets for training the representation models were extracted from publicly avail-
able corpora from diverse sources. We downloaded all datasets directly without using web
crawlers, as we only needed a subset of the extensive data repositories for our experiments.
First, we obtained processed corpora from the South African Centre for Digital Language Re-
sources (SADiLaR) [Eiselen and Puttkammer, 2014] website, which included monolingual and
aligned sentences for 9 South African Bantu languages. Using this dataset, we extracted over
330MB of text, comprising approximately 431k sentences, with a unique token to total token
ratio of 5%. In addition, we extracted at least 25MB of Nguni and Sotho family texts from the

16
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Flores Multilingual Neural Machine Translation (NMT) dataset [Team et al., 2022; Goyal et al.,
2021; Guzmán et al., 2019]. It is worth noting that the aligned text dataset was significantly
smaller, revealing how preparing parallel datasets is generally more complex than scraping raw
texts from the web.

Furthermore, we extracted an additional 169MB of texts from the Monolingual Datasets from
Web Crawl Data [Wenzek et al., 2020] (referred to as CC-100) website. Other significant sources
of data used in our research include public PDF documents from various South African govern-
ment websites, the Massively Multilingual Translation [Aharoni et al., 2019; Tiedemann, 2012;
Zhang et al., 2020] (OPUS-100) website, and the Leipzig Corpora Collection [Goldhahn et al.,
2012]. A summarised view of these datasets is shown in Table 3.1.

Source Language TTR Size (MB)
SADiLaR ven, tso, sot, nso, tsn, zul, ssw, xho, nbl 706k/13.2m 330
Flores200 nso, sot, ssw, tsn, tso, cho, zul 68k/356k 2.25
OPUS-100 xho, zul 310k/3.8m 25
CC-100 nso, ssw, tsn, xho, zul 1.6m/27.5m 169
Leipzig nso, sot, tsn, ven, xho, zul - 283
Total 809.25

Table 3.1: Primary raw data sources

A total of 1.4 million sentences were extracted from the CC-100 corpora, with a mean Token-
Type Ratio (TTR) score of 11.6% for the five languages as shown in Table 3.1. Siswati and
isiZulu exhibited the highest token diversity with scores of 31% and 12%, respectively. On the
other hand, the Sotho family languages showed relatively lower diversity, with scores of 3% and
5% for Sepedi and Setswana, respectively. The isiZulu corpus from OPUS-100 offered only a
6.5% diversity score, compared to 8.4% from IsiXhosa, resulting in an average diversity score of
7.45%. Although Flores200 had the least amount of text (15.5k sentences), it had the highest
TTR score at 28.3%. We observed that Nguni languages tend to have higher TTR scores than
Sotho languages. Due to time and computing constraints, we only used a limited amount of
South African Bantu texts from the sources mentioned. However, we recognise the potential for
improvement in this area and plan to explore it further in the future.

Symbols

Most Bantu languages spoken in South Africa use the same set of symbols consisting of five
vowels and 26 alphabets. However, minor differences exist due to the presence of diacritics and
accents. For instance, Tshivenda has additional symbols such as [

ˆ
d,

ˆ
l,

ˆ
n,

ˆ
t, ṅ ] while Sepedi

only has [ à, š ]. Upon analysing the raw datasets further, foreign symbols were found embedded
within the text, including Chinese characters and emojis. This might indicate that the raw data
was sorted using a Language Identification (LID) tool to separate the South African languages
among a diverse collection of languages. After removing these foreign characters, Tshivenda had
the most symbols, with Sepedi coming in second. The character set for other languages in the
Sotho family was similar to Sepedi. In contrast, Nguni languages had a slightly different set of
characters, including dashes which are commonly used because Nguni languages are conjunctive.
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3.2.2 Evaluation corpora: Short-text classification

For extrinsic evaluation of the representation models, we collected news headlines in Sepedi
and Tshivenda from various public sources, including local radio stations’ Twitter and Facebook
pages, namely Phalaphala FM, Lesedi FM, and Thobela FM. The data was acquired using Twint1,
a tool for extracting historical posts from Twitter, and Facebook-scraper2, a Python package
used to retrieve posts from public Facebook profiles. To augment the news corpus, we also in-
corporated data from the Vukuzenzele newspaper corpora [Marivate et al., 2023]. Additionally,
we created synthetic English headlines using Open-AI text-generation service3, which was sub-
sequently translated to Sepedi. Unfortunately, this capability could not be used on Tshivenda
due to the limited availability of reliable English to Tshivenda translators. Table 3.2 provides
a summarised view of the news corpus. The documents represented here are in their raw form
and will undergo preprocessing to eliminate short, malformed or irrelevant texts.

Source Language (ISO639-3) Total articles
Facebook nso, ven 3403 / 12043
Twitter nso, ven 221 / 23
Vukuzensele nso, ven 883 / 842
Synthetic nso 6837
Total 11344 / 12908

Table 3.2: Raw News corpus summary

3.3 Data annotation

This section will describe how we annotated news headlines in Sepedi and Tshivenda. These
headlines were used as a benchmark for comparing models trained through cross-lingual transfer
and traditional monolingual learning methods. Additionally, we will detail the criteria and
verification steps we used to ensure the accuracy of the annotation results.

3.3.1 News Categories

Instead of synthesising custom news categories, we utilised the International Press Telecommuni-
cations Council (IPTC)1 Media Topic News Codes, which were most recently updated on March
31, 2023. We believe using a standard set of categories enables future work to draw plausible
comparisons on this work. The standard specifies 17 topics ranging from politics, crime, sports
and economy to lifestyle and leisure. The complete list of all the topics and their respective
descriptions can be found on the IPTC website2 .

3.3.2 Annotation platforms

The datasets were first manually annotated using LabelStudio [Tkachenko et al., 2020-2022],
an open-source multi-modal data annotation platform. After a significant number of examples

1https://www.iptc.org/std/NewsCodes/treeview/mediatopic/mediatopic-en-GB.html
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( 1000 articles) were annotated, ML-assisted learning was enabled to support automatic labelling.
Initially, the model only achieved 61% performance from 1000 samples spanning approximately
four topics. At first, only 5/17 categories had enough samples to train a logistic regression
model to support auto-labelling. Over time, the performance improved significantly, allowing
more annotations to be completed quickly. For example, the initial model was very good at
identifying Health, Crime, Politics, Education and disaster, accident and emergency incident
headlines as they were prevalent on the corpus. Since the model was retrained after every batch
of annotations, the annotations were then ordered according to the probability score so that
low-scoring headlines got a higher chance of being seen at least once by a human annotator.
This process was repeated until the model could identify most genres with a confidence score of
at least 0.6.

In theory, one annotator could create ground truth labels for a dataset. However, relying on
a single annotator is not recommended because human judgement can be subjective and prone
to errors. The reliability and accuracy of the ground truth labels can be improved by using
multiple annotators to annotate the same dataset and then resolving any discrepancies through
adjudication. Using multiple annotators and adjudication can help identify and correct errors,
reduce bias, and increase the consistency and reliability of the annotations. It is a common
practice in NLP to use multiple annotators and establish Inter-Annotator Agreement (IAA)
score to measure the level of agreement among the annotators. IAA measures can be used to
assess the quality of the annotations and the need for further refinement or clarification of the
annotation guidelines [Artstein, 2017].

In addition to internally annotated datasets, some of the annotation work was outsourced to
external annotators using Doccano [Nakayama et al., 2018]. Similar to LabelStudio, Doccano
is an open-source multi-modal annotation platform. A group of volunteers were also recruited
to speed up the annotation process. A guideline was provided to the annotators, and examples
showed how to deal with ambiguities. Moreover, a link to the IPTC news codes was shared with
the annotators for reference. There were two groups of annotators made up of native Tshivenda
speakers and Sepedi speakers. The quality of the annotations was appraised using a combination
of IAA scores and manual review with a special focus placed on ambiguous news genres.

3.3.3 Challenges

Because the data was collected during the period of Covid-19, we noticed many health-related
articles. Sometimes, assigning a single label to a headline was not straightforward. For example,
articles about Covid-19-related corruption could fall under health, business or politics. As a
result, we decided to treat the annotation process as a multi-label task, although the final models
focused on multi-class classification. The criteria used to pick a single label for a headline was
the frequency of observations for each topic. For example, if an article could fall under crime
or politics, and the number of observations for these categories were 10 and 5, respectively, we
assign politics as the label. This was done to minimise the imbalance among the news categories.

Some headlines did not have apparent genres that matched any IPTC topics, for example,
headlines related to traffic updates. As a result, an assumption was made that this kind of
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headlines should fall under the “society” genre, assuming that heavy traffic is an indirect indicator
of the problem of overpopulation in cities, which is a major social problem in many countries.
Political news headlines were also often difficult to assign to a single label as most reports
talked about misconduct or criminal cases against government officials or state-owned entities,
for example, the news about the Zondo Commission3. As a result, there was a lot of coincidence
between this topic and “Crime, Law and Justice” news. Similarly, most news relating to “religion
and belief” was about criminal charges against religious leaders.

Notably, we also had a few observations that could not be classified if one did not have context.
For example, “Tshiimo tsha Alexandra tsho bva nnda ha tshanda” means “The situation at
Alexandra is out of hand”. For all we know, this could have been about protests, natural
disasters, or an ongoing social problem. As a result, annotators were advised to mark articles
like these as “not-applicable” so they could be excluded from the training datasets.

3.3.4 Annotation results

The quality of the annotations was verified through the use of pairwise inter-annotator agreement
scores. For Sepedi, the 5 external annotators completed 1.5k annotations with an average
pairwise agreement score of 0.427. Although commendable, a score of 0.427 indicates a moderate
agreement, which may have been caused by unclear labelling instructions or the ambiguity on
some closely related news categories. We will leave the investigation and possible improvement
of this score for future work.

To improve the diversity and class balance of the datasets, we applied data augmentation using
a combination of back-translation, the generative capability of Open AI’s GPT-34 models and
zero-shot classification. For instance, given a randomly picked headline in the human-annotated
dataset, we translated it to English using Google Translate5 then sent an API request to get a
GPT-3 model to generate ten unique articles on the selected topic while using the selected article
as a hint. With this approach, we obtained an additional 6837 headlines for the Sepedi Corpus.
We used two methods to verify these machine-generated annotations; firstly, we conducted k-
fold cross-validation to select a suitable classifier and ensure that the models trained on this
data performed well on the human-annotated dataset. Secondly, we assessed the inter-annotator
agreement scores between labels generated by GPT-3 models and those obtained from zero-shot
classification results using pre-trained Multi-Genre Natural Language Inference (MNLI) models,
including BART (Tang et al., 2020) and DistilBart6.

For Tshivenda annotations, we obtained an average pairwise agreement score of 0.37 from 3
external annotators. Unfortunately, only 1000 articles were completed, and there was no option
to apply the augmentation technique applied for Sepedi since Tshivenda to English machine
translation services are not yet readily available. As a result, we had to manually annotate a
substantial number of Tshivenda articles without the ability to get the inter-annotator agreement
score. Fortunately, the researcher is a Tshivenda-speaking individual; therefore, it was possible

3https://www.statecapture.org.za/
4https://platform.openai.com/
5https://translate.google.com/
6https://huggingface.co/valhalla/distilbart-mnli-12-1
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to perform rigorous manual verification of the annotations. Some strategies applied to achieve
the desired annotation quality involved re-labelling topics that appeared to perform worse on
the initial experiments and using keyword filtering to verify that correct labels were assigned as
expected. However, we acknowledge that there may be some weaknesses in our findings due to
the potential mislabeling of entries. This is an area that we wish to improve on in future works.

3.3.5 Analysis

Despite being in different languages, we observed that the news articles in Tshivenda and Sepedi
had comparable content. This is probably because the radio stations that provided the data
are overseen by the South African Broadcasting Commission (SABC), which explains why they
have access to the same news sources. Out of the 17 topics considered, we note the following
prominent topics:

• Crime, law and justice - Unfortunately, this was the most dominant topic across Tshivenda
and Sepedi news. It was closely followed by news relating to Politics. As mentioned before,
it was often difficult to distinguish between crime and politics. This could be because the
time span from which the data was collected was not diverse enough, causing our dataset to
be biased toward popular issues at that time. Perhaps if we collected data across multiple
years, we could have gotten more diversity.

• Society - According to the IPTC7 specification this genre covers social and human rights
issues which are commonly encountered in communities. We often encountered ambiguities
for articles that revolved around protests for public service delivery as these could also
plausibly fall under “Conflict, War and Peace”. There were also concerning issues around
racism, human rights violations and poverty. The issue of poverty often went hand in hand
with unemployment which raised ambiguity between the “Society” and ”Labour” genres.

• Health - As noted before, the collected headlines had many instances of news relating to
Covid-19 infection rates and vaccination. In addition to ambiguity introduced by Covid-19
related financial crimes, there was often ambiguity with “Science, and Technology” regard-
ing scientific research aimed at developing effective treatment against Covid-19. The travel
bans introduced to prevent the spread of Covid-19 also presented significant challenges to
annotators since these could be viewed as “disaster, accident and emergency incident”,
considering that the disease was declared as a pandemic. Yet, it is also possible to argue
that this was a social issue as it involved issuing grants to support those who could not go
to work to support their families.

• Economy, Business and Finance - Most headlines under this topic talked about failing
State-Owned Entities (SOEs), Black Economic Empowerment and Corruption. Corrup-
tion news often coincided with the topic of “Crime, Law and Justice” since they often
involved theft, bribery and other forms of financial crime. A few instances also referred
to government initiatives to combat unemployment and help the economy overcome the

7https://www.iptc.org/std/NewsCodes/treeview/mediatopic/mediatopic-en-GB.html
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negative impacts caused by Covid-19. As a result, there was sometimes ambiguity between
“Labour” and “Health” news.

• Education - Education headlines were mostly about the effect of Covid on school programs.
Hence we may have mislabelled between education and health. Furthermore, there are
several articles about protests related to the lack of learning infrastructure. Multiple cases
of arson in rural schools were also encountered, in addition to sexual harassment activities
by teachers against female students. This introduced ambiguity between the “education”
genre and “conflict, war and peace” and “crime, law and justice”

• Disaster, accident and emergency incident - A high number of articles in this genre were
about road accidents and floods. There were also a few notable incidents of students
drowning which coincided with “Education” headlines.

• Human Interest - These headlines often talked about reports of famous people, or any
news that affect human emotions such as music legends or political veterans passing away.
There were also incidents where a memorial was held for victims of disasters or accidents,
which caused ambiguities with the “Disaster, accident and emergency incident” category.
Furthermore, it was at times difficult to distinguish whether a headline about a celebrity
belonged to the genre of “Arts, Culture, Entertainment and Media” or “Human interests”
as most celebrities in the entertainment industry are also famous people.

• Other topics - There were very few instances about Sports, Science and Technology, Envi-
ronment or Lifestyle and Leisure. This was unsurprising as specialised topics such as these
are often reported exclusively from dedicated channels which we did not utilise as sources
in this study.

Cognisant of the observations above, we noticed that for most cases, assigning a single genre
to a headline was not enough; hence most articles were assigned multiple labels during the
annotation stage. We created a simple algorithm to generate a single-label dataset from the
results. If multiple annotators assigned multiple labels to a headline, we chose the most occurring
topic. If only one annotator provided a label, we chose the class with the least overall frequency
to maintain class balance. We also attempted to merge categories with high cosine similarity
scores to ensure all topics had a significant number of training examples.

3.4 Data Analysis

This section will present the exploration steps undertaken to get insights into the various descrip-
tive statistics and topic distributions of the datasets used for language modelling and news topic
classification. We aim to understand the relationships between these two data sets to anticipate
how this might impact downstream performance.
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3.4.1 Raw corpus

The raw datasets comprised unlabelled data in 9 Bantu languages spoken in the Republic of
South Africa(RSA). Initially, each language was analysed individually, followed by a cumulative
analysis of the full dataset. Our analysis aimed to address several key questions, including
the identification of the most frequent words, the determination of the average token length per
document, the identification of common entities, and the identification of prominent topics within
the dataset. This analysis will provide valuable insights into the linguistic similarities among
the languages under investigation, as well as the domains represented in the collected datasets.
These insights will enhance our understanding of the results obtained in the downstream news
topic classification task.

3.4.1.1 Sepedi

This dataset is made up of a diverse collection of raw texts obtained from various sources,
including SADiLAR [Eiselen and Puttkammer, 2014], CC-100 [Wenzek et al., 2020], Flores [Team
et al., 2022; Goyal et al., 2021; Guzmán et al., 2019], as detailed in Section 3.2. In total, we
gathered more than 179k Sepedii sentences, totalling 24MB in size, as illustrated in Table 3.3
below.

Total documents Unique tokens Size in MB
179, 567 744 24.19

Table 3.3: Sepedi Raw Corpus Size

As seen in figure 3.1, each sentence contains about 15 to 40 tokens, ranging from 70 to 200
characters. The original text is in UTF-8 format to support accents, containing roughly 744
unique characters. We notice a significant number of outliers with characters over 1000. This
might cause issues for the models since most transformer model architectures only support 512
or 1024 characters [Devlin et al., 2018] [Conneau et al., 2020]. To resolve this, we split each
outlier sentence into chunks of 1024 smaller sentences.

Popular words

We utilised the Scikit-learn [Pedregosa et al., 2011] TF-IDF vectoriser to extract the most
significant tokens from the corpus, employing varying n-gram sizes. Initially, our tests were
heavily influenced by stop-words such as “go” (to), “le” (with) and “ka”(by). However, after
removing these stop-words using the dynamically generated list, as described in 3.5.1, we obtained
more informative phrases that revealed the dominant genres of the data displayed in Figure 3.2.

A brief inspection of the popular uni-grams word cloud depicted in Figure 3.2 reveals a sub-
stantial presence of texts originating from the domains of religion, politics, and justice. The
prominence of religious texts is likely attributed to the inclusion of data from religious books,
such as the Bible. For example, we notice a high occurrence of words like “jehofa” (jehova),
“godimo” (heaven) and “modimo” (God).

Entities
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Figure 3.1: Sepedi Raw Corpus Size Distributions

Figure 3.2: Sepedi Raw Corpus Popular Uni-grams

The results obtained using an off-the-shelf entity recognition (ER) model developed by Spacy8

indicated that “Person” (PER) entities are the most common, followed by “Location” (LOC)
and “Organisation” (ORG) entities. Figure 3.3 displays the top examples from each of these
entity classes. The identified entities for “Location” and “Organisation” are convincing, while
“Person” entities appear to be mostly random.

Topics

Upon reviewing the Latent Dirichlet Allocation (LDA) topic modelling results in Table 3.4
again, it becomes apparent that there are several religious tokens present, including ”jesu” (Jesus)
and ”modimo” (God). Additionally, there appear to be dictionary entries and a few legal terms
which may have originated from government documents.

8https://github.com/explosion/spaCy
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Figure 3.3: Sepedi Raw Corpus Popular Entities

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
modimo kudu ntle mathomong seisemane
motho bjo letsatsi mathomong seisemane phetolelo
dira tsona bakeng ngwaga oxford
jesu bohlokwa feela kapa dictionaries
ng feta hao morena oxford dictionaries
jehofa dingwe hau fihla phetolela seisemane
mang nago latela thoma phetolela
baka godimo sebaka tee molao
nako bontsha fumana tloga swanetse
modiro swana tattoo matsatsi wo

Table 3.4: Sepedi Raw corpus popular topic terms. (The English translations for these terms
can be found in Appendix C)

3.4.1.2 Tshivenda

Compared to Sepedi, the Tshivenda raw corpus is significantly smaller, containing only 73k
sentences, while Sepedi has 179k sentences. We assume that this is because the Venda population
is relatively smaller and that Venda people tend to speak less Tshivenda when they migrate to
the city for work or tertiary studies, unlike other tribes from Sotho and Nguni families. Another
contributing factor could be that we missed some sources more Tshivenda data. However, If
we have missed such sources, it suggests that they are less readily available, thereby supporting
our initial assumption. Moreover, Sepedi benefits from greater language tool support provided
by major corporations like Microsoft and Google, which may have facilitated the collection and
processing of Sepedi language data. The size distribution of the collected texts is illustrated in
Table 3.5 and Figure 3.4 below.

We observed that the size of the Tshivenda corpus in MB is approximately half the size of
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Figure 3.4: Tshivenda Raw Corpus Size Distributions

Total documents Unique tokens Size in MB
73, 336 160 10.43
Table 3.5: Tshivenda Raw Corpus Size

the Sepedi corpus, which aligns with our hypothesis that Sepedi has more available resources
than Tshivenda. Additionally, we noted that the Tshivenda corpus had only 160 unique tokens
compared to 744 in Sepedi. Furthermore, the number of sentences in Tshivenda made up only
42% of the sentences in the Sepedi corpus. The tokens in Tshivenda are also encoded in UTF-8
to support the accents identified in 3.2.1.

Popular words

Like the Sepedi corpus, we identified the need to remove stop words such as “vha” (they),
“inwi” (you), “kha” (on) from the Tshivenda corpus before using TF-IDF to extract the highest
scoring n-grams to get keywords from each document. The results of this analysis are presented
in Figure 3.5 below. Unlike in Sepedi, the Tshivenda corpus appeared to be dominated by
political and social issues texts with little to no appearance of religious texts.

Figure 3.5: Tshivenda Raw Corpus Popular Uni-grams
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
vhathu muthu vhathu khothe mulayo
muvhuso tshifhinga duvha mulandu khethekanyo
lushaka khumbelo nwana mveledziso tshirema
ndeme tshumelo dzhena thaidzo uyu
mushumo afrika bvaho tsireledzo komiti
shuma tshipembe fhedza thodisiso mulayotewa
shumisa afrika tshipembe mbo maduvha muhulwane
ndivho masheleni pfa mbuelo bvelela
shumiswa thendelo minwaha mbudziso sedzulusa
pfanelo tshelede tendelwa fha tshiwe

Table 3.6: Tshivenda Raw corpus popular topic terms (The English translations for these
terms can be found in Appendix C)

Entities

Figure 3.6: Tshivenda Raw Corpus Popular Entities

Looking at the entities shown in Figure 3.6, we once again noted the limitations of the pre-
trained Spacy9 model in accurately identifying “Person” entities, as discovered first in Section
3.4.1.1. However, “Organisation” entities appear to be more accurately identified, with examples
such as FIFA (Federation of International Football Association), IEC (Independent Electoral
Commission - of South Africa), and ANC (African National Congress - A political party in
South Africa) appearing in the results. These observations highlight the significance of this
study, as capabilities such as entity recognition are crucial building blocks to developing more
advanced multi-modal models like Chat-GPT. They also reveal the necessity of constructing
specialised models to address the identified limitations of existing models in the South African
context.

Topics
9https://github.com/explosion/spaCy
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Upon reviewing the results of 1000 iterations of LDA topic modelling in Table 3.6, we observe
that the top 5 topics primarily revolve around the theme of justice, as indicated by terms
such as “khothe” (court), “mulayo” (law), “mulandu” (crime), “sedzulusa” (investigate), and
others. Additionally, we notice terms related to government bills and service delivery, including
“mulayotewa” (constitution), “pfanelo” (rights), “masheleni” (budget), and “tshumelo” (public
service), among others. These findings align with the observations made from the identified
entities as seen in Figure 3.5.

3.4.1.3 Other

In addition to working with Sepedi and Tshivenda, we required additional data to train multi-
lingual language models based on all 9 South African Bantu languages. The total amount of
data selected for this purpose was approximately 0.19GB, with Sepedi being the language with
the largest size of 24.08MB. At the same time, Setswana had the largest number of documents
at 340k. Despite Setswana having a larger number of documents, they are generally shorter
than Sepedi, with an average of 10 tokens per document compared to 25 in Sepedi. Table
3.7 presents a summarised overview of the full corpus. This dataset will play a pivotal role
in addressing one of our secondary research inquiries, which aims to explore the potential of
injecting additional training data from closely related languages to achieve enhanced zero-shot
performance between Tshivenda and Sepedi.

Lang(ISO 639-3) #Documents Size(MB)
nso 179,567 24.08
sot 37,375 2.75
tsn 340,313 20.94
ven 73,336 10.43
tso 34,356 2.48
nbl 30,188 3.25
xho 322,185 21.47
zul 51,250 3.39
ssw 43,113 4.35
Total 1,111,683 186.2

Table 3.7: South African Bantu Corpus Summary

3.4.2 News corpus

The news corpus is a collection of human-annotated and machine-annotated headlines for Sepedi
and Tshivenda. In this section, each collection will be explored separately to see if there is
consistency between the annotations.

3.4.2.1 Sepedi - Human annotations

This subset of the news corpus was annotated by humans through an adjudication process. It
serves as a crucial validation set for the rest of the news corpus, developed using machine-assisted
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Figure 3.7: Sepedi Human Annotated News Corpus

labelling. The corpus comprises 1.8k sentences, which add up to 0.56MB. The average token
length as shown in Figure 3.7 is consistent with the observations we made in the raw dataset
from Section 3.4.1, with a range between 4 and 6. To ensure the model is not biased towards
overly long or short sentences, each headline is truncated to 512 characters, creating a more
balanced distribution of sentence lengths.

Popular words

Figure 3.8: Sepedi Human Annotated News Corpus - Popular Bi-grams

Entities

Looking at Figure 3.9, we notice that Spacy’s multilingual entity recognition (ER) model
accurately identifies entities in all three categories we considered. For instance, in the Person



Chapter 3. Research methodology 30

(PER) category, we can see well-known figures in South Africa like “Jacob Zuma” and “Cyril
Ramaphosa,” former and current presidents of the republic. These individuals are also prominent
in the word cloud of popular bi-grams as shown in Figure 3.8. The Identified Organisations
(ORG) category includes South African Airways, a national airline, as well as the DA and ANC,
which are prominent political parties in SA. Finally, the identified Location (LOC) entities
comprise Johannesburg, Nigeria, Cape Town, and others.

Figure 3.9: Sepedi Human Annotated News Corpus - Spacy entity examples

Topics

The top 5 topics identified using LDA, as depicted in Table 3.8, show that the corpus may be
dominated by the ”Crime, Law, and Justice” news category, evidenced by terms like ”tsheko”
(trial), ”maphodisa” (police), and ”molato” (crime or case). We also observe a significant number
of unigrams and bi-grams related to education such as “sekolo” (school), “thuto” (education)
and “kgoro thuto” (department of education).

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
limpopo kgoro maphodisa afrika sekolo
badudi tsheko limpopo afrika borwa thuto
magato mengwaga tikologong borwa south
kgoro limpopo ntle anc sekolong
boipelaetso feta mengwaga mmuso barutwana
tikologong kgorong monna tona african
magato boipelaetso wo bagononelwa ditshelete kgoro thuto
ntle magistrata bana lekala kgoro
mmasepala kgoro tsheko ngoepe ditsela south african
bya kgorong tsheko fao merero phagamego
tikologo molato mosadi nageng morutwana
barutwana lapa moatshe maloko limpopo

Table 3.8: Sepedi Human Annotated News Corpus popular topic terms (The English trans-
lations for these terms can be found in Appendix C)
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3.4.2.2 Sepedi - Machine annotations

This dataset contains a subset remaining after removing human-annotated examples. It also
contains augmented articles generated using the Open-AI10 text completion service. As seen
in Figure 3.10, the label balance is much better than in the human-annotated subset although
we still notice that the top 5 topics dominate with over 1k articles each while the remaining 12
topics have 500 topics or less.

Figure 3.10: Sepedi Machine Annotated News Corpus - Label Distribution

Popular words

We observe that the prominent topics in this subset(Figure 3.11) are still dominated by govern-
ment and crime news, as indicated by terms such as “mmuso” (government), “Cyril Ramaphosa”
(South African President), “nyakisiso” (investigation), and so on. This aligns with the previous
observation made for the human-annotated subset, as depicted in Figure 3.8. We also see a
number of headlines about Covid-19, employment and technology.

Figure 3.11: Sepedi Machine Annotated News Corpus - Popular Bi-grams

Entities
10https://platform.openai.com/
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The top entities in Figure 3.12 align with those identified in the human-annotated corpus, as
shown in Figure 3.9. This result is expected since both datasets were collected from the same
sources. Similary, the top 5 topics in Table 3.9 appear to be dominated by issues of public service
delivery and crime. We also observe a number of terms about employment and Covid-19 which
is likely related to job-cuts that were experienced globally due to the pandemic.

Figure 3.12: Sepedi Machine Annotated News Corpus - Spacy entity examples

Topics

Topic relationships

We use the average document vectors of articles to analyse the relationship between different
topics. This allows us to identify which topics may be incorrectly classified. By doing so, we
can merge them for improved performance. For instance, figure 3.13 illustrates a high cosine
similarity score between crime and politics, which is unsurprising. However, we also noticed a
high score between politics and “economy, business, and finance”. This could be due to politically
connected companies being involved in Covid-19 tender scandals. Moreover, we found a signif-
icant correlation between health and society, which may be attributed to challenges experience
by communities during lock-down to prevent the spread of the Covid-19 virus.

3.4.2.3 Tshivenda - Human annotations

Popular words

The top bi-grams depicted in Figure 3.14 suggest that politics and Covid-19 are the domi-
nating categories in this dataset. For example, we see a high occurrence of terms like “Covid
19”, “vhulwadze” (disease), “lihoro anc” (ANC political party) and “Cyril Ramaphosa” (South
African president).
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
mesomo limpopo mmuso leratadima mpsha
kudu maphodisa basomi bjo bana
wo badudi maphelo khutso bodumedi
dira ntle magato bantsi dimilione
gape lefelo dikgwebo tlago feta
setshaba tsheko fokotsa boemo leratadima lefaseng
swanetse molato theknolotsi letetswe ra
thusa mengwaga tikologo dula matla
bohlokwa tikologong melao maatla motho
soma leo tlhokego mesomo pego neng
hwetsa fao sireletsa mmalwa boela
nako pula tsebagaditse lefase bophara
mosomo polokwane palo kudu dilo
tloga kgauswi sego dithemperetsha mentsi
leo feta mahlale dutse ditumelo
covid bekeng thusa beke thata
fela polao kimollo mafelelong kotsi
mongwe mmoleledi mekgatlo nago ditokelo
eupsa monna dikhamphani kgolo phela
bangwe bego boletse bolwetsi tumelo

Table 3.9: Sepedi Machine Annotated News Corpus popular topic terms (The English trans-
lations for these terms can be found in Appendix C)

Figure 3.13: Sepedi Machine Annotated News Corpus - Label Similarity heat map

Entities

Surprisingly, we obtained plausible results in entity extraction using Spacy’s xx ent wiki sm11

named entity recognition (NER) model, which is not specifically trained on any South African
language. The results reveal that the most frequently extracted entities are “Person”, followed by
“Organisations” and “Locations”, as depicted in Figure 3.15. Further analysis shows that most

11https://github.com/explosion/spacy-models/releases/tag/xx ent wiki sm-3.5.0
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Figure 3.14: Tshivenda Human Annotated News Corpus - Popular Bi-grams

Figure 3.15: Tshivenda Human Annotated News Corpus - Spacy entity examples

of the identified individuals are political figures, and similarly, political parties are classified
under ’Organisations’, such as the ANC. However, some questionable results lead us to believe
that the detected entities may only be prominent due to their international fame and frequent
appearance in global news, meaning that they are likely to appear in high-resource languages
used to train Spacy models.

Topics

We can readily recognise politics, criminal trials, and health-related welfare concerns by ex-
amining the top 5 LDA topics in Table 3.10. We also notice that this news corpus may be
dominated by the news relating to the South African state capture enquiry procedure, which
was active at the time this corpus was collected.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
vhathu khomishini limpopo vhathu lihoro
fu vhathu vunduni vhadzulapo anc
madana zuma minwaha tshifhinga lihoro anc
zwigidi muhulwane vunduni limpopo duvha khetho
mbili zwiito lovha tshipembe vunduni
thanu muvhusoni mapholisa pfala eff
covid vhutanzi humbulelwa mapholisa masipala
tshipembe dzhenelela fumi tshumelo mirado
fumi mavharivhari khothe zwavhudi masipalani
africa muvhuso khombo afrika lihoro eff
ina dzhenelela vhathu rathi tshimbila mivhuso

Table 3.10: Tshivenda Human Annotated News Corpus popular topic terms (The English
translations for these terms can be found in Appendix C)

3.4.2.4 Tshivenda - Machine-assisted annotations

Figure 3.16: Tshivenda Machine Annotated News Corpus - Label Distribution

The class imbalance in Tshivenda news, as shown in Figure 3.16, is notably more pronounced.
Unfortunately, the limited availability of suitable augmentation tools for Tshivenda, in contrast
to Sepedi, hindered our ability to address this issue. For the time being, the only to remedy this
is to collect more data for the minority topics. We leave this for future work.

Popular words

As expected the popular words for the machine-annotated subset of the Tshivenda news corpus
in Figure 3.17 are similar to the ones observed in the human-annotated from Figure 3.14. In
addition to politics and health related news we also observe a significant number of terms related
to crime, which can also be observed from the top 5 LDA topics in Table 3.11.

Entities

This time we see worse performance than observed in Figure 3.15 where the pre-trained Spacy
model was able to identify numerous locations and organisation entities. This is likely due to
the lack of famous entities in this machine-annotated subset of data compared to the human-
annotated split.
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Figure 3.17: Tshivenda Machine Annotated News Corpus - Popular Bi-grams

Figure 3.18: Tshivenda Machine Annotated News Corpus - Spacy entity examples

Topics

The prominent topics identified from LDA topic modelling in Tshivenda (Table 3.11) closely
align with the topics identified in Sepedi news (Table 3.8). Notably, Covid-19 emerges as a
central theme, influencing other dominant topics like “labour”, “society”, “economy, business
and finance”, and “politics”. These findings suggest that transfer learning between these two
languages is likely to be effective, given that the classification datasets originate from similar
domains.

Topic relationships

In contrast to the findings presented in Figure 3.13, we observe a significant correlation between
the categories of “society” and “conflict, war and peace” in Tshivenda news as seen on Figure
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
vhathu khothe ramaphosa vunduni vhashumi
lovha mulandu cyril limpopo masheleni

fu mapholisa tshipembe mapholisa dzangano
madana vhulaha shango vunduni limpopo rannda

covid vhahumbulelwa phuresidennde muhasho khamphani
tshivhalo milandu coronavirus gauteng muvhuso
zwigidi vunduni vhulwadze vhadzulapo tshifhinga

tshipembe munna nyiledzo natal nwaha
mbili senga muvhuso kwazulu mbili

khombo west phuresidennde cyril vhathu muhulwane
vhulwadze north afrika vundu tshelede

africa muhumbulelwa vhathu mec fhungudza
thanu minwaha vhadzulapo vhuponi fumi

coronavirus humbulelwa afrika tshipembe doroboni muofisi
fumi senga khothe africa johannesburg vhuada
rathi farwa covid vhuendi million

Table 3.11: Tshivenda Machine Annotated News Corpus popular topic terms (The English
translations for these terms can be found in Appendix C)

Figure 3.19: Tshivenda Machine Annotated News Corpus - Label Similarity heat map

3.19. This suggests that there is a higher occurrence of instances related to protests, potentially
related to service delivery issues or other human rights concerns. Additionally, we identify
a strong association between “human interests” and “arts, culture and entertainment” news.
This association can be attributed to well-known individuals who also happen to be artists
contributing to the entertainment sector. Notably, the similarity score between crime and politics
is only 0.34 in this instance, which is lower than the 0.5 observed for Sepedi in Figure 3.13.
Finally, we note the relationship between lifestyle and society, which can be attributed to travel
restrictions during the period under analysis, leading to society-related news headlines due to
the impact of lockdown measures.
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3.5 Data Preparation

In this section, we provide an overview of the steps followed to prepare the two groups of datasets
used to train the representation models and the downstream task models. We first describe the
criteria for selecting the pre-processing steps applied to the raw data, including normalisation,
text cleaning and tokenisation. Furthermore, we outline the transformation tasks performed
on data collected from PDFs, Database snapshots and HTML pages. Finally, we highlight the
challenges encountered when adapting existing text-processing tools to low-resource languages.

3.5.1 Pre-processing

This study followed a delayed pre-processing procedure to prepare our raw datasets for different
training pipelines. Traditionally, most NLP datasets go through the same pre-processing steps
before they can be used for training. However, in some cases, some of these steps may be
optional. For example, it is not required to remove punctuations before training in extensive
language modelling. However, when training a classic ML model like Logistic Regression, it is
necessary to remove these.

Normalisation

Both Tshivenda and Sepedi texts contain diacritics that require UTF-8 text encoding. Al-
though most NLP tools can handle UTF-8 text without difficulty, we discovered inconsistencies
in the usage of diacritics across different data sources. To address this issue, we normalised all
texts by removing diacritics and converting each letter to its corresponding ASCII representation
using the Unidecode12 library in Python. Furthermore, all the texts were converted to lowercase
as there were inconsistencies in the use of cases. This normalisation process aimed to minimise
the occurrence of out-of-vocabulary (OOV) errors by ensuring that the models do not treat the
same tokens as different due to writing inconsistencies. In future research, it would be interesting
to investigate how different models would perform if this normalisation step was eliminated.

Punctuation and Stop-word removal

As noted above, while punctuation removal is not mandatory in modern model architectures,
it is a crucial step for traditional methods that depend on TF-IDF or Word2vec token rep-
resentation. Similarly, stop-word removal is often used as an additional step to increase the
signal-to-noise ratio in a document. However, attention-based representation-based methods
can help to reduce the noise-to-signal ratio, which can make some pre-processing steps optional.
This is particularly useful when dealing with very large sets of texts, as it can reduce unnecessary
compute usage during pre-processing. Additionally, we observed a few texts written in English
that could be filtered out using off-the-shelf Language Identification (LID) tools. However, this
was not done in this study to avoid the risk of potentially losing information in our limited
datasets.

Given the varying pre-processing requirements for different models used in this study, these
steps were applied conditionally before training. For traditional machine learning models trained

12https://pypi.org/project/Unidecode/1.3.6/
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using Sklearn, this was added as an extra transformation layer before vectorisation and estimator
layers. Similarly, we applied stop-word and punctuation removal for deep learning-based models
that used global word vectors before vectorising the tokens. These steps were not used for training
new language models based on the XLMR architecture. Similarly, for fine-tuning the language
models, we did not remove stop-words and punctuation; however, the text was normalised and
lower-cased.

3.5.2 Lemmatisation and Stemming

Lemmatisation and stemming are beneficial in syntactic and semantic information retrieval tasks.
Stemming is a rule-based technique that removes suffixes or stems from words. For example, the
stem for the Venda word “tshigayoni” is “tshigayo”. Similarly, lemmatisation aims to reduce a
word to its atomic form based on its part of speech. Both techniques can be useful in minimising
out-of-vocabulary occurrences in token representations by reducing the possible variations of a
word. For example, using lemmatisation, we could treat the words “vhatambi” (players) and
“mutambi” (player) as one word “mutambi” (player). The NLTK [Bird et al., 2009] library is
a popular library used to apply lemmatisation and stemming for English texts. Unfortunately,
this library does not currently support most South African languages; hence, these steps are not
applied at this time.

3.5.3 Optical Character Recognition

The PDF datasets collected from government websites were converted into text using the PyPDF213

library, an open-source PDF text extraction library. Although this library worked well for most
PDFs, it struggled with older scanned PDFs. In future work, we will compare these results with
OCR results obtained using Tesseract14, which uses LSTMs to detect characters from images in-
stead of trying to extract the text from the source code of the PDF documents. After extraction,
some of the text was misaligned, prompting an additional step to extract meaningful sentences
that could be used for training. Heuristic techniques were used to obtain the sentences based on
punctuation and other indicators that signal the beginning and end of sentences.

3.6 Tokenisation

Tokenisation is a term commonly used to refer to converting a piece of text into individual
words. However, tokens could also refer to individual characters or parts of full words depending
on the task. In this study, we consider three methods of tokenisation: Byte-Pair Encoding(BPE)
[Gage, 1994; Sennrich et al., 2015], WordPiece [Schuster and Nakajima, 2012] and Word-level
tokenisation. This was again influenced by the need to work with multiple models with different

13https://github.com/py-pdf/pypdf
14https://tesseract-ocr.github.io/tessdoc/
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tokenisation requirements. For example, machine learning and deep learning methods tradi-
tionally require word-level tokenisation, while attention models like BERT require subword-level
tokenisation, such as BPE.

Word level tokenisation

This method of tokenising texts, which involves obtaining tokens by splitting the sentence by
white spaces, is probably the easiest. However, it does not work well for conjunctive languages
like isiZulu or more complex writing symbols such as Chinese. Despite this limitation, we use
this method to train our baseline models as it is the native way to train machine learning models
using SKlearn [Pedregosa et al., 2011] and deep learning libraries like Tensorflow [Abadi et al.,
2015] or Pytorch [Paszke et al., 2019].

Subword level tokenisation

Subword tokenisation effectively solves traditional NLP models’ token coverage problem [Sen-
nrich et al., 2015]. It enables the models to dynamically synthesise word vectors, even for words
not present during training. This capability is crucial in low-resource settings. Two popular
subword tokenisation methods are Byte-Pair Encoding (BPE) [Gage, 1994; Sennrich et al., 2015]
and WordPiece tokenisation, particularly in transformer-based models.

The BPE algorithm induces a vocabulary by iteratively selecting the most frequent subwords
on a predetermined set of characters. The resulting vocabulary typically consists of morphemes,
which are then used to represent words from the original text in their most atomic form. However,
the BPE approach has a disadvantage in that the resulting subwords may not necessarily be
meaningful in the context of the given training corpus, which can lead to degraded performance
[Bostrom and Durrett, 2020]. To address this, improved algorithms such as WordPiece [Schuster
and Nakajima, 2012] create subwords based on the highest probability in the given training data,
resulting in meaningful subwords for the context. It is important to mention that Wordpiece
takes longer to train than BPE. Consequently, choosing between the two may result in a trade-off
between accuracy and speed. On the other hand, Unigram tokenisation adopts a predetermined
vocabulary that is constantly reduced until the desired number of tokens is achieved, as noted
in the source [Kudo, 2018].

For this study, we used two methods of tokenisation: word-level and sub-word-level. We used
whitespace splitting to tokenise data for TF-IDF and word2vec feature extraction and the built-
in subword tokeniser for FastText modelling. To train our language model, we utilised BPE and
Unigram tokens extracted using the SentencePiece library. We utilised SentencePiece instead
of WordPiece, following the procedure outlined in the reference work [Ogueji et al., 2021]. In
the future, we will analyse how WordPiece tokenisation works compared to BPE and Unigram
methods.

3.6.1 Challenges

As highlighted d in previous sections, the current state of NLP tools suggests a notable gap
in pre-processing low-resource language texts. One challenge is the difficulty in removing stop
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words from the training text for languages such as Sepedi and Tshivenda due to the lack of
available stop word collections. In the interim, we used a combination of inverse term frequency,
character sizes and word clouds to remove tokens which convey the least meaning.

Additionally, we encountered normalisation challenges, specifically with characters containing
diacritics, which needed to be consistently recognised and introduced spelling errors. The lack of
advanced spelling checks for Tshivenda and Sepedi compounded this issue. Unfortunately, this
problem has no easy solution, and it remains an area for future research. Although there have
been efforts to expand NLP tools to low-resource languages recently, such as the development of
NLTK Africa wordnet [Bosch and Griesel, 2018], we have observed that there is still much work
to be done to create quality model training workflows for South African languages.

3.7 Representation methods

This section provides an overview of the text representation techniques used in this study to
extract semantic features from raw texts. We first discuss the conventional approaches based on
TF-IDF, which provide a foundation for understanding the advancements made by more recent
neural network-based techniques, such as word embeddings and contextual embeddings.

3.7.1 Term Frequency, Inverse Document Frequency(TF-IDF)

TF-IDF is a simple yet powerful technique used to create token embeddings. Its purpose is to
determine which tokens in a text have the most significant impact based on their frequency in
relation to the total number of documents in a corpus. Each token in the corpus is given a score
that reflects its importance in conveying meaning in a sentence or document. Our research used
TF-IDF feature extraction to train classic ML models using linear and tree-based algorithms. For
specific tasks such as topic classification, this method typically works best with standardisation
techniques such as punctuation removal, stemming, lemmatisation, and stop-word removal.

However, due to the lack of mature standardisation tools for Sepedi and Tshivenda, we only
apply punctuation removal, accent removal, and stop-word removal using a synthetic list of
words dynamically generated using IDF and token length heuristics. We utilised a pre-existing
list of stop words specific to African languages available from Github15. Additionally, we include
extra tokens that are not naturally stopwords but do not convey any useful information, such
as “iring” (in this hour), “lehono” (today), “awara” (in this hour), and “ditaba” (news), which
usually appear in the introduction of the actual news headline.

3.7.2 Word2Vec

Word2Vec is a popular method for producing dense, high-dimensional word embeddings that
capture the semantic similarity between words. Compared to traditional techniques such as

15https://github.com/stopwords-iso
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TF-IDF or Bag-of-words, which assigns a single weight to each token in a document, Word2Vec
represents each token using a 1D vector with 100-500 dimensions, enabling mathematical compu-
tation of similarity between words. The vectors are obtained by training a neural network using
a technique called Skip-Gram [Mikolov et al., 2013b; Meyer, 2016], which predicts the most likely
neighbouring words given a target word. This allows the model to learn representations that
capture the meaning of a word based on its surrounding context, resulting in more accurate and
contextually rich embeddings. Another less-used method for training Word2Vec embeddings is
Continuous Bag-Of-Words (CBOW) [Meyer, 2016]. Unlike Skip-Gram, which predicts surround-
ing words given a centre word, CBOW predicts the centre word given its surrounding context
words. CBOW is generally faster to train than Skip-Gram and works well for smaller datasets or
when the focus is on frequent words. However, Skip-Gram tends to perform better in capturing
the semantics of less frequent words [Mikolov et al., 2013b].

To induce the Word2Vec embeddings, we use two distinct training strategies. In the first
approach, we implement an unsupervised training pipeline, which generates the embeddings
from the raw texts. These embeddings are subsequently utilised for training downstream task
models by freezing the embedding layers in the LSTM or CNN networks. This strategy ensures
that the embedding weights remain fixed during the training process of downstream models,
thereby allowing for better optimisation of the subsequent layers. In the second approach, we
employ an alternative methodology where the labelled dataset is used to concurrently learn the
embeddings during the training on a downstream task. This approach facilitates the production
of more optimised embeddings for the specific task at hand, potentially resulting in improved
performance over the separately trained embeddings.

Finally, we experiment with different hyperparameters, such as embedding dimensions, win-
dow sizes, and negative sampling, to evaluate their impact on the performance of downstream
tasks. Furthermore, we compare the performance of our Word2vec embeddings with those ob-
tained from other pre-trained models such as FastText [Bojanowski et al., 2016]. Finally, we
analyse the learned embeddings using visualisation techniques such as t-distributed Stochastic
Neighbour Embedding (t-SNE) and Principal Component Analysis (PCA) to gain insights into
the relationships between words in the semantic space.

3.7.3 Masked language Models

Although Word2vec represented a significant advancement in the development of NLP models,
it is limited because it can only generate a single vector representation for each unique token
in a corpus. As a result, it cannot fully capture the contextual nuances of word meanings
that may vary based on their surroundings. For instance, the word ”bannga” in Tshivenda can
have two possible meanings, one referring to a chair and the other to a financial institution.
To address this limitation, contextualised embeddings must produce multiple vectors for the
same token that can change based on the context. Fortunately, this capability is available by
default with the emergence of transformer architectures [Ethayarajh, 2019]. Moreover, with the
attention mechanisms used by transformer models, tokens that contribute little to the meaning
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of a document are automatically ignored, requiring minimal pre-processing of the input text to
build language models capable of capturing the subtle variations in meaning.

Language model training can be conducted in two main ways: causal and masked language
modelling. Causal language models learn by trying to predict the next token in a given sequence
[Aghajanyan et al., 2022]. In contrast, masked language models predict a randomly masked token
in the sequence. Language models trained this way are useful for tasks like text generation, where
coherence and flow of the text are critical [Devlin et al., 2019]. Causal language models, on the
other hand, are more appropriate for tasks like language translation, where the input sequence
is known, and the goal is to predict the output sequence. In this study, we chose to use masked
language models, as empirical results have shown improved performance in classification and
entity recognition tasks [Devlin et al., 2019] from language models trained this way. Moreover, the
reference study [Ogueji et al., 2021] we have selected used masked language models. Therefore,
we follow the same approach to ensure fair comparisons.

3.7.4 Multilingual representation

Multilingual representations have been proposed to discover a shared semantics vector space
supporting multiple languages. In this regard, manually aligned global word embeddings trained
using word2vec have demonstrated promising results. To adapt this capability to Tshivenda
and Sepedi, we leverage a semi-supervised technique based on VecMap [Artetxe et al., 2017]
that enables the projection of monolingual embeddings into a common vector space. It has
been established that this approach performs well when sufficient bilingual lexicons are avail-
able. However, it is worth highlighting that creating such lexicons for the various South African
language pairs may entail significant manual effort.

Alternatively, using multilingual pre-training methods such as XLMR or AfriBERTa can boost
the learning of shared representations for multiple languages without the need for explicit map-
ping between languages [Conneau et al., 2020; Muller et al., 2021]. These methods utilise a
masked language modelling objective to learn a shared representation that captures cross-lingual
similarity, which can be fine-tuned for specific downstream tasks. Following a similar method-
ology used to train AfriBERTa [Ogueji et al., 2021] and XLM-RoBERTa [Conneau et al., 2020],
our study aims to develop a series of pre-trained language models from scratch using a corpus
from nine South African Bantu languages. We employ various combinations of these languages
based on their perceived levels of similarity. In addition to intrinsic metrics like perplexity, we
evaluate the quality of these language models in downstream tasks to assess their efficacy in
improving the coverage of NLP applications for Tshivenda.

3.8 Evaluation

This section outlines the criteria used to validate the hypothesis that cross-lingual language
models are a better option to improve the coverage of Tshivenda in NLP applications. We
provide an overview of the metrics employed to evaluate the quality of different representation
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models and their performance in downstream short-text classification and entity recognition
tasks. We consider both intrinsic and extrinsic methods to investigate if there is a correlation
between intrinsic performance and downstream tasks.

3.8.1 Intrinsic evaluation

Intrinsic evaluation is used to evaluate the inherent quality of the representation methods ex-
cluding any downstream performance. In contrast, extrinsic evaluation aims to assess the perfor-
mance of the representation methods on downstream tasks, such as text classification or named
entity recognition. While intrinsic evaluation provides an initial assessment of the quality of
the representation methods, it may not always reflect their actual performance in real-world
applications. Therefore, it is essential also to conduct extrinsic evaluations to determine the
effectiveness of the representation methods in practical use cases.

Visualisations

Unlike modern contextualised embeddings, traditional representation methods generate static
word vectors that assign each token in the training corpus with a fixed vector representation.
These vectors are usually high-dimensional, ranging from 100 to 500 dimensions. Fortunately,
these static word vectors can be projected to a 2D or 3D space using principal component
analysis (PCA) to manually evaluate how well semantic similarity is captured. The Tensorflow
Projector16 tool provides a simple online interface to visualise and explore such embeddings.
This study used this tool to visually assess the embeddings trained using the Skip-Gram model
and the aligned vectors trained using VecMap [Artetxe et al., 2017].

Perplexity

Perplexity is a widely used metric in natural language processing for evaluating the effective-
ness of language models. It measures the degree of uncertainty or confusion of the model in
predicting the next word in a sequence. A lower perplexity score indicates that the model can
better predict the next word suggesting it better understands the underlying language structure
[Chen et al., 2008]. In evaluating the performance of our language models, we will use perplexity
to quickly measure how well they predict missing words in a sentence. This will provide insight
into the language model’s potential downstream task performance. Additionally, we can assess
if there is a significant increase in accuracy after a drop in perplexity.

3.8.2 Extrinsic evaluation

We will use the annotated news headlines dataset described in Section 3.2.2 to set up different
experiments to evaluate the quality of our custom-trained language models. The evaluation
will encompass various settings, including monolingual text classification performance and few-
shot and zero-shot cross-lingual performance between Sepedi and Tshivenda. These evaluations
will allow us to determine the efficacy of our models in different contexts, such as classification

16https://projector.tensorflow.org/
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tasks within a single language and the ability to transfer knowledge between languages with
varying degrees of overlap. Additionally, apart from text classification, we will also conduct
these experiments on an entity recognition task by using a pre-annotated dataset from SADiLaR
[Eiselen and Puttkammer, 2014]

Prior to conducting experiments using state-of-the-art language models, we employ simpler
model architectures such as Logistic Regression, Random Forests, and XGBoost as baseline mod-
els. Next, we incorporate more advanced models based on Deep Neural Network architectures
like LSTM [Hochreiter and Schmidhuber, 1997] and FastText [Joulin et al., 2017] before evalu-
ating the current performance on off-the-shelf large language models such as AfriBerta [Ogueji
et al., 2021] and XLM-R [Conneau et al., 2020]. Using this setup, we aim to draw meaningful
conclusions on which compute investments will likely help us achieve the research objectives
with minimal data requirements. Given the label imbalance in the dataset, the downstream task
metric may be biased towards the majority class. To address this issue, we use the weighted
F1-score, which considers both precision and recall to gauge how well our models perform across
all classes, not just the majority class.

3.9 Ethical Considerations

This section highlights the ethical considerations anticipated in this research study and how they
were addressed. All research steps were conducted ethically and legally to the best of our ability.
The following is a summary of potential sources of risks and how they were mitigated.

3.9.1 Informed consent

To prevent exploitation, we made the volunteers sign an ethical consent form before accessing
the platform.

3.9.2 Personal Information Protection

Since the research did not require participants to provide personally identifying responses, no
risk was identified regarding information leaks. The emails used to create logins were only shared
with the platform administrator and immediately removed from chat platforms once the user
got on-boarded.

3.9.3 Fairness

We have also taken steps to identify the potential source of bias from the model results. We
have also taken steps to understand and describe the data sources and the topics within the
data used to train to improve the interpretability of the results. Moreover, the models proposed
in this phase of work will not be made public as we cannot guarantee that there is no risk of
misinformation or discriminative results from the model.



Chapter 4

Experiment Design

The experiment design section provides a detailed account of the research design, including the
study’s population, sample, data collection methods, and statistical analyses. Our objective is
to make it seamless to produce any results reported in the study. The outline of the chapter is
as follows:

• Introduction - This section provides additional context on the subsequent decisions made
by restating the study’s goals. Moreover, it will emphasise how the decision-making process
aligns with the study’s objectives.

• Experiments - This section describes the various experimental setups conducted and a
comprehensive account of the key parameters used. Furthermore, the training inputs,
compute environments and procedures are described in detail.

• Model selection criteria - Finally, a discussion on how the best models are selected will be
presented in a way that helps us answer the research questions.

4.1 Introduction

We aim to gather more insights into the current usability of NLP tools and pre-trained models
for Tshivenda text. Furthermore, we explore the feasibility of compensating for the lack of
training resources by leveraging the available resources from more commonly spoken SA Bantu
languages. Furthermore, before training our custom language models, we intend to conduct
baseline experiments using state-of-the-art (SOTA) language models, such as AfriBERTa [Ogueji
et al., 2021] and XLM-RoBERTa [Conneau et al., 2020], along with established machine learning
algorithms, such as Logistic Regression and Decision Trees. Finally, we highlight strategies to
overcome limited pre-processing tool support for Tshivenda and Sepedi.

Initially, we will consider monolingual embedding spaces built using FastText. Because it uses
subword tokenisation, FastText has an advantage over Word2Vec as it allows us to obtain high
coverage of the language vocabulary, including terms that may not be part of the training set.

46
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Additionally, we will train Word2Vec embeddings with comparable dimensions for comparison
purposes. Next, we train several classic ML and DNN models as baselines. Furthermore, we
will attempt to fine-tune existing pre-trained large language models based on XLM-R using the
Sepedi news headline dataset to evaluate its present cross-lingual transferability to Tshivenda.
Even though the original XLM-R model training set does not include Sepedi or Tshivenda, three
African languages are included in the training set, albeit in small quantities. These languages
are Swahili, Xhosa, and Amharic. Therefore, following the approach in [Hedderich et al., 2020],
we believe that XLM-R should have some transferability to these unseen languages. Finally,
we will resume training on XLM-R [Conneau et al., 2020] and AfriBERTa [Ogueji et al., 2021],
on Tshivenda and Sepedi texts to investigate whether we can obtain any performance gains on
downstream tasks.

In the second modelling stage, we will combine the existing monolingual embeddings for Tshiv-
enda with monolingual embeddings for Sepedi to generate a unified semantic vector space. We
will employ a semi-supervised approach using a small bilingual dictionary to align the embed-
dings with VecMap [Artetxe et al., 2017] to achieve this. We obtain the bilingual lexicon from
parallel texts in Flores using the FastAlign [Dyer et al., 2013] tool. Finally, we will train a clas-
sifier to assess the unified semantic vector space in zero-shot and few-shot scenarios, with Sepedi
as the source language and Tshivenda as the target language. Following a similar methodology
used to train AfriBERTA and XLM-RoBERTa, we aim to build a set of custom pre-trained
language models from scratch using a corpus from nine SA Bantu languages. We will experi-
ment with multiple combinations of these languages based on the perceived degrees of similarity.
The custom language models will then be used in downstream tasks to evaluate their extrinsic
quality. Furthermore, we will compare this performance with perplexity to see if there is any
positive correlation between classification metrics and perplexity. We hypothesise that the zero-
shot classification performance will be significantly improved by building a representation space
using all SA languages. Moreover, we expect that the resulting language models and training
strategies can be helpful for future cross-lingual transfer applications for SA Bantu languages.

The upcoming section outlines the experimental setups created to accomplish our research
objectives, starting from baseline model training and evaluation, customised language model
training, and fine-tuning.

4.2 Experiments

The news classification experiments were set up as single-label multi-class classification problems.
In order to achieve a balanced dataset, we assigned single labels based on the frequency of each
category. This was necessary as the annotation results often included multiple tags per example.
In addition, we encoded all texts in UTF-8 format and saved them using pipe delimiter and
Parquet formats to improve portability when working across multiple platforms and avoid issues
with commas.

The experiments utilised up to four different training environments based on Debian OS. The
primary host was a university-provided lab server running Ubuntu-20.04, which contained two
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NVIDIA RTX A6000 GPUs with 96GB VRAM, 64 vCPU cores, and 128GB memory. However,
this was shared among several researchers, so its total capacity was only sometimes available.
In addition, three cloud VMs with a single Tesla K80, Tesla V100 on GCP, and T4 series from
the Azure ML platform were used. The cloud VMs were each fitted with about 4vCPUs and
7.5GB-16GB of RAM. Furthermore, we ran some small-scale experiments on personal PCs. One
of the personal PCs was fitted with eight vCPUs, an AMD 4GB GPU, and 16GB RAM, while
the other was fitted with NVIDIA T600, 16CPUs, and 32GB RAM.

Throughout all experiments, we aimed to leverage a variety of open-source Machine Learning
Operations(MLOps) tools to manage our experiment pipelines and track metrics. In particular,
we used Comet ML1 for experiment logging and performance comparisons of results throughout
the training cycles. Additionally, we used Data Version Control (DVC) [de la Iglesia Castro, 2023]
to create repeatable training pipelines and schedule different experiments to run consecutively.
This made it seamless for us to retrain all models as more data became available. It was also
easy to read off important metrics emitted during training, with the ability to easily compare
different runs to see the effect of manipulating different parameters. Finally, we utilised Hydra
[Yadan, 2019] as a hierarchical configuration tool to manage model architecture and standard
hyperparameter settings.

4.2.1 Baseline models

4.2.1.1 Pre-trained Multilingual BERT models

This experiment involves fine-tuning a series of state-of-the-art multilingual models on the down-
stream Tshivenda and Sepedi tasks. The selected models are AfriBERTa and XLM-RoBERTa,
both of which aim to improve multilingual performance in large language models. XLM-
RoBERTa is currently the top-performing multilingual language model, surpassing mBERT.
Meanwhile, AfriBERTa is tailored to improve performance for 11 popular African languages.

Datasets

To prepare our news headline dataset for supervised machine learning, we divided it into three
sets: 80% for training, 10% for development, and 10% for testing. We did not experiment with
different ratios but may consider doing so in future work. We used the stratify option on the
Sklearn train test split function to ensure that each news category was represented in each set.
For Sepedi, we had approximately 5,000 headlines in the training set and 2,000 and 3,000 in
the validation and testing sets, respectively. Similarly, for Tshivenda, we used 3.6k examples for
training and 1.5k and 2.2k examples for validation and testing respectively.

Before passing the datasets to the training stage, we run a preparation pipeline to ensure
the data is in a format supported by HuggingFace [Wolf et al., 2019] datasets library. All
normalisation steps are performed in this pipeline, and the dataset is saved in a staging directory
exclusively used for fine-tuning language models. Our normalisation process for language model
fine-tuning includes removing accents and whitespaces and converting the text to lowercase.

1https://www.comet.com/site/
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Additionally, we have configured this normalisation through Hydra to enable future performance
evaluation using different settings.

Training environment

All the experiments were conducted in a GPU environment, using the HuggingFace library to
fine-tune a pre-trained model. The training scripts and other supporting Python modules were
made available as a reusable Python package that can be installed and run in any environment
with Python3.9.x installed.

4.2.1.2 Classic ML algorithms

In this stage, we trained several linear and non-linear models, including Logistic Regression and
Support Vector Machines, using default settings on Sklearn. Additionally, we trained tree-based
models, such as Random Forests and XGBoost models, using TF-IDF feature extraction. We
then conducted a series of hyper-parameter optimisation runs to reduce over-fitting.

Datasets

To prepare the data for training Sklearn models, a similar process was followed as outlined in
Section 4.2.1.1. The dataset was normalised and staged in a dedicated folder for training ML
models with sklearn. The data was divided into two sets, an 80% training set and a 20% test
set. Text columns were normalised by removing punctuation, extra whitespaces, accents and
changing all tokens to lowercase. To improve the learning process of the model, we removed any
rows with missing or insufficient text (less than 10 characters). We also limited the length of
longer texts to 512 characters. The training sets for Sepedi and Tshivenda had 7317 and 5967
examples respectively for training, and 1839 and 1492 examples respectively for testing.

Training environment

To train our machine learning models for different languages, we used Python3.9.x and Scikit-
learn version 1.2.1 on a local CPU environment since GPU training is not supported or required
by native Sklearn. We trained one Sklearn model at a time and utilised the n jobs=-1 option to
leverage multi-core training.

Hyper-parameter optimisation

We utilised Optuna [Akiba et al., 2019], an open-source optimisation library with extensive
support for various ML frameworks, to select the hyper-parameters for the best models. For both
Sepedi and Tshivenda, we implemented the same pipeline using DVC’s [de la Iglesia Castro, 2023]
foreach functionality. As the annotated data arrived in small increments, this approach helped us
to conveniently incorporate additional data into the pipelines without modifying the optimisation
flow. Table 4.1 provides an overview of the settings used to set up the optimisation jobs.
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Model Type Parameter Param Type Search Space

tfidf

ngram max int [1, 5]
max df float [0.1, 1.0]
min df int [1, 10]

max features int [1000, 50000]

logit

loss string log loss
class weight categorical [None, ”balanced”]

penalty categorical [”l2”, ”l1”]
max iter int [50, 500]

svm

loss categorical [”hinge”]
penalty categorical [”l2”, ”l1”]
max iter int [50, 2000]

alpha float [1e-5, 1e10] (log scale)
class weight categorical [None, ”balanced”]

svc

C float [1e-10, 1e10] (log scale)
gamma float [1e-10, 1e10] (log scale)
kernel categorical [”rbf”, ”sigmoid”]

class weight categorical [None, ”balanced”]

random forests

n estimators int [20, 320] (step=20)
max depth int [3, 10] (step=1)
criterion categorical [”gini”, ”entropy”]

class weight categorical [None, ”balanced”]

xgboost

n estimators int [20, 320] (step=20)
max depth int [5, 10] (step=1)

learning rate float [1e-5, 0.3]
objective categorical [”binary:logistic”, ”binary:logitraw”]

Table 4.1: Hyper-parameter search space for Bayesian optimisation on classic ML models

4.2.1.3 Deep Learning models

In this stage, we have evaluated the performance of these traditional models to determine the
extent to which transformers can improve on their predecessors. We use Tensorflow [Abadi et al.,
2015] version 2.8 to train different sets of models with embedding dimensions ranging from 128
to 500.

LSTM

Before the advent of the transformer [Vaswani et al., 2017], traditional LSTM (Long Short-
Term Memory) [Hochreiter and Schmidhuber, 1997] models were considered state-of-the-art for
processing text. These models are a type of recurrent neural network capable of processing
sequential data, such as text, and capturing the context of words in a sentence. They have
been widely used in various NLP tasks, including sentiment analysis, machine translation, and
text classification. However, traditional LSTM models have limitations in capturing long-term
dependencies and handling vanishing and exploding gradient problems. These limitations were
addressed by the transformer model, which utilizes self-attention mechanisms to capture global
dependencies and has demonstrated superior performance in a variety of NLP tasks. As a result,
transformer models have emerged as the new state-of-the-art in NLP, surpassing traditional
LSTM models. Despite this, we still include traditional LSTM models as baselines for our study.

CNN
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Although CNNs (Convolutional Neural Networks) were originally developed for image clas-
sification and object recognition tasks, they have also shown promising results when applied
to NLP tasks [Lei et al., 2015]. CNNs can extract features from images by applying filters or
convolutions to small patches of the image, but the same principle can be applied to text by
considering it as a 1-dimensional sequence of vectors. In NLP, CNNs have been used for various
tasks, including sentiment analysis, text classification, and named entity recognition, and they
have demonstrated competitive performance compared to traditional NLP models like LSTM
while being computationally efficient [Lei et al., 2015]. While CNNs are not as versatile as trans-
former models, they can be beneficial in situations where computational resources are limited,
and the text input has a fixed length or can be padded to a fixed length.

Datasets

Because Bi-LSTMs and Text-CNNs are primarily based on non-contextual word embeddings,
they can be sensitive to non-textual symbols, such as punctuation and accents, similar to Sklearn
models. Therefore, we configured the cleaning transformations to remove punctuation, accents,
extra whitespace and convert all text to lowercase. This pre-processing pipeline was almost stan-
dard before transformers came and made some of the phases obsolete. Once all the text is cleaned
and empty rows are removed, the data is saved in a specific DNN staging folder, with each class
category saved as a subdirectory containing individual headlines saved as text files. Finally, the
datasets are loaded into the training pipeline using the Keras text dataset from directory utility
function. The dataset is divided into train, validation, and test sets, split using a 70%:10%:10%
ratio, respectively.

Model Architecture

To train the Bi-LSTM models, we used a base model with two BI-LSTM layers containing
64 neural units, followed by a 64-unit dense layer fed to the output layer containing a softmax
activation. The training loop utilised the standard Adam optimiser with sparse categorical
entropy loss in Tensorflow-Keras [Abadi et al., 2015; Chollet et al., 2015]. For CNN models, we
utilised a 1D convolutional layer followed by a max pooling layer. A dense layer with 32 units
and a dropout was then added before feeding into the output layer with softmax activation.

Hyperparameter optimisation

Parameter Type Value
Vocabulary size Integer 1000 ≤ vocabsize ≤ 100000
Embedding dimensions Integer 16, 32, 48, 64, 100, 128, 256, 300, 500
Maximum sequence length Integer 32 ≤ inputlength ≤ 512
Number of LSTM units Integer 4 ≤ lstmunits ≤ 512
Number of dense units Integer 4 ≤ denseunits ≤ 512
Use dropout Boolean use dropout
Dropout rate Float 0.1 ≤ dropoutrate ≤ 0.7
Learning rate Float 1e − 4 ≤ lr ≤ 1e − 2

Table 4.2: Hyper-parameter search space for Bayesian optimisation on LSTM models

In the case of deep learning, we opted for keras tuner [Chollet et al., 2015] instead of Optuna
[Chollet et al., 2015] since our models were trained using the Keras [Chollet et al., 2015] API
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Parameter Type Value
Vocabulary size Integer 1000 ≤ vocabsize ≤ 100000
Embedding dimensions Integer 16, 32, 48, 64, 100, 128, 256, 300, 500
Maximum sequence length Integer 32, 64, 128, 256, 512
Number of 1D Conv units Integer 4 ≤ conv1dunits ≤ 512
Number of dense units Integer 4 ≤ denseunits ≤ 512
Kernel size Integer 4 ≤ kernelsize ≤ 32
Pool size Integer 4 ≤ poolsize ≤ 32
Use dropout Boolean use dropout
Dropout rate Float 0.1 ≤ dropoutrate ≤ 0.7
Learning rate Float 1e−5 ≤ lr ≤ 1e−2

Table 4.3: Hyper-parameter search space for Bayesian optimisation on CNN models

which is built into TensorFlow [Abadi et al., 2015]. Our experiments were set up to optimise the
validation loss to ensure the model did not over-fit the training data. For each hyperparameter
configuration, we train the model for 10 epochs with an early stop condition enabled in case
the loss does not increase for 3 consecutive epochs. A table summarising the configuration for
the auto-tuning jobs for LSTM and CNN experiments is shown in Table 4.2 and Table 4.3,
respectively.

4.2.1.4 FastText models

In this experiment, we use the FastText library to train a multi-class topic classification model.
Initially, we train monolingual models for Sepedi and Tshivenda, using default hyperparame-
ters. Later, we use FastText’s built-in hyperparameter optimisation functionality to enhance the
performance of the models.

Datasets

FastText datasets typically require special processing since the training data labels must be
prefixed and suffixed with two underscores. As a result, we built a transformation pipeline to
load data from the finished annotations and convert the rows to a format required by FastText.
The processed data was staged in a dedicated directory for training and optimising any FastText
model. The same pre-processing steps as in Section 4.2.1.1 were applied. The train and validation
set are saved using a pattern that identifies the language, prefixed by the data split name, such
as ”train.nso” for Sepedi training set or ”valid.ven” for Tshivenda validation set. This pattern
allows us to easily load the appropriate data split during the model training and evaluation
phases for any language code.

Training environment

To train FastText models, we use a CPU environment with 4 CPUs and 16GB of RAM, as
GPUs are not necessary. During the hyperparameter tuning stage, we limit the model size to
2M parameters to avoid running out of memory.

Hyperparameter optimisations
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Fortunately, the FastText library has a built-in auto-optimisation function that produces the
best parameters for the given dataset. We restricted the model to 2 million parameters to prevent
resource exhaustion, as recommended in the library documentation [Joulin et al., 2017]. We also
limited the training duration to 10 minutes to prevent over-fitting. This allowed us to get the
optimal settings for the learning rate, training epochs and dimensions, among others.

4.2.2 Multilingual representation models

4.2.2.1 Word2Vec

In addition to the embeddings automatically learnt during classification model training, we train
a set of monolingual embeddings with varying dimensions for Sepedi and Tshivenda. These
embeddings are trained using the same raw data to train our custom language models. Finally,
the resulting embeddings are projected to a common semantic vector space using VecMap.

Datasets

For this task, we used a collection of raw datasets from Sepedi and Tshivenda languages to
train FastText and Word2vec embeddings with dimensions of 128, 300, and 500. We also utilised
a small, bilingual lexicon of 300 entries to align embeddings with VecMap. We obtained a subset
of parallel sentences from SADiLar [Eiselen and Puttkammer, 2014], Flores [Goyal et al., 2021;
Guzmán et al., 2019; Team et al., 2022], and multilingual terminology datasets scraped from
various websites to generate the lexicon. We leveraged the FastAlign [Dyer et al., 2013] utility
to accomplish this. A total of 179k documents were used to train the Sepedi embeddings and
73k samples of Tshivenda documents were used to train the embeddings, resulting in 20392 and
9083 tokens, respectively. Standard text cleaning steps, including punctuation removal, accent
removal, lower casing, and extra white space removal, were also applied before running the
training scripts.

Model Architecture

The Word2Vec embeddings are trained for 50 epochs using the skip-gram method provided by
Gensim [Rehurek and Sojka, 2011]. We use a window of 10 tokens, ignoring tokens with less than
two occurrences. Meanwhile, the FastText models are trained using the built-in FastText trainer
with automatic hyperparameter optimisations. VecMap is set to use Cupy2, which allows it to
train faster on GPU-powered hosts. The training of the embeddings was conducted on local PCs
with 16 CPUs, while the alignment was done on a host fitted with a Tesla K80 GPU running on
the Google Cloud platform. We used VecMap to align vector spaces in a semi-supervised way,
utilising a small dictionary obtained from parallel sentences for Tshivenda and Sepedi.

VecMap uses the orthogonal Procrustes objective score to align embeddings of two languages
by minimising the difference between them. The orthogonal Procrustes objective score measures
the similarity between two matrices by transforming one matrix to minimise the Frobenius norm
of the difference between them while ensuring that the transformed matrix remains orthogonal
[Artetxe et al., 2017]. The drop probability prevents over-fitting by ”dropping out” individual

2https://github.com/cupy/cupy/
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neurons in the neural network during training. The drop rate gradually decreases during training
until a desired objective is reached or the set number of iterations is exceeded.

4.2.2.2 Zabantu

The centre stage of the study involves a series of experiments where we train language models
from scratch using a combination of South African Bantu languages. We call these collections
of models Zabantu with ”ZA” representing Southern Africa and ”Bantu” representing Bantu
languages. In total, we train four groups of language models;

• Zabantu-VEN : A monolingual language model trained on 73k raw sentences in Tshivenda

• Zabantu-NSO : A monolingual language model trained on 179547 raw sentences in Sepedi

• Zabantu-NSO+VEN: A bilingual language model trained on 179547 raw sentences in Sepedi
and 73k sentences in Tshivenda

• Zabantu-SOT+VEN: A multilingual language model trained on 479k raw sentences from
Sesotho, sepedi, Setswana, and Tshivenda

• Zabantu-BANTU: A multilingual language model trained on 1.4M raw sentences from 8
South African Bantu languages

The language models were first tested and verified on Google Colab before being deployed to
the primary GPU-powered server for training. The server had 2 NVIDIA RTX A600 GPUs with
95GB VRAM and 64 compute-optimized vCPUs.

Datasets

The raw datasets used for training word embeddings in Section 4.2.2.1 are also used to train
new language models from scratch. The only text-cleaning steps performed are removing extra
white spaces, accents, and lower casing. The data is split into training and evaluation sets using
a 75%:25% split ratio for each model family. The evaluation split is used to compute perplexity
in each individual language after every epoch. We follow the same strategy used by AfriBERTa
to sample the training batch from the multilingual corpora, which involves randomly selecting
a language and then sampling a fixed number of examples from that language’s corpus. In
addition, we use a masking probability of 0.15 for masked language modelling (MLM) during pre-
training, which involves randomly masking a certain percentage of tokens in the input sequence
and predicting their original values based on the surrounding context. By setting the MLM
probability to 0.15, we ensure that the model is exposed to sufficient masked tokens during pre-
training, which helps it learn to effectively handle missing information and fill in the gaps in the
input sequence.

Model Architecture

Each family of models is trained following the XLM-RoBERTa architecture with dedicated
tokenizers obtained using SentencePiece [Kudo and Richardson, 2018]. XLM-R is a variation
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of BERT that incorporates cross-lingual pre-training and a larger model size to improve its
performance on multilingual NLP tasks. Furthermore, XLM-R uses a larger model size than
BERT, with up to 550 million parameters, allowing it to capture more complex linguistic patterns
and relationships in the input data [Conneau et al., 2020]. We use this as a reference architecture
since it achieves state-of-the-art results on various cross-lingual tasks, as shown in [Ogueji et al.,
2021; Alabi et al., 2022].

Observing a similar process to AfriBERTa [Ogueji et al., 2021] and XLM-RoBERTa [Conneau
et al., 2020], we train our models using a stream of sequences from different languages. Given a
list of L languages, we sample a batch of size B from a randomly chosen language L for training.
The languages are chosen to maximise the diversity of the languages in each epoch. If all the
examples from a single language are exhausted, we choose a second language to sample. If we
have sampled all the available languages, we reset the data and start from scratch. This way,
the model can theoretically train for an unbounded number of epochs. During training, the
language model is evaluated using the Masked Language Modelling (MLM) objective. The Next
Sentence Prediction (NSP) objective is not part of this architecture since it was found that the
performance of MLM alone is good enough for RoBERTa [Liu et al., 2019].

Each model is trained using BPE and Unigram tokens, with vocabulary sizes ranging between
30k and 250k tokens. Like AfriBERTa, the base models contain 70k tokens and are trained for
ten epochs, except for Tshivenda monolingual models, which were trained on 30k tokens due to
limited training examples. In addition to the base models, we have larger models trained on 150k
and 250k tokens. Furthermore, we repeat each training configuration for 20, 50, and 100 epochs.
We use the HuggingFace [Wolf et al., 2019] trainer API for PyTorch [Paszke et al., 2019] to train
the models, with Comet ML3 used to track training metrics. The training batch size was capped
at 8 for all experiments and 16 for evaluation, with 16-bit floating-point precision enabled. The
loss was evaluated every 1000 steps, and a checkpoint was saved in case of intermittent de-
allocation when training in spot cloud VMs. The learning rate is initially set to 1 × 10−4 and
allowed to gradually decrease over time using the default linear schedular in HuggingFace.

Training environment

Most of the training is conducted on the main server with 2xNVIDA RTX A600 GPUs. In
addition, we run supplementary experiments on Tesla K80, T4 and V100 GPUS at different stages
of the study to ensure all models were sufficiently trained. We use DVC 4 to queue experiments so
that the training continues running in the background consecutively. Furthermore, we track the
training progress on Comet ML 5, which has native support for models trained using HuggingFace
[Wolf et al., 2019].

3https://www.comet.com/site/
4https://dvc.org/
5https://www.comet.com/site/
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4.2.3 News Topic Classification models

4.2.3.1 Monolingual performance

In this stage, we tested the Zabantu custom language models on a news topic classification task
using Tshivenda and Sepedi news headlines datasets described in 3.3. Due to the imbalance
in class labels, we enacted two correction strategies to balance the label distribution. Firstly,
we consolidated all classes with less than a set frequency into a default label called ’other’.
Secondly, Second, we manually grouped classes with similar topics, such as ”human interests”,
”arts, culture, entertainment, and media”, and ”conflict, war, and peace”, into a single label
called ”Society”. This approach proved practical as these topics all relate to societal issues, like
protests for service delivery and other human rights or welfare matters.

Datasets

Similar to the dataset used in Section 4.2.1.1. We create 80:10:10 training, validation, and
test splits to fine-tune each family of Zabantu language models on a text classification task. We
apply the same preprocessing steps used in the training stage of the language models. This
means that, unlike in classic ML or DNN models, we do not remove punctuation or stopwords
before training a classifier.

Model Architecture

By attaching a classification layer to the language models, we are able to obtain the baseline
monolingual score for each language model trained from scratch. We set the training batch size
to 4 and trained for 5 epochs, using the weighted F1 score to evaluate the fine-tuned model.

Training Environment

We use the same training environment described in Section 4.2.1.1. The experiments are
organised using DVC pipeline definitions, allowing us to use YAML to describe fine-tuning recipes
that make evaluating different variations of language models easy.

4.2.3.2 Zero-shot performance

In this stage, we evaluate the zero-shot and few-shot performance of the language models. To
achieve this, we consider four different zero-shot strategies. These include using 10, 50, and 100
labelled examples from the target language, in addition to the source language, to train a linear
classifier for each target language. In the fourth strategy, named ”Use both,” we concatenate
the labelled examples from the source language with those from the target language and train
a single classifier. This evaluation aims to determine the effectiveness of the language models in
adapting to new languages with limited labelled data.

We test Zabantu models against benchmarks set by Deep learning zero shot models trained on
the vectors aligned using VecMap. Since VecMap returns output embeddings for each language
in separate vector files, we combine the vectors into one file before loading them as an embedding
matrix. This matrix is then used to initialise the embedding layer in Keras training. We then
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train the model as before but in a multilingual setting. The same data used to train baseline deep
learning models is used to get zero and few-shot performance between Sepedi and Tshivenda.
We first load each language’s dataset separately and then combine them into a single dataset
depending on the selected zero-shot strategy. For example, if the strategy is ten shots, we load
the Sepedi dataset into a TensorFlow dataset, then sample 10 examples from each class in the
Tshivenda dataset and add them to the train and validation splits. Finally, we evaluate the
performance of the target language using the weighted F1-score as the primary metric.

4.3 Model selection criteria

This section outlines the criteria used for systematic model selection. Our main objective is to
select models that perform best in the target tasks taking into cognisance other factors such
as computational efficiency and data requirements. We start by outlining the key evaluation
metrics used to assess model performance in the different tasks. We then discuss how we balance
the trade-off between model complexity and accuracy.

The objective of this study is to develop high-performing models that can compete with state-
of-the-art results while utilising minimal resources. Typically, achieving this goal requires vast
amounts of data and expensive computing hardware, making it challenging to achieve for lan-
guages from less-developed regions. Therefore, our selection criteria prioritises the development
of models that closely match SOTA benchmarks while remaining computationally efficient, mak-
ing these models more accessible to a broader audience.

Given the imbalanced nature of our large dataset, we have chosen F1-score and validation loss
as our primary performance metrics. Validation loss is an essential indicator of over-fitting or
the presence of outliers in our news headline datasets. Moreover, we use a weighted F1-score
to evaluate each class according to its frequency. In addition to these metrics, we consider
the relationship between training time, epoch count, and GPU utilisation to evaluate whether
complex models are worth the additional computational cost. Specifically, we identify the model
that achieves the highest F1 score while converging quickly on the same compute target as the
superior choice.

4.4 Expectations

Considering the small size of the news headlines dataset, it is understandable if deep learning
models need to perform better. However, using pre-trained embeddings can enhance performance
by increasing token coverage. FastText should also overcome this because it can synthesise word
vectors for tokens that do not appear during training. This capability is absent in typical deep
learning models which use Word2Vec embeddings. While Sklearn models may perform well on
small datasets, BERT models are expected to outshine them. Additionally, models trained on
the specific SA languages (Tshivenda and Sepedi) used in the news corpus will likely perform
better than larger multilingual models such as XLM-R and AfriBERTa. Nonetheless, we expect
that the current size and quality of the annotations may distort these expectations.
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4.5 Summary

This section provided a detailed scope and plan for conducting experiments to confirm our
hypothesis. In the next section, we will share the outcomes of various empirical experiments.



Chapter 5

Results

This results section summarises the outcomes of our experiments using numerical metrics and
graphical or tabular figures. Our study explored cross-lingual learning techniques to enhance
NLP coverage, which is currently limited for many low-resource languages like Tshivenda. To
achieve this, we utilised traditional machine learning baseline models, monolingual deep learning
models, and deep learning models with cross-lingual embeddings to identify gaps in the current
NLP ecosystem that must be addressed to improve the representation of Tshivenda.

In addition to traditional ML approaches, we trained a series of custom large language models
and fine-tuned them on a news topic classification task. We evaluated monolingual and cross-
lingual zero-shot cases to identify how to bridge the gap in Tshivenda NLP coverage. Our goal
was to see how effective multilingual models can be in improving low-resource languages like
Tshivenda. The expected outcome of the study is to contribute to developing more accurate and
efficient NLP systems for low-resource languages like Tshivenda, with potential implications for
communication, education, and socio-economic development in Tshivenda-speaking communities.
The upcoming sections will showcase the results from the experiments that were conducted as
described in Section 4.2.

5.1 Baseline model performance

5.1.1 Classical Machine Learning models

In this section, we will share the outcomes of training classic machine learning models from
three families: tree-based, linear, and non-linear. As previously mentioned in Section 4.2.1.2, all
models underwent the same pre-processing steps and were trained on the same dataset using the
Scikit-learn [Pedregosa et al., 2011] library. First, we will present the results from training using
the default hyper-parameters, followed by the outcomes from optimised parameters achieved
through Bayesian hyperparameter search.

59
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5.1.1.1 Default hyper-parameters

Inputs Baseline
Logit SVM SVC RF Xgboost Average

Tshivenda 79 77.6 62.6 67 70 71
Sepedi 74 74.2 59.7 45.1 55.4 61.6

Average 76.5 75.9 61.15 56.05 62.7 -
Table 5.1: Weighted F1-scores(%) for the news topic classification task using classic ML

models

According to the results presented in Table 5.1, it can be observed that even simple models
such as logistic regression, without any hyper-parameter tuning, were able to achieve almost
80% f1-scores for Tshivenda and 74% for Sepedi. Although Sepedi had more than 7.3k training
examples compared to Tshivenda’s 5.9k, it had inferior average performance across all classic
ML models, particularly in tree-based models. This could be due to the fixed vocabulary size
of 5k which might have been insufficient for vectorising Sepedi text. It is also possible that
some information was lost during the augmentation process through back-translation for Sepedi
headlines.

A closer examination of the confusion matrix results generated from the Tshivenda test set
in Figure 5.1 reveals that the Logistic regression model, which performs the best, is adept at
identifying most topics such as Crime, Health, Labour, and Sports. However, there are numerous
instances where the model wrongly predicts Crime, especially on categories such as Politics,
Business, and Society. As per the analysis conducted in Section 3.4.2, the training data was
dominated by Crime and Political news, which could explain the model’s tendency to prioritise
the crime category.

We also observe a decline in the recall score as the number of examples per category drops.
For example, the sports category had the lowest occurrence and obtained the lowest recall score
of 58%. On the contrary, crime had the highest number of occurrences and achieved the highest
recall score of 87%. These findings highlight the importance of having enough examples per label
to achieve good performance.

5.1.1.2 Optimised hyper-parameters

The optimised hyper-parameters were obtained using the Optuna [Akiba et al., 2019] library.
Efforts were made to balance the need to get the best accuracy results without over-fitting the
training data. This was achieved by shifting the focus from maximising accuracy to minimising
the validation loss as the primary objective. The parameter search scopes used for each trained
model can be viewed in Table 4.1.

For the most part, we do not observe any significant changes in performance across all model
after hyper-parameter optimisation. This suggests that our progress may be hindered by the
relatively low complexity of the chosen models or the limited number of training examples. We
still observe a surprisingly low score for the random forest model on Sepedi News, which could
point to potential data quality issues or a sub-optimal hyperparameter setting. We leave the
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Figure 5.1: Logistic regression news topic classifier confusion matrix on Tshivenda news test
set

Inputs Optimised
Logit SVM SVC RF Xgboost Average

Tshivenda 79 78.4 77.4 67 70.1 74.2
Sepedi 75.4 73.9 73.7 45 55.4 64.6

Average 77.2 76.15 75.55 56 62.75 -
Table 5.2: Weighted F1-scores(%) for the news topic classification task using Optimised ML

models

investigation of this observation as a possible task for future work. Overall, we see commendable
performance from these simplistic models, which are very quick to train.

Worryingly, Sepedi performance still lags behind Tshivenda, even though the best classi-
fier’s(Logistic regression) F1 score has now improved by 1%. However, looking at Figure 5.2,
we still observe a notable number of wrong predictions which probably point to some inherent
difficulty in distinguishing the selected news genres in this study. Better representations with
higher vocab coverage can likely improve these results. Moreover, this time the society category
seems to be best classified compared to the previous iteration for Tshivenda. We see similar
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Figure 5.2: Logistic regression news topic classifier confusion matrix on Sepedi news test set

misclassification patterns between crime, society, and politics as in Tshivenda in Figure 5.1.
This time sports seem to have a good recall, benefiting from augmentation, which increased the
frequency from 1% seen in Tshivenda texts to 5%.

5.2 Deep neural network model performance

In this section, we investigate whether neural network-based models can enhance the baseline
performance of the classification ML models presented in Section 5.1.1. First, we examine a
scenario where the embeddings are learned jointly with the classification weights. Subsequently,
we explore a scenario where embeddings are pre-trained using a larger unlabelled corpus that
is not a part of the news headlines. We use Keras Tuner [Chollet et al., 2015] to tune the
architectures of the Bi-LSTM and CNN models to attain the best possible hyper-parameter
values. Our experiments are designed to minimise validation loss, which will help the models
avoid overfitting, a likely issue considering we have less than 10k training points.
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5.2.1 Monolingual news classification performance

The initial results were obtained using default training parameters which were chosen using
heuristics as described in Section 4.2.1.3. The presented score is the weighted F1 score obtained
on a test set after training for seven epochs. For these experiments, we used a fixed vocabulary
size of 10,000, a learning rate of 1 × 10−3, and a batch size of 32. The LSTM model architecture
consists of two bidirectional LSTM layers with 64 units each, followed by a dense layer with 64
units, and a softmax layer with the same number of units as the number of news genres. The
CNN model includes an embedding layer with 128 dimensions and a sequence length of 64. In
each experiment, the data was split into train, validation, and test sets with a split ratio of 0.1.

Inputs Default performance [%] Optimised performance [%]
Bi-LSTM CNN Average Bi-LSTM CNN Average

Tshivenda 69.8 75.2 72.5 69.7 68 68.85
Sepedi 67.6 72.3 69.95 70.9 66 68.45

Average 68.7 73.75 - 70.3 67 -
Table 5.3: Weighted F1-scores[%] for the news topic classification task obtained from baseline

Deep Learning models

The optimised results were obtained using Keras Tuner, as described in Section 4.2.1.3. Once
the best hyperparameters were obtained, we retrained the model using the same train, validation,
and test split and recorded the new performance. Surprisingly, we observed inferior performance
compared to the classic ML methods presented in Section 5.1.1. One possible cause of this is
that the dataset is too small, as deep neural models have been shown to be most effective for
larger datasets. Hence, for small-scale settings such as the current one, classic ML models may
be sufficient. Interestingly, the models trained with tuned parameters perform worse than the
default models. This could be an issue with the optimisation algorithm terminating too early or
with the parameters forcing the model to overfit the training data, causing it to perform worse
on unseen data.

We also noticed that the un-optimised CNN-based models outperformed the Bi-LSTM-based
models, even though CNNs were originally developed for image understanding rather than text.
Moreover, despite having more training examples, Sepedi’s performance still lags behind Tshiv-
enda. The confusion matrix in Figure 5.3 exposes weaknesses in Sepedi predictions arising from
the misclassification of business and economy news with politics and society. It could be that
these wrongly predicted articles were about corruption related to Covid-19 funds by politically
connected companies, which negatively affected people’s livelihoods. This is to be expected as it
was revealed in Section 3.4 that the collected articles were biased towards these topics because
they were collected during the period of the Covid-19 pandemic.

5.2.2 Multilingual news classification performance

We also investigate the ability of DNN models to represent multiple languages using a shared
single embedding space. The results presented here were obtained after aligning monolingual
vector spaces developed from Tshivenda and Sepedi texts using VecMap. To determine the
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Figure 5.3: CNN news topic classifier confusion matrix on Sepedi news test set

effectiveness of the alignment, we first retrain the classifier models using the new shared vector
space and compare the results to the initial findings presented in Section 5.2.1. Additionally,
we evaluate different few-shot cases to determine if we can achieve good performance even with
small training examples in the low-resource language(Tshivenda).

A snapshot of the new vector space obtained by aligning vectors using a small bilingual Sepedi
to Tshivenda dictionary is shown in Figure 5.4. In this case, the word “Tshikolo” (school) is
perfectly aligned with its Sepedi translation “sekolo”. We observe a similar trend for “hayani”
(home), which is mapped to “gae”. With these promising results in mind, we proceeded to eval-
uate whether this would translate to improved news topic classification performance in mono-
lingual and few-shot settings.

The results presented in Table 5.4 are obtained using custom-trained embeddings of varying
sizes (128, 300, and 500) generated from both FastText and Word2Vec. Furthermore, the vectors
have been projected to the same vector space using VecMap. These static vectors are used to
initialise a frozen Embedding layer in the CNN and Bi-LSTM model architectures. Comparing
these results to those obtained in Section 5.2.1, we find no significant change in downstream task
performance across all dimensions when using multilingual pre-trained vectors. This suggests
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Figure 5.4: Semantic similarity example from the shared embedding space developed using
VecMap

Inputs Word2Vec [%] FastText [%]
Bi-LSTM CNN Average Bi-LSTM CNN Average

Mono
Tshivenda-128 65.8 78 71.9 53.9 76.2 65.05
Tshivenda-300 64.7 77.5 71.1 67.4 76.3 71.85
Tshivenda-500 71.1 77.8 74.45 66.4 77.7 72.05

Mono
Sepedi-128 49 73.9 61.45 60.2 74.5 67.35
Sepedi-300 50.2 73.5 61.85 63.3 74.6 68.95
Sepedi-500 51.3 74.9 63.1 65.4 74.6 70

Zero-shot 10
Tshivenda-128 55 59.9 57.45 57 60 58.5
Tshivenda-300 52.8 57.6 55.2 52 54.4 53.2
Tshivenda-500 56.9 56.6 56.75 59.1 56.7 57.9

Zero-shot 100
Tshivenda-128 66.6 72.9 69.75 64.9 72.0 68.45
Tshivenda-300 60.7 72.4 66.55 67 72.2 69.6
Tshivenda-500 64.4 71.3 67.85 67 72.2 69.6

Table 5.4: Weighted F1-scores for the news classification task obtained from frozen bilingual
word embeddings trained with Word2Vec and FastText

that we are able to project to a multilingual vector space while maintaining the individual
performance of each input language.

The F1 scores tend to increase as the number of vector dimensions increases from 128 to 500 in
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monolingual-settings. Interestingly, we observe the opposite effect for the few-shot cases for both
CNN and Bi-LSTM models. Furthermore, we observe that few-shot performance on Tshivenda
tends to increase with 10, 50, or 100 examples per label in the training set. With 100 examples,
we achieve a test score of approximately 60%, which is promising given the use of just a few
hundred Sepedi to Tshivenda word pairs to align the embeddings.

5.2.3 FastText

FastText [Bojanowski et al., 2017] is a DNN-based technique used for various natural language
processing (NLP) tasks. It learns how to represent words by analysing information about their
subwords, otherwise known as morphemes. This approach allows FastText to handle out-of-
vocabulary words and morphologically rich languages more effectively than other models. Despite
its relatively simple architecture compared to other deep learning models like Bi-LSTM, FastText
exhibits impressive performance on NLP tasks like text classification, sentiment analysis, and
language modelling. As a result, it is widely used in industry and research and has become
a popular alternative to traditional sequence models like recurrent neural networks which are
slower to train.

Inputs Fast-Text baseline performance [%]
Default Optimised

Tshivenda 75.6 76.4
Sepedi 74.6 72.5

Average 75.1 74.45
Table 5.5: Weighted F1-scores for the news classification task obtained from FastText models

After optimising the hyperparameters for Sepedi, we obtained a slightly worse performance
than the original. This could be due to the optimised model overfitting the training data, making
it less effective in generalisation. We also noticed that the optimised model has a small dimension
of 36 compared to 128 in the default model. Perhaps placing a constraint on the maximum and
minimum dimensions could help improve the score, we leave this as a future improvement area.
The confusion matrix in Figure 5.5 shows that FastText struggles with distinguishing between
crime and business, disasters, and politics.

Based on the observations from the confusion matrices of FastText and Logistic regression
models in Figures 5.5 and 5.1 respectively, we notice that the overlap between the categories is
minimal in Logistic regression, particularly between crime and society. However, for FastText,
we observe a higher overlap between crime and society, and confusion between disasters and
various other categories such as business, education, health, and politics. These observations
raise questions about the effectiveness of FastText compared to Logistic regression in low-data
settings. Another possibility for this behaviour could be issued with labelling, given that the
COVID-19 pandemic would have generated a lot of news in the health, government, and busi-
ness sectors, which could have confused the annotators. The overlap of ”disaster, accident and
emergency incidents” with ”education” could be due to incidents where there was damage to
learning infrastructure due to weather or protest action. Further investigation may be necessary
to determine the underlying causes of these observations.
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Figure 5.5: FastText news topic classifier confusion matrix on Tshivenda news test set

5.3 Pre-trained Language models

In this section, we will present the performance of fine-tuned pretrained language models, con-
sidering both few-shot classification performance and monolingual performance for Sepedi and
Tshivenda news headlines. We will start by fine-tuning existing state-of-the-art models such as
XLMR, Afro-XLMR and AfriBERTa. Ultimately, we will repeat this process on the Zabantu
fleet of models which we trained from scratch.

5.3.1 Monolingual news classification performance

We report the monolingual performance of plug-and-play large language models from Hugging
Face. All models are based on the XLM-RoBERTa architecture and serve as a good baseline
for our custom language models, which will be discussed in the next section. We fine-tune each
model on the labelled monolingual news corpus on multiple servers provisioned with Tesla K80,
T4, and V100 GPUs for ten epochs. We also implement early stopping to terminate training if
the performance does not increase for three consecutive epochs.
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Inputs Weighted F1-score [%]
XLM-R AfriBERTa-base AfriBERTa-large Afro-XLMR-base Average

Tshivenda 70.6 74.3 75.2 71.6 72.93
Sepedi 66 71.4 72.4 74.1 70.42

Average 68.3 72.85 73.8 72.85 -

Table 5.6: Weighted F1-scores for the news classification task obtained from fine-tuning
open-source language models based on the XLM-Roberta architecture

XLMR generally performs worse than AfriBERTa in classifying both Sepedi and Tshivenda
news headlines. Although AfriBERTa was not trained on Tshivenda text, it still produces results
on par with deep monolingual learning and classic ML models, which were trained explicitly on
Tshivenda data. A technique like Language Adaptive Fine-tuning (LAF) could be adopted
on XLMR to improve its performance by adapting it to Tshivenda and Sepedi texts before
downstream task fine-tuning. Similarly, Afro-XLMR did not have Tshivenda or Sepedi in the
pre-training set [Alabi et al., 2022], yet they still achieved a good F1 score. We also note that
the F1 score for Sepedi is higher than Tshivenda on Afro-XLMR compared to AfriBERTa, likely
because Afro-XLMR had Sesotho texts in its pre-training set which come from the same language
family as Sepedi.

Figure 5.6: Confusion matrix on Tshivenda news test set on a fine-tuned AfriBERTa-large
model

Evaluation of the confusion matrix obtained from AfriBERTA-large predictions on Tshivenda
news in Figure 5.6 shows a significant overlap between crime with politics, society, and disaster



Chapter 5. Results 69

reports headlines. This is the same overlap observed with other models trained so far. We
appear to have a labelling issue that cannot be overcome using advanced models only. Perhaps
an independent benchmarking dataset would be helpful to confirm that the trends observed so
far are valid. Some of the misclassified headlines are shown in Table 5.7. It is clear from these
predictions that some headlines are ambiguous and can fit into multiple news genres.

Text Actual Predicted
mukalaha wa eastern cape o mangala a
tshi wana zwa uri o nwaliswa sa muthu
o no lovhaho muhashoni wa muno (a
man from eastern cape was alarmed to
discover that he was registered as a dis-
eased man at the department of edu-
cation)

Society Crime

duduzane zuma uri vhomcebisi jonas
vho vha vha tshi divha nga ha u ri mu-
tangano wavho wo sudzuluselwa sax-
onwold (duduzane zuma says mr mce-
bisi jonas was aware that their meeting
was rescheduled to saxon-world)

Politics Crime

Table 5.7: Mis-classified examples in the Tshivenda news test set by AfriBERTa-large clas-
sifier

The loss curve in Figure 5.7 shows that training loss gradually decreases with increasing steps
as expected. However, the evaluation loss is increasing due to some outliers not being predicted
correctly. We assume these to be outliers because although the loss increases over time, the
validation accuracy tends to increase. The possible reason for this is rare headlines or just
signs of a few mislabelled data. We noticed that this is a recurring trend across all pre-trained
models, including XLM-R, AfroXLMR and AfriBERTa. Nonetheless, the models seem to get it
right most of the time.

5.3.2 Multilingual news classification performance

Multilingual fine-tuning has been shown to benefit low-resource languages compared to monolin-
gual fine-tuning [Pires et al., 2019]. In this section, we present the results obtained by fine-tuning
the various open-source state-of-the-art language models on a classification task using a combi-
nation of Sepedi and Tshivenda news headlines. We start with a simple case where we merge the
two corpora and fine-tune the model to leverage more labelled points in Sepedi to achieve better
performance for both languages. Secondly, we evaluate the zero and few shot cases where we
train using the full Sepedi texts and a subset of Tshivenda texts to simulate a truly low-resource
setting. We start with a case where we limit each label from Tshivenda to only 10 examples
(which we call shots), all the way to about 100 examples per news category. For the evalua-
tion environment, we used a virtual machine hosted on the Google Cloud Platform which was
endowed with a NVIDIA Tesla V100 GPU with 16GB Memory and four vCPUs.

Looking at Table 5.11, XLMR performed very well on Tshivenda after joint fine-tuning with
Sepedi. However, the performance in Sepedi remains relatively unchanged from the monolingual
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Figure 5.7: AfriBERTa large training loss on Tshivenda news headlines

Inputs Weighted F1-score [%] - 10 shots
XLM-R AfriBERTa-base AfriBERTa-large Afro-XLMR-base Average

Tshivenda 6 48 49 50 38.25

Table 5.8: Weighted F1-scores for the few-shot News Classification task with 10 shots.
Source language = Sepedi, Target language = Tshivenda

Inputs Weighted F1-score [%] - 50 shots
XLM-R AfriBERTa-base AfriBERTa-large Afro-XLMR-base Average

Tshivenda 47 60 56 62 56.25

Table 5.9: Weighted F1-scores for the few-shot News Classification task with 50 shots.
Source language = Sepedi, Target language = Tshivenda

Inputs Weighted F1-score [%] - 100 shots
XLM-R AfriBERTa-base AfriBERTa-large Afro-XLMR-base Average

Tshivenda 8 62 63 65 49.5

Table 5.10: Weighted F1-scores for the few-shot News Classification task with 100 shots.
Source language = Sepedi, Target language = Tshivenda

Inputs Weighted F1-score [%] - Multilingual Finetuning
XLM-R AfriBERTa-base AfriBERTa-large Afro-XLMR-base Average

Tshivenda 70.0 73.0 73 74 72.5
Sepedi 66.6 71 69 72 69.65

Average 68.3 72 71 73

Table 5.11: Weighted F1-scores for the multilingual fine-tuning on the News Classification
task

score. Similarly, it appears that AfriBERTa performs equally in multilingual fine-tuning setting
as the monolingual setting for Tshivenda news.
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5.4 Zabantu models

In addition to fine-tuning existing open-source models, we have developed a novel set of language
models trained on various combinations of SA Bantu texts. We began with a set of base models
that trained for only ten epochs. Then, we continued training for up to 100 epochs, using early
stopping to terminate when the training loss no longer decreased. Next, we split each language
corpus into training and validation sets with ratios ranging from 0.2 to 0.3. After training, we
calculated perplexity on the validation set, first for each language individually and then for all
languages collectively. In this section, we will outline the results of language model training and
the performance scores achieved by fine-tuning these models for various downstream tasks.

5.4.1 Language model training results

Table 5.12 shows a comprehensive view of the experiment configurations used to train different
language models with a subset of Bantu languages spoken in South Africa. We show the intrinsic
metrics, including perplexity and loss, used to identify possible good language model candidates
which might perform well in cross-lingual news topic classification.

The reported vocabulary sizes exclude two special tokens used in the XLMR architecture
that represent the beginning and end of a sentence. These special tokens, known as the start-
of-sentence (SOS) and end-of-sentence (EOS) tokens, are added to the input sequences during
pre-processing to indicate the start and end of each sentence. During training, each experiment
is named using the pattern ”zabantu-[language-code]-[vocabulary-size]k-[tokenisation-method]-
[number-of-epochs]”. For example, zabantu-ven-30k-unigram-10epochs represents a language
model trained on a corpus of Tshivenda sentences using a vocabulary of 30k obtained from
Unigram tokenisation and trained for ten epochs. Similarly, zabantu-sot ven-50k-bpe-50epochs
represents another experiment using a vocabulary of 50k obtained from byte-pair-encoding (BPE)
on a corpus of sentences derived from a combination of Sesotho, Sepedi, Setswana and Tshivenda,
trained for 50 epochs.

Based on Table 5.12 we have observed that models trained with BPE tokenisation perform
slightly worse than those with Unigram tokenised vocabulary, based on both loss and perplexity
results. However, in most cases, we found that the perplexity and loss performance remains
comparable when considering the same number of tokens and training epochs. It is worth noting
that we were able to train tokenisers with significantly larger vocabularies using BPE, although
this does not necessarily guarantee improved performance. We discovered that when the number
of tokens exceeded a certain threshold, the performance started to decline, potentially due to
the inclusion of tokens with no semantic meaning in relation to the training data, a common
problem when using BPE tokenisation Bostrom and Durrett [2020].

5.4.2 Monolingual news classification performance

Table 5.13 shows the results of fine-tuning various Zabantu language models on a news topic
classification task. Each row displays the test F1 score for a language along with the properties



Chapter 5. Results 72

Model Settings Metrics
#Tokens #Examples #Params Epochs Perplexity Loss

Zabantu-ven 30k 58k 80M 10 34.1 3.53
30k 58k 80M 50 10.68 2.37

30k-bpe 58k 80M 10 35.6 3.57
30k-bpe 58k 80M 50 6.8 1.91
50k-bpe 58k 96M 10 36.73 3.6
70k-bpe 58k 110M 10 36.37 3.59
70k-bpe 58k 110M 20 19.39 2.59
85k-bpe 58k 123M 50 8.35 2.12

Zabantu-nso 30k 125k 80M 10 22.15 3.09
30k-bpe 125k 80M 10 24.1 3.18

50k 125k 96M 10 23.44 3.15
50k-bpe 125k 96M 10 26.02 3.35

70k 125k 110M 10 24.62 3.2
70k-bpe 125k 110M 10 26.67 3.27
85k-bpe 125k 123M 50 10.08 2.31

Zabantu-nso-ven 30k 189k 80M 10 8.18 6.7
30k-bpe 189k 80M 10 1212.72 7.1

50k 189k 96M 10 16.0 2.77
50k-bpe 189k 96M 10 913.8 6.81

70k 189k 110M 10 36.3 3.59
70k-bpe 189k 110M 10 18.73 2.93
150k-bpe 189k 172M 50 8.98 2.19

Zabantu-sot-ven 30k 479k 80M 10 37.93 3.63
30k-bpe 479k 80M 50 7.56 2.02

50k 479k 96M 10 39.2 3.67
50k-bpe 479k 96M 20 12.0 2.49
50k-bpe 479k 96M 50 7.98 2.08

70k 479k 110M 10 14.98 2.71
70k-bpe 479k 110M 10 1560 7.35

85k 479k 110M 20 12.01 2.48
85k-bpe 479k 110M 20 12.91 2.56

150k 479k 110M 20 12.81 2.54
Zabantu-bantu 30k 1.4M 80M 10 7102.18 8.87

50k 1.4M 80M 10 9187.65 9.13
70k 1.4M 110M 10 8884.927 9.09
250k 1.4M 250M 10 3.47 3.47

250k-bpe 1.4M 250M 10 112.9 4.72
250k-bpe 1.4M 250M 50 17.3 2.85

Table 5.12: Training results for Zabantu Language Models

of the fine-tuned language model. We observe that good scores are obtained for the monolingual
Zabantu-VEN on Tshivenda and similarly for Zabantu-NSO on Sepedi news. However, although
these scores are generally higher, they are still fairly comparable to scores from open-source
language models, including AfriBERTa and Afro-XLMR.

5.4.3 Multilingual news classification performance

This section shares the results obtained from cross-lingual news topic classification using Sepedi
as the source language and Tshivenda as the target language. We start with 10 examples per
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Model #Tokens #Epochs Tshivenda news Sepedi news
Zabantu-ven 30k 10 73 -

30k 20 74 -
30k-bpe 50 76 -
50k-bpe 100 74 -
70k-bpe 10 76 -
70k-bpe 20 76 -
85k-bpe 50 75 -

Zabantu-nso 30k 10 - 73
30k-bpe 10 - 71

50k 10 - 71
50k-bpe 10 - 73

70k 10 - 72
85k-bpe 50 - 68

Zabantu-nso-ven 30k 10 21.2 26.1
50k 10 75.9 74.1

50k-bpe 10 21.2 26.1
70k 10 77 74.3

150k-bpe 50 73.9 67.1
Zabantu-sot-ven 30k 10 76 73

30k-bpe 50 72.4 68.2
50k 10 21.2 26.1

50k-bpe 20 74.2 69
50k-bpe 50 72.4 67.9

70k 10 59 67.6
Zabantu-bantu 70k 10 5 10

250k 10 72 67
250k-bpe 50 75.6 70.6

Table 5.13: Weighted F1-scores[%] from finetuning Zabantu language models on Tshivenda
and Sepedi News headlines

category in the target language and gradually increase it to 100. Finally, we test the joint
fine-tuning setting.

The results reveal the challenges faced by all models in the few-shot scenario, where only
10 Tshivenda examples per category are available for training. Despite obtaining scores above
50 in Zabantu-SOT+VEN models, there appears to be a consistent struggle across the entire
model ensemble, as evidenced in Table 5.14. However, a significant improvement in performance
is observed when the number of few-shot examples is increased to 50, and subsequently to
100. This finding holds significant implications for Tshivenda NLP research, as it highlights
the potential of leveraging a limited annotated Tshivenda dataset in conjunction with abundant
resources available in Sepedi and other related languages from the Sotho language family. Such
an approach can enable the development of state-of-the-art NLP models even with constrained
annotated datasets, therefore addressing the data scarcity challenge in low-resource language
settings.

Our results obtained from Zabantu models are comparable to those of open-source models
reported in Table 5.6. For most language model variants, the performance is also proportional
to the monolingual setting but noticeably lower in few-shot cases. Our experiments show that
we begin to see good performance when we have at least 50 examples for each news category
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Zero-shot - 10
Model #Tokens #Epochs Tshivenda news

Zabantu-nso-ven 30k 10 3
50k 10 52

70k-bpe 10 45
150k-bpe 50 33

Zabantu-sot-ven 30k 10 36
30k-bpe 50 31

50k 10 5
50k-bpe 20 34
50k-bpe 50 33

70k 10 33
85k 20 48

85k-bpe 20 56
150k 20 56

Zabantu-bantu 70k 10 5
250k 10 34

250k-bpe 50 38
Table 5.14: Weighted F1-scores[%] on Tshivenda and Sepedi News headlines few-shot settings

with 10 target examples

Zero-shot - 50
Model #Tokens #Epochs Tshivenda news

Zabantu-nso-ven 30k 10 2
50k 10 63

50k-bpe 10 1
70k 10 65

70k-bpe 10 66
Zabantu-sot-ven 30k 10 57

30k-bpe 50 49
50k 10 6

50k-bpe 20 53
50k-bpe 50 51

70k 10 49
85k 20 69

85k-bpe 20 66
150k 20 67

Zabantu-bantu 70k 10 6
250k 10 52

250k-bpe 50 55
Table 5.15: Weighted F1-scores[%] on Tshivenda and Sepedi News headlines few-shot settings

with 50 target examples

in the target language, although this performance is only high enough for Zabantu-NSO+VEN
models. Bigger models like Zabantu-SOT+VEN and Zabantu-BANTU seem to work better with
at least 100 examples per class. To our surprise, we did not observe higher scores when doing
joint fine-tuning. Instead, we got scores slightly lower than the monolingual fine-tuning case.
This is the opposite effect of what we expected, as we expected fine-tuning with more data to
have a significant positive effect.
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Zero-shot - 100
Model #Tokens #Epochs Tshivenda news

Zabantu-nso-ven 30k 10 4
50k 10 67

50k-bpe 10 5
70k 10 68

150k-bpe 50 58
Zabantu-sot-ven 30k 10 62

50k 10 7
50k-bpe 20 60
50k-bpe 50 57

70k 10 59
85k 20 69

85k-bpe 20 68
150k 20 69

Zabantu-bantu 70k 10 7
250k 10 59

250k-bpe 50 64
Table 5.16: Weighted F1-scores[%] on Tshivenda and Sepedi News headlines few-shot settings

with 100 target examples

Multilingual Finetuning
Model #Tokens #Epochs Tshivenda news Sepedi news

Zabantu-nso-ven 30k 10 10 16
50k 10 74 72

50k-bpe 10 13 11
70k-bpe 10 74 72
150k-bpe 50 68 73

Zabantu-sot-ven 30k 10 - -
30k-bpe 50 - -

50k 10 5 10
50k-bpe 20 71 66
50k-bpe 50 71 67

70k 10 72 68
85k 20 75 75

85k-bpe 20 75 75
150k 20 74 76

Zabantu-bantu 70k 10 5 10
250k 10 71 68

250k-bpe 50 72 70
Table 5.17: Weighted F1-scores[%] on Tshivenda and Sepedi News headlines using multilin-

gual fine-tuning

5.5 Summary

In this section, we shared the results of our experiments aimed at improving NLP coverage for
Tshivenda. We focused on comparing the performance of basic machine learning models and
more advanced pretrained language models to determine the most suitable approach for small
data scenarios. The summary of Zabantu models versus pre-trained XLMR models is shown in
Figure 5.8. Similarly 5.9 shows the summary of the performance of Zabantu models compared to
DNN models while Figure 5.10 compares the final performance in Zabantu models with classic
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Figure 5.8: Summarised performance of Zabantu models vs Pre-trained XLM-R models

Figure 5.9: Summarised performance of Zabantu models vs Deep Neural Network (DNN-
based) models

ML models. In Chapter 7, we will provide the implementation of these results and explore the
implications of these findings on our research questions.
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Figure 5.10: Summarised performance of Zabantu models vs Classic Machine Learning mod-
els



Chapter 6

Predictability, computability, and
stability (PCS)

In this section, we will highlight the results of testing the reliability of our top-performing models
by subjecting them to various types of adversarial inputs. Initially, we introduce perturbations
into the training data and analyse how it affects the model’s performance. We present this
section alongside the methodology and experiment design sections in Section 3 to emphasise
our commitment to transparency throughout the entire life-cycle of the study, including data
collection, processing, and modelling stages. We believe that transparency is crucial for building
trust and supporting future research efforts in Tshivenda and Sepedi NLP.

Given that one of our primary objectives is to maximise reproducibility, the findings from
these observations serve as a significant contribution to the establishment of a robust baseline
for future comparisons. This holds particular importance within the context of the developing
NLP landscape in South Africa, where independent verification of research results is crucial to
avoid overestimating our current capabilities. By ensuring the reliability and accuracy of our
findings, we can effectively focus research efforts in the areas that really matter.

We introduced irregularities in the training datasets by randomly introducing spelling errors on
Tshivenda news headlines with a probability of 20%. The spelling errors occurred in two forms:
missing characters constituted 50% of the errors, while the remaining 50% involved the injection
of random characters. The results summarised in Table 6.1 suggest that our models exhibit
significant susceptibility to adversarial inputs, as the average performance drops significantly
for perturbed inputs. These results highlight the need for further research and development
to enhance the models’ robustness against adversarial attacks and improve their generalisation
capabilities in real-world scenarios. Despite these shortcomings, we still observe promising per-
formance across the different model families with an average F1 score close to 65%.

Unfortunately, it appears that we lose the zero-shot capability with the introduced perturba-
tions, which suggests that the introduced perturbations negatively impact the model’s ability to
generalise across languages and handle out-of-domain data effectively. While the model demon-
strates robustness within the scope of Tshivenda and Sepedi, further investigation is needed

78



Chapter 6. PCS 79

Model Mono score 50-shot score NEW Mono score NEW 50-shot score
Zabantu-ven-
70kbpe-20

76 - 69 -

Zabantu-nso-
ven-70k-10

77 66 63.1 33

Zabantu-sot-
ven-150k-20

76 57 70.4 35

Zabantu-
bantu-
250kbpe-50

75.6 55 63.6 25

Table 6.1: Weighted F1-scores[%] on Tshivenda news topic classification task after random
pertubations

to address the challenges and limitations associated with zero-shot capabilities in multilingual
settings.
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Discussion

In this section, we will discuss the implications of the findings from Chapter 5. We will also
assess whether the research questions were addressed and compare the results with existing
related work where possible. Lastly, we will describe potential areas of improvement to assist
future researchers in solving the crucial problems to help advance Tshivenda NLP applications.

7.1 Key findings

The research findings reveal interesting observations regarding the performance of news topic
classification models in monolingual and cross-lingual settings, as indicated by the F1 scores
in Figures 5.8, 5.9 and 5.10. In terms of monolingual performance, classic machine learning
models, such as logistic regression and support vector machines, demonstrated strong results. For
Tshivenda, logistic regression achieved a monolingual weighted F1 score of 0.79, while for Sepedi,
it achieved a score of 0.75 across nine popular news topics. The results were peculiar because we
expected Sepedi models to outperform Tshivenda in monolingual Settings. We suspect that the
augmented entries in the Sepedi dataset may not have been diverse enough to help the model
generalise better.

Surprisingly, text-CNN models performed better than Bi-LSTM models in monolingual and
cross-lingual settings. In the monolingual scenario, the best-performing deep learning model,
a text-CNN, achieved an F1 score of 0.75 for Tshivenda News and 0.72 for Sepedi. This is an
unexpected result as Bi-LSTM models are known to capture sequential dependencies found in
text data more effectively than CNNs. We suspect that our choice of the Bi-LSTM network
architecture might have caused this discrepancy resulting in over-fitting or under-fitting the
datasets at hand. We were also shocked to discover that certain classic ML models outperformed
text-CNN and Bi-LSTM models. This suggests that, with limited datasets, classic ML models
may be more suitable than DNN models, which typically require extensive training data to
achieve better generalisation.

80
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Despite not being pretrained on Tshivenda or Sepedi, open-source pre-trained language models
like AfriBERTa, AfroXLMR, and XLMR achieved impressive monolingual news topic classifi-
cation results. For instance, AfriBERTa-large obtained a weighted F1 test score of 75.4 for
Tshivenda and 72.4 for Sepedi, while AfroXLMR achieved 71.6 for Tshivenda and 74.1 for Se-
pedi. Similarly, XLMR attained scores of 0.7 for Tshivenda and 0.66 for Sepedi. Although not
significantly higher scores than classic ML or DNN models, these scores illustrate the capability
of leveraging pretrained models to achieve state-of-the-art performance in Tshivenda NLP tasks.
This approach eliminates the need to train models from scratch, reducing the data requirements
necessary for achieving competitive results.

When training language models from scratch using different combinations of South African
Bantu languages, it was observed that languages within the Sotho family, such as Sepedi, Sesotho,
and Setswana, yielded similar performances. The model trained on a combination of Tshivenda
and Sepedi, named Zabantu-NSO+VEN, achieved the best performance with a test F1 score
of 0.77 for Tshivenda and 0.74 for Sepedi. However, training on all South African Bantu lan-
guages led to a slight drop in performance. The model trained on all languages achieved a test
F1 score of 0.76 for Tshivenda and 0.71 for Sepedi in a monolingual setting. Similarly, this
model achieved the lowest test F1 score of 0.55 in few-shot settings with 50 examples per class,
while Zabantu-NSO+VEN and Zabantu-SOT+VEN attained 0.66 and 0.69, respectively. This
discrepancy suggests that Tshivenda may be less closely related to languages outside the Sotho
family, necessitating further investigation to confirm this observation.

We, therefore, make the following deductions with regard to our research questions:

1. Is it viable to leverage high NLP resources from Sepedi and other popular Bantu languages
in South Africa to improve the coverage of Tshivenda in NLP applications?

The results support the viability of leveraging NLP resources from related South African
Bantu languages to improve the performance of Tshivenda NLP tasks. Classic ML, deep learn-
ing, and pretrained models showed promising performance in monolingual and cross-lingual
settings. Despite not being pretrained on Tshivenda or Sepedi, pretrained models such as AfriB-
ERTa, AfroXLMR, and XLMR demonstrated impressive performance which was comparable to
the performance obtained form languages trained from scratch using SA languages only. This
suggests that we can further leverage the potential of other widely spoken Bantu languages
like Swahili and Shona, which share common origins with Tshivenda, to enhance cross-lingual
transfer capabilities.

2. What is the most effective method to develop word representations to maximise few-shot
performance between Tshivenda and Sepedi? i.e. monoglot versus polyglot representations

The research compared different approaches to building word representations and their impact
on news topic classification performance. Classic ML models performed well on limited Tshivenda
datasets, often outperforming deep neural network models based on text-CNN, FastText and Bi-
LSTM architectures. The pretrained transformer-based models, despite not being specifically
trained on Tshivenda or Sepedi, achieved F1 scores close to Zabantu language models. Even with
as few as 50 examples per news category in Tshivenda, we achieved up to 0.6 few-shot weighted
F1 score using AfriBERTa. This suggests that leveraging pretrained models with contextual
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embeddings from transformer architectures effectively maximises few-shot performance. This
is also supported by the results obtained using Zabantu language models trained from scratch,
where we achieved few-shot F1 score of 0.69 using Zabantu-SOT+VEN which was pre-trained
on Tshivenda, Sepedi, Sesotho and Setswana texts.

Therefore, it appears that it is more viable to use exisiting pre-trained models to develop
fine-tuned models for specialised Tshivenda tasks. This significantly reduces the need to collect
extensive training datasets which is often expensive.

3. Are the current Tshivenda data resources sufficient for training state-of-the-art NLP mod-
els?

Despite the limited availability of Tshivenda data resources, this research demonstrates the
possibility of developing cutting-edge NLP models for the language. The findings highlight the
potential of cross-lingual transfer learning, utilising both static and contextual embeddings from
pretrained transformer models. However, to further advance NLP for African languages, it
is crucial to create high-quality benchmark datasets encompassing a wide range of NLP tasks,
such as machine translation, entity recognition, and other complex language understanding tasks.
The absence of such datasets continues to hinder the development of NLP applications for South
African languages. To address this challenge, an effective strategy might involve leveraging fine-
tuning of pretrained models on small datasets, enabling the augmentation of available training
resources and the creation of specialised models tailored to specific tasks in Tshivenda and other
South African Bantu languages.

7.2 Hypothesis validation

Our research hypothesis was that we could improve the inadequate coverage of Tshivenda in NLP
research by leveraging cross-lingual transfer learning. To achieve this, we used a closely related
language, Sepedi, which has more resources than Tshivenda. In Chapter 5, we presented our
findings that confirmed the feasibility of this approach. We also discovered that models trained
with languages outside of South Africa still performed well due to the commonalities among
Bantu languages across Africa. Furthermore, we found that even less advanced models could be
beneficial in low-resource scenarios and could aid in developing supplementary capabilities such
as Language Identification models. These can help build high-quality datasets, which, in turn,
can be used to build more specialised language models using advanced transformer architectures.

We also observe that multilingual fine-tuning often produces better results than monolingual
fine-tuning, confirming findings in related studies pertaining to cross-lingual capabilities of large
language models [Pires et al., 2019; Conneau et al., 2020]. Furthermore, our observations con-
firm that even with relatively small data, we can still use large language models to build NLP
applications for low-resource languages, as reported by [Ogueji et al., 2021]. This is an impor-
tant finding as it opens up the possibility of using pre-trained language models to improve the
accuracy of natural language processing tasks for low-resource languages without the need for
large amounts of input data.
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7.3 Implications of the results

Efficacy of cross-lingual transfer with open-source pre-trained language models

Even though Tshivenda was not included in the languages used to train AfriBERTa or Afro-
XLMR, we have noticed impressive performance in news classification tasks under different
learning scenarios. Furthermore, these models have sometimes outperformed custom models
exclusively trained in Tshivenda and related SA Bantu languages. Based on this observation, it
may be wise to temporarily halt training new monolingual language models for Tshivenda and
instead focus on adapting existing state-of-the-art models using the currently available datasets.
This could help us generate higher-quality datasets that can be used for specialised tasks in
Tshivenda in the future.

Foundation for future work in Tshivenda NLP applications

This project has achieved an important milestone by establishing a foundation for future
studies on improving Tshivenda coverage in NLP applications through cross-lingual transfer
learning. Our results indicate that while current NLP tools may not be optimised for Tshivenda,
they can still be effective for various applications if adequate seed data is available. We have
also made our experiments public to enable further exploration of this topic using more data or
advanced training setups.

7.4 Limitations

• Not all evaluation datasets utilised in this study have been assessed by an independent
body or other related experiments, as a result these results require further verification to
confirm the viability of cross-lingual transfer between Sepedi and Tshivenda.

• It is worth noting that the evaluation tasks( e.g.topic classification) used in our study may
have been too trivial, allowing even traditional machine learning models to handle them.
Therefore, assuming there is enough data available, we suggest exploring more complex
tasks like entailment and question answering to further validate our findings.

• The model(s) used limited datasets for training, which may result in bias against minority
communities. For instance, most crime headlines were related to regions like Alexandra and
other low-income communities. This could lead the model to wrongly associate Alexandra
with crime, even though there are affluent regions with comparable crime rates that were
not part of the training dataset.

7.5 Recommendations and Future work

We identify the following crucial areas for future improvement:

• Reducing subjectivity and annotation bias by getting more annotators and following a
strict adjudication process to ensure accurate evaluation of benchmarking datasets.
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• We also acknowledge that using a multi-class classification approach may not be the most
suitable choice for news categorisation based on IPTC topics, as news headlines often cover
multiple relevant topics simultaneously. Therefore, it is worth considering the utilisation
of a multi-label classification setting, which would allow for the assignment of multiple
relevant labels to each headline.

• As proposed by [Duvenhage et al., 2017a], it is also essential to advance supplementary
tools like language identifiers, spell checkers, entity recognition, and machine translation
models. These tools can aid in developing robust datasets that can be leveraged to create
more sophisticated applications, such as instruction-following agents like Chat-GPT.

• The primary challenge in incorporating Tshivenda into the NLP field appears to be data
curation and annotation. As previously emphasised by [Marivate, 2020], addressing this
challenge will necessitate novel collaborations between academic, governmental, and com-
mercial institutions to produce high-quality and diverse datasets required to build world-
class AI tools.

• A more detailed study of the factors influencing downstream performance across South
African Bantu languages is required. For example, to investigate if any transfer can occur
between languages with different writing styles, such as Nguni languages and Tshivenda.
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Conclusions

This study used an evaluation-based approach to investigate feasible methods to help boost
Tshivenda coverage in NLP applications. First, we examined various state-of-the-art represen-
tation models based on the XLM-RoBERTa architecture to produce contextualised embeddings.
We then compared these to classic approaches that rely on global word representations such as
Word2Vec and TFIDF. We also explored tokenisation techniques, including Byte-Pair Encoding
(BPE), and Unigram to support the rich morphology of Tshivenda and other South African
Bantu languages. Finally, we evaluated the quality of the different embedding techniques on a
short text classification task using a new dataset of news headlines collected from Tshivenda and
Sepedi local radio stations.

Empirical results show that classic ML models work well for small datasets on topic classifi-
cation in the monolingual case. While deep neural network models perform well, their higher
computational requirements make them less suitable for small datasets where ML models are
faster to train and produce similar results. Pre-trained language models like AfriBERTa, and
AfroXLMR demonstrate exceptional performance in multilingual scenarios, even when not ex-
plicitly trained on Tshivenda or Sepedi texts. To our surprise, we have discovered that the
original XLMR model, which had previously faced criticism for its inadequate representation of
African languages within its training corpus, exhibits respectable monolingual performance for
both Tshivenda and Sepedi texts.

From the Zabantu models, our highest performing model was trained bilingually on Tshiv-
enda and Sepedi texts. It achieved an impressive 77% weighted F1 score on previously unseen
news headlines in Tshivenda and 74% in Sepedi. This performance slightly surpasses pre-trained
models such as AfriBERTA and AFRO-XLMR, which attained maximum scores of 75.2% and
74% for Tshivenda and Sepedi, respectively. These findings substantiate previous observations
that pre-training language models on smaller yet related datasets can effectively enhance the
performance in low-resource scenarios [Ogueji et al., 2021]. However, we believe there is still po-
tential for further improvement by employing techniques such as parameter-efficient fine-tuning
on existing advanced large models like XLMR and LLMA. Additionally, we observed encouraging
few-shot F1 scores, reaching approximately 70% for Tshivenda in the Zabantu models with as
few as 50 examples per news category. Pre-trained open-source models demonstrated a similar
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trend, averaging around 60% in few-shot news topic classification with Tshivenda as the target
language and Sepedi as the source language.

From our findings, most existing NLP tools can already be used for Tshivenda. Using cross-
lingual embeddings and few-shot learning, we observe that commendable performance can be
achieved even for small datasets, provided we have a larger dataset of a closely related language.
However, despite recent efforts to develop NLP resources for Bantu languages, we notice a signif-
icant gap in the availability of high-quality benchmarking datasets for South African languages,
indicating a need to curate data from different fragmented sources.

We hereby release our newly curated news headlines topic classification dataset to the public,
which will serve as a valuable contribution to the existing benchmark datasets for African lan-
guages. In addition, we provide our trained models as baselines on the HuggingFace platform,
enabling researchers to leverage and build upon our work in future investigations. We expect
that the methodologies employed in this study will inspire further advancements in research,
ultimately bridging the gap in NLP tool capabilities for South African languages. The dataset
and the model cards of the released artefacts are available in the appendix section of this report.
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and Hervé Jégou. Word translation without parallel data. arXiv preprint arXiv:1710.04087,
2017.

[Doval et al., 2018] Yerai Doval, Jose Camacho-Collados, Luis Espinosa-Anke, and Steven Schockaert.
Improving cross-lingual word embeddings by meeting in the middle. In Proceedings of EMNLP.
Association for Computational Linguistics, 2018.

[Sannigrahi and Read, 2022] Sonal Sannigrahi and Jesse Read. Isomorphic cross-lingual embeddings
for low-resource languages. In Proceedings of the 7th Workshop on Representation Learning
for NLP, pages 133–142, 2022.

[Duong et al., 2016] Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven Bird, and Trevor Cohn.
Learning crosslingual word embeddings without bilingual corpora. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing, pages 1285–1295,
Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/
D16-1136. URL https://aclanthology.org/D16-1136.

[Mishra and Viradiya, 2019] Mridul K Mishra and Jaydeep Viradiya. Survey of sentence embedding
methods. International Journal of Applied Science and Computations, 6(3):592–592, 2019.

[Azunre et al., 2021] Paul Azunre, Salomey Osei, Salomey Addo, Lawrence Asamoah Adu-Gyamfi,
Stephen Moore, Bernard Adabankah, Bernard Opoku, Clara Asare-Nyarko, Samuel Nyarko,
Cynthia Amoaba, et al. Contextual text embeddings for twi. arXiv e-prints, pages arXiv–2103,
2021.

https://aclanthology.org/N19-1380
https://arxiv.org/abs/2102.11278
https://aclanthology.org/W17-2906
https://doi.org/10.1613/jair.1.11640
https://aclanthology.org/D16-1136


Bibliography 89

[Chen et al., 2015] Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun, and Huanbo Luan. Joint
learning of character and word embeddings. In Twenty-fourth international joint conference
on artificial intelligence, 2015.

[Mesham et al., 2021] Stuart Mesham, Luc Hayward, Jared Shapiro, and Jan Buys. Low-resource
language modelling of South Aafrican languages. Apr 1, 2021. URL https://arxiv.org/

abs/2104.00772.

[Schuster and Nakajima, 2012] Mike Schuster and Kaisuke Nakajima. Japanese and korean voice
search. 2012 ieee international conference on acoustics, speech and signal processing (icassp),
2012-march:5149–5152, 2012.

[Bojanowski et al., 2017] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. En-
riching word vectors with subword information. Transactions of the association for computa-
tional linguistics, 5:135–146, 2017.

[Devlin et al., 2018] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-
training of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805,
2018. URL http://arxiv.org/abs/1810.04805.

[Peters et al., 2018] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.
doi: 10.18653/v1/N18-1202. URL https://aclanthology.org/N18-1202.

[Radford et al., 2018] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improv-
ing language understanding by generative pre-training. 2018.

[Liu et al., 2020] Qi Liu, Matt J. Kusner, and Phil Blunsom. A survey on contextual embeddings,
2020. URL https://arxiv.org/abs/2003.07278.

[McCann et al., 2017] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned
in translation: Contextualized word vectors. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.

neurips.cc/paper/2017/file/20c86a628232a67e7bd46f76fba7ce12-Paper.pdf.

[Pires et al., 2019] Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is multilingual
bert? CoRR, abs/1906.01502, 2019. URL http://arxiv.org/abs/1906.01502.

[Wu and Dredze, 2020] Shijie Wu and Mark Dredze. Are all languages created equal in multilingual
BERT? In Proceedings of the 5th Workshop on Representation Learning for NLP, pages 120–
130, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
repl4nlp-1.16. URL https://aclanthology.org/2020.repl4nlp-1.16.

[Muller et al., 2021] Benjamin Muller, Antonios Anastasopoulos, Benôıt Sagot, and Djamé Seddah.
When being unseen from mbert is just the beginning: Handling new languages with multilin-
gual language models. In Proceedings of the 2021 Conference of the North American Chapter of

https://arxiv.org/abs/2104.00772
https://arxiv.org/abs/2104.00772
http://arxiv.org/abs/1810.04805
https://aclanthology.org/N18-1202
https://arxiv.org/abs/2003.07278
https://proceedings.neurips.cc/paper/2017/file/20c86a628232a67e7bd46f76fba7ce12-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/20c86a628232a67e7bd46f76fba7ce12-Paper.pdf
http://arxiv.org/abs/1906.01502
https://aclanthology.org/2020.repl4nlp-1.16


Bibliography 90

the Association for Computational Linguistics: Human Language Technologies, pages 448–462,
2021.

[Hedderich et al., 2020] Michael A Hedderich, David Adelani, Dawei Zhu, Jesujoba Alabi, Udia
Markus, and Dietrich Klakow. Transfer learning and distant supervision for multilingual
transformer models: A study on african languages. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 2580–2591, 2020.

[Alabi et al., 2022] Jesujoba O. Alabi, David Ifeoluwa Adelani, Marius Mosbach, and Dietrich Klakow.
Adapting pre-trained language models to African languages via multilingual adaptive fine-
tuning. In Proceedings of the 29th International Conference on Computational Linguistics,
pages 4336–4349, Gyeongju, Republic of Korea, October 2022. International Committee on
Computational Linguistics. URL https://aclanthology.org/2022.coling-1.382.

[Ruder et al., 2019b] Sebastian Ruder, Anders Søgaard, and Ivan Vulić. Unsupervised cross-lingual
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Appendix A

Model card

A.1 Zabantu-XLMR - Multilingual Language Models for
South African Languages

A.1.1 Model Overview

This model card provides an overview of the multilingual language models developed for South
African languages, with a specific focus on advancing Tshivenda natural language processing
(NLP) coverage. Zabantu-XLMR refers to a fleet of models trained on different combinations of
South African Bantu languages. These include:

• Zabantu-VEN : A monolingual language model trained on 73k raw sentences in Tshivenda

• Zabantu-NSO : A monolingual language model trained on 179k raw sentences in Sepedi

• Zabantu-NSO+VEN: A bilingual language model trained on 179k raw sentences in Sepedi
and 73k sentences in Tshivenda

• Zabantu-SOT+VEN: A multilingual language model trained on 479k raw sentences from
Sesotho, Sepedi, Setswana, and Tshivenda

• Zabantu-BANTU: A multilingual language model trained on 1.4M raw sentences from 9
South African Bantu languages

A.1.2 Model Details

• Model Name: Zabantu-XLMR

• Model Version: 1.0.0

• Model Architecture: XLM-RoBERTa architecture
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• Model Size: 80 - 250 million parameters

• Language Support: Tshivenda, Nguni languages (Zulu, Xhosa, Swati), Sotho languages
(Northern Sotho, Southern Sotho, Setswana), and Xitsonga.

A.1.3 Intended Use

The Zabantu models are intended to be used for various NLP tasks involving Tshivenda and
related South African languages. In addition, the model can be fine-tuned on a variety of
downstream tasks, such as:

• Text classification and sentiment analysis in Tshivenda and related languages.

• Named Entity Recognition (NER) for identifying entities in Tshivenda text.

• Machine Translation between Tshivenda and other South African languages.

• Cross-lingual document retrieval and question answering.

A.1.4 Performance and Limitations

• Performance: The Zabantu models demonstrates promising performance on various NLP
tasks, including news topic classification with competitive results compared to similar pre-
trained cross-lingual models such as AfriBERTa and AfroXLMR.

Monolingual test F1 scores on News Topic Classification

Weighted F1
[%]

Afriberta-
large Afroxlmr

zabantu-
nsoven zabantu-sotven

zabantu-
bantu

nso 71.4 71.6 74.3 69 70.6
ven 74.3 74.1 77 76 75.6

Few-shot(50 shots) test F1 scores on News Topic Classification

Weighted F1
[%] Afriberta Afroxlmr

zabantu-
nsoven zabantu-sotven

zabantu-
bantu

ven 60 62 66 69 55

• Limitations:

– Although efforts have been made to include a wide range of South African languages,
the model’s coverage may still be limited for certain dialects. We note that the training
set was largely dominated by Setwana and IsiXhosa.

https://huggingface.co/castorini/afriberta_base
https://huggingface.co/Davlan/afro-xlmr-base
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– We also acknowledge the potential to further improve the model by training it on
more data, including additional domains and topics.

– As with any language model, the generated output should be carefully reviewed and
post-processed to ensure accuracy and cultural sensitivity.

A.1.5 Training Data

The models have been trained on a large corpus of text data collected from various sources,
including SADiLaR, Leipnets, Flores, CC-100, Opus and various South African government
websites. The training data covers a wide range of topics and domains, notably religion, politics,
academics and health (mostly Covid-19).

A.1.6 Ethical Considerations

• Privacy: The models do not store or retain personal data or user-specific information
during inference.

• Misuse: The models should not be used maliciously or to generate harmful or offensive
content. Responsible use of the models is encouraged, adhering to legal and ethical guide-
lines

• Bias: The training data used for the models may reflect biases in the sources. Evaluating
the model’s output for fairness and addressing any potential biases during fine-tuning and
deployment is recommended.

A.1.7 Conclusion

The Zabantu models provide a valuable resource for advancing Tshivenda NLP coverage and pro-
moting cross-lingual learning techniques for South African languages. They have the potential to
enhance various NLP applications, foster linguistic diversity, and contribute to the development
of language technologies in the South African context.

https://repo.sadilar.org/handle/20.500.12185/7
https://wortschatz.uni-leipzig.de/en/download/Venda#ven_community_2017
https://github.com/facebookresearch/flores
https://data.statmt.org/cc-100/
https://opus.nlpl.eu/opus-100.php
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Data sheet

B.1 Tshivenda/Sepedi News Topic Classification Dataset
- Datasheet

B.1.1 Dataset Information

• Dataset Name: Tshivenda/Sepedi News Topic Classification Dataset

• Purpose: This dataset is designed for news topic classification in the Tshivenda and Sepedi
languages.

• Description: The dataset consists of news headlines collected from public social media
pages of local radio stations including Thobela FM, Lesedi FM and Phalaphala FM

B.1.2 Dataset Overview

• Total Samples: 11k Sepedi and 9k Tshivenda news headlines

• Features: The dataset includes two main columns:

– Text: The news headlines text in Tshivenda or Sepedi.

– Label: The best matching news topic genre for each news article.

– Tags: All genres that may be associated with the news article.

Sample Tshivenda Headlines

text label tags

vhadzia misumbedzo vho thivha
bada n14 vunduni la nwest

conflict, war and
peace

conflict, war and peace
#society

100



Appendix 101

text label tags

lizhakandila la muzika wa jazz vho
jonas gwangwa vho lovha vha na
minwaha ya fumalo raru

human-interest human-interest #arts,
culture, entertainment and
media

muhasho wa pfunzo vunduni la
kwazulu natal wo lugela u vula
zwikolo matshelo

education education

Sample Sepedi Headlines

text label tags

economic freedom fighters mo
limpopo o bolela gore tsatsi le
lengwe le lengwe le swwanetse goba
letsatsi la mandela mongwaledi wa
mokgahlo mo profenseng jossey
buthane o re eff e ya go hlwekisa
lefelo la bagolofadi ka univesithing
ya limpopo

politics politics #society

univesithi ya limpopo e re e
gopodisisa go amogela batho bao ba
dirilego dikgopelo tsa bona ka
sebele meraladi e metelele e
fokotsegile lehono go se swane le
maabaneba bangwe ba batho bao
ba bolela gore ba thabisitswe ke ge
ba kgonne go dira dikgopelo tsa go
ithuta

education education

sehlopha sa bahlakodǐsi ka gauteng
se nyakana le bana ba babedi bao
go dumelwago ba timeletše nakong
ya dipula tše maatla maabane
dipula tše maatla di sentše ka
hammanskraal le moretele pretoria

disaster, accident
and emergency
incident

disaster, accident and
emergency incident#weather

B.1.3 Data Collection Process

• Data Sources: News articles were collected from the social media pages of local radio
stations catering to the Tshivenda and Sepedi-speaking communities.

• Preprocessing: The collected data underwent preprocessing steps, such as normalisation to
remove diacritics which were not used consistently, removing extra spaces, and removing
duplicate entries.
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• For some entries, we also had to split the text into individual headlines using bullet points
as delimiters.

B.1.4 Dataset Annotation

• Human annotators annotated a subset of 1k headlines for Tshivenda. Where possible, the
adjudication process was used to resolve disagreements between annotators and ensure
the quality of the annotations. The rest of the dataset was annotated following an active
learning process, with the human-annotated dataset providing a baseline for the model to
learn from.

• Similarly, for Sepedi 1.5k headlines were annotated by human annotators. The rest of the
dataset was translated to English and annotated using zero-shot classification with the
help of OpenAI’s text-DaVinci-003 model.

• The categories used where based on the codes provided by the IPTC Media Topics tax-
onomy. The taxonomy is available at https://iptc.org/standards/media-topics/ and the
codes are available at https://iptc.org/standards/media-topics/iptc-media-topics-codes/

B.1.5 Data Quality

• Incorrect Labels: The dataset was annotated by human annotators, and where possible,
the adjudication process was used to resolve disagreements between annotators and ensure
the quality of the annotations. However, there is a possibility of incorrect labels in the
dataset especially on ambiguous topics such as human interests, lifestyles, society and
entertainment.

• Data Limitations: Because the dataset was collected in the 2021/2022 period in South
Africa, it may be skewed towards topics pertaining to Covid-19, state capture, and crime.
Additionally, the dataset may not represent the entire spectrum of news topics in the
Tshivenda and Sepedi languages.

• Data imbalance: The dataset is dominated by topics like politics, health, crime, disaster
and education. As a result the models built with this dataset may struggle to classify news
articles into the minority classes such as science and technology, weather or sports.

• Data Augmentation: For Sepedi articles, we used back-translation to augment the dataset
with generative AI. However, we were unable to do the same for Tshivenda articles due to
the unavailability of advanced translation models for Tshivenda to English.

B.1.6 Data Usage

• Tasks and Experiments: The dataset can be used for news topic classification tasks, where
machine learning models are trained and evaluated to classify news articles into predefined
news categories.
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• Evaluation Metrics: Given the imbalance in the dataset, we recommend using the weighted
F1 score as the primary evaluation metric for classification tasks.

B.1.7 Data License and Citation

• License: Creative Commons Attribution-ShareAlike (CC BY-SA)

• Citation: Please cite the following paper when using the dataset:

– Nemakhavhani, N. (2023). Exploring cross-lingual learning techniques for advancing
Tshivenda NLP coverage. Unpublished manuscript, University of Pretoria.

B.1.8 Data Privacy and Ethics

• Privacy Considerations: The dataset does not contain any personally identifiable informa-
tion or sensitive data.

• Ethical Implications: We acknowledge the possibility of bias in our dataset as we collected
data from social media pages over a brief period where Covid-19, state capture, and crime
were the dominant topics. This could lead to an over-representation of these topics, making
it challenging to generalise the model to other news topics. However, efforts were made
to ensure a diverse range of news articles within these dominant topics to mitigate the
impact of bias. Additionally, the dataset augmentation techniques employed, such as zero-
shot classification and generative AI, aimed to introduce more variety and reduce the bias
inherent in the original data collection. Therefore, it is crucial to consider these factors
when interpreting and using the dataset for research or practical applications.

B.1.9 Data Distribution

• Availability: The dataset is available for research use and can be downloaded from the
HuggingFace Datasets Hub or GitHub.

B.1.10 Contact Information

• For any questions or comments, please contact the dataset authors at [u13075463@tuks.co.za].

https://huggingface.co/datasets/
https://github.com/dsfsi/mit-807-2022-ndamulelo
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Translations

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
modimo (God) kudu (very much) ntle (good) mathomong (in the beginning) seisemane (English)
motho (a person) bjo (bro) letsatsi (day) mathomong seisemane (at the beginning of English) phetolelo (translation)
dira (enemies) tsona (them) bakeng (for) ngwaga (a year) oxford (Oxford)
jesu (Jesus) bohlokwa (important) feela (only) kapa (or) dictionaries (dictionaries)
ng feta (arrive) hao (your) morena (king) oxford dictionaries (oxford dictionaries)
jehofa (Jehova) dingwe (others) hau (you) fihla (arrive) phetolela seisemane (translate english)
mang (who) nago (I have) latela (follow) thoma (start) phetolela (translate)
baka (cause) godimo (above) sebaka (space or time) tee (tea) molao (the law)
nako (time) bontsha (show) fumana (get) tloga (leave) swanetse (should)
modiro (work) swana (the same) tattoo (tattoo) matsatsi (days) wo

Table C.1: Translations for Sepedi Raw corpus popular topic terms (Auto-Generated with
Google Translate)

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
vhathu(people) muthu(person) vhathu khothe(court) mulayo(law)
muvhuso(government) tshifhinga(time) duvha(day) mulandu(crime) khethekanyo(segragation)
lushaka(nation) khumbelo(request) nwana(child) mveledziso(development) tshirema(black)
ndeme(important) tshumelo(service delivery) dzhena(enter) thaidzo(problem) uyu(this)
mushumo(job) afrika bvaho(from) tsireledzo(protection) komiti(committee)
shuma(work) tshipembe fhedza(finish) thodisiso(investigation) mulayotewa(constitution)
shumisa(use) afrika tshipembe(south africa) mbo(was) maduvha(days) muhulwane(head or leader)
ndivho(knowledge) masheleni(funds) pfa(hear) mbuelo(reward) bvelela(emerged)
shumiswa(used) thendelo(permission) minwaha(years) mbudziso(question) sedzulusa(investigate)
pfanelo(rights) tshelede(money) tendelwa(allowed) fha(give) tshinwe(another)

Table C.2: Translations for Tshivenda Raw corpus popular topic terms

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
limpopo kgoro (the door) maphodisa (the police) afrika (Africa) sekolo (school)
badudi (residents) tsheko (trial) limpopo afrika borwa (south africa) thuto (education)
magato (steps) mengwaga (years) tikologong (environment) borwa (south) south (south)
kgoro (the door) limpopo (creations) ntle (good) anc (anc) sekolong (at school)
boipelaetso (protest) feta (more) mengwaga (years) mmuso (government) barutwana (learners)
tikologong (environment) kgorong (at the door) monna (man) tona (minister) african (african)
magato boipelaetso (protest action) wo (wow) bagononelwa (suspects) ditshelete (money) kgoro thuto (school course)
ntle (good) magistrata (magistrate) bana (children) lekala (branch) kgoro (the door)
mmasepala (municipality) kgoro tsheko (koro sheko) ngoepe (I’m sorry) ditsela (roads) south african (south african)
bya (by) kgorong tsheko (korong sheko) fao (there) merero (projects) phagamego (height)
tikologo (environment) molato (crime) mosadi (a woman) nageng (in the country) morutwana (a student)
barutwana (learners) lapa (hungry) moatshe (beautiful) maloko (members) limpopo

Table C.3: Translations for Sepedi Human Annotated News Corpus popular topic
terms(Auto-Generated with Google Translate)
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
mesomo(lessons) limpopo(creations) mmuso(government) leratadima(the sun) mpsha(new)
kudu(very much) maphodisa(the police) basomi(mockers) bjo(bro) bana(children)
wo(wow) badudi(residents) maphelo(lives) khutso(silence) bodumedi(religion)
dira(enemies) ntle(good) magato(steps) bantsi(many) dimilione(millions)
gape(again) lefelo(space) dikgwebo(businesses) tlago(come) feta(more)
setshaba(nation) tsheko(a lawsuit) fokotsa(reduce) boemo leratadima(background level) lefaseng(in the world)
swanetse(should) molato(guilty) theknolotsi(technology) letetswe(expected) ra(ra)
thusa(help) mengwaga(years) tikologo(environment) dula(sit down) matla(strength)
bohlokwa(important) tikologong(environment) melao(rules) maatla(power) motho(a person)
soma(laugh) leo(that) tlhokego mesomo(demand resources) pego(report) neng(when)
hwetsa(shout) fao(there) sireletsa(protect) mmalwa(a few) boela(again)
nako(time) pula(the rain) tsebagaditse(identified) lefase(the world) bophara(width)
mosomo(a joke) polokwane(polokwane) palo(number) kudu(very much) dilo(things)
tloga(leave) kgauswi(soom) sego(bye) dithemperetsha(temperatures) mentsi(many)
leo(that) feta(more) mahlale(science) dutse(sit down) ditumelo(beliefs)
covid(covid) bekeng(a week) thusa(help) beke(a week) thata(difficult)
fela(just) polao(murder) kimollo(relief) mafelelong(in the end) kotsi(danger)
mongwe(someone) mmoleledi(the narrator) mekgatlo(organizations) nago(I have) ditokelo(rights)
eupsa(yupsa) monna(man) dikhamphani(companies) kgolo(growth) phela(live)
bangwe(some) bego(beg) boletse(said) bolwetsi(illness) tumelo(faith)

Table C.4: Translations for Sepedi Machine Annotated News Corpus popular topic
terms(Auto-Generated with Google Translate)

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
vhathu(people) khomishini(commission) limpopo vhathu(people) lihoro(party)
fu vhathu vunduni vhadzulapo(citizens) anc
madana(thousands) zuma minwaha(years) tshifhinga(period or time) lihoro anc
zwigidi(thousands) muhulwane(elder or leader) vunduni limpopo duvha(day or sun) khetho(elections)
mbili zwiito(actions) lovha(died) tshipembe vunduni
thanu(five) muvhusoni(government) mapholisa(police) pfala(heard) eff
covid vhutanzi(evidence) humbulelwa(suspected) mapholisa(police) masipala(municipality)
tshipembe dzhenelela(interference) fumi tshumelo(service delivery) mirado(members)
fumi mavharivhari(rumours) khothe(court) zwavhudi(well) masipalani
africa muvhuso(government) khombo(accident) afrika lihoro eff(EFF party)
ina(has) dzhenelela vhathu rathi(six) tshimbila(walk) mivhuso(governments)

Table C.5: Translations for Tshivenda Human Annotated News Corpus popular topic terms

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
vhathu(people) khothe(court) ramaphosa vunduni vhashumi(workers)

lovha(pass away) mulandu(crime) cyril limpopo masheleni(funds)
fu mapholisa tshipembe mapholisa(police) dzangano(party)

madana(hundred) vhulaha(kill) shango(world) vunduni limpopo(limpopo province) rannda(rand)
covid vhahumbulelwa(suspects) phuresidennde muhasho(department) khamphani(company)

tshivhalo(count) milandu(crimes) coronavirus gauteng muvhuso
zwigidi(thousands) vunduni(province) vhulwadze vhadzulapo tshifhinga(time)
tshipembe(south) munna(man) nyiledzo(lockdown) natal nwaha(year)

mbili(two) senga(testify) muvhuso(government) kwazulu mbili
khombo(accident) west phuresidennde cyril vhathu muhulwane(head or leader)
vhulwadze(disease) north afrika vundu(province) tshelede(money)

africa muhumbulelwa(suspect) vhathu mec fhungudza(reduce)
thanu(five) minwaha(years) vhadzulapo(citizens) vhuponi(place) fumi
coronavirus humbulelwa(suspected) afrika tshipembe doroboni(city) muofisi(official)
fumi(ten) senga khothe(testify in court) africa johannesburg vhuada(corruption)
rathi(six) farwa(arrested) covid vhuendi(traffic) million

Table C.6: Translations for Tshivenda Machine Annotated News Corpus popular topic terms
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