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Abstract
The human language is cryptic since words can be interpreted differently based upon the con-

text within which they occur. The exact meaning of a particular word in its context might be
trivial for humans who are generally unaware of language ambiguities. Machines, on the other
hand, are required to process, transform and analyse unstructured textual information to deter-
mine the underlying meaning.
“Acronyms” are shorter versions of phrases and are advantageous to save time and space for
both handwritten and typed out “expansions or meanings”. The main disadvantage caused by
acronyms is confusion; if misunderstood they can unknowingly cause damage, have a negative
effect, or abuse the receiver. Acronyms in one context might not be appropriate for a audience
in another context for the same acronym. Solving acronym disambiguation could help reduce
the negative effects of using acronyms.
In this project we apply NLP technologies for a case study at a particular organisation in the
Mining, Metals & Minerals ( MMM) sector. The MMM organisation plant sensors’ tags (the
acronyms) are derived by domain experts from technical programmable logic controller ( PLC)
names into pseudo English (metallurgical) descriptions, these being the ground truth expansions,
to describe the sensors adequately for multiple stakeholders (including non-domain experts).
There is varied human input, leading to inconsistency in initiating “tag names (acronyms)”, and
this leads to uncertainty of various degrees in trying to derive an “accurate description from the
tags (acronym expansions)”.
The aim of this research is to gauge to what extent transfer learning can be applied between
similar domains using large language models. For example, Scientific document understanding
could possibly explain some Mining, Metals & Minerals acronyms.
This leads us to the research question, can NLP pre-trained transformers be applied to the MMM
industry for which there are low resource settings and little (or no) acronym dictionaries?
We presented a SciAD/ SDU fine-tuned transformers that can disambiguate acronyms within
Scientific document understanding ( SDU) context very well and is a stepping stone to being
used in the Mining, Metals & Minerals ( MMM) domain in future. We foresee that there is still
opportunity to unlock the benefits of other pre-trained language models ( PLM). We note the
value that a small model could be used for the MMM domain.
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Chapter 1

Introduction

Natural language processing (NLP) has grown exponentially as a discipline in the last decade
and has found use within word sense disambiguation in the biomedical and clinical domains,
and is moving to other domains and language tasks of scientific document understanding. These
domains share a common task of acronym disambiguation.

Background to acronym disambiguation (AD): “Acronyms” are shorter versions of phrases and
are advantageous to save time and save space for both handwritten or typed out “expansions
or meanings”. Acronyms can be easier to “read” or used for quicker communication. From a
word count perspective, acronyms can optimise a manuscript or technical document by reducing
the number of “repeated phrases”. New acronyms for novel techniques can get “catchy” names
which are more memorable. The main disadvantage caused by acronyms is confusion, and if
misunderstood can unknowingly cause damage, have a negative effect, or abuse the receiver.
Acronyms in one context might not be appropriate for an audience in another context for the
same acronym. Solving AD could help reduce the negative effects of using acronyms.

In this project we apply NLP technologies for a case study at a particular organisation in
the Mining, Metals & Minerals (MMM) sector. MMM organisation plant sensors’ tags (the
acronyms) are derived by domain experts from technical programmable logic controller (PLC)
names into pseudo English (metallurgical) descriptions, this being the ground truth expansion,
to describe the sensors adequately for multiple stakeholders (including non-domain experts).

There is varied human input, leading to inconsistency in initiating ”tag names (acronyms)”,
and this leads to uncertainty of various degrees in trying to derive an ”accurate description from
the tags (acronym expansions)”.

1.1 Problem Statement

Sensor instrument tags are (mostly) ordered strings comprising unique IDs and several acronyms
which depict sensor classification, name-entity, and/or geo-location information.

1
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The acronyms which make up the string are typically supposed to be a few characters in length.
Certain acronyms that represent the main name-entity are to follow an industrial standard and
in some cases it has not been adhered to; strings tend to be a combination of various types
of acronyms. There are no clear delimiters (for example, white-space, character case, or fixed
lengths) to distinguish combined acronyms and acronym tokens.

Data users might not clearly understand the sensor tag description which could impact any
data analytic efforts, since an incorrect sensor tag may unknowingly have been selected for a
study or report. The sensor tag description is arguably the first opportunity to give a clear generic
picture of the sensors (meaning context to the feature) without involving a domain expert or
hindering self-service (big) data analytics tasks.

Note that each sensor instrument tag can be written in an expanded and more understandable
pseudo English form which we will call the sensor description.

1.1.1 Research Aims

The aim of the this research is to gauge to what extent transfer learning can be applied between
similar domains using large language models. For example, Scientific document understanding
(which is technical and there are public corpora like academic papers) could possibly explain
some Mining, Metals & Minerals acronyms (where there are low resources or sparsely defined
dictionaries). This leads us to the research questions.

1.1.2 Research Questions

Not all sensor tag descriptions AD expansions) are adequately described or of a good “data
quality” from a generic perspective - for example, do sensor tag descriptions have the elementary
phrases in the context to exactly or nearly match the sensor tag names (comprising one or
several acronyms)? So, the first natural task would be to sense check what acronym expansions
exist for the MMM domain and exist in the scientific and/or in the general language domain.
Therefore the overall research question is, can NLP pre-trained transformers be applied to the
MMM industry for which there are low resource settings and little (or no) acronym dictionaries?

• What performance can state-of-the-art (SOTA) pre-trained transformer models deliver
when applied to the MMM domain data in a zero-shot application?

• Is there more potential to disambiguate acronyms using generalized autoregressive pre-
training methods?

• How do smaller main stream autoencoding based models perform?

1.1.3 Scope and limitations

This work is focused on AD, which is a downstream task to Acronym Identification (AI) or
Abbreviation Definition Identification (ADI).
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Anticipated model limitations are expected to occur from the base pretrained models them-
selves, in terms of the data the models were trained on - so there might be bias. For example,
models trained on English will be used (instead of multilingual language models).

Sourcing public datasets that contain the necessary features of acronyms, acronym expansions
and context example features, but are not of high quality will impact this work. Any dataset
might itself not be balanced due to the nature of limited access to domain-specific knowledge. We
are, however, grateful for the good quality public datasets out there, exepcially when considering
the effort and resources these take.

Choices made regarding data preprocessing and/or modeling parameters can skew the results
- the results will thus have a dependency on the datasets used, as well as the model parameters
chosen.

Upfront no data curation will be done; instead the dataset sourced will be preprocessed such
that model size limits are not a limiting factor. The textual context will be simplified to reduce
noise (such as replacing quantities with a single numeric string, removal of special cases strings,
and only allowing alphabetical characters in the training data).

Insufficient training data or data that does not fully represent the real-world or edge cases could
result in NLP hallucinations if generative AI is pursued. For this work, we are not ”generating
or inferencing” outputs, but rather performing an “understanding” task.

1.2 Summary

The outline of this dissertation is as follows.

In Chapter 2 we present a literature review comprising two sections - firstly, a background
of word sense disambiguation (WSD), and WSD related to acronym and context investigations
in the biomedical and/or clinical domains. Then, secondly, an overview of machine learning
technologies or methods on cutting edge embeddings and self-supervised learning methods is
presented. A summary of acronym tasks are defined, and thereafter related work in the scientific
domain discussed.
In Chapter 3 we suggest a methodology for experiments. The baseline end-to-end memory ar-
chitecture which is LSTM-based is described. Individual transformers models or an ensemble
setup is discussed, and how they experiments will relate the the research questions.
In Chapter 4 experiment results are reported. Baseline results and individual transformer eval-
uation metrics are recorded and described. We further assess the predictability, computability
and stability of the work done.
In Chapter 5 we discuss the results in several components, namely the key findings, interpreting
the findings and a discussion of the limits of the study.
In Chapter 6 we conclude and formulate recommendations for future work.
Appendix A has more detailed tables of experiment results, Appendix B gives samples of pre-
dictions, and Appendix C documents the modelling process in terms of training and validation
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monitoring, and code requirements for python packages, and a brief hardware description relating
to model experiments done within this work.



Chapter 2

Literature Review

2.1 Word Sense Disambiguation

2.1.1 Background

A good summary of word sense disambiguation may be found in [Navigli, 2009]. The human
language is cryptic since words can be interpreted differently based upon the context they oc-
cur. The exact meaning of a particular word in its context might be trivial for humans who
are generally unaware of language ambiguities. Machines on the other hand are required to
process, transform and analyse unstructured textual information to determine the underlying
meaning. Word sense disambiguation is the computational identification of word meanings (i.e.
the assigning of appropriate senses) based on the context in which the words exists. WSD is
extremely dependant on knowledge to infer the most sensible meaning of words. Both humans
and machines can only extract word meanings if knowledge sources exist. Knowledge sources
such as unstructured collection of texts (corpora) or structured resources (such as dictionaries,
semantic networks, ontologies, etc) are available. Note, however, that it is well known that
manual creation and upkeep of such knowledge resources is expensive and time consuming.

The process of identifying the word sense using WSD normally begins with the usual prepro-
cessing steps, e.g. tokenization, part-of-speech tagging, lemmatization, chunking and parsing. A
set of features is then used to represent the text (which may include information derived from
these preprocessing steps). Features broadly fall into the following categories:

• Local features which focus on investigating words situated close to the target word, for
example their part-of-speech tags and position relative to the target word.

• Topical features, often given as bags of words (BoW), which represent more general con-
texts, describing a window of words up to a whole paragraph.

• Syntactic features, which may be outside the local context, that represent syntactic cues
between the target word and the other words in the same sentence.

5



Chapter 2.Literature Review 6

• Semantic features which describe previously established senses of words in context.

WSD may be supervised or unsupervised. In supervised WSD, machine-learning techniques
use labeled training sets (i.e. examples encoded in terms of a set of features) together with the
applicable sense label. Methodologies that have historically fallen within this category include
decision lists, decision trees, naive Bayes, neural networks, support vector machines (SVM) and
various ensemble methods such as majority voting, probability mixture, rank-based combination
and AdaBoost.

Unsupervised WSD, on the other hand, is based on unlabled corpora. Methodologies falling
within this category include context clustering - which incorporates cosine similarity and latent
semantic analysis (LSA), word clustering and cocurrence graphs.

The line between supervised and unsupervised learning is hazy, and some methods are mini-
mally supervised or semisupervised and can learn sense classifiers from annotated data. One such
method is bootstrapping which aims to solve the lack of annotated data and the data sparsity
problem, which generally uses either a cotraining or self-training approach. Here one needs to
choose a set of heuristics to follow, for example in Yarowsky’s approach, the heuristics employed
are that of one sense per discourse (i.e. within a particular discourse, a word is consistently
referred to in the same sense) and of one sense per collocation (i.e. relative distance, order and
syntactic relationship of nearby words consistently contribute to determining the sense of the
word).

The biomedical field is an example of this, and much work has been done within this sub-
domain in recent years. In the task of information extraction (IE) and solving the ambiguities
of domain specific concepts the specific task of acronym expansion can be classified as a disam-
biguation problem. We therefore review several pertinent studies to glean useful methodologies.

2.1.2 Acronym disambiguation

Acronym (or abbreviation) sense is a subset or special case of WSD. An area ripe for the study
of accronym disambiguation is the clinical domain, since there are only a few available acronym/
abbreviation datasets for the clinical domain, and clinical notes are informal in practice and
implies the structure and formatting are fine between clinicians (or domain-experts) and not
intended for re-use (or opportunities for automation).

[Li et al., 2018] did some important acronym disambiguation (AD) work for Enterprises by
adopting previous work; previous work namely:

• Generic rules or text patterns methods: Enterprises using generic rules are not adequate
since it assumes acronym and acronym expansions co-exist in the same context (whereas
for Enterprises they are typically found apart).

• Entity Linking (EL) or special case of AD methods: EL relies on public meanings, how-
ever for Enterprises, the public meanings generally do not correlate. The Entity Linking
algorithms either:
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– Calculate the cosine similarity between the acronym and the acronym’s document; or

– Calculate the topical coherence between the acronym and other relevant documents
based on overlaps or links; or

– Calculate a hybrid of the two measures.

[Li et al., 2018] took the strengths of generic rules and Entity Linking and proposed an acronym
mining stage that is done offline and requires the input Enterprises corpus to create an on-demand
reference dictionary. The high-quality mining process quantifies the raw data on

• candidate generation (to find the acronym expansions, firstly from the Enterprise corpus,
and thereafter from the public domain, and categorises candidates based on popularity
scores to infer the genuine meaning),

• candidate deduplication (to keep the best or exact expansion to represent a group of similar
and varying expansions), and

• context harvesting (to store the context as metadata, additionally the best context window
seemed to be 30 tokens or words surrounding the acronym).

The candidate generation techniques could yield 94.5% valid labels from the 2000 random samples
selected from the 17285 mined acronyms and expansions.

The three fit-for-purpose models are candidate ranking, confidence estimation and final se-
lection. The candidate ranking model makes predictions based on likelihood via a boosted tree
algorithm. The confidence estimation model, which is also a boosted tree algorithm, is used as a
classification model to decide whether to trust the best ranked answer or not; and a confidence
threshold is used to block misleading expansions. The final selection model helps discern the
ranks of the top results, meaning popular public expansions with a low confidence estimation
will move down the ranks of the reported results of the most real meaning expansion. The
combination of the models are able to outperform state-of-the-art Entity Linking (EL) systems:
Wikifier and AIDA on Microsoft Office365 documents (that are not in the public domain).

In [Charbonnier and Wartena, 2018] a set of 19,954 examples of 4,365 ambiguous acronyms was
constructed using image captions as found in scientific papers, together with their contextually
correct definitions from different domains. The context comprised either the image caption, the
acronym it was taken from or the caption expanded with sentences referring to the image. (If
more context was required due to less than 15 tokens being in the caption, the referring sentence
was added to the context, and then left and right neighbour sentences until it had a total of 35
tokens. The unsupervised classifier was defined as follows. The predicted definition of acronym
a given context C is

pred(a, C) = max
D∈Dcos (cv(D), cv(C))
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where, for t = s0, s1, ...sn a sequence of tokens, the context vector cv(t) can be written in
terms of a sum involving the context vector (i.e. word embedding) of the tokens si,

cv(t) = 1
N

n∑
i=0

idf(si) · cv(si).

It was found that all methods using the acronym’s context performed better than the major-
ity classifier, and that adding more context for short captions resulted in small improvements.
Using simple word overlap gave better results than using pre-trained vectors. The unsupervised
classifier used (via a form of cosine similarity) in tandem with corpus specific word embeddings,
performed better than all of the other variants. For cases where the cosine similarity was at least
1, an accuracy of over 0.95 could be achieved. They envisaged that follow-up research included
learning text representations with neural networks, and thereafter learning text similarity as
well.

In [Zhong et al., 2021], they tackle acronym disambiguation (AD) in Scientific document
understanding (SDU) through a hierarchical dual-path BERT (hdBERT ) method to capture
“the general fine-grained and high-level specific representations for acronym disambiguation”.

2.1.3 WSD in a biomedical and/or clinical domain

In [Wu et al., 2017], an open-source practical solution was developed to generate corpus-specific
”sense inventories”. Their clinical abbreviation recognition and disambiguation (CARD) solu-
tion is based on a framework comprising three steps: (1) machine learning algorithm ( support
vector machines (SVM)) and using available clinical abbreviation lists to recognise abbrevia-
tions, (2) sense detection using clustering techniques to obtain centroid sentences, and (3) sense
disambiguation step based on robust profile-based word sense disambiguation methods from [Xu
et al., 2012]. The key challenges were no complete clinical abbreviation lists existed and clin-
ical abbreviation are ambiguous. Clinical abbreviations are typically invented by health care
providers in an adhoc manner, and thus fall under WSD. [Wu et al., 2017] learnt that WSD
supervised machine learning yields great results but were potentially not worth it due to the
heavy need to annotate ambiguous abbreviation training sets. So they used profile-based WSD
to overcome the cost of annotation.

A single bidirectional long short-term memory network (Bi-LSTM) outperformed supervised
WSD that used a PageRank algorithm on occurrence graphs and was in the same range as
unsupervised knowledge-based (KB) models setups. Key learnings of Bi-LSTM methods were
the selection of direction impact accuracy and most for our purpose pre-trained embedding have
an advantage for the same WSD task.

Past relevant work: A significant amount of work relevant to our research objectives has been
carried out by different research groups, and we highlight some contributions below (refer to
Section 2.2 to understand technologies that these contributions refer to).
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• The effects of injecting various types of noise into a dataset on Named Entity Recogni-
tion (NER), Relation Extraction (RE), Textual Inference (TI) and Semantic Similarity
(SS) was investigated in [Moradi et al., 2021]. On average, considering on an individual
basis each of the character-level noise types (deletion, insertion, letter case changing, com-
monly misspelled words, repetition, replacement and swapping) and word-level noise types
(replacement with abbreviation, abbreviation expansion, deletion negation, word order,
repetition, replacement with synonym, singular / plural verb and verb tense) resulted in
6-15% reduction in performance as compared with the original test set. (Here, on av-
erage, ClinicalXLNet performed better than ClinicalBERT, which performed better than
ClinicalELMo.)

• [Oh et al., 2022] aimed to determine which of BERT, RoBERTa and XLNET would best
perform in the task of Protected Health Information (PHI) identification. It was found
that XLNET performed best indicating a greater propensity for understanding the context.
XLNET also showed superior performance as a pretraining model; this was attributed to
word embedding being well constructed using the two-stream self-attention method. Note
that in this work, quite a bit of preprocessing was involved in the form of tokenisation,
inside-outside-beginning (IOB) tagging, and word piece tokenisation, prior to being input
into BERT, RoBERTa or XLNET.

• [Huang et al., 2019] found that for the task of predicting mechanical ventilation using the
area under the receiver operating characteristic curve (AUROC) score to perform compar-
isons, while BERT outperformed XLNET, Clinical CLNET outperformed ClinicalBERT.
This demonstrates firstly the importance of pretraining on domain-specific corpus, and
secondly that Clinical XLNET has the advantage due to the usage of sequential modeling
of the temporal dimension of notes since time order matters in clinical prognoses.

• [Huang et al., 2020] compared the performance of BERT to ClinicalBERT in firstly language
modelling and next sentence prediction, and thereafter in predicting hospital readmission.
A massive improvement from around 0.5 to 0.9 (with standard deviation of 0.002) using
ClinicalBERT was seen for the former. Similarly for the latter, ClinicalBERT outperformed
BoW, Bi-LSTM, and BERT in accurately predicting 30-day readmission using discharge
summaries.

2.2 Technologies

2.2.1 Cutting edge embeddings

While generic domains enjoy copious amounts of information, and numerous robust available
methodologies, dictionaries and ontologies, often-times our problem statement relates to a specific
sub-domain. In these cases ones needs to be able to find ways of making use of the generic-domain
learnings, and overcome various obstacles such as comparatively low data and limited dictionaries
to name a few.
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In [G.K. et al., 2003], they had 25 million Mayo clinic electronic clinical notes, and they needed
to create a suitable clinical corpus as well as manual sense annotations (they were applying a
supervised machine learning methodology). They were able to compare their (clinical domain)
results with those in the biomedical literature space which has the benefit of NLP tools developed
at the National Library of Medicine (NLM) as well as the United Medical Language System
(UMLS) ontology. The latter has been reported to have 7400 ambiguous words which has made
it an ideal candidate for investigating WSD methodologies.

In order to perform this analysis on the unstructured textual data obtained from the clinical
domain, they employed a work-flow that involved identifying the top 50 relevant ambiguities
in the large clinical note corpus (the MetaMap tool and the United Medical Language System
(UMLS) ontology were useful here in selecting these ambiguities), and applying and evaluating
a (then) state-of the art WSD machine learning algorithm to small datasets in which up to 120
sense-labeled instances of each ambiguity were identified (from both the clinical and biomedical
domains). Thereafter the most productive features were pin-pointed patterns in the text within
a vicinity of the ambiguous sense.

More recently, a survey of 70 relevant biomedical word embedding papers between January
2016 to September 2020 was done on cutting edge NLP models [Chiu and Baker, 2020]. Cutting
edge embeddings include

• Global Vectors for word representations (GloVe), here a word co-occurrence matrix is
generated where each word in a particular sentence is said to be in the context of each
of the others in that sentence). GloVe learns neural embedding of word co-occurrence
frequencies at sentence level.

• Word2vec, which makes use of tools like Continuous Bag of Words (CBOW) and skip-gram
which enable neural embeddings to be learnt through a neural network.

• FastText, which is an extension of Word2vec but allows for both word and character
(morphological)-level information which is of particular use in domains with complicated
words like the biomedical field. By utilising sub-word information, FastText can provide
embeddings for unseen words. This is because even if a testing word is unseen during
training, its embedding can be obtained using the sum of its character n-grams.

• ELMo consisting of multiple layers of Bi-LSTMs (Bidirectional Long Short-Term Mem-
ory) where character-level embeddings encode both contextual and sub-word information.
LSTMs which, according to its creator Jürgen Schmidhuber, is the most cited neural net-
work of the 20th century, consist of an input gate, an output gate and a forget gate.
LSTM units can allow gradients to flow unchanged which helps to solve the vanishing gra-
dient problem that arises in training vanilla random neural networks (RNN) using back-
propagation. Since ELMo uses Bi-LSTM in training, its language model understands the
next word as well as the previous word in sentences. Each word (k)’s embedding is given
by the weighted sum

ELMotask
k = γk ·

(
stask

0 · Xk + stask
1 · H1,k + stask

2 · H2,k

)
,
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where si are the weights, Xk the character-level embeddings, Hi,k the hidden states of
the Bi-LSTMs, and γk a task-specific scaling factor allowing ELMo’s representation to
be fine-tuned based on its downstream tasks such as sentiment analysis and document
classification. The weighting factors si and γk are updated during task-specific model
training and frozen (and concatenated with input representation) when ELMo is used
within a task.

• Bidirectional Encoder Representations from Transformers (BERT) considers three em-
bedding types - namely, token embeddings (as learned for the particular words from the
WordPiece vocabulary), sentence embeddings ( BERT predicts which of two sentences
comes first, and which of the sentences a particular word would belong) and position em-
beddings where a particular word would be positioned within a sentence. The first step in
BERT’s functionality is the step of input embeddings, where input text is embedded into
vectors. Under Masked Language Modelling (MLM), 15% of words in each sequence are
randomly masked, and it is the model’s job to try to predict these masked words based
on the context of the unmasked words. Note that there is therefore no bias towards ei-
ther the left-to-right or right-to-left direction, so that words of all positions have èqual
opportunity’. Under Next Sentence Prediction (NSP), BERT tries to predict whether 2
sentences are consecutive. Thereafter a Self-Attention layer maps these input embeddings
to an output vector by taking the dot product of a query Q with all keys K, dividing by the
square-root of the dimension of K. Taking the softmax of these results in a set of weights
for keys V , where (K, V ) is a set of key-value pairs. In other words, the self-attention is
given as follows:

Attention(Q, K, V ) = softmax
(

Q · K√
dk

)
V

Whilst both the quickly trainable GloVe and Word2vec are morphological (i.e. character)
information-agnostic and contextual information-agnostic (and are unable to handle out
of vocabulary (OOV) words), FastText encodes morphological information but remains
contextual information-agnostic. Both ELMo and BERT leverage both morphological in-
formation and contextual information. ELMo experiences some locality bias, where models
focus on words closer to target-trained words since in ELMo a text sequence is analysed
either from left-to-right or combined left-to-right and right-to-left; this bias is eradicated
in the BERT model. ELMo and BERT tend to outperform Word2vec and GloVe, and are
able to achieve cutting-edge performance.

• RoBERTa (A Robustly optimised BERT approach) is an approach that has found that
certain design decisions in terms of pretraining BERT models could substantially improve
performance [Liu et al., 2019b]. In particular this strong improvement in performance came
from training the model longer, having bigger batches over more data, removing the next
sentence prediction objective, training on longer sequences, and dynamically changing the
masking pattern that was applied to the training data.

• CharBERT is a character-aware pre-trained language model [Ma et al., 2020b]. It has a
slight edge over BERT when dealing with subwords by including character-level informa-
tion. The character-level extends the advantages of Byte-Pair Encoding (BPE) in OOV
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cases. There is a lack of robustness when using BPE WordPiece due to incomplete mod-
eling since fine-grained character information and whole word representation may not be
incorporated in the subword representation; and secondly minor typos can have significant
impact on the BPE token leading to inaccurate and incomplete representations. Char-
BERT, which has been evaluated on 8 benchmarks (showing a significant performance
improvement compared with BERT and RoBERTa baselines) and tested using three char-
acter attack test sets on three types of tasks (showing a large robustness improvement), is
able to enrich the word representation in pre-trained language models (PLM) since they
incorporate features at an addition level of a word in the model.

• Transformer-XL, which forms the basis of XLNET, addressed issues related to ( RNNs and
the associated LSTM networks which are difficult to optimise due to gradient vanishing and
explosion, as well as issues relating to predefined context length such as no information flow
across segments which leads to models not being able to capture longer-term dependencies
beyond the fixed context length [Dai et al., 2019]. It did this by reusing hidden states ob-
tained in the previous segment rather than computing them from scratch, so that modeling
of long-term dependency is possible and the problem of context fragmentation is solved.
Also, relative position encoding was introduced instead of relative ones. Transformer-XL
obtained strong results at both character- and word- level language modeling (being the
first self-attention model to see substantially better results than ( RNNs for both) and
could achieve relatively coherent results using a fraction of input data.

2.2.2 Self-Supervised Learning (SSL)

BERT and models like it are modeled using Self-Supervised Learning, where instead of the
human manually labeling the training data set, these labels are automatically generated by the
model, based on data attributes and the pretraining task definition [Ma et al., 2020a]. Language
representations are learned using a pretraining loss function (that we try to minimise) which, in
general, is a sum of m pretraining tasks multiplied piece-wise by m weights,

LSSL = λ1LP T −1 + λ2LP T −2 + ... + λmLP T −m.

Below we take a look at some of the various forms that these pretraining tasks can come in:

• In Casual Language Modeling (CLM), one tries to predict the next word based on the
context, in particular, based on the words to the left of the given word, or to the right of
it (i.e. this falls under unidirectional Language Modeling). The CLM loss is given by

L
(x)
CLM = − 1

|x|

|x|∑
i=1

log P (xi|x<i)

where x<i = x1, x2, x3, ..., xi−1 and |x| is the number of tokens in the sequence.

• In Masked Language Modelling (MLM), the pretraining task which RoBERTa uses and
one of the two pretraining tasks which BERT uses (in BERT, the authors masked 15% of
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tokens). The MLM loss is then given by

L
(x)
MLM = − 1

|Mx|
∑

x∈Mx

log P (xi|x\Mx
)

where Mx is the set of masked token positions in x and x\Mx
represents the masked version

of x. There are various of extensions of MLM, two of which we describe below.

– Translation Language Modeling (TLM) , also called cross-lingual MLM (XMLM),
uses parallel data in cross-lingual pretraining. The input is a pair of sentences (x, y)
where say y is a translation of x, and, similar to MLM, both sentences are randomly
masked. The TLM loss function is then given by

L
(x,y)
MLM = − 1

|Mx|
∑

x∈Mx

log P (xi|x\Mx,\My
) − 1

|My|
∑

x∈My

log P (xi|x\Mx,\My
).

– Swapped Language Modeling (SLM) works the same as MLM but instead corrupts
the sequence with random tokens from the vocabulary with probability 15% (this
overcomes the discrepancy between the pretraining and fine-tuning stages which MLM
experiences). The SLM loss function is given by

L
(x)
SLM = − 1

|Rx|
∑

x∈Rx

log P (xi|x\Rx
).

• The Replaced Token Detection (RTD) is made use of by ELECTRA. Here, output tokens
are obtained from a generator model trained using the MLM objective, and then uses these
to corrupt the sentence. RTD is then a token-level binary classification task which aims to
predict whether a token is predicted or not. The RTD loss is defined as

L
(x)
RT D = − 1

|x̂|

|x̂|∑
i=1

log P (d|x̂i).

where d ∈ {0, 1} depending on whether the token is replaced or not.

Various model are based on the same concept as RTD, for for example Sentence Order Predic-
tion (SOP) and Next Sentence Prediction (NSP). We briefly describe another of these, Random
Token Substitution, below.

• Random Token Substitution (RTS) is sample efficientlike Replaced Token Detection (RTD)
but does not need as separate generator to corrupt the input sequence, and instead uses
randomly substituted 15% of the tokens from the vocabulary. The loss function is similarly
given by

L
(x)
RT S = − 1

|x̂|

|x̂|∑
i=1

log P (d|x̂i).

It has been shown that the RoBERTa model trained using RTS has the same performance
as the RoBERTa model trained using MLM, but requiring less training time.
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2.2.2.1 TinyBERT

[Kovaleva et al., 2019] revealed that disabling certain self-attention heads were possible and lead
to no drop in model accuracy and found fine-tuned BERTs suffered from over-parametrisation.
Smaller models that achieved comparable performances to the BERTs are possible and with
task-specific distillation methods.
Such task-specific distillation have led to competitive fine-tuned tinyBERTs. [Jiao et al., 2019]
looked for the means to reduce the size of large parameterised PLM as well as improve the
inference time experienced by edge devices like mobile phones. They focused on knowledge
distillation (KD) technique for transformers, rather than the most common methods of weight
pruning or quantisation. The KD philosophy that was proposed used a two-stage learning
framework to facilitate the teacher BERT transferring knowledge to student tinyBERT.
tinyBERT4 is 7.5 times smaller and capable of 9,4 times faster inference while maintaining 96.8%
GLUE benchmark performance of the teacher BERTBASE .

2.2.3 Acronym tasks

The acronym tasks we are interested in are those of [Church and Liu, 2021]

• Abbreviation Definition Identification (ADI), which is the realistic task in most practical
application, takes one or more texts as input and determines pairs of short forms (SF -
abbreviation / acronym) and long forms (LF - expansion of acronym) as defined in input
texts, with no restriction on the length of the input texts.

• Acronym Identification (AI), which is similar to NER, and takes a text as input and
provided each input word with a particular tag, e.g. a B (begin), I (Inside) or O (Outside)
followed by -long if it is a LF, or -short if it is a SF.

• acronym disambiguation (AD), which takes a sentence with an ambiguous SF as input
and outputs its appropriate LF; this links to WSD as has been discussed above.

2.2.4 Related work

2.2.4.1 Hierarchical Dual-path BERT (hdBERT)

In subdomains it becomes useful to use domain specific versions of BERT. For example, when
comparing the performance of BERT and BioBERT (trained from general domain text and
bio-medical corpora), BioBERT performed noticeably better (2-5 points in F-score on average).
SciBERT, which is based on fine-tuning of pre-trained BERT using scientific publications from
both computer science and biomedical domains, has in turn outperformed BioBERT. Further
improvements to SciBERT have been sought in the form of constructing a science specific vocab-
ulary rather than BERT’s default dictionary (unlike in BioBERT) among other things. FinBERT
also exists, obtained by finely tuning generic BERT embeddings using financial data from various
online financial sources. In a further development, XLNet has been proposed to help solve the
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long-text dependency by replacing consecutive sentence modelling with modelling of permuta-
tions of sentences, and appears to give better results than BioBERT and ClinicalBERT.

In the scientifc domain, a further construction comes in the form of combining models from
the above; for example, hdBERT comprises two context-based pre-trained models (RoBERTa
and SciBERT) integrating into a multiple layer perceptron (or a neural networks) to predict
outputs [Zhong et al., 2021]. Hierarchical Dual-path BERT (hdBERT) incorporates the general
domain and fine-grain ( BPE ) representations using RoBERTa and the (scientific) domain
specific knowledge using SciBERT as inputs to a binary classification gate. The loss function is
defined as

L(σ) = −
∑
D

(y log(p) + (1 − y) log(1 − p) + λ∥σ∥2
2

where ground truth is y, hdBERT parameters are σ, regulariser parameter is λ and trainset D.

Figure 2.1: Conceptual hdBERT model comprising RoBERTa and SciBERT outputs from a
multiple layer perceptron network and sigmoid unit.

In Figure. 2.1 hdBERT illustrates data flow where the input sentence sample comprising
acronym and expanded long form is split to obtain BPE, eBP E and SciBERT encoding, eW P E .
In parallel the models distill the information and produce RoBERTa output representations,
hRoBERT a and SciBERT out representations hSciBERT . The model representations are inte-
grated into the multiple layer perceptron network and sigmoid unit.

2.2.4.2 Acronym Disambiguation with Multiple Training Strategies

Work by [Pan et al., 2021] leveraged pre-trained BERT family models as binary classification
models and implemented several training strategies to substantially improve a BERT-based
model for scientific document understanding acronym disambiguation.

The SciBERT was re-trained with ” task-adaptive pretraining (TAPT) as the new pretrained
model. The training steps applied were ”Dynamic Negative Sample Selection” (to have a more
balanced training dataset), and ”Adversarial Training” (by adding perturbations to the embed-
ding layer for a more generalised model to handle unseen data). And incorporating a training
step involving ”Pseudo-Labeling” a synthetic training dataset further improved the model to
near human level performance.

The binary classification model inputs a sentence containing an acronym and a expansion, and
the model outputs a prediction score of the inputted expansion.
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Methodology

We will treat the acronym disambiguation task as a closed-domain question answering problem.
The models will learn how to discern the acronym expansions in context based on having learnt
simple question contain the short form acronyms from training context.

3.1 Data

An open datasets was identified and used to develop the potential MMM acronym disambiguation
solution of fine-tuned SDU models. And a zero-shot approach of the fine-tuned SDU models was
applied to a sample MMM dataset.

3.1.1 Open dataset: SciAD for SDU

[Veyseh et al., 2020] provide an shared task dataset called SciAD for acronym disambiguation.
SciAD comprises acronyms used for Scientific document understanding (SDU). The scientific
domain acronyms were sourced from 6 786 English research papers comprises 62 441 sentences.
The dataset contains the identified acronym and the correct expansion of the acronym; and the
dictionary of 732 ambiguous acronyms has been collected and contains acronym potential long
forms (or expansions).
The time and efforts of acronym identification and providing the correct expansion of the acronym
in the open or public SciAD dataset is highly appreciated for this work.

Open dataset:
Data was preprocessed (cleaned and transformed) for model encoding. Identified in the SciAD
data were English words, none English words, scientific jargon, numerical text is various formats
as equations or different formats of a quantities; as well as punctuation and uniform resource
locator (URL) links.

The SciAD data for this study was simplified in the following way.

16
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• Quantity text was detected by a regular expression and replaced with a generic ’123’ string.
For example, 321.09e-5 becomes 123. For this work MMM data would not have complicated
equations nor numerical formats within the context.

• None alphabet characters were replaced by underscores and meaning accent characters
were constant. And if the entire word comprised none alphabet characters were removed
from the context. The test example, àè̀ıòùaeiou would become aeiou, and the test
example, ’恭喜发财’ (’May you be happy and prosperous1’) would be removed. For this
work MMM data typically would not have accent or special characters within the context.

• NLTK Tokenizer Package used to divide strings into lists of substrings. Lower case was
applied and isAlpha() method removed URL for example ”http://helloworld” and conse-
quently removed any hyphenated words. For this work MMM data typically URLs are not
recorded, but the hyphenated words could exist.

• special cases: ” - ” or ”o - d ” as empty string; and ” ’s” to ”s” were cleaned up for general
purposes.

• the context length was capped to 32 tokens (and based upon acronym position results in
Figure 4.12).

3.1.2 Domain dataset: MMM data

A sample set of 50 examples was selected from the MMM data, and the ground truth or expansion
was annotated.

Figure 3.1: Subset of the Sample MMM data.
9 examples are shown from the 50 annotated examples.

In Figure. 3.1 a clipping of nine MMM data examples. We observe in the nine examples of the
sample set of 50 examples. The first three cases (id1, id2, id3) are have the acronyms expansions
near the end of the context (or MMM descriptions); the next three cases (id45, id46, id47) the
expansion are in the middle and the acronym characters are swapped (and is an domain specific
rule for ”differential” measures); and the last three cases (id48, id49, id50) the expansion are at
the beginning and the acronym is three characters long.

1Google Translate

https://translate.google.com/


Chapter 3. Methodology 18

3.2 Baseline

A baseline MemN2N model was established using modern memory techniques, and state-of-the-
art long short-term memory (LSTM) algorithm.

3.2.1 End-to-End Memory Architecture

[Sukhbaatar et al., 2015] presented an end-to-end memory (recurrent neural network) archi-
tecture, abbreviated as MemN2N, with a recurrent attention model capable of handling long
external memory and this approach was shown to be fit for question and answering tasks and
more. The emphasis on the end-to-end implied less supervised training requirements from the
input-output pairs when compared to [Weston et al., 2014] Memory Network architecture.

[Sukhbaatar et al., 2015] approach has two memory representations, namely an input and an
output memory in order to make the final answer prediction.

Input memory is the inputs embedded into an input embedding matrix, I of d dimensions
by the vocabulary size, v. And similarly the questions are embedded into question embedding
matrix, Q. The relationship between the inputs and questions are matched by dot product and
followed by a softmax to obtain a probability vector, P. This probability vector thus gives the
best matches of the question to the inputs and the entire context of the input is taken into
consideration before finding the answer to the question.

Output memory is the ground truth answers embedded into an embedding matrix, O. And a
response vector, R is computed by the sum over each answer and the corresponding probability
from the probability vector P.

Predictions are generated by a softmax of the sum of the response vector, R and the question
embedding matrix, Q.

Algorithm 1 A long short-term memory end-to-end memory model for question and
answering task.

Import packages and Initialise all variables.
Import pre-processed data and split into train and validation datasets.
Data transformation:

Build tensors: inputs, questions, answers.
Compile Model (optimiser, loss, metrics):

Embed inputs, questions and outputs into a sequence of vectors or encoders.
Relate the similarity between input and questions by dot product.
Add the related and questions and then concatenate with the responses.
Prepare tensor of LSTM dimension.

Fit LSTM Model ([inputs train, questions train],answers train)
Minimise valuation loss and Save best only.
Early stop with patience of 5.
Save model files. Garbage collection.

Assess Model (model, validation data):
Generate predictions.
Compute Accuracy, Precision, F1 score, and Cohen Kappa score
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In Algorithm 1 the baseline modelling workflow of the LSTM end-to-end memory model
(MemN2N) for question and answering task comprises data transformation, compiling the model,
model fit and model assessment. The required packages are imported and the global variables
are instantiated and initialised. The pre-processed data is in the form of inputs, questions and
the corresponding answers and are split into training and validation datasets. Transformation
between words and vectors (or tensors) are computed. The end-to-end memory architecture is
setup in the model compilation step. The fitted model is trained and evaluated during training
with the validation data. Note that for simplicity the expansions in the context were transformed
as unigrams.

3.3 Transformer models

[Vaswani et al., 2017] proposed the Transformer and demonstrating that (self-)attention is all we
need to remove encoder-decoder recurrent model layers and improving parallelisation. The pa-
per acknowledged that end-to-end memory networks ”perform well on simple-language question
answering and language modeling tasks”. Transformer models are deep learning models that are
used extensively for natural language processing tasks; and as [Rogers et al., 2021] puts it as -
”BERT has become a ubiquitous baseline in NLP experiments”.

The model architecture proposed for this study is to fine-tune pre-trained transformers for
question answering tasks. Inputting of question and context packages as a single sequence, along
with answer start and answer end vectors are used during the model fit fine-tuning process. The
questions contain the acronym short-form (SF) and the context contains the acronym expansions
in long-form (LF); and the words around the acronym expansion disambiguates the various
acronyms in-context.

Figure 3.2: Question and context pair inputs and
BERT for extractive question answering task

In Figure. 3.2 illustrates the data ingestion into BERT, for example, where the input data is
pair of question and context contain the acronym short-form is ingested during the fine-tuning of
the pre-trained transformer. As well as the acronym expansion character start and end positions,
and the ground truth acronym expansion (and length of text).

In Algorithm 2 the transformer fine-tuning workflow for question and answering task comprises
accessing a powerful pre-trained transformer model and it’s associated tokenizer, preparing input
data sequences as tensors (multidimensional arrays of numerical data), setting up optional extra
model compile settings, model fitting (i.e. fine-tuning), and model assessment. The workflow is
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Algorithm 2 A fine-tune a transformer model for question and answering task.

Import packages and Initialise all variables.
Import pre-processed data comprising training, validation, and test datasets.
Prepare data:

Load tokenizer, select padding side and context ID
Prepare data sequences:

• BERT sequence is [CLS] question [SEP] context [SEP] and set context ID as 1
• XLNet sequence is context <sep> question <sep> <cls> and set context ID as 0
• Locate acronym expansion start and end positions in the context

Preprocess data as tensors to be compatible with TensorFlow (TF), for example.
Load pre-trained model
Compile Model (optimiser, loss, metrics)
Fit Model (inputs), meaning fine-tune pre-trained model

Minimise valuation loss and Save best only.
Early stop with patience of 5.
Save model files. Garbage collection.

Assess Model (model, assessment data):
Generate predictions for validation, and test data.
Compute SQuAD metrics: exact match and F1 score

sourced and adapted from huggingface2 .
Starting comprise installing and importing the required packages, and initialising the global
variables. Prepare inputs by preprocessing question and context pair data using the model’s
tokenizer. Now depending on the transformer model’s architecture specifically build the required
pair of sequences:

• Establish the order of context and question sequences

– (for example, BERT sequence [CLS] A [SEP] B [SEP] and

– for example, XLNet sequence A <sep> B <sep> <cls>), and

• In turn select the appropriate padding side and

• Discern the context ID label (and for example, 1 for BERT, and 0 for XLNet).

For this work, the context max padding length was selected as 96 tokens, and the stride (being
the length of the previous sequence to be included in the overflow sequence, or overlap) calculated
to the smaller power of 2 of 67.5% of half the max context length - so 96 max padding length
yields an stride overlap of 32 tokens (whereas context of 384 tokens, for example, would result
in a 128 token stride).
The pre-processed data is in the form of a paired sequences, and training inputs are complemented
with labelled start and end token positions (to learn how to extract the acronym expansions).
The offsets of the context are tracked and equal the context ID for the model validation and
(unseen) test inputs; and the question token offsets are set to None since we only want to predict
tokens in the context during the post-processing phase.
Compiling the transformer models for fine-tuning the following hyperparameters were used during
the training:

2NLP Course Documentation - Question answering

https://huggingface.co/learn/nlp-course/chapter7/7?fw=tf
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• optimizer: ’name’: ’Adam’, ’learning rate’: 5e-05, ’decay’: 0.0, ’beta 1’: 0.9, ’beta 2’:
0.999, ’epsilon’: 1e-07, ’amsgrad’: False

• training precision: float32

The exact match and f1 score metrics are sped up by only assessing the top predicted start and
end logits and selecting the best logit score as the predicted acronym expansion (or answer).
The metrics evaluate the predicted acronym expansion for both the validation data used during
training, and on any unseen test data kept aside.

3.3.1 Individual Transformer Models

Transformer model documentation is readily available for the huggingface library and the fol-
lowing state-of-the-art models are particularly highlighted:

• ’bert-base-cased’

• ’roberta-base’

• ’xlnet-base-cased’

According to the huggingface written model card of the BERT3 based model (cased) and based
on [Devlin et al., 2018] the model has 110M parameters and is pre-trained on a large English
data corpus 3300M words, from BookCorpus and English Wikipedia. BERT has two pre-trained
unsupervised tasks of Masked Language Modelling (MLM) and Next Sentence Prediction (NSP))
which is a suitable for downstream question answering tasks. Model inputs are in the form: [CLS]
A [SEP] B [SEP]

The huggingface written model card of the RoBERTa4 base states the model size as 125M
parameters. The paper [Liu et al., 2019a] elaborates the model was pre-trained on five datasets
BookCorpus, Wikipedia, and additionally with 63M news articles called CC-News, OpenWeb-
Text, and subset of CommonCrawl referred to as Stories- totalling 160GB of text. And that
the training objective differs by masking a random sample of tokens and learns bidirectional
representations of the sentence. The model inputs are in the form:
<s> A <s><s> B <s>

The huggingface written model card of the XLNet5 base cased states XLNet is based on ”a
novel generalized permutation language modeling objective” and model inputs are in the form:
A <sep> B <sep> <cls>
In the paper [Yang et al., 2019] they proposed a generalized autoregressive pretraining tech-
nique that learns contexts ”by maximizing the expected likelihood over all permutations of the
factorization order” meaning all tokens are predicted but in random order. Compared to autoen-
coder pretraining technique of randomly masking some of the tokens and aims to reconstruct
the original data from the masked/corrupted input.

3bert-base-cased
4roberta-base
5xlnet-base-cased

https://huggingface.co/bert-base-cased
https://huggingface.co/roberta-base
https://huggingface.co/xlnet-base-cased
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We briefly introduce other enhanced model architectures of interest, with their huggingface
alias as follows:

• ’microsoft/deberta-v3-base’

• ’distilbert-base-cased-distilled-squad’

• ’allenai/scibert scivocab cased’

• ’deepset/tinyroberta-squad2’

[He et al., 2020] proposed DeBERTa which used two techniques of disentangled attention
in the encoder and a better mask decoder that was now aware of absolute positions of to-
kens. Pre-training dataset is 78GB from Wikipedia (12GB), BookCorpus (6GB), OPENWEB-
TEXT (38GB), and STORIES (31GB). [He et al., 2021] further improved performance with
DeBERTv3 which combines DeBERTa and ELECTRA. The DeBERTa improvement is by a
technique called replaced token detection. Additionally their new gradient-disentangled em-
bedding sharing (GDES) technique helps improve pre-training by preventing tug-of-war effects
of binary classification optimisation that occurs between the generator and the discriminator
in ELECTRA. Their main contribution was GDES to solving the pre-training instability and
inefficiency cause by the tug-of-war when simply trying to combine DeBERTa and ELECTRA.

The DistilBERT model was proposed by [Sanh et al., 2019] which has 40% less parameters,
executes 60% faster and keeps 95% of BERT’s GLUE language understanding performance.
Furthermore DistilBERT has a been fine-tuned on [Rajpurkar et al., 2016] SQuAD v1.1.

SciBERT for the scientific domain from [Beltagy et al., 2019] improved downstream scientific
NLP tasks such as sequence tagging, sentence classification and dependency parsing with SciB-
ERT (when compared to base BERT). The scientific corpus sourced from Semantic Scholar on
domains computer science (18%) and biomedical (82%) is 3.17B tokens.

TinyRoBERTa SQuAD2 is a distilled RoBERTa based on [Jiao et al., 2019] tinyBERT methods
which does knowledge distillation (KD) from large teacher model to a small student model aimed
at edge devices to make BERT-like NLP models available to mobile phones, for example.

3.3.2 Answering Research Questions

Evaluating the performance of XLNet could answer the question: Is there more potential to
disambiguate acronyms using generalized autoregressive pre-training methods?

The transformer baseline will be the independent results of RoBERTa and SciBERT when
compared to smaller forms tinyRoBERTa and DistilBERT SQuAD to answer the question: how
do smaller main stream autoencoding based models perform?

Based on the final results, it may or may not necessitate the pursuit of adapting the [Zhong
et al., 2021] ensemble model called hdBERT, in Figure 2.1. Applying an emsemble SDU model to



Chapter 3. Methodology 23

MMM data should answer the question: What performance can pre-trained transformer models
deliver when applied to the MMM domain data in a zero-shot application?

Thus the proposed conceptual models are:

• Conceptual model one: From the individual transformers utilise a good performing compact
model as the base for MMM domain data.

• Conceptual model two: If generalized autoregressive pre-training methods like XLNet on
this dataset performs better than RoBERTa then conceptual model one could be applied
and tested on the MMM domain data.

Figure 3.3: conceptual model two: adapted emsemble model based on hdBERT

In Figure. 3.3 illustrates data flow where the input sentence sample comprising acronym
and expanded long forms is distributed to the various encoders: Order and Domain; their
encoded outputs are inputs to pre-trained transformers XLnet and SciBERT and produce
model predictions: pgeneral and pSci. The model representations are integrated into the
multiple layer perceptron network and sigmoid unit.

3.4 Evaluation Metrics

3.4.1 Metrics: EM and F1 score

Open dataset:

The primary metrics on the open dataset will be exact match (EM) and F1 score. F1 score
begin the main metric.

Typically each object is associated with a binary label (L) where we test (obtain model predic-
tions) for its correctness (meaning its relevance) and classify accordingly. The observed counts of
true positive (TP ) and the false positives (FP ), false negatives (FN) and true negatives (TN)
are then used in definitions of precision (p), recall (r), accuracy, F-score6 (Fβ , where β = 1 is
the harmonic mean of precision and recall), and MCC.

Here we have defined that
6Fβ measures the effectiveness of information retrieval: popular are β = 2 weighing recall higher than precision

and β = 0.5 weighing recall lower than precision
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1. real positives that are correctly predicted positives (a hit) are called true positives (TP);

2. real negatives that are wrongly predicted positives (false alarm) are called false positives
(FP).

3. real positives that are wrongly predicted negatives (a miss) are called false negatives (FN);

4. real negatives that are correctly predicted negatives (right rejection) are called true nega-
tives (TN);

These are the formula:

p = TP

TP + FP
(3.1)

r = TP

TP + FN
(3.2)

accuracy = TP + TN

TP + TN + FP + FN
(3.3)

Fβ=1 = (1 + β2) pr

r + β2p
= 2.TP

2.TP + FN + FP
(3.4)

MCC = TP.TN − FP.FN√
(TP + FP ).(TP + FN).(TN + FP ).(TN + FN)

(3.5)

For question answering exact match (EM) is a binary measurement. EM measures the per-
centage of predicted output that exactly matches or overlaps the ground truth answer. EM is
the proportion of questions that are answered in exact same words as the ground truth.

F1 score is a harmonic mean of precision an recall. It is more lenient than the EM score and
arguably applies human judgement of similarity between answers strings. In question answering
each question, the precision is calculated as the number of correctly predicted words divided
by the total words in the predicted answer. In question answering the recall is the number of
correctly predicted words divided by the number of words in the ground truth answer. Thus the
question answering F1 score measures the overlap between the predicted answer and the labelled
answer. The F1 score is averaged among all the questions.

For question answering F1 score the predicted tokens and the ground truth tokens are assessed
as follows:

1. TP is the number of tokens that are common between the predicted tokens and the ground
truth answer tokens.

2. FP is the number of tokens that are in the predicted tokens but not in the ground truth
answer tokens.
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3. FN is the number of tokens in the ground truth answer tokens but not in the predicted
tokens.

4. TN are true rejections (or no answer found in the context).

huggingface - Evaluate:

[Rajpurkar et al., 2016] introduced SQuAD or Stanford Question Answering Dataset from
Wikipedia articles with question-answer pairs. And when the dataset is in the format of SQuAD
then the huggingface evaluation metrics are readily available. The SQuAD7 metric provides the
essential measures of exact match and F1 score. Similarly the SQuAD v28 is available and will
be utilised to evaluate the fine-tune pre-trained transformer models on EM and F1 score.

3.4.2 Domain dataset:

The domain specific data predictions will need to be evaluated by a survey for the domain experts
if annotated data is not obtainable. 50 examples of the MMM data were selected and ground
truth expansions were annotated - meaning small sample can be evaluated by EM and F1 score
to have some basic results.

7HF metric card: SQuAD
8HF metric card: SQuAD v2

https://huggingface.co/spaces/evaluate-metric/squad
https://huggingface.co/spaces/evaluate-metric/squad_v2
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Results

4.1 Baseline

4.1.1 End-to-End Memory

The baseline( LSTM based) model was trained and early stopped on the 31st epoch.

Appendix C.1 shows the model training and model validation plots of (a) model accuracy
and (b) the F1 score over 31 epochs. Both training plots (accuracy and F1 score) are dampened
when compared to the model validation plot; the accuracy and F1 score improve steeply up
until the 9th epoch and slowed down its learning from the 12th epoch where the accuracy was
0.6992 (compared to validation accuracy was 0.7745). Learning incrementally improves until the
31st epoch at a trained accuracy of 0.798, which (or validation accuracy of 0.829). This gave
evaluation test results of (weighted) F1 score of 0.7875 (or 78.75%), and a Cohen Kappa score
of 0.8214 are achieved.
Table 4.1 has the baseline test results yielding an adequate F1 (weighted) score of 78.75% with a
healthy accuracy of 0.8225 and an high agreement Cohen Kappa score of 0.8214 for the baseline
model.

Table 4.1: Summary of the evaluation metrics of the baseline system

Training & Validation Testing
Metric Result Metric Result

loss 0.7189 Cohen Kappa Score 0.8214
accuracy 0.7981 accuracy 0.8225
f1 score 0.8069 f1 score (weighted) 0.7875
val loss 0.8655 f1 score (micro) 0.8225
val accuracy 0.8227 f1 score (macro) 0.4546
val f1 score 0.8305
lr 0.0018

F1 score = 80.69% F1 score = 78.75%

26
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More information on the Baseline( LSTM based) end-to-end model training loss and scheduled
learning rates are discussed in Appendix C.2

4.2 Model Results

4.2.1 Transformer Final Results

Several BERT family and XLNet models were selected and assessed with the same test dataset
(meaning a portion of held-back or unseen data). The same hyper-parameters were used for all
experiments.

Figure 4.1: Individual F1 score results of fine-tuned transformer models for SciAD/ SDU
dataset.

1st place SciBERT (f1=99.097%), 2nd place DeBERTa (f1=99.058%), and
3rd place tinyRoBERTa (f1=99.039%).

Average of the individual F1 score results was 96.325%

Figure 4.1 The final model results in ascending order of F1 score. The top performance with
the (open) test data evaluation (of 11 245 examples) was achived by SciBERT (F1=99.097%),
DeBERTa (F1=99.058%) took second place, and closely followed tinyRoBERTa (F1=99.039%).
DistilBERT SQuAD (F1=99.097%) performed very well being the smallest model in terms of
trainable parameters. And the average F1 score across the individual transformer models was
96.325%.

Figure 4.2: For the individual fine-tuned transformer models for SciAD/ SDU dataset.
XLNet in 2nd place with a start logits accuracy of 98.561%

Consider, XLNet had a low F1 score (F1 = 79.737% ) in Figure 4.1.
The average of the individual start logits accuracy of 98.358%.
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Figure 4.2 The start logit accuracy results in ascending order. The most interesting observation
was XLNet in second place with regards to accuracy (of start logit). Unfortunately XLNet, with
this data, the hyper-parameters, and the model compilation did not yield a strong F1 score (f1
= 79.737%) ; whereas the BERT family of models, in general, did perform well.

Highlights from Table A.2 of all individual transformer model results on SciAD/ SDU data,
are shown in Table 4.2. Table 4.2 shows five individual transformer results of interest, namely
tinyRoBERTa, BERT for reference, SciBERT, XLNet, and RoBERTa and ordered by model size
of trainable parameters.

For the held-back test data, column ’Test F1’, there are very impressive F1 scores from the
BERT-like models. For this work XLNet was the outlier model with the lowest F1 score of
79.7373% yet had strong accuracy scores; SciBERT with an F1 score of 99.0972% is top for the
short list of Table 4.2. tinyRoBERTa performed very well given it’s small size in terms of 81.5
million trainable parameters (or 25.4% less parameters than SciBERT and 55.7% less parameters
than DeBERTa). (From Appendix Table A.2 DeBERTa had the best overall metrics for exact
match and F1 score.)

Table 4.2: Summary of fine-tuned pre-trained transformer results - Validation and Test
datasets

no. params Start logits End logits
Model (trainable) Val EM Val F1 Test EM Test F1 Acc Acc

tinyRoBERTa 81.5 97.7323 98.9355 97.8880 99.0393 98.4368 97.9930
BERT 107.7 97.0476 98.4156 97.2432 98.5154 98.0370 98.0961
SciBERT 109.3 98.1058 99.1662 97.9546 99.0972 98.5453 98.4738
XLNet 116.7 60.8804 79.1452 61.4940 79.7373 98.5606 98.6418
RoBERTa 124.1 97.0920 98.7026 97.1098 98.6710 98.0078 97.7810

4.2.2 Domain Results

Table 4.3 lists the experimental results of a zero-shot application on MMM data. The SciAD/
SDU fine-tuned transformers, when applied to a small representation of MMM data, had two
major findings:

• The F1 Scores on SciAD/SDU data typically halved for MMM data, and suggests that the
SciAD/SDU models are not yet skilled enough for the MMM domain.

– In the F1base column are some base transformer F1 scores from their respective zero-
shot applications on the MMM data. It is observed that the SciAD/SDU fine-tuned
transformers (on average 40.83%) performs twice as well as the base transformer (on
average 19.25%).

• RoBERTa (1st for MMM data with F1 score 52.20%) and SciBERT (3rd for MMM data
with F1 score 46.78%) potentially perform better than XLNet (last for MMM data with
F1 score of 23.00%). DeBERTa (2nd last) surprisingly was below the average F1 score
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(40.83%) with F1 score of 34.60%, and note tinyRoBERTa (was 2nd) held a good 49.20%
relative to RoBERTa.

Table 4.3: Summary of the Thin-slice Zero-Shot application on MMM data

Exact Match F1 F1base

xlnet-base-cased 6 23.00 (13.58)
microsoft \ deberta-v3-base 16 34.60
bert-base-cased 14 38.80 (23.77)
distilbert-base-cased-distilled-squad 18 41.20
allenai \ scibert scivocab cased 10 46.78 (19.22)
deepset \ tinyroberta-squad2 16 49.20
roberta-base 24 52.20 (20.42)

Ave: 40.83 (Ave: 19.25)

We select 4 example MMM acronyms, namely PV, SIM, TT, and PD and highlight interesting
observations from the selected examples listed in Appendix B.3.

NOTE: In the case examples to follow, each sentence (or each box) is asked the question
(which contains the acronym). The model then needs to answer the question by understanding
the context in the box and returning the predicted acronym expansion; and disambiguate the
question’s acronym.

Case Example 1: What is PV (process value)?

Portable Water Reservoir Inlet 2 Flow process value

Grey Water Supply Flow process value

Gland Service Water Flow From Tank 999-Tk-001 process value

Granulator Make-Up Water Tank Tk-001 Level process value

The context examples containing ”PV” all end with the expansion ”process value”. The token
count for the context spans from 6 to 8 tokens. Water is a common token and the only other
token starting with ”p” in 4 examples is ”Portable”. Figure 4.3 shows the model predicted

Figure 4.3: Model predictions for the question: what is PV?

outputs for the question, ”what is PV?” We observe the ground truth is exactly matched for
BERT and RoBERTa, SciBERT exactly matched twice and tinyRoBERTa only exactly matched
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once out of the 4 examples shown. XLNet at best predicted 1 token of the 2 ground truth tokens.
SciBERT missed the mark by reporting back ”Portable Water Reservoir”. XLNet reported an
empty string once.
The tokens ”process” and ”value” are arguably within the general domain and could explain
why RoBERTa correctly expanded the acronym; the combination of the two tokens in context
might be where the trouble lies, the phrase ”process value” might not be general anymore, but
be MMM domain specific, or similar to the ”engineering” equivalent of ”Process Variable”.
In the SciAD dataset there are only two acronyms containing ”value” (SVD’: [’singular value
decomposition’] and GVF’: [’generalized value function’]) and several containing ”process” (such
as ’GPR’: [’gaussian process regression’] and ’DP’: [’dirichlet process’]), but not the combination
of ”process value”.

Case Example 2: What is SIM (simulated)?

SXYZ Storage Silo 999-Sf-001 Level Simulated

The context example ends with the expansion ”simulated”. The acronym differs in that the three
characters are the starting characters of the expansion. There are 6 tokens in the context.

Figure 4.4: Model predictions for the question, ”what is SIM?”

Figure 4.4 shows the model predicted outputs for the question, ”what is SIM?” The RoBERTa’s
were able to expand SIM to simulated, noting that SIM is moreso a prefix of the first 3 characters
/ shorthand form, rather than a typical acronym made from the first character of each sequential
token.
In the SciAD data, the closest acronym ’SA’ (’simulated annealing’) would have been the model’s
fine-tuned references to the expansion token ”simulated”.

Case Example 3: What is TT (temperature transmitter or (shorthand) temperature)?

PVR Fan Bearing Oil Supply - Temperature High Setpoint

PVR Fan Bearing Oil Supply - Temperature Output

Fan bearing temperature motor side axial High Setpoint

Fan bearing temperature motor side axial Output

Crystalliser PVR Fan 2 Hydraulic Oil Temperature High Setpoint

Crystalliser PVR Fan 2 Hydraulic Oil Temperature Output

The context examples have the expansion ”temperature” on either side of the center token. The
acronym is two characters in length and the expansion is 1 token. Two of the contexts have
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Figure 4.5: Model predictions for the question: what is TT?

punctuation, a hypen and where the expansion immediately follows.
Figure 4.5 shows the model predicted outputs for the question, ”what is TT?” For our purposes,
either an exact match of ’temperature’ (in context) or the full ’temperature transmitter’ are
deemed correct. The RoBERTa’s were able to expand TT as temperature the most times out of
the 6 examples, where RoBERTa had 3 exact matches and tinyRoBERTa had 2 exact matches.
SciBERT expanded temperature but was not aware that TT should be one token; instead SciB-
ERT for 5 examples reported an incorrect second token immediately after temperature. BERT
and XLNet predicted the most incorrect results.
In the SciAD data the acronym ’TS’: [’temperature scaling’, ’temperature - based sampling’]
would have been the model’s fine-tuned references.

Case Example 4: What is PD (pressure differential or differential pressure)?

Cyclone 1 differential pressure Input warning high

The context example has the expansion near the centre of phrases and comprises the two tokens
”differential pressure”. The acronym is two characters in length but the order may or may not
differ to the expansion.

Figure 4.6: Model predictions for the question, ”what is PD?”

Figure 4.6 shows the model predicted outputs for the question, ”what is PD?” All the models
except SciBERT got exact matches. SciBERT reports a 4 token expansion instead of 2 tokens.
In the SciAD dataset, ’PD’ gave the model the following expansion knowledge [’progressive dis-
ease’, ”prisoner’s dilemma”, ’pu - primary destination’, ’positive definite’, ”parkinson’s disease”,
’pixel discussion’].
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4.3 Predictability, Computability and Stability (PCS)

[Yu, 2020] presented a data science life cycle framework to provide results that are responsible,
reliable, reproducible and transparent, and in particular with human judgments or choices made.
This framework of predictability, computability and stability was applied to this work in the
following way:

• model evaluation results are based on held-out test data and is compared to model fine-
tuning results;

• cross-validation was performed to support the final model results;

• model parameters and batch sizes were selected to utilise readily available resources such
as Google Colab (free 12Gb GPU VRAM); and

• an exploratory data analysis performed to support data pre-processing choices.

4.3.1 Predictability

In addition to the results of test (held-out) data of Table A.2 of all individual transformer models
for SciAD/ SDU data, we evaluated the model predictions using cross-validation (CV) datasets.

Cross-Validation (k=10, not shuffled) Four models, RoBERTa, tinyRoberta, DistilBERT and
SciBERT, were subjected to a k-fold cross-validation process to estimate the skill of the models
which all performed very well for F1 scores.

Extracted from Appendix Table A.3, Table 4.4 shows the results of various transformers using
a k-fold cross-validation dataset. DistilBERT had the lowest cross-correlation F1 score mean of
98.751% and the best cross-correlation F1 score mean of 99.024% was from tinyRoBERTa. Note
that tinyRoBERTa did have the largest standard deviation of 0.166% and SciBERT the least
standard deviation of 0.173%.
Furthermore the model evaluation on the test data reported similar numbers, DistilBERT still
had the lower of the four models, but RoBERTa (99.050%) took the lead over tinyRoBERTa
(99.006%) by a narrow margin. Evaluating the means, which summarises model skills, one sees
the model evaluation values are trustworthy since the difference is quite small; further we expect
the means to be a less biased result.

(a) RoBERTa k-fold validation (b) tinyRoBERTa k-fold validation

Figure 4.7: Cross-validation results (k=10) for RoBERTa and tinyRoBERTa.
The average over the 10 folds was a F1 score of 98.983% for RoBERTa.

The average over the 10 folds was a F1 score of 99.024 for tinyRoBERTa.
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Table 4.4: Summary of selected pre-trained transformers - k-fold cross-validation datasets

validation RoBERTa tinyRoBERTa DistilBERT SciBERT
0 98.7845 99.0949 98.6450 98.9855
... ... ... ... ...
9 98.6201 98.8301 98.3762 98.7251

Val. Ave. 98.983 99.024 98.751 98.896

test RoBERTa tinyRoBERTa DistilBERT SciBERT
0 98.8820 99.0729 98.5830 99.0181
... ... ... ... ...
9 98.9338 99.0730 98.5594 98.9550

Test Ave. 99.050 99.006 98.723 98.875

In Figure 4.7 (a) RoBERTa and (b) tinyRoBERTa are side-by-side for CV comparison. tiny-
RoBERTa achieved the higher F1 score mean of 99.024% across the 10 folds than RoBERTa’s
98.983%, but RoBERTa was more stable in the sense that its F1 score standard deviation was
0.2128% (compared to 0.2640% SD). RoBERTa peaked on the 6th fold with 99.281%, and tiny-
RoBERTa had it’s best result of 99.305% on the same fold.

(a) DistilBERT k-fold validation (b) SciBERT k-fold validation

Figure 4.8: Cross-validation (k=10) results for SciBERT and DistilBERT.
The average over the 10 folds was a F1 score of 98.896% for SciBERT.
The average over the 10 folds was a F1 score of 98.751 for DistilBERT.

In Figure 4.8 (a) DistilBERT and (b) SciBERT performed well for their respective CV results.
On average DistilBERT F1 score was 98.751% (with standard deviation 0.1921%) and SciBERT
F1 score was on average 98.869% and was more stable with a standard deviation of 0.1735%.
DistilBERT preformed its best on the 2nd fold, but did not match SciBERT’s best 2nd fold of
99.274%.

Cross-Validation (k=5, shuffled)

Table A.4, has been highlighted in Table 4.5 where the 5 fold split of all the data. The valida-
tion data was shuffled and selected in the ratio of 85:15 for training and validation. The average
validation F1 scores of tinyRoBERTa of 99.130% compared to RoBERTa’s F1 score average of
99.118%. The shuffled 5 fold CV results are similar magnitudes to the original individual test
F1 score in Table A.2.

Table 4.5: Summary of selected pre-trained transformers - k-fold (k=5) CV data, shuffled

validation RoBERTa tinyRoBERTa DistilBERT SciBERT

Val. Ave. 99.118 99.130 98.888 98.863

CV Exploratory data analysis (EDA) The SciAD/ SDU dataset comprising development and
training files was concatenated and equalled 56 223 examples. The data was split into training
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and test data. The training data was further split to obtain validation and cross-validation data
sets.

Table 4.6 for the two CV investigations,

• The model dataset was subjected to a k-fold split of k=10. The training data plus the
validation data was re-split into the ratio 90:10 (or 40 480:4 498 examples); and the test
dataset remained the same as the model dataset.

• For the k-fold cross-validation split, k=5 and all model datasets were re-merged and then
re-split into a ratio of 85:15 (or 47 789:8 433 examples). Validation data was selected
randomly.

Table 4.6: Summary of the SciAD/SDU data set splits

Model 10 Fold CV 5 Fold CV
Examples Examples Examples

Training 38 231 40 480 47 789
Validation 6 747 4 498 8 433
Testing 11 245 11 245

Total = 56 223 Total = 56 223 Total = 56 223

Figure 4.9: Cross-Validation (CV) - k-fold data groupings, k=10, no shuffle, one test dataset.
Training data 40 480, Validation data 4 498, and test data 11 245 examples.

Total examples per fold was 56 223.

Figure 4.9 The cross-validation data changes across the 10 k-folds for model training and
validation, and test data which is unseen to the model is evaluated.

Figure 4.10 display how all the validation data was shuffled and selected as the 5 folds of
training and validation data used to cross-validate the models.

4.3.2 Computability

Computability are key considerations and the minimum requirement to generate results is hard-
ware accessibility. Computer memory (RAM), and in particular graphics processor video memory
(VRAM) were limiting factors impacting successful modelling or modelling times. The computer
memory availability had an influence on:
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Figure 4.10: Cross-Validation (CV) - k-fold data groupings, k=5, shuffled.
47 789 Training and randomly sampled 8 433 Validation examples used for each of the 5 folds.

Total examples per fold was 56 223.

• model size parameters selection for LSTM baseline

• model prediction batch size for transformers

to avoid mainly out of memory (OOM) scenarios of VRAM.

Fine-tuning transformers required at least 3Gb of VRAM. The more demanding transformers
were DeBERTa requiring at least 5Gb VRAM (and 10-12Gb recommended); and XLNet mod-
elling and evaluation stages were split and run into two notebooks to work around the available
hardware RAM and VRAM.

4.3.3 Stability

Exploratory data analysis (EDA) The SciAD/ SDU dataset comprises input (or context) sen-
tences with an ambiguous acronym and a dictionary of potential acronym expansions (or long-
forms). The development and training data is 56 223 inputs with four features: input sentence
unique identification, acronym position, acronym expansion, and the input sentences. So the
data shape assessed is (56 223, 4).

In the illustrative example below, the ambiguous acronym (’NN’ shown underlined and bold)
in the input sentence should be predicted and expanded as ’neural network’ to have the correct
meaning:

Input (sentences): The proposed model uses NN.

Input (dictionary): ’NN’: [’neural network’, ’nearest neighbor’]

Output: neural network

In the SciAD/ SDU example below, the input sentence with id ’TR-49802’ has the acronym
’RF’ positioned at index 16 is expanded as ’random forest”:

Input (sentences): Then , for our classification purposes , we apply three different classifi-
cation algorithms : DT , RF and NN , accomplished with Scikit - Learn .
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Input (dictionary): ’RF’: [’random forest’, ’radio frequency’, ’regression function’, ’regres-
sion forest’, ’register file’]

Output: random forest

The dictionary of 732 ambiguous acronyms are from the scientific domain. There are 2 308
expansions. The ’CS’ acronym has the most potential expansions of 20: 1. ’computer systems’,
2. ’computer science’, 3. ’clonal selection’, 4. ’connection size’, 5. ’computational science’, 6.
’centralized solution’, 7. ’compressive sensing’, 8. ’core semantics’, 9. ’coordinated scheduling’,
10. ’charging station’, 11. ’constraint solver’, 12. ’conventional sparsity’, 13. ’compressed
sensing’, 14. ’critical section’, 15. ’common subset’, 16. ’content store’, 17. ’case - sensitive’, 18.
’consensus score’, 19. ’code - switching’, 20. ’cluster - specific’.

Figure 4.11: Histogram of acronym expansions.
660 (or 90.16%) of acronyms have up to 5 expansions. 437 acronyms have 2 possible expansions.

The 55 (or 2.38%) most ambiguous acronyms have between 17 and 20 expansions.

Figure 4.11 shows the distribution of expansions. On average the acronyms have 3 potential
expansions. The average is pulled by the top most ambiguous acronyms. The top three most
ambiguous acronyms are ’CA’, ’SC’, and ’CS’ which have 17, 18 and 20 expansions respectively.
A high-level breakdown of the acronyms and their potential expansions are as follows:

• 660 (90.16%) acronyms have up to 5 expansions, of which 437 have 2 expansions. These
660 acronyms account for 1664 of 2308 expansions (72.09%).

• 50 (6.83%) acronyms have 5 to 9 expansions (summing to 362 expansions, or 15.68%)

• 13 (1.78%) acronyms have 9 to 12 expansions (141 expansions, or 6.11%)

• 6 (0.82%) acronyms have 12 to 16 expansions 86 expansions, or 3.73%)

• 3 (0.41%) acronyms have 17, 18 and 20 expansions (summing to 55 expansions, or 2.38%)

Figure 4.12 shows the 99th percentile distribution of the acronym positions. Acronym positions
are positions (or indices) in the input sentences. It is observed that the first two histogram bins
account for 87.40% (57.89% and 29.51%). The middle bin is 9.40% and the remaining two bins
are 3.20%. Furthermore in 95.30% of all cases the acronym is positioned less or equal to the
32nd position of the sentences, and 99.30% by the 48th position.

Insights from Figure 4.12 that 95.30% of acronyms in the open dataset are positioned less or
equal to the 32nd position of the sentences, the following data preprocessing choices were made:
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Figure 4.12: Histogram of Acronym positions.
95.30% of the acronym expansion are not more than the 32nd position of the sentences.

• Limit the model input sentences to 32 ”tokens” and as far left of the acronym position as
possible.

• Input sentences less than 32 ”tokens” are padded from the left.

.

Figure 4.13: Histogram of Acronym expansion counts.
The most counts are convolution neural network (CNN).

The second most occurring expansion is recurrent neural network (RNN).
The top 15 acronym expansions seem to have a data analytic and/or data science theme.

Figure 4.13 shows the top 15 acronym expansion counts. 5.20% of the acronyms can be
expanded as ’convolutional neural network’; whereas ’machine learning’, ’artificial intelligence’
and ’random forest’ are 0.94%, 0.92% and 0.61% respectively. In my opinion, the top 15 acronym
expansions seem to have a dominant theme of data science.

The vocabulary size of the open dataset is 44 609 tokens (comprising English words” and
acronyms).

4.3.3.1 Open Dataset

For SciAD/ SDU datasets the context length was capped to 32 tokens, based on the majority of
the acronym positions being equal to or less than 32 (Figure 4.12). The following data cleaning
choices were made for the baseline data set:

• Replace punctuation as <punc>

• Replace quantity text pattern as <num>
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• Replace none alphabet characters with an underscore, replace entire underscored tokens
as <unk>

Similarly the main data set used for transformer fine-tuning, the following choices were made:

• Quantity text was replaced with generic ’123’ string.

• None alphabet characters were replaced by underscores and entire underscored words re-
moved from the context.

• Removed url and consequently removed hyphenated words.

• special cases: ” - ” or ”o - d ” as empty string; and ” ’s” to ”s”

Figure 4.14: Histogram of Acronym expansion positions in the input contexts.
32 token lengths are classified as punctuation, number string, unknown (and typically not an

alphabet character), or are original token.

Figure 4.14 shows the token types counts per token position in context. It is observed that
left padding is applied due to the token type counts being least at position 1 (or 0 index in the
figure); and most at position 32 (being 31 index in the figure). Further it can be seen that the
context remain the original tokens (in grey), or were classified as punctuation (in blue); and that
the context most likely ends with a punctuation mark, as indicated by the large count in the 31
index token position.
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Discussion

We asked the question, do sensor tag descriptions have expansions that match exactly or at least
are close to acronyms in the sensor tag? So, we embarked on the task of determining whether one
can measure if acronyms can be expanded for the MMM domain by using models knowledgeable
in the scientific language (e.g. SciBERT) or in the general language (e.g. RoBERTa or XLNet)
domain. This would determine if NLP machine pre-trained transformers could be applied to the
MMM domain which have a low resource setting and little (or no) acronym dictionaries.

The high-level research questions we set out to investigate in this work are as follows:

• What performance can pre-trained transformer models deliver when applied to the MMM
domain data in a zero-shot application?

• Is there more potential to disambiguate acronyms using generalized autoregressive pre-
training methods?

• How do smaller main stream autoencoding based models (such as BERT-like models)
perform?

The key findings are as follows:

• BERT-like (Main-stream autoencoding based) models are able to accurately predict Sci-
AD/ SDU expansions after fine-tuning. But SciAD/ SDU data seems inadequate for the
MMM domain.

• XLNet (a generalized autoregressive pretrained model) when fine-tuned with SciAD/ SDU
data contrasts with other work results; XLNet performed the worst in the F1 score metric.

• Small transformers seem to perform well for domain specific question and answering tasks
of acronym expansions in the SciAD/ SDU domain (comprising computer science and
biomedical acronyms). Ensemble models don’t seem to be required for this task at this
point.

39
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The End-to-end LSTM based models gave a baseline weighted F1 score result of 78.75%, for
unigram predictions only. The accuracy was 0.8225 and the Cohen Kappa score was 0.8214.
The high accuracy suggests that the ground truth compared to the predicted expansion matched
exactly in 82.25% of cases, and the high Cohen Kappa score implies that there was high inter-
annotator agreement again between the ground truth expansion and the predicted expansion.
The F1 score is the contributions of precision and recall, and suggests that the model output
quality is good since the weighted F1 score was 78.75% and takes into account the expansion
support (or number of actual occurrences of expansions in the dataset), meaning we assigned
a greater contribution to expansions that have more examples in the dataset. A low macro F1
score of 45.46% suggests the imbalanced data influenced this metric result. We saw evidence of
imbalanced data in the acronym expansion counts where most expansions were ‘convolutional
neural network’ at 5.20% and at 15th place to suggest a decay of counts is ‘random forest’ which
accounted for 0.61% of expansions.

For SciAD/ SDU data BERT-like models performed extremely well where the average F1
score of the individual transformer models achieved was 96.325%. The two most notable indi-
vidual results were from SciBERT being the top performer with a F1 score of 99.0972% and
tinyRoBERTa with a F1 score of 99.0393% because of its model parameter size. These F1 scores
are supported by the strong exact match results. Furthermore we tend to see a similar pattern
emerge for a small representation of the MMM data for which the top three F1 scores were
SciBERT (46.78%), tinyRoBERTa (49.20%) and RoBERTa (52.20%); for reference sake the top
performer for the MMM data was the latter. The performance of the BERT-like models called
for further support to displace the possibility of model over-fit (due to abnormally high F1 score
results). K-fold cross-validation was done to support the original validation and test data F1
score results. Now, for the two transformers SciBERT and tinyRoBERTa, the results seem to
reveal the following insights:

• SciBERT BASE Test F1 score change from 16.8625% to 99.0972% suggests that a lot of
the SciAD knowledge was learnt.

• tinyRoBERTa BASE Test F1 score was the highest at 52.8226%, and the change to
99.0393% suggests the least SciAD knowledge was learnt.

• Both SciBERT and tinyRoBERTa (test) F1 scores are supported by high exact match
scores and suggests that the SciAD models can predict very well in computer science and
biomedical contexts.

• Both SciBERT and tinyRoBERTa halved in F1 score for MMM data and suggests that the
MMM acronyms differ to SDU acronymns, and/or the context of MMM differs to SDU
context.

XLNet did not perform well and contrasts to other work done, this suggests that further
opportunities are available to understand the conflicting results, in the hope of unlocking the
potential benefits that XLNet ought to have over BERT.

Limitations: The limitations to this work starts with the open SciAD dataset - only 732
acronyms biased to computer science and biomedical fields are known to the models from a
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limited number of English research papers. Similarly the very small sample of MMM data does
not fully represent the entire domain. Thus the limited amount of SciAD acronyms available
might explain why the zero-shot MMM data results yielded half the F1 scores of the SCiAD/
SDU F1 scores.

For the SciAD/ SDU domain, even though the models’ F1 scores were very high it might not
be generalised enough. Three thoughts suggests this, firstly the computer science and biomedical
domains are continuously growing as the science grows in knowledge - so future acronyms and
uses in context are unseen. Secondly scientific document understanding is not generalised enough
to handle sciences outside the sphere of computer science or biomedical acronyms - as seen when
applying it to MMM data. For example PV, TT and SIM are not in the SciAD acronym
dictionary; PD is, but the expansions are not the MMM expansions ”differential pressure” or
”pressure differential”. Thirdly, only 6 786 English papers were used as the corpus and on average
acronyms had 3 expansions, so the exposure to how the acronyms ought to be disambiguated
might be limited to the limited amount of training examples.

An improvement to ensure the model is not over-fitting (or under-fitting) is to plot both
the training and validation loss and compare the difference (or gap) between the two plots
- unfortunately, at the time of modelling, only the training plot data was captured. Notes
captured in Appendix C.1.2

Finally, we establish that pre-trained transformers can be fine-tuned to perform well in the
boundaries of the domain data (in this case SDU), and does not necessarily transfer easily to
other domains like MMM.

For the domain-specific MMM dataset, F1 scores were only able to get marginally larger
than 50% using RoBERTa in conjunction with the SciAD dataset (where it attained 52.20%).
Note furthermore that MMM results may be over-exaggerated since only 50 examples of MMM
data were assessed, compared to the more than 60,000 sentences contained in SciAD. Scores,
in general, were considerably lower than the results of the scientific document understanding
(SciAD) open dataset, as is to be expected. In descending order, RoBERTa, tinyRoBERTa and
SciBERT are the top three pre-trained language models models for acronym disambiguation
using SciAD dataset. Zero-shot learning abilities are mostly due to the empowerment of the
pre-training stage on vast amounts of good quality data. The fine-tuning of the pre-trained
language models (PLM)s on the SciAD dataset helped the PLMs to be more aware of some
MMM knowledge. We realise more MMM acronyms and their expansions in context is required
to improve any PLMs performance.

We realise that we have not unlocked the potential of XLNet to disambiguate acronyms and
that there are opportunities to do so in any future work. We discover that a small model could
be used for the MMM domain, and in particular, tinyRoBERTa.
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Conclusion

In conclusion, in this work, we presented SciAD/ SDU fine-tuned transformers that can dis-
ambiguate acronyms within Scientific document understanding (SDU) context very well and
is a stepping stone to being used in the Mining, Metals & Minerals (MMM) domain in future.
We foresee that there is still opportunity to unlock the benefits of methods such as XLNet.
We note the value that a small model could be used for the MMM domain, and in particular
tinyRoBERTa.

Recommendations and future work are to embark on MMM domain data collection efforts,
creating synergies to pre-process new MMM domain data from other acronym tasks to form an
open MMMAD dataset, and in turn run future experiments starting with smaller transformers.

Collect domain data: The process for which the SciAD dataset was collected could be applied
to any MMM domain open data sources. The same could be said to collect similar domain data
in disciplines such as process engineering, chemical engineering, and manufacturing. Having
access to high-quality domain data and fine-tuning accordingly should improve any model’s skill
in those particular domains - as has been seen for the SciAD/ SDU dataset.

Preprocess new data and other acronym tasks: With more raw MMM data downstream, tasks
such as Abbreviation Definition Identification (ADI), and/or Acronym Identification (AI) could
be used to collect the essential acronym short- and long forms for a comprehensive dictionary.
Additionally the context can be collected for acronym disambiguation (AD). With a large amount
of acronyms and a large amount of context containing the acronym expansions, models could
become more knowledgeable after model training.

Recommended baseline transformer: Furthermore, it seems like the smaller models such as
tinyRoBERTa suffice for baseline experiments due to its size, without the expense of perfor-
mance.
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Appendix A

Results

Baseline Transformer performance: Table A.1 shows the individual transformer results with no
fine-tuning. The average of the base transformer exact matches was 5.552% and the average f1
score was a low 22.635%. The best performance contribution can from tinyRoBERTa with an
exact match of 26.211% and f1 score of 52.822%. The worst base transformer performance came
from XLNet with an exact match of 0.111% and f1 score of 3.620%.

Table A.1: Summary of base pre-trained transformer results - Validation and Test datasets

no. params
Model (trainable) Val EM Val F1 Test EM Test F1
Base DistilBERT SQuAD 65.19 16.5318 43.8560 16.3851 43.6570
Base DistilBERT 66.36 0.4713 18.8452 0.57803 18.7013
Base tinyRoBERTa 81.53 26.3673 53.4349 26.2116 52.8226

Base BERT 107.72 0.3646 17.9283 0.33348 18.2428

Base SciBERT 109.35 0.4980 17.0822 0.3779 16.8625
Base XLNet 116.72 0.1512 3.4441 0.11116 3.6204
Base RoBERTa 124.06 0.3646 15.0665 0.24455 14.8858
Base DeBERTa v3 183.76 0.2045 12.5361 0.1779 12.2921

Fine-tuned Transformer performance: The Table A.2 shows the individual transformer results
from the training validation data and unseen test data evaluations, after fine-tuning and using
SciAD/SDU data.
The model results are ordered by model size of trainable parameters. For the unseen test data,
column ’Test F1’, there are very impressive F1 scores from all the BERT like models, and
DistilBERT having the lowest 97.7532% of the BERTs. XLNet strangely was the outlier model
with the lowest F1 score of 79.7373%, for this work.
The top performance was achieved by SciBERT with F1 of 99.0972%, DeBERTa in second and
tinyRoBERTa comes third with F1 of 99.0393%. DeBERTa had the best overall metrics for
exact match and F1 score. XLNet had strong accuracy scores.
The distilled models (DistilBERT, DistilBERT SQuAD and tinyRoBERTa) performed extremely
well for their smaller model size when compared to the state-of-the-art reference models BERT,
XLNet, RoBERTa and DeBERTa. The most noticeable smaller model being tinyRoBERTa being
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in the top three metric performers in EM and F1, while having 81.5 million parameters (or 25.4%
less parameters than SciBERT and 55.7% less parameters than DeBERTa).

Table A.2: Summary of fine-tuned pre-trained transformer results - Validation and Test
datasets

no. params Start logits End logits
Model (trainable) Val EM Val F1 Test EM Test F1 Acc Acc

Model (trainable) Val EM Val F1 Test EM Test F1 Acc Acc
DistilBERT SQuAD 65.2 97.6078 98.6942 97.4433 98.7263 98.4532 98.4705
DistilBERT 66.4 96.2650 97.8671 96.3539 97.7532 97.9809 97.9686
tinyRoBERTa 81.5 97.7323 98.9355 97.8880 99.0393 98.4368 97.9930

BERT 107.7 97.0476 98.4156 97.2432 98.5154 98.0370 98.0961

SciBERT 109.3 98.1058 99.1662 97.9546 99.0972 98.5453 98.4738
XLNet 116.7 60.8804 79.1452 61.4940 79.7373 98.5606 98.6418
RoBERTa 124.1 97.0920 98.7026 97.1098 98.6710 98.0078 97.7810
DeBERTa v3 183.8 98.3993 99.0854 98.3993 99.0579 98.8406 98.8357

Transformer cross-validation (k=10, not shuffled) performance: The Table A.3 shows the re-
sults of various transformers and using a k-fold (k=10) cross-validation dataset. The four selected
models RoBERTa, tinyRoberta, DistilBERT and SciBERT when fine-tuned and evaluated, all
performed very well.
DistilBERT had the lowest k-fold cross-validation mean of 98.751% and tinyRoBERTa had the
best cross-validation mean of 99.024%. It is further noted that tinyRoBERTa had the largest
standard deviation of 0.166% and SciBERT the lowest standard deviation of 0.173%.
Model evaluation on the test data that was held-back reported similar high numbers. Distil-
BERT still had the lowest F1 of the four selected models, but RoBERTa (99.050%) took the
lead over tinyRoBERTa (99.006%) by a narrow margin. Evaluating the k-fold means, which
summarises the models skills, as being similar magnitude to the test F1 scores of Table A.2 helps
support the F1 scores to be more trustworthy - since we expect the k-fold mean to be a less but
similar in magnitude to the original individual test F1 score.

Transformer cross-validation (k=6, shuffled) performance: The Table A.4 similarly comple-
ments the results of RoBERTa, tinyRoberta, DistilBERT and SciBERT. A five fold split of all
the data, and validation data was now shuffled and selected in the ratio of 85:15 for training
and validation. We notice that the average validation F1 scores differed where tinyRoBERTa
took the lead marginally with F1 score mean of 99.130% compared to RoBERTa’s F1 score mean
of 99.118%; and a position switch where DistilBERT on average perform slightly better than
SciBERT by 0.02%. Again, the shuffled five fold cross-validation results are similar magnitudes
to the original individual test F1 score in Table A.2.
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Table A.3: Summary of selected pre-trained transformers - k-fold (k=10) CV datasets

validation RoBERTa tinyRoBERTa DistilBERT SciBERT
0 98.7845 99.0949 98.6450 98.9855
1 99.2035 98.3820 98.7330 98.7990
2 98.9054 99.2590 99.0130 99.2740
3 98.9465 99.0700 98.7423 99.1291
4 98.9424 98.8663 98.5151 98.7781
5 99.1249 99.0380 98.7510 98.8376
6 99.2811 99.3050 98.9714 98.7663
7 99.2506 99.2990 98.9527 98.9168
8 98.7747 99.0966 98.8078 98.7461
9 98.6201 98.8301 98.3762 98.7251

Val. Ave. 98.983 99.024 98.751 98.896

test RoBERTa tinyRoBERTa DistilBERT SciBERT
0 98.8820 99.0729 98.5830 99.0181
1 99.1141 98.5230 98.8800 98.8810
2 98.9363 99.1510 98.8220 98.9790
3 99.2026 99.0780 98.7689 98.8752
4 98.9710 99.0138 98.4156 98.9114
5 99.0967 99.0229 98.6730 98.9051
6 99.2403 99.0870 98.8512 98.7573
7 99.1669 99.0040 98.8593 98.8512
8 98.9527 99.0357 98.8170 98.6205
9 98.9338 99.0730 98.5594 98.9550

Test Ave. 99.050 99.006 98.723 98.875

Table A.4: Summary of selected pre-trained transformers - k-fold (k=5) CV data, shuffled

validation RoBERTa tinyRoBERTa DistilBERT SciBERT
1 99.03287 99.15260 98.81419 98.83564
2 99.20333 99.16132 98.82573 98.64917
3 98.94378 98.85993 98.93045 98.75544
4 99.25672 99.12143 98.87165 99.01265
5 99.15219 99.35531 98.99970 99.06396

Val. Ave. 99.118 99.130 98.888 98.863
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Predictions

In this appendix, prediction information is given. Two tabled figures list random samples of
predicted outputs in descending order of prediction score. The features tabulated are the model
name, the question and context, the ground truth answer, the predicted answer, and predicted
score. In addition, the context and the question was fed into ChatGPT 3.5 where the responses
are reported. Note that all the ChatGPT 3.5 outputs where correct from a human evaluation,
but from a computers perspective some of the responses returned hyphenated tokens from the
context that originally did not have a hyphen.

Figure B.1 tabulates 14 random outputs of SciAD fine-tuned transformers that predicted
correctly. Figure B.2 continues with the next 16 random outputs that predicted poorly from the
17th output.

We observe a sample of the zero-shot outputs of SciAD models applies to the MMM domain
where, for example tinyRoBERTa, had an exact match score of 16% of the 50 MMM examples,
and it F1 score was calculated to be 49.2000%. Compared to RoBERTa that seems to have more
exact matches of 24% of the 50 MMM examples, and a lead of F1 score to 52.20%.

Figure B.3 shows a selection of 8 MMM predicted outputs. The F1 scores are in decreasing
order. The top two performers were RoBERTa and tinyRoBERTa which have better F1 scores
than SciBERT and XLNet. Two of the eight had a ground truth of ’process value’, RoBERTa
had an exact match in both cases, whereas tinyRoBERTa partially predicted the first token
’process’, and missed the second token ’value’. SciBERT got one exact match and the second one
it predicted three tokens instead and meaning it added a token for whatever reason. XLNet for
both cases only predicted the first token ’process’ in ’process value’. For ground truth ’differential
pressure’ and the question ’what is PD?’ we note the acronym letters are reversed, yet most of the
models predicted correct expansions. SciBERT got confused the most and over reported four
tokens ’differential pressure input warning’. Contrasting to the ground truth ’specific energy
consumption’ where RoBERTa, tinyRoBERTa, and XLNet missed understood the question, and
only SciBERT successfully reported an exact match. The use of temperature and related to
the acronym TT seemed to confuse the models in general, but tinyRoBERTa seemed handle to
disambiguation the best.
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Figure B.1: Random Samples of SciAD fine-tuned Transformer Outputs.
Descending order of strong prediction scores.

The respective fine-tuned SciAD models predicted correctly.
The ChatGPT experiment return all the ”correct” expansions; and example 3, returned hy-

phened token ”One-Class” from the context containing ”one class”
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Figure B.2: Random Samples of SciAD fine-tuned Transformer Outputs.
Descending order of weak prediction scores.

The respective fine-tuned SciAD models predicted poorly.
The ChatGPT experiment return all the ”correct” expansions; and example 28, similarly

returned hyphened token ”Product-based” from the context containing ”product based”
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Figure B.3: Selection of MMM data are shown.
Predicted outputs of the SciAD fine-tuned Transformer are compared for MMM data.

The F1 scores are in decreasing order.
RoBERTa and tinyRoBERTa have better F1 scores than SciBERT and XLNet.

Where respectively (F1=52.20% and F1=49.20%) > (46.78% or 23.00%)



Appendix C

Modelling

C.1 Model Fit

We describe the model fit results for two machine learning methods. End-to-End Memory LSTM
method is discussed in terms of its measured model accuracy, model F1 score, model loss, and
the model learning rate. An example transformers, RoBERTa and XLNet, are discussed by their
model loss and start logits accuracy.

C.1.1 End-to-End Memory LSTM

Table 4.1 reported an adequate 78.75% baseline metric (for held-back data) for weighted
F1 score. We show that the training metrics, for example model loss, over the 31 epochs that
the validation results ”tracked” the profile of the training results - there was an intersection of
training and validation values around the 26th epoch, and the final gap between training and
validation was not large and training was stopped early.

In Figure C.1 (a) the accuracy of the validation data throughout the training was above the
training model accuracy. The max validation accuracy achieved was 0.829 on the 30th epoch.
Figure C.1 (b) the best validation F1 score of 0.8332 (or 83.32%).

In Figure C.2 (a) shows the model loss over the trained 31 epochs. Majority of the learning
occurred by the 17th epoch where the model loss was 0.9893 at a learning rate of 0.0019; and
thereafter incremental learning improvements still occurring and lowest validation data set loss
of 0.834 achieved at the 26th epoch.

Figure C.2 (b) shows the model learning rate that occurred every during the training, the
learning rate was a calculated schedule that decayed by 7.5% approximately every 7 epochs.
The initial learning rate was 0.002 and step down four times and finished on 0.0018.
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(a) Accuracy. Max validation accu-
racy 0.829.

(b) F1 score. Achieved validation
f1=83.30% (and test data f1=78.75%

Figure C.1: Baseline (LSTM based) Model Training Accuracy and F1 score

(a) Loss of 0.834 at 26th epoch. Model Ac-
curacy of 0.719.

(b) Learning rate (calculated). Initial
value of 0.002

Figure C.2: Baseline (LSTM based) Model Training Loss and Learning rate

C.1.2 Transformers

The training profiles for assessed transformers in terms of iterations all showed similar batch
profiles for the two epoch runs. Note the step change at the epoch 1 to epoch 2 transition that
occurs and is not fully understood by the author.

In Figure C.3 shows the batch loss profiles after the 2nd epoch or batch step 8100, (a)
RoBERTa model loss was 0.1422 and (b) XLNet model loss was 0.1040.

Figure C.4 shows the batch start logits accuracy profiles after the 2nd epoch or batch step
8100, (a) RoBERTa model start logit accuracy was 0.9801 and (b) XLNet model start logit
accuracy was 0.9856.
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(a) RoBERTa
Loss of 0.1422

batch step 8110

(b) XLNet
Loss of 0.1040

batch step 8130

Figure C.3: Transformer Fine-tuning - TensorBoard Batch Loss

(a) RoBERTa
Start Logits Accuracy of 0.9801

batch step 8110

(b) XLNet
Start Logits Accuracy of 0.9856

batch step 8130

Figure C.4: Transformer Fine-tuning - TensorBoard Batch Start Logits Accuracy
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C.2 Code

C.2.1 Requirements

The (Python) Framework versions utilised were:

• TensorFlow1 2.6.0

• Transformers2 4.28.1

• Tokenizers 0.13.3

• Datasets 2.11.0

C.2.2 Hardware

• NVIDIA GeForce RTX 4070 Ti, Driver Version: 531.61, CUDA3 Version: 12.1

• Google Colaboratory4

1TensorFlow is an end-to-end open source platform for machine learning
2Transformers provides APIs and tools to easily download and train state-of-the-art pretrained models
3The NVIDIA CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of primitives for

deep neural networks.
4Colab is a hosted Jupyter Notebook service. Colab is especially well suited to machine learning, data science,

and education.

https://www.tensorflow.org/overview
https://huggingface.co/docs/transformers/index
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://colab.google/
https://colab.google/
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