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Abstract
Modeling wind speed data is the prime requirement for harnessing the wind energy potential at a given site. While the Weibull 
distribution is the most commonly employed distribution in the literature and in practice, numerous scientific articles have 
proposed various alternative continuous probability distributions to model the wind speed at their convenient sites. Fitting 
the best distribution model to the data enables the practitioners to estimate the wind power density more accurately, which is 
required for wind power generation. In this paper we comprehensively review fourteen continuous probability distributions, 
and investigate their fitting capacities at seventeen locations of India covering the east and west offshore corner as well as 
the mainland, which represents a large variety of climatological scenarios. A first main finding is that wind speed varies a lot 
inside India and that one should treat each site individually for optimizing wind power generation. A second finding is that 
the wide acceptance of the Weibull distribution should at least be questioned, as it struggles to represent wind regimes with 
heterogeneous data sets exhibiting multimodality, high levels of skewness and/or kurtosis. Our study reveals that mixture 
distributions are very good alternative candidates that can model difficult shapes and yet do not require too many parameters.

Keywords Mixture distribution · Unimodal distribution · Weibull distribution · Wind energy · Wind speed

1 Introduction

1.1  Historical development of wind speed modeling 
with probability distributions

Mid 20th Century was an epoch when the world started 
exploring the wind energy potential. With its emerging 
demand for power and vulnerability to oil crises, India 
started its wind energy program in 1983–84. The success of 
the wind energy program lies in the accuracy of the assess-
ment of wind flow patterns at a potential site. Wind energy 
is a site-specific and intermittent source of power. There-
fore, an extensive wind resources assessment is an essential 
prerequisite for harnessing the wind power potential at a 
given site. Wind resource assessment estimates wind flow 
patterns based on several factors: available wind data, topo-
graphical conditions, meteorological conditions, etc. This 
necessitates the involvement of statistics in evaluating wind 
flow patterns, which is critical in designing mega-structures 
and optimizing energy generation from the wind. In statisti-
cal terms, the wind flow pattern is not stable in the short 
term. Nonetheless, it exhibits a consistent and stable pattern 
over the long term (except for radical and lasting changes 
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due to climate change, which can be spotted by statistical 
approaches such as change-point detection Aminikhang-
hahi and Cook (2017)). According to Zhang (2015), wind 
statistics is a scientific field that examines the wind pat-
terns over a significant duration. Wind data is viewed as 
a continuous random variable, leading to the use of con-
tinuous probability distributions to model the predictable 
wind pattern. Since the 1940s till today, several papers have 
been published that used different continuous probability 
distributions to describe the wind speed, including (Akpinar 
and Akpinar 2004a, 2009; Jaramillo and Borja 2004; Carta 
and Ramirez 2007a, b; Carta and Mentado 2007; Gokcek 
et al. 2007; Vicente 2008; Akdağ et al. 2010; Fyrippis et al. 
2010; Safari and Gasore 2010; Chang 2011b; Morgan et al. 
2011; Safari 2011; Soukissian 2013; Zhang et al. 2013; 
Alavi et al. 2016; Hu et al. 2016; Jung et al. 2017; Kantar 
et al. 2018) and Mohammadi et al. (2017). Distributions 
with up to 2 parameters were used to model unimodal data, 
while data exhibiting bimodality have been modeled using 
multi-parameter distributions, in particular as mixtures of 
2-parameter distributions.

Sherlock (1951) recommended utilizing the Pearson type 
III distribution which is essentially the Gamma distribution, 
due to its successful and widespread use. The distribution 
employs two parameters, a scale parameter and a shape 
parameter and performs well in modeling natural phenom-
ena specificity velocity data.

Luna and Church (1974) used the 2-parameter log-normal 
distribution for studying air pollution level. The same dis-
tribution was implemented by Kaminsky (1977) and Justus 
(1978) for wind speed analyses, but since then it has only 
very rarely been considered for fitting this type of data (Tar 
2008; Garcia et al. 1998; Bogardi and Matyasovzky 1996).

In the 1970s, the Rayleigh (R) and Weibull (W) distri-
butions entered the scene to model the wind speed (Hen-
nessey Jr 1978). Until the late 1990s, the Weibull distribu-
tion proves to be superior to earlier distributions with a low 
( <= 2 ) number of parameters (Morgan 1995; Akpinar and 
Akpinar 2004b, 2005; Pishgar-Komleh et al. 2015; Pishgar-
Komleh and Akram 2017). Therefore, it has been a part of 
widely used computer modeling softwares such as HOMER 
(Rehman et al. 2007; Van Alphen et al. 2007) and WASP 
(Hunter and Elliot 1994; Sahin et al. 2005). For instance, 
the Weibull distribution showed better fitting than Rayleigh 
(Bidaoui et al. 2019), exponential, square root normal, log-
normal and Gamma distributions (Chang 2011b). However, 
it is well known that the Weibull distribution is not suitable 
for fitting bimodal data or data with high volume ( > 15 % 
of total wind data set) of low wind speed (meaning 0 m/s) 
(Carta and Ramírez 2007a, b). Therefore a lot of research 
efforts have been oriented to find alternatives for and modifi-
cations to the Weibull distribution (e.g., Chadee and Sharma 
(2001); Carta and Mentado (2007); Bali and Theodossiou 

(2008); Akpinar and Akpinar (2009); Akdağ et al. (2010); 
Chang (2011b); Chellali et al. (2012); Akgül et al. (2016); 
Bracale et al. (2017); Aries et al. (2018)). A 3-parameter 
Weibull distribution with an added location parameter is 
another suitable alternative to fit wind data of low wind 
speed (Chalamcharla and Doraiswamy 2016). However, 
Chadee and Sharma (2001) noted that including the extra 
location parameter in the estimation process creates chal-
lenges, and a positive value for this parameter results in an 
unrealistic condition of zero probability of wind speeds less 
than the parameter value. To address high probabilities of 
zero wind speeds, Carta et al. (2008) proposed using a singly 
truncated normal (TN) distribution. In cases where wind 
speed data has infrequent low speeds, Bardsley (1980) rec-
ommended the use of the inverse Gaussian distribution as 
a viable alternative to the 3-parameter Weibull distribution 
with a positive location parameter. Bivona et al. (2003) fitted 
all non-zero wind speeds with the Weibull distribution and 
treated zero wind speeds separately. Table 1 shows compara-
tive studies of the most classical 2-parameter distributions 
for wind speed modeling.

As there was no universal acceptance of the Weibull 
distribution (Carta et al. 2009), the search for other distri-
butions intensified, leading to numerous studies, and new 
distributions were developed. Ouarda et al. (2016) revealed 
the importance of skewness and kurtosis while modeling 
the data sets. Some new distributions which were earlier 
used in other applications were also tested for goodness-
of-fit of wind speed data. Soukissian (2013) has introduced 
the 4-parameter Johnson SB distribution for wind speed data 
modeling and compared it with the Weibull distribution. He 
revealed that indiscriminate use of the Weibull distribution 
is unjustified and found that the Johnson SB distribution is 
a much more suitable model for 11 and 8 buoys of Eastern 
and Western Mediterranean Sea, respectively.

Various authors have proposed using two-component 
mixture distributions with different weight proportions to 
model bimodal wind speed data. Most proposed mixture 
distributions comprise a Weibull component (Jaramillo 
and Borja 2004; Carta and Ramírez 2007a;b; Akpinar and 
Akpinar 2009; Akdağ et al. 2010; Shin et al. 2016) and are 
typically of the type Weibull–Weibull, truncated normal-
Weibull, and Gamma-Weibull. Table 2 provides a summary 
of articles in which mixture models have been applied for 
wind speed modeling.

1.2  Review of methods used for parameter 
estimation in continuous probability 
distributions

There exist numerous different methods to estimate the 
parameters of continuous probability distributions, such 
as for instance the method of moments (MoM), the least 
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square method (LSM), the L-moment method and the 
maximum likelihood method (ML). Various articles have 
compared distinct methods in the context of wind data 
modeling, including (Akdağ and Dinler 2009; Carta et al. 
2009; Bagiorgas et al. 2011; Chang 2011a; Morgan et al. 
2011; Saleh et al. 2012; Arslan et al. 2014; Azad et al. 
2014; De Andrade et al. 2014; Akdağ and Güler 2015; 
Mohammadi et al. 2016). In the next paragraph we shall 
briefly point out the pros and cons of these methods, 
and refer the reader to Gugliani et al. (2018) for a more 
detailed analysis.

For the LSM, the best estimator is the one that mini-
mizes the sum of squared errors between the observed 
and the corresponding theoretical values from the distribu-
tion. The LSM thus is based on the cumulative distribution 
function (cdf) of a continuous random variable, function 
which describes the probability for this random variable 
to be smaller than a given value. This can lead to complex 
calculations, in which case it is recommended to solve 
the equation using a nonlinear technique such as Leven-
berg–Marquardt (Akdağ et al. 2010).

The MoM is the simplest computational method as it 
estimates the distribution’s parameters using the sam-
ple moments. In this way, the parameters are estimated 
by equating the theoretical moments with the sample 
moments. However, the method has certain drawbacks 
(e.g., it can lack robustness), as pointed out in Akdağ and 
Dinler (2009).

Hosking (1990) proposed the L-moment as another 
important parameter estimation method. The L-moments 
are more robust than conventional moments to outliers in 
the data and enable more secure inferences to be made from 
small samples about an underlying probability distribution. 
They are less susceptible to sampling variability, which 
makes it more suitable for modeling extreme data. Several 
authors (Gubareva 2011; Murshed et al. 2011; Strupcze-
wski et al. 2011; Papalexiou and Koutsoyiannis 2013; Rut-
kowska et al. 2017; Ul Hassan et al. 2019; Nerantzaki and 
Papalexiou 2022) have utilized this method to fit generalized 
extreme value distributions to rainfall, flood, streamflow data 
across various parts of the world. Comparative studies of 
this method with other two methods, viz., MLE and MoM 
reveals that it is equivalently good as compared to MLE 
(Rowinski et al. 2002; Gubareva and Gartsman 2010; Hu 
et al. 2020) and outperforms MoM in parameter estimation 
(Murshed et al. 2011; Vivekanandan 2015).

The ML method selects those values of parameters that 
maximize the probability under that distribution of obtain-
ing the randomly observed sample. Suppose (v1, v2,… , vn) 
is the vector of the observations and � is the vector of the 
parameters. The likelihood function is defined as the product 
of probability density functions (pdfs), which we denote here 
as f, evaluated at each individual observation

Subsequently, the log-likelihood function is obtained as

By setting the partial derivatives of the log-likelihood func-
tion with respect to � to zero

the maximum likelihood estimates (MLEs) of the parameters 
are obtained by solving the system of equations, however 
solving the likelihood equations can be tricky and require 
numerical methods (Chang 2011a).

1.3  Model selection criteria

In the statistical literature, there exist various criteria to 
identify the best-fitting distribution for a given data set. In 
studies about wind speed data, the most commonly used are 
the coefficient of determination ( R2 ), the root mean square 
error (RMSE) (Akdağ et al. 2010; Aries et al. 2018), the 
chi-square ( �2 ) (Akpinar and Akpinar 2009) and the Kol-
mogorov–Smirnov (K–S) goodness-of-fit tests (Ayyub and 
McCuen 2016; Chang 2011a).

In this paper, the K–S goodness-of-fit test has been used 
to measure the closeness of the fitted cdf with the cumula-
tive relative frequency of the sample wind speed data and to 
indicate whether or not a distribution is suitable to fit a given 
data set. The K–S test is defined as the max-error between 
two cumulative distribution functions

where F(v) is a fitted cdf and G(v) is the cumulative relative 
frequency of a sample.

However, among all acceptable distributions, they do not 
tell which one fits best (p-values only serve to reject a dis-
tribution for fit or not, but one should not compare p-values 
among themselves to rank distributions). Such a ranking is 
provided by information criteria such as the Akaike Infor-
mation Criterion (AIC) which is based on a compromise 
between the goodness-of-fit of a distribution in terms of the 
likelihood function and the number of parameters to esti-
mate, and this compromise is obtained via a penalization 
on that number. The mathematical expression for AIC is 
given as

L =

n
∏

i=1

f
(

vi;�
)

.

lnL =

n
∑

i=1

ln f
(

vi;�
)

.

�

��
ln L = 0,

Q = max |F(v) − G(v)|

AIC = 2N − 2log(L)
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where L is the likelihood and N is the number of parameters 
of the model. The smallest AIC value indicates the most 
suitable distribution. This distribution, however, is not guar-
anteed to give a reasonable fit (the AIC would also choose 
the best among bad-fitting distributions). Therefore the best 
strategy is to first compare distributions via the AIC and then 
test the best-fitting distribution through the K–S goodness-
of-fit test.

1.4  Contribution of the present paper

Given the plethora of different proposals of distributions for 
modeling wind speed, it is not obvious to know which one 
to use. As indicated in Tables 1 and 2, comparisons have 
already been made, but so far no paper has done a really 
exhaustive comparison taking also mixture components into 
account. Moreover, the comparison of distributions in the 
literature is mostly along the coastal line of countries, and 
often a single distribution performs better than others for all 
the locations under consideration. However, this factor is not 
valid for a vast country like India. The main land of India is 
full of various hills across its geography. These hilly regions 
also have the capability to harness the wind energy potential. 
The additional advantage of these hilly regions is that they 
are not prone to cyclones thanks to their higher topography 
compared to surrounding land. Once wind turbines have 
been installed, they can operate at their full capacity produc-
ing uninterrupted power supply, without the fear of damage 
to the power plant. Therefore, in this study, we have taken as 
many as seventeen locations covering the main land, western 
coastal region, and eastern coastal region of India, so that the 
manufacturers can identify the most suitable distributions for 
their probable site before installing the power plant.

The wind speed data utilized in this study were recorded 
at a height of 10 m by the Indian Meteorological Depart-
ment (IMD), Pune, assuming no density variation occurs 
vertically with height for long slender structures. The ver-
tical change in wind speed with altitude typically follows 
the power law. Upon estimating the mean wind speed at a 
height of 10 m using parameters from the most appropriate 
distribution, the mean wind speed at higher altitudes will be 
computed using the power law. This computation will enable 
a judicious selection of the type of wind turbine required for 
installation at a specific height. Consequently, a comparative 
evaluation of various distributions is necessary to assess the 
most suitable distribution for site-specific wind speed data. 
This evaluation is crucial in determining the appropriate 
wind turbine for optimal performance at different altitudes.

Following these motivations, in this paper we review and 
compare various probability distributions that have been 
suggested over the years by different researchers for wind 
resources assessment. Moreover, we shall also include some 
novel distributions that have primarily been used in other 

domains such as economics and reliability analysis or finan-
cial assessment. Many more (too many) probability distribu-
tions exist for describing positive data, see Sinner et al. (2022) 
for an overview. We restrict to those fourteen that we judge 
most important for modeling wind speed (see Sect. 2), and we 
estimate their parameters by the ML method, yielding pre-
cise estimates with minimal variance. The ML method allows 
us to use the AIC as criterion to compare the distributions. 
According to Ley et al. (2021), a good probability distribu-
tion should both be versatile, i.e. fit various distinct shapes, 
and parameter parsimonious, hence ideally not have too many 
parameters as this complicates interpretation and can lead to 
overfitting. Therefore, we choose the AIC as a goodness-of-fit 
criterion and the Kolmogorov–Smirnov test as a goodness-of-
fit test. As case study we consider long-term wind speed data 
of seventeen onshore locations in India, which are described 
in Sect. 3. Nine sites lie in the seven windy states of India, and 
eight sites are from the state with zero wind power generation 
(as per physical report published by the Ministry of New & 
Renewable Energy). See Fig. 1. The results are presented and 
discussed in Sect. 4, while Sect. 5 provides a conclusion.

2  Overview of the considered continuous 
distributions

The distributions relevant for this study are briefly described in 
what follows. We start from 1- and 2-parameter distributions 
and end with 4- and 5-parameter distributions.

2.1  Weibull distribution

The 2-parameter Weibull distribution (W) is a classical dis-
tribution for wind speed data analysis, in particular unimodal 
frequency distributions. Originally the Weibull-distribution 
has 3 parameters, the third being known as the location param-
eter used for defining the lowest value in a data set. Since for 
wind speed this corresponds to 0, the location parameter can 
be dropped (or, say, implicitly equated to 0) and the 3-param-
eter Weibull distribution simplifies to the 2-parameter Weibull 
distribution. This 2-parameter Weibull distribution has been 
extensively employed to estimate the wind power potential or, 
to be more specific, in the estimation of wind characteristics, 
see e.g. Bivona et al. (2003); Akpinar and Akpinar (2004a, 
2005); Gokcek et al. (2007); Fyrippis et al. (2010); Safari and 
Gasore (2010); Dursun et al. (2011); Baseer et al. (2017). The 
pdf and cdf of the 2-parameter Weibull distribution are respec-
tively given by

and

(1)f (v; k, s) =
(

k

s

)(

v

s

)k−1

exp

[

−
(

v

s

)k
]

, v, k, s > 0,
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where k is the non-dimensional shape parameter and s the 
scale parameter whose dimension is the same as that of the 
variable v. For clarification purposes we mention that the 

F(v;k, s) = 1 − exp

[

−
(

v

s

)k
]

,
variable v stands for the wind speed that we wish to model. 
Besides a reasonably good fit to wind speed data, there 
are two further reasons for the popularity of the Weibull 
distribution: (a) there exist formulas that allow a vertical 
extrapolation of the wind characteristics (Tar 2008; Safari 
and Gasore 2010), and (b) it is very practical for calculating 

Fig. 1  The locations of the 
seventeen considered stations in 
India (https:// www. surve yofin 
dia. gov. in/ pages/ outli ne- maps- 
of- india)

Table 1  Comparative studies of the most classical 2-parameter distributions for wind speed modeling, where * indicates particularly relevant 
distributions for the considered study

Author(s)  Well-known models for wind speed data Other possible candidates for wind speed data

 Tar (2008) Normal Weibull Rayleigh Log-normal Gamma Square root normal
 Zhou et al. (2010) Weibull Rayleigh Log-normal Gamma Inverse Gamma, Inverse Gaussian, Erlang
 Brano et al. (2011) Weibull Rayleigh Log-normal Gamma Inverse Gaussian, Pearson type V and Burr
 Zamani and Badri (2015) Normal Weibull* Rayleigh Log-normal
 Yin (1997) Normal* Weibull* Rayleigh
 Sohoni et al. (2016) Weibull* Rayleigh* Log-normal Gamma* Inverse Gaussian
 Philippopoulos et al. (2012) Weibull* Rayleigh Log-normal Gamma* Inverse Gaussian
 de Lima Leite and das Vir-

gens Filho (2011)
Normal Weibull* Rayleigh Gamma Beta

 Safari (2011) Normal Weibull* Rayleigh Log-normal Gamma*
 Kiss and Jánosi (2008) Weibull Rayleigh Log-normal Gamma*
 Amaya-Martínez et al. (2014) Weibull Rayleigh Log-normal Gamma

https://www.surveyofindia.gov.in/pages/outline-maps-of-india
https://www.surveyofindia.gov.in/pages/outline-maps-of-india
https://www.surveyofindia.gov.in/pages/outline-maps-of-india
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the capacity factor, power coefficient, and output power of 
wind turbines (Jangamshetti and Rau 1999; Dursun et al. 
2011; Gugliani et al. 2021).

2.2  Rayleigh distribution

The Rayleigh (R) distribution is a 1-parameter distribution that 
arises as a special case of the Weibull distribution whose shape 
parameter is fixed to 2. Consequently, the expression of pdf 
and cdf of the Rayleigh distribution are given as

and

2.3  Birnbaum–Saunders distribution

The 2-parameter Birnbaum–Saunders (BS) distribution is 
known as fatigue life distribution and was promoted in the two 
papers Birnbaum and Saunders (1969a, b). It has been devel-
oped by making a monotonic transformation of the standard 
normal random variable. The pdf and cdf of the BS distribu-
tion are given as

f (v; s) =
2v

s2
exp

[

−
(

v

s

)2
]

, v, s > 0,

F(v; s) = 1 − exp

[

−v2

s2

]

.

f (v; 𝛼, 𝛽) =
1

2
√

2𝜋𝛼𝛽

�

�

𝛽

v

�1∕2

+

�

𝛽

v

�3∕2
�

× exp

�

−
1

2𝛼2

�

v

𝛽
+

𝛽

v
− 2

��

, v, 𝛼, 𝛽 > 0,

and

where � is a scale parameter, � is a shape parameter and Φ 
(.) is the standard normal cdf.

2.4  Gamma distribution

The Gamma (G) distribution is a 2-parameter distribution 
whose curve drops off much more gradually than that of the 
exponential distribution for shape parameters � > 1 and more 
quickly for �< 1. The pdf and cdf are

and

where � and � are the shape and scale parameters, respec-
tively, and Γ(.) is the gamma function. The chi-squared dis-
tribution is a special case of the Gamma corresponding to 
� = 2 and � = k∕2 for some positive integer k.

2.5  Nakagami distribution

The 2-parameter Nakagami (Na) distribution is strongly 
related to the G distribution (Nakagami 1960) and it is 
extensively used in communication engineering (Pajala 
et al. 2006; Beaulieu and Cheng 2005). Suppose V has the 

F(v; �, �) = Φ

[

1

�

{

(

v

�

)1∕2

−

(

�
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)1∕2
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,

(2)f (v; 𝜁 , 𝛽) =
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𝛽𝜁Γ(𝜁)
exp

[

−
v

𝛽

]

, v, 𝛽, 𝜁 > 0,

F(v; � , �) = ∫
v

0

x�−1

��Γ(�)
exp

[

−
x

�

]

dx,

Table 2  Overview of papers that have used mixture models for representing wind speed data, where the number of *’s indicates the most rel-
evant distributions for the considered study

Author(s) Duration of 
observation 
period

Types of probability density function

 Akpinar and Akpinar 
(2009)

8 years Weibull Weibull–Weibull* Truncated normal-
Weibull**

 Vicente (2008) 1 year Weibull Weibull–Weibull Truncated normal-Weibull
 Chang (2011a) 2 years Weibull Weibull–Weibull* Truncated normal-

Weibull**
Truncated 

normal-
normal

Gamma-Weibull ***

 Akdağ et al. (2010) 1 year (3 hly avg.) Weibull Weibull–Weibull**
 Carta and Mentado (2007) 16 years Weibull Weibull–Weibull** Truncated normal-

Weibull**
 Jaramillo and Borja 

(2004)
1 year Weibull Weibull–Weibull**

 Rajapaksha and Perera 
(2016)

1 year Weibull Weibull–Weibull** Log-normal-Weibull * Gamma-Weibull



2219Stochastic Environmental Research and Risk Assessment (2024) 38:2213–2230 

G distribution in (2), then 
√

V∕�  follows the Na distribution. 
The pdf and cdf of the Nakagami distribution are given as

and

where P and Γ are the upper incomplete gamma and gamma 
functions, respectively.

2.6  Log‑normal distribution

If a random variable V follows the log-normal (LN) distribu-
tion, then Y = lnV  has the normal distribution. The expres-
sions for the pdf and cdf of the log-normal distribution are

and

2.7   Truncated normal distribution

If the support of the density of a normal random variable Y is 
truncated on the left at zero, the resulting truncated random 
variable V > 0 follows the truncated normal (TN) distribu-
tion with pdf and cdf

and

2.8  Inverse Gaussian distribution (Wald 
distribution)

The inverse Gaussian (IG) is a skewed, 2-parameter dis-
tribution which is similar to the Gamma distribution with 
greater skewness and a sharper peak. The name is mislead-
ing in the sense that an IG random variable is not obtained 
as inverse of a normal random variable, but it is related to 
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two distinct quantities of Brownian motions that the IG and 
normal describe. This distribution is suitable to fit unimodal 
and positively skewed data sets. The pdf of the IG is given as

where � 0 is the mean and � 0 is the shape parameter. The 
cdf can be expressed in terms of the standard normal distri-
bution function Φ(.) by

The IG has the property that if a random variable V follows 
the inverse Gaussian distribution with parameters � and � , 
then a scalar multiple cV with c > 0 follows the same distri-
bution with parameters c� and c� , respectively.

2.9  Johnson S 
B
 distribution

The Johnson S B (JSB) distribution is one of the Johnson dis-
tributions (Johnson 1949) and remarkably flexible. This flex-
ibility is owed to the presence of 4 parameters; as of now, we 
move indeed from 2-parameter distributions to distributions 
with 4 or more parameters. The pdf and cdf of the JSB distri-
bution are given by

and

where � ≤ v ≤ � + � , � is the location parameter, �> 0 is the 
scale parameter and � and � > 0 are shape parameters. The 
JSB distribution actually also has been derived from a nor-
mal distribution. Indeed, if a random variable V follows the 
JSB d is t r ibu t ion ,  then  Z = � + � ln

(

Y

1−Y

)

 wi th 
Y = (V − �)∕� follows the standard normal distribution.
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2.10  Generalized beta distribution of the second 
kind

The generalized beta distribution of the second kind (GB2) 
introduced by McDonald and Xu (1995) is a 4-parameter 
flexible distribution which is mostly applied as a size dis-
tribution of income in economics. The pdf of the GB2 is 
given by

where a, p, q > 0 are shape parameters, b > 0 is a scale 
parameter and B(p, q) = Γ(p)Γ(q)

Γ(p+q)
 is the beta function. The cdf 

of the GB2 is

where Ix(p, q) =
Bx(p,q)

B(p,q)
 is the incomplete beta function.

2.11  Generalized hyperbolic distribution

The generalized hyperbolic (GH) distribution is a 5-param-
eter distribution introduced by Barndorff-Nielsen (1978) 
and contains numerous well-known special cases such as 
variance-gamma, Laplace, hyperbolic, Student’s t, Cauchy, 
normal inverse Gaussian and normal distributions. It can 
model skew as well as light- and heavy-tailed data. Through 
a location-scale transformation, the pdf of the GH distribu-
tion is given as

with

and

where m and � are the mean and variance of the distribu-
tion, respectively, where K�(.) denotes the modified Bessel 
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function of the third kind with order � ∈ ℝ , � and � > 0 are 
shape parameters, | �|< 1 is a skewness parameter, � > 0 a 
scale parameter and � ∈ ℝ a location parameter.

2.12  Mixture distributions

Consider a finite set of pdfs f1(v), ..., fk(v) and weights 
w1, ...,wk such that wi ≥ 0 and 

∑k

i=1
wi = 1 . A mixture dis-

tribution f(v) is then represented by

Mixture distributions are useful for modeling heterogeneous 
wind data, see, e.g., Jaramillo and Borja (2004); Carta and 
Ramírez (2007a, b); Akpinar and Akpinar (2009); Akdağ 
et al. (2010); Qin et al. (2009, 2012) or Alonzo et al. (2017). 
The following mixture distributions are investigated in this 
paper as two-component mixture models ( k = 2 in (4)).

2.12.1  Weibull–Weibull distribution

The Weibull–Weibull distribution (WW) consists of two 
Weibull components with different weight proportions. Jar-
amillo and Borja (2004) used this distribution for the first 
time for wind speed data analysis of La Ventosa, Mexico, 
while Akdağ et al. (2010) analyzed the wind speed data of 
nine buoys located in the Ionian and Aegean Sea (Eastern 
Mediterranean) with the WW distribution and compared it 
with the conventional Weibull distribution.

2.12.2  Truncated normal‑Weibull distribution

The truncated normal-Weibull distribution (TNW) is based 
on the truncated normal (3) and the Weibull (1) distribu-
tions. Carta and Ramírez (2007a, b) analyzed the wind speed 
data of 16 locations of the Canarian Archipelago that com-
prised both unimodal and bimodal distributions with the 
TNW, WW and W distributions.

2.12.3  Truncated normal‑Gamma distribution

The truncated normal-Gamma distribution (TNG) is a mix-
ture of the truncated normal (3) and the Gamma (2) distribu-
tions. Gugliani et al. (2017) found this distribution to model 
best the wind speed data at the Trivandrum site in India.

f (v) =

k
∑

i=1

wifi(v).
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3  Data description

We have considered long-term wind speed data from the 
Indian Meteorology Department Pune, IMD, that has a 
significant number of weather stations across India. Dyne 
pressure tube anemometer is the instrument employed by 
IMDs to record wind speed data. It is located at the height 
of 10 m above the mean ground level at a position utterly 
free from obstructions to the airflow. Typically, these obser-
vatories are established near airports to take advantage 
of open terrain. In this paper, wind speed data of seven-
teen stations, namely Bangalore, Dolphin Nose, Amritsa, 
Palam, New Delhi, Jaipur, Lucknow, Allahabad, Gaya, New 
Kandla, Ahmedabad, Bhopal, Indore, Jamshedpur, Calcutta, 
Hyderabad and Tuticorin, have been considered for the case 
study (see Fig. 1). Table 3 provides some information about 
the geographical coordinates of stations and the wind speed 
observations for each station. In this study, the impact of 
null wind speed has been checked and found to be occurring 

in less than 15% of the cases. This is considered to be mar-
ginally low (Takle and Brown 1978; Razika and Marouane 
2014), therefore any null values have been removed from 
the hourly data series.

Table 4 shows the statistical description of wind speed 
data for the seventeen considered locations in India. From 
Table 4 it has been revealed that New Kandla and Calcutta 
have maximum wind speed. The two stations are located 
in India’s western and eastern offshore and near the Ara-
bian Sea and Bay of Bengal, respectively. The New Kandla 
and Indore are two stations showing mean and median 
wind speed well above the cut-in (2–3 m/s) wind speed 
of wind turbines at 10 m height, followed by Tuticorin. 
These sites are therefore the most probable sites for install-
ing a wind farm. Tuticorin has the smallest skewness (in 
absolute value), whereas Bangalore has the highest among 
all stations. The Dolphin Nose exhibits negative skew-
ness, however this might be associated with the fact that 
we have less than 10,000 observations at that station. The 
kurtosis of all stations is higher than 3 except for Indore 

Table 3  Geographical coordinates, number of wind speed observations, observation period, and missing years for the selected reference stations 
in India (IMD, Pune)

Station Altitude (m) Latitude Longitude Number of 
observa-
tions

Period Missing observations

Bangalore 915 13.20◦ 77.71◦ 249,666 1969–2000 1969[Feb, Aug]
Dolphin Nose 1814 10.2091◦ 77.4872◦ 8604 1985 Nil
Amritsar 234 31.6340◦ 74.8723◦ 219,124 1969–2006 1977[Jul–Aug]; 1986 [Jun–Dec]; 1987; 1988; 1994; 

1995[Apr]; 2000[May–Aug]; 2004[Mar]
Palam(A) 237 28.57◦ 77.10◦ 204,527 1969–2006 1974[Jan]; 1980[Feb]; 1981[May]; 1990
New Delhi 216 28.6139◦ 77.2090◦ 211,877 1969–2006 1983;1987; 1988
Jaipur 432 26.92◦ 75.82◦ 162,057 1969–2002 1971[Jun]; 1978[Sep]; 1979[Jan]; 1980[May]; 

1982[Dec]; 1983[Jan–May]; 1988[Dec];1990 
[Sep]; 1991[Aug–Dec]; 1993[Jun-Aug];1996[Jul–
Dec]; 1998[Apr–Oct]

Lucknow 123 26.8467◦ 80.9462◦ 119,167 1969–2000 1973[Oct, Dec]; 1974[Mar, Oct–Nov]; 1979[Jun–
Oct]; 1981; 1988–1997; 1998[Jan–Mar, Nov–
Dec]; 1999[Apr]

Allahabad 98 25.4358◦ 81.8463◦ 13,770 1969–1971[Jan–Mar] Nil
Gaya 111 24.7914◦ 85.0002◦ 40,024 1969–1977 1970; 1974
New Kandla 550 23.0134◦ 70.2144◦ 168,960 1969–1991 1984[Mar];1985[Jun, July]; 1991[Nov–Dec]
Ahmedabad 53 23.0225◦ 72.5714◦ 145,834 1969–1990 1979[Nov–Dec]; 1981; 1990[Jan]; 1990[Nov–Dec]
Bhopal 527 23.2599◦ 77.4126◦ 153,008 1969–1990 1973[Feb–Mar]; 1982[Apr]; 1990[Oct–Dec]
Indore 550 22.7196◦ 75.8577◦ 142,968 1971–1998 1972[Jan–May]; 1978[Feb]; 1981[Oct–Dec];1982; 

1983; 1984; 1998[May]
Jamshedpur 159 22.8046◦ 86.2029◦ 13,338 1969–1974 1970; 1971[Jan, Oct–Dec]; 1972
Calcutta 9.14 22.5726◦ 88.3639◦ 147,608 1969–1994 1983[Dec]; 1986[Jul]; 1987[Sep–Dec];1988–1990; 

1991[Jan]
Hyderabad(A) 536.0 17.37◦ 78.48◦ 194,000 1969–1998 1975[Apr–Jun]; 1981; 1985; 1986[Jan–Mar]; 

1988[Jan–Apr]; 1995[Jan–Apr]; 1998[Jan–Mar]; 
1998 [Nov–Dec]

Tuticorin 4 8.7642◦ 78.1348◦ 138,384 1989–2006 1994[May]; 1997[Oct–Dec]; 1998[Jan–Jun]
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which is a land lock fastest growing city. The high kurtosis 
value reveals that all the stations’ wind speed histogram 
is leptokurtic except for Indore. Furthermore, the CV is 
maximum for Allahabad, followed by Calcutta and Amrit-
sar, and least for Indore. A high CV value means a wide 
variation in wind speed from the mean wind speed.

4  Result and discussions

The ML method was used to estimate the parameters of the 
fourteen distributions analyzed in the seventeen locations in 
India. To compare the performance of different models, we 
used the AIC as a goodness-of-fit criterion and the Kolmog-
orov–Smirnov (K–S) test as a goodness-of-fit test. Tables 6 
and 7 in the Appendix contain the estimated values of the 
parameters for the fourteen distributions in the seventeen 
locations, while Table 8 in the Appendix shows the AIC 
values. The distribution with minimum AIC is the most suit-
able distribution for the given data set. Among 5-parameter 
distributions, the truncated normal-Gamma distribution out-
performs all other distributions at four locations, followed 
by the Weibull–Weibull distribution at three stations, the 
generalized hyperbolic distribution at two locations and the 
truncated normal-Weibull at one location. At four locations 
the 4-parameter generalized beta distribution of second kind 
has the best performance as a wind speed model. At three 
locations have 2-parameter distributions come out as most 
suitable, twice the Birnbaum–Saunders distribution and 
once the Gamma distribution. If we compare only 2-param-
eter distributions among themselves, then the Gamma is 
judged the most suitable six times, the Birnbaum–Saunders 

four times, the Weibull distribution three times, and the Nak-
agami and the truncated normal distributions respectively 
two times. Note however that the Weibull is sometimes only 
beaten by a very small margin, in particular by the Nakagami 
distribution. Nevertheless, these findings reveal the interest-
ing fact that one should not blindly use the Weibull distri-
bution out of convenience, as better choices are definitely 
available, even among 2-parameter distributions. For each 
station, the best fitted model along with the corresponding 
AIC, the p-value of the K–S test, the coefficient of deter-
mination R2 and RMSE are summarized in Table 5. We see 
that, at 5% level, only 4 best-fitting distributions would be 
rejected, while none would be rejected at 3% level, showing, 
especially at such a high number of observations, that the 
selected distributions are very suitable models for the data 
under investigation.

For visual inspection, we provide the wind speed histo-
grams and empirical cdfs along with pdfs and cdfs of the 
best fitted models for four locations in India, namely Ban-
galore, Hyderabad, Jaipur and New Kandla, see Figs. 2 and 
3. The plots for other distributions and stations are of course 
available upon request, as we did not want to render the 
paper unnecessarily long. Note that we chose as class width 
for the bins 2 km/h following the recent suggestions by Deep 
et al. (2020), who illustrated the appropriateness of a 2 km/h 
class width for removing the sampling error. As general 
conclusion, we find that, for highly skewed and leptokurtic 
histograms, distributions with more than 2 parameters are 
more suitable, which explains why multiparameter or mix-
ture models are such good choices. The reader is referred to 
Gugliani et al. (2018) to calculate the wind power density 
by knowing the pdf of different distributions.

Table 4  Statistical description 
of wind speed data for the 
seventeen considered locations 
in India

Station  Max  Mean Median Stdev CV Skewness  Kurtosis

Bangalore 25.0000 2.5313 2.2222 1.4057 0.5553 3.0054 42.8016
Dolphin Nose 27.5000 22.3506 23.3333 3.7080 0.1659 −  0.9933 3.4919
Amritsar 25.5556 2.4323 1.9444 1.9864 0.8167 1.9076 9.7166
Palam(A) 21.9444 3.0424 2.7778 1.8959 0.6232 1.1682 5.1370
New Delhi 22.2222 2.4216 2.2222 1.7467 0.7213 1.4089 6.0431
Jaipur 19.4444 1.9491 1.6667 1.5288 0.7844 1.7038 7.6952
Lucknow 21.1111 2.9433 2.7778 2.0429 0.6941 1.0686 4.4142
Allahabad 20.0000 1.5419 1.1111 1.3986 0.9071 1.8711 9.1666
Gaya 23.3333 2.6510 2.2222 2.0748 0.7827 1.5752 6.4443
New Kandla 26.6667 5.6891 5.2778 2.9643 0.5210 0.6518 3.3330
Ahmedabad 19.4444 2.8650 2.7778 1.6243 0.5669 0.8490 4.1811
Bhopal 22.2222 3.8370 3.3333 2.2075 0.5753 0.7520 3.6700
Indore 19.4444 5.1389 5.2778 2.5710 0.5003 0.1884 2.7585
Jamshedpur 14.4444 2.1224 1.6667 1.4953 0.7045 1.5621 7.1206
Calcutta 26.6667 2.2426 1.6667 1.8895 0.8425 1.6286 7.3651
Hyderabad(A) 20.2778 2.7399 2.2222 1.9527 0.7127 1.2808 5.1310
Tuticorin 22.7778 4.6705 4.4444 2.4467 0.5239 0.3718 3.0436
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Table 5  The best fitted model 
with the corresponding p-value 
of the K–S test, the AIC, R2 and 
the RMSE for the seventeen 
considered locations in India

Station  Best model  P-value of K–S AIC R
2 RMSE

Bangalore Weibull–Weibull 0.0720 813588.3628 0.9952 0.0218
Dolphin Nose Weibull–Weibull 0.0347 43623.1022 0.9990 0.0102
Amritsar Generalized beta II 0.0709 801932.6258 0.9938 0.0165
Palam(A) Generalized beta II 0.0700 787954.6508 0.9955 0.0185
New Delhi Generalized hyperbolic 0.0746 746002.4678 0.9935 0.0194
Jaipur Birnbaum–Saunders 0.0837 504797.2540 0.9938 0.0168
Lucknow Truncated normal-Gamma 0.0535 470688.2468 0.9962 0.0163
Allahabad Birnbaum–Saunders 0.1402 36991.8347 0.9757 0.0309
Gaya Generalized hyperbolic 0.0735 149394.3200 0.9933 0.0207
New Kandla Truncated normal-Weibull 0.0336 829182.6197 0.9983 0.0139
Ahmedabad Truncated normal-Gamma 0.0513 531873.6712 0.9970 0.0161
Bhopal Generalized beta II 0.0457 653209.2921 0.9976 0.0153
Indore Truncated normal-Gamma 0.0516 662655.7425 0.9983 0.0149
Jamshedpur Generalized beta II 0.0657 42964.1920 0.9917 0.0242
Calcutta Weibull–Weibull 0.0697 516581.4881 0.9905 0.198
Hyderabad(A) Gamma 0.0419 737440.2027 0.9964 0.0152
Tuticorin Truncated normal-Gamma 0.0557 628521.3462 0.9973 0.0180

Fig. 2  Wind speed histograms and empirical cdfs at a Banglore and b 
Jaipur stations along with the pdfs and cdfs of the best fitted distribu-
tions

Fig. 3  Wind speed histograms and empirical cdfs at c Hyderabad and 
d New Kandla stations along with the pdfs and cdfs of the best fitted 
distributions
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5  Conclusions

Fourteen continuous probability distributions have been 
reviewed and compared for modeling wind speed data at 
seventeen locations in India covering the east and west 
offshore corner and the mainland of India, hence a large 
variety of distinct climatological situations. Our aim was 
to identify the site-specific best distribution that can model 
the wind speed data with minimum amount of parameters 
and maximum agreement with the given wind data set. 
The Maximum Likelihood method has been used to esti-
mate the parameters of the distributions. We determined 
the most suitable distribution by means of the AIC and 
checked the suitability with the Kolmogorov–Smirnov 
test. We found that out of the seventeen locations, four 
wind speed sites have been best modeled by the truncated 
normal-Gamma distribution, four by the generalized beta 
distribution of second kind, three by the Weibull–Weibull 
distribution, two respectively by the generalized hyper-
bolic and the Birnbaum–Saunders distributions, and one 
respectively by the truncated normal-Weibull distribution 
and Gamma distribution.

Our study reveals two main important messages, namely 
(i) that wind speed varies quite a lot within India from one 
location to another and that one should treat each geographic 
situation individually for best wind power generation, and 
(ii) that the wide acceptance of the Weibull distribution 
should at least be questioned, as it cannot perfectly represent 
all the wind regimes for wind speed modeling, especially 
wind regimes with heterogeneous data sets exhibiting mul-
timodality, high levels of skewness and/or kurtosis. Instead, 
more suitable probability distributions such as those pre-
sented in this paper should be selected for each wind regime 
to minimize errors in the estimation of the wind energy 
potential at a given site. Our study shows that mixture dis-
tributions are very good candidates.

Appendix

See Tables 6, 7 and 8.

Table 6  Estimated parameters of 1, 2 and 4-parameter distributions for fitting wind speed data of the seventeen considered locations in India

Station Distribution

Truncated normal Birnbaum–Saunders Nakagami  Weibull

� � � � � � k s

Bangalore 2.2577 1.6336 2.0565 0.6705 0.9696 8.3835 1.8756 2.8472
Dolphin Nose 22.3506 3.7078 21.9489 0.1912 8.5307 513.2981 8.0714 23.8169
Amritsar 0.0000 3.1403 1.6277 0.9780 0.5246 9.8618 1.2931 2.6398
Palam(A) 2.3080 2.4143 2.3547 0.7545 0.7880 12.8505 1.6848 3.4175
New Delhi 0.7392 2.6691 1.7737 0.8451 0.6344 8.9150 1.4611 2.6849
Jaipur 0.0000 2.4771 1.4233 0.8549 0.5792 6.1361 1.3708 2.1441
Lucknow 1.4081 2.9482 2.0637 0.9051 0.6343 12.8365 1.4749 3.2581
Allahabad 0.0000 2.0817 1.0361 0.9871 0.4619 4.3333 1.1798 1.6392
Gaya 0.0000 3.3664 1.9202 0.8667 0.5767 11.3324 1.3671 2.9142
New Kandla 5.2966 3.3197 4.4571 0.7280 0.9917 41.1528 1.9953 6.4119
Ahmedabad 2.5072 1.914 2.2414 0.7342 0.8821 10.8467 1.8353 3.2265
Bhopal 3.3063 2.6286 2.9012 0.7865 0.8402 19.5961 1.7922 4.3118
Indore 4.8738 2.8235 3.6549 0.8660 0.9388 33.0182 2.0204 5.7568
Jamshedpur 0.8860 2.2045 1.6111 0.7903 0.6741 6.7401 1.5134 2.3656
Calcutta 0.0000 2.9324 1.4924 0.9916 0.4982 8.5992 1.2440 2.4141
Hyderabad(A) 0.9984 2.9298 1.9624 0.8761 0.6326 11.3198 1.4632 3.0350
Tuticorin 4.3359 2.7477 3.3947 0.8387 0.9028 27.8001 1.9371 5.2390



2225Stochastic Environmental Research and Risk Assessment (2024) 38:2213–2230 

Table 6  (continued)

Station Distribution

Gamma Log-normal Inverse Gaussian Rayleigh

� � � � � � s –

Bangalore 2.0474 2.5313 2.0565 0.6705 2.5313 5.0624 2.0474 –
Dolphin Nose 30.8345 0.7249 3.0906 0.1894 2.2350 6.0591 16.0203 –
Amritsar 1.5940 1.5260 0.5435 0.8979 2.4323 2.0527 2.2206 –
Palam(A) 2.4982 1.2178 0.8993 0.7028 3.0423 4.6789 2.5348 –
New Delhi 1.9782 1.2241 0.6109 0.7878 2.4215 2.8771 2.1113 –
Jaipur 1.8360 1.0616 0.3710 0.8007 1.9490 2.2551 1.7516 –
Lucknow 1.8948 1.5533 0.7930 0.8330 2.9433 2.9833 2.5334 –
Allahabad 1.4059 1.0968 0.0370 0.9220 1.5418 1.2724 1.4720 –
Gaya 1.8160 1.4598 0.6750 0.8084 2.6509 2.9713 2.3804 –
New Kandla 3.0766 1.8491 1.5673 0.6574 5.6891 9.4816 4.5361 –
Ahmedabad 2.7481 1.0426 0.8597 0.6821 2.8650 4.6843 2.3288 –
Bhopal 2.5583 1.4999 1.1367 0.7200 3.8370 5.3735 3.1302 –
Indore 2.6796 1.9178 1.4388 0.7536 5.1388 5.77730 4.0631 –
Jamshedpur 2.1588 0.9831 0.5034 0.7422 2.1223 2.9395 1.8358 –
Calcutta 1.4977 1.4974 0.4380 0.9162 2.2425 1.8309 2.0736 –
Hyderabad(A) 1.9405 1.4119 0.7286 0.8084 2.7398 2.9953 2.3791 –
Tuticorin 2.6251 1.7792 1.3389 0.7449 4.6705 5.6509 3.7283 –

Station Distribution

Generalized Beta II Johnson S
B

a b p q � � � �

Bangalore 3.7625 4.1064 0.4905 2.0080 −0.4817 1.0512 1.9605 0.7653
Dolphin Nose 49.4137 28.7742 0.1048 28.6291 −1.2419 0.9250 6.6210 20.9908
Amritsar 0.8400 132.4121 2.2148 67.2178 6.7738 1.7230 −0.8434 145.6430
Palam(A) 1.2351 41.8468 1.7928 44.3631 4.4346 1.9830 −1.1158 39.4417

New Delhi 0.8285 182.6785 2.8238 106.0801 3.7796 1.6330 −0.7107 30.5787
Jaipur 0.4572 198.3910 8.6925 78.2316 4.1441 1.5261 −0.4790 33.1396
Lucknow 1.3562 140.6683 1.1550 197.9257 2.5926 1.5614 −1.0319 22.4283
Allahabad 2.0000 1.9597 0.6723 1.4318 5.4423 1.6262 −0.6929 55.7250
Gaya 0.5043 196.9846 7.0499 67.5031 2.8172 1.2791 −0.3697 25.0001
New Kandla 2.6223 15.5207 0.7117 7.1381 2.0972 1.8848 −2.1481 30.1947
Ahmedabad 2.1978 9.1743 0.8254 8.4510 6.6518 2.8724 −2.2402 54.3772
Bhopal 2.3070 14.3330 0.7142 10.8763 2.9476 2.1029 −2.1407 28.7593
Indore 6.4400 9.1562 0.2237 1.7759 0.7988 2.2667 −5.2861 25.0254
Jamshedpur 0.7043 196.5487 4.2289 108.6955 5.0759 1.7628 −0.5813 44.6038
Calcutta 0.6371 198.6996 3.4756 66.3805 4.4871 1.6289 −0.9481 45.9953
Hyderabad(A) 1.0142 175.3738 1.9175 130.7861 2.6212 1.3963 −0.5423 21.4290
Tuticorin 5.9816 7.8998 0.2403 1.4153 2.3516 2.8293 −5.5568 33.1669
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Table 7  Estimated parameters of 5-parameter distributions for fitting wind speed data of the seventeen considered locations in India

Station Distribution

Generalised hyperbolic Truncated normal-Weibull

� � � � � w � � k s

Bangalore 1.2446 6.6285 0.9567 −1.0300 1.4057 0.9853 2.3655 1.3771 1.1479 5.1158
Dolphin Nose 1.8948 0.3559 −0.9031 27.2632 3.7080 0.0000 23.2546 2.2524 8.0713 23.8169
Amritsar 0.0928 1.9661 0.9836 −0.3975 1.9864 0.2500 1.6516 1.4083 1.2433 2.7795
Palam(A) −4.2264 5.5674 0.9888 −1.5814 1.8959 0.0937 1.8245 0.6906 1.7052 3.5571
New Delhi 1.6351 0.0013 0.9769 0.2143 1.7467 0.0812 0.8378 0.3395 1.5340 2.8538
Jaipur −2.5356 2.3982 0.9929 −0.4963 1.5288 0.0000 1.7617 0.8055 1.3708 2.1440
Lucknow 1.3463 2.1043 0.9807 −0.3884 2.0429 0.0111 7.2333 1.2394 1.4844 3.2077
Allahabad −1.6029 1.7223 0.9917 −0.2766 1.3986 0.7747 0.0172 2.3481 3.0206 0.4274
Gaya 1.1307 0.6896 0.9825 2.6510 2.0748 0.0000 1.8394 2.1486 1.3671 2.9142
New Kandla −2.6095 14.7953 0.9735 −5.3929 2.9643 0.6714 4.3522 2.2688 2.9797 9.0926
Ahmedabad −3.0641 9.5302 0.9770 −2.0437 1.6243 0.0727 3.1442 0.9480 1.7770 3.1984
Bhopal −3.5972 10.6223 0.9794 −3.2435 2.2075 0.0000 3.0986 2.4391 1.7921 4.3116
Indore −19.4973 122.5250 0.8802 −19.5578 2.5710 0.3202 0.0072 4.6793 2.9370 6.5021
Jamshedpur 0.2934 2.2948 0.9862 −0.1974 1.4953 0.1275 0.9273 0.3668 1.5954 2.5693
Calcutta 0.1391 1.4805 0.9835 −0.1396 1.8895 0.2868 3.1385 2.8565 1.4160 1.7576
Hyderabad(A) 0.4000 2.8510 0.9834 −0.6120 1.9527 0.0000 3.1019 0.4274 1.4632 3.0349
Tuticorin −3.0369 38.0386 0.9428 −9.5116 2.4467 0.6147 5.2218 2.0907 1.3762 4.0849

Station Distribution

 Truncated normal-Gamma Weibull–Weibull

w � � � � w k
1

s
1

k
2

s
2

Bangalore 0.4555 2.7290 1.0909 2.4708 0.9511 0.9989 2.0500 2.8390 1.7634 18.2708
Dolphin Nose 1.0000 22.3506 3.7078 37.7793 0.5858 0.4795 6.9374 20.8927 22.3658 25.5638
Amritsar 0.2500 1.8051 1.5999 1.4672 1.7113 0.1328 1.4117 4.7063 1.3961 2.3619
Palam(A) 0.2500 3.1427 1.5786 2.2660 1.3155 0.2963 1.8698 4.6887 1.8557 2.8996
New Delhi 0.0459 5.1124 1.9114 2.0499 1.1177 0.5956 1.6745 3.4322 1.7821 1.6666
Jaipur 0.1791 3.4814 2.1916 2.2367 0.6963 0.6440 1.6012 2.7880 2.0348 1.0931
Lucknow 0.1806 4.1958 2.0160 1.8348 1.4423 0.7500 1.7590 3.8986 1.5863 1.5094
Allahabad 0.7500 0.3156 2.2461 8.8020 0.0415 0.7504 1.4654 2.1433 3.0109 0.4210
Gaya 0.2581 4.4137 2.7650 2.3908 0.8048 0.6354 1.6281 3.8457 2.0781 1.4533
New Kandla 0.7086 5.4298 3.7751 7.7367 0.6349 0.0978 4.8101 5.4981 1.9303 6.4854
Ahmedabad 0.2819 3.3949 1.2849 2.3771 1.1152 0.0911 3.3671 3.4158 1.7680 3.1994
Bhopal 0.4222 4.3542 2.0889 2.1875 1.5490 0.1931 2.5412 4.9998 1.6849 4.1378
Indore 0.9667 5.1455 2.6213 7.4603 0.0565 0.7930 2.8027 6.4693 1.1547 2.8993
Jamshedpur 0.0000 2.1949 1.4921 2.1588 0.9831 0.5097 1.6909 3.0985 1.8565 1.6477
Calcutta 0.1770 4.0113 2.5621 1.6815 1.0667 0.8836 1.3937 2.7315 3.4941 0.4898
Hyderabad(A) 0.0001 2.7871 2.5710 1.9404 1.4120 0.6438 1.6500 83.7450 1.7102 1.8499
Tuticorin 0.7461 5.0721 2.2627 1.4969 2.1864 0.6675 2.7681 5.95667 1.2886 3.6757
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Table 8  Akaike Information Criterion for the seventeen considered locations in India

The bold values show the minimum AIC values, indicating the distributions with the best fit

Distribution Station
Bangalore Dolphin Nose Amritsar Palam (A) New Delhi Hyderabad

Birnbaum–Saunders 867462.8257 49056.4520 809072.9251 809175.7264 757834.2378 752187.7312
Gamma 825698.4175 48196.3165 802639.4347 788064.9237 750750.0918 737,440.2027
Log-normal 855480.8665 48970.8078 812849.6314 804055.1376 759050.2037 750752.9408
Nakagami 833094.7251 47567.3274 819219.2102 793751.4765 763173.6840 745282.2252
Rayleigh 833248.0428 59492.7883 899309.3597 802111.0504 798236.9877 777852.2713
Weibull 831012.6281 45547.9689 805888.9356 790678.0358 755218.0241 739666.8554
Johnson S

B
875117.2253 43824.7393 816020.1684 792044.4383 758904.3357 742095.3042

Generalized hyperbolic 824095.0570 44014.5137 809436.0020 792993.6692 746,002.4678 742236.4743
Truncated normal 852268.4818 46973.2211 819585.4821 805494.7569 770247.4078 751140.5971
Truncated normal-Weibull 820463.3320 45553.9689 805884.2600 789802.4769 753720.2714 739672.8562
Truncated normal-Gamma 817541.3528 46977.2211 803780.2500 788540.3090 750486.8344 737446.2428
Weibull–Weibull 813,588.3628 43,623.1022 803324.5836 788604.7413 751881.86901 737978.0019
Inverse Gaussian 876,137,9849 49070.9294 821525.6134 816647.7999 765656.3139 761785.5063
Generalized Beta II 815136.9880 43782.1787 801,932.6258 787,954.6508 750268.3496 737495.4553

Distribution Station
Jaipur Lucknow Allahabad Gaya New Kandla Tuticorin

Birnbaum–Saunders 504,797.2540 484024.6219 36,991.8347 150012.8082 884660.2061 696490.7826
Gamma 510563.0593 471674.0255 38580.3750 150954.5513 837420.2050 647134.7176
Log-normal 508080.8444 483672.6167 37861.4243 150589.5639 867374.4984 681753.1808
Nakagami 526838.9362 472724.0906 40117.8566 154706.0530 830205.7092 633660.9918
Rayleigh 567232.7572 492466.2746 47817.9481 164862.0374 830211.3917 634636.4780
Weibull 516178.7388 471197.7258 38865.3866 152236.9689 830211.8370 634417.6390
Johnson S

B
515918.6415 477144.9511 40472.8809 151389.1250 831257.7389 635885.4345

Generalized hyperbolic 513639.1558 475046.5118 39074.3392 149,394.3200 832360.5380 636534.9547
Truncated normal 529246.0974 475591.4879 40183.8055 155267.0731 833848.5356 629534.2326
Truncated normal-Weibull 516184.7396 471151.5693 37927.2839 152242.9693 829,182.6197 628547.5488
Truncated normal-Gamma 508932.4421 470,688.2468 37434.1950 150341.8156 829574.7824 628,521.3462
Weibull–Weibull 509205.5512 470889.0170 37032.6018 150271.4093 829270.3620 628669.2364
Inverse Gaussian 508459.2512 491474.3856 37290.3299 151048.9151 893883.7201 708899.2724
Generalized Beta II 506666.3564 471128.6091 37867.4427 150124.8767 830016.4575 628842.6855

Distribution Station
Ahmedabad Bhopal Indore Jamshedpur Calcutta –

Birnbaum–Saunders 558434.9063 689872.6837 756800.9405 43265.2282 516787.9889 –
Gamma 534739.9602 658092.2441 693841.5655 43052.0866 520603.1664 –
Log-normal 553029.7126 681565.5179 736239.9503 43329.2990 522358.3866 –
Nakagami 532474.4352 653311.7492 675900.8426 44051.2534 531871.7872 –
Rayleigh 534038.8171 656552.5576 676277.1299 45659.1584 596485.3175 –
Weibull 532157.8093 653375.7550 676257.1174 43494.1219 522885.2775 –
Johnson S

B
536254.0812 657798.8377 673605.2002 43375.7415 536539.5082 –

Generalized hyperbolic 536066.2566 658835.4402 675300.2866 43066.3941 522623.7059 –
Truncated normal 538350.3674 657432.9365 667041.6426 44694.8338 531873.1733 –
Truncated normal-Weibull 532000.2240 653381.7628 665662.1289 43322.0542 521941.4965 –
Truncated normal-Gamma 531,873.6712 653700.0014 662,655.7425 43058.0870 519829.2662 –
Weibull–Weibull 531991.6100 653226.6144 665260.5735 43201.1833 516,581.4881 –
Inverse Gaussian 564801.9432 69716.5465 772071.8416 43616.5492 523589.0754 –
Generalized Beta II 531919.6096 653,209.2921 666987.1595 42,964.1920 519042.8030 –
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