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A B S T R A C T

Dense medium separation circuits use a dense medium to separate low density waste material from high density
valuable minerals. Since the dense medium is an expensive consumable, it is recovered after separation of the
valuable minerals from waste. A dynamic nonlinear model of a dense medium separation circuit of an iron
ore plant in South Africa is developed to track the flow of medium in the circuit. An extended Kalman filter is
designed for estimating observable but unmeasured states. The model is validated using online plant data. This
paper serves as a precursor for further work to detect and mitigate expensive medium losses in the circuit.
1. Introduction

Dense medium separation (DMS) is a beneficiation process that
separates valuable minerals from waste material, with the basic prin-
ciple being the separation of low density material from high density
material (Legault-Seguin et al., 2017). A dense medium is employed
to achieve this separation. The medium is used in a separation vessel,
and then recovered. In iron ore processing, ferrosilicon is used as the
medium, which is an expensive consumable (Maré et al., 2015; Tom,
2015; Scott, 2017). Medium losses can contribute between 18% and
39% of the total operating costs of metalliferous DMS plants (Rayner
and Napier-Munn, 2003b; Dardis, 1989). Therefore, the aim of this
paper is to develop a dynamic mathematical model of a DMS plant
that can aid in identifying and reducing medium losses to improve the
economic performance of the plant.

Fig. 1 illustrates a dense medium separation circuit. Correctly sized
ore is fed to a dense medium cyclone, where higher density valuable
material forms the underflow of the cyclone, and lower density waste
material forms the overflow (Napier-Munn, 2018). The overflow from
the cyclone is sent to a drain-and-rinse screen. The medium slurry
is drained from the waste material and sent to the correct medium
tank. The remaining waste in the screen is then rinsed, with the rinsed
medium reporting to the dilute medium tank. The waste in the overflow
of the screen is transported via conveyor belts to the tailings. The
underflow from the cyclone is also sent to a drain-and-rinse screen.
The medium slurry is drained from the waste material and sent to
the correct medium tank. The remaining material in the screen is
rinsed with wash water. The rinsed medium slurry is sent to the dilute
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medium tank. The valuable material in the overflow from the screen
is transported via conveyor belts to product stockpiles (Legault-Seguin
et al., 2017).

The medium recovery circuit consists of a correct medium tank,
a secondary tank, a dilute medium tank, two densifiers (primary and
secondary), and the magnetic separator. The medium slurry is sent from
the correct medium tank to either the mixing box, or to a primary cy-
clone densifier. The underflow of the primary cyclone densifier returns
to the correct medium tank while the overflow is sent to the secondary
tank. The secondary tank feeds a secondary pipe densifier, where the
overflow passes to the dilute medium tank and the underflow passes to
the correct medium tank. Finally, the slurry in the dilute medium tank
can be diluted further with water before it is pumped to a magnetic
separator. The effluent from the magnetic separator is sent to a degrit
circuit, and the concentrate is returned to the correct medium tank.

Medium can be lost at the drain-and-rinse screens either due to
adhesion to the ore or due to screen-blinding. Medium can also be lost
in the effluent of the magnetic separator, or at the mixing box when
blockages cause an overflow (Dardis, 1989; Napier-Munn et al., 1995).

An accurate model of the DMS circuit can assist to identify excessive
medium losses. Using the principle of the conservation of mass, Meyer
and Craig (2010) modelled the DMS circuit of a coal plant as individual
units. The fundamental difference between a coal DMS circuit and an
iron ore DMS circuit is that in an iron ore circuit, the product is denser
and therefore reports to the underflow of the dense medium cyclone,
while the waste reports to the overflow. This is the opposite in a coal
DMS circuit. Meyer and Craig (2010) modelled both ore and medium
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Fig. 1. Diagram of a dense medium separation circuit at an iron ore plant in South Africa.
flows of the specified units with a view to enable development of
dynamic control of the yield and grade of the product.

The contribution of this paper is a dynamic nonlinear model of
the iron ore DMS circuit in Fig. 1 (which, in addition to the mixing
box, dense medium cyclone, and correct medium tank, which were
modelled by Meyer and Craig (2010), also includes the product and
waste drain-and-rinse screens, the secondary and dilute medium tanks,
the primary and secondary densifiers, and the magnetic separator).
The model described in this paper specifically focuses on the flow of
medium in the circuit, and only includes the flow of ore in units where
it affects the flow of medium. This means that the model developed
herein does not give insight into the yield and grade of the product,
but rather focuses on medium flows within the entire circuit, for the
purposes of allowing for medium loss detection.

This model is developed in Section 2. Not all plant model param-
eters are known and not all input and output variables are measured,
and so the developed model is analysed for observability in Section 3.
If model states and parameters are unknown but observable as shown
in Section 3, these states and parameters can theoretically be estimated
using state estimation. In Section 4, state estimation using the extended
Kalman filter is applied to online plant data from a DMS circuit for
an iron ore plant in South Africa during a mixing box blockage event,
which can lead to medium losses. Conclusions and recommendations
are provided in Section 5.

2. Model development

This section presents the unit process models for the DMS circuit in
Fig. 1. The model elements are presented in state-space as:

�̇� = 𝑓 (𝑡,𝒙, 𝒖,𝒅)
𝒚 = 𝑔 (𝑡,𝒙, 𝒖,𝒅) ,

(1)

where 𝒙 ∈ ℜ𝑛𝑥 , 𝒖 ∈ ℜ𝑛𝑢 , 𝒅 ∈ ℜ𝑛𝑑 and 𝒚 ∈ ℜ𝑛𝑦 are the model states,
inputs, process disturbances and measured outputs respectively.

For the circuit tanks, which do not receive ore but rather only
medium (and water in the case of the dilute medium tank), only
medium flows (and water where applicable) are modelled. The same
is true of the primary and secondary densifiers, and the magnetic
2

separator. The mixing box, which receives both ore and medium, is
modelled considering both ore and medium. The dense medium cyclone
and drain-and-rinse screens are combined into a simplified unit, and
only the flow of medium is considered, as the ore from this simplified
unit exits the circuit via the product and waste conveyors, and therefore
its effect on the flow of medium in the rest of the circuit (which is the
focus of this paper) is considered negligible.

2.1. Pump models

For the circuit tank models, a general model for the pumps used
in the circuit shown in Fig. 1 is required. For each pump, the flow
rate is not measured and only the pump speed is known. Furthermore,
for this work, the principle of the conservation of volume is used. It is
assumed that the material flows are similar to liquids and consequently
incompressible. The pump speed, discharge flowrate and discharge
pressure are measured variables. Only the hydraulic part of the pump
is modelled (Ghafouri et al., 2012).

The pump characteristic curves, provided by the pump manufactur-
ers, gives an indication of the relationship between the total dynamic
head, and the volumetric flow rate produced by a pump, at a specific
speed. Fig. 2 gives an example of the characteristic curve for a pump
with a maximum speed of 805 rpm.

The curves in Fig. 2 can be fitted to a quadratic function over normal
operating ranges for a specific pump speed. Furthermore, according to
the pump affinity laws, the head developed by a pump at zero flow rate
is proportional to the square of the speed of the pump (Karassik, 2008).
The respective curves at all speeds can be constructed as follows:

𝐻𝑝 = 𝐻𝑚𝑎𝑥𝑛
2 − 𝑆𝑄2, (2)

where 𝐻𝑚𝑎𝑥 [m] is the maximum head when there is no flow and
the pump is at maximum speed, 𝑛 is the ratio of the current speed to
the maximum speed of the pump, 𝑆 [s2/m5] is the curve parameter
obtained from the pump curves, and 𝑄 [m3/s] is the volumetric flow
rate of slurry.

Bernoulli’s equation (Karassik, 2008) which asserts that the com-
bination of pressure and the sum of kinetic and potential energy is
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Fig. 2. Characteristic pump curves for correct medium pump (adapted from Minerals
(2012)). The curves are given as percentages of the maximum speed.

Table 1
Correct medium tank model variables.

Variable Unit Description

Measured at the plant

ℎ𝑙𝑒𝑣(𝐶𝑀) m Correct medium tank level
𝑃𝑃𝐷 kPa Primary densifier pump pressure
𝑛𝐶𝑀 – Correct medium pump speed fraction
𝑛𝑃𝐷 – Primary densifier pump speed fraction
𝜌𝐶𝑀 t/m3 Density of slurry in correct medium tank

Not measured at the plant

𝑄𝐶𝑀 m3/s Correct medium pump flow rate
𝑄𝑃𝐷 m3/s Primary densifier pump flow rate
𝑃𝐶𝑀 kPa Correct medium pump pressure
𝑄𝑖𝑛(𝐶𝑀) m3/s Flow into correct medium tank

Fig. 3. Correct medium tank unit, with primary densifier pump and correct medium
pump.

constant over time. Therefore, the total head developed by a pump at
a specific speed is defined as:

𝐻𝑚𝑎𝑥𝑛
2 = 𝑃

𝜌𝑔
+ 𝑄2

2𝑔𝐴2
+ ℎ, (3)

where 𝑃 [kPa] is the pump discharge pressure, 𝜌 [t/m3] is the density of
the pumped slurry, 𝑔 [m/s2] is the gravitational acceleration constant,
𝐴 [m2] is the cross-sectional area of the discharge pipe, and ℎ [m] is
the total static head. The terms 𝑃

𝜌𝑔 and ℎ in (3) are collapsed into the
𝐻𝑝 term in (2), while 1

2𝑔𝐴2 in (3) is equivalent to 𝑆 in (2).
From (3), the discharge pressure can be written as:

𝑃 = 𝜌𝑔
(

𝐻𝑚𝑎𝑥𝑛
2 − 𝑄2

2𝑔𝐴2
− ℎ

)

, (4)

where the static head ℎ = ℎ𝑑𝑖𝑠 − ℎ𝑙𝑒𝑣 can be expressed in terms of the
height to which the slurry is pumped (ℎ𝑑𝑖𝑠 [m]) and the height of slurry
in the tank (ℎ𝑙𝑒𝑣 [m]).

2.2. Correct medium tank

The correct medium tank in Fig. 1 is redrawn in Fig. 3. Table 1
describes the process variables for the correct medium tank in terms of
3

measured and unmeasured variables, where subscript CM refers to the
correct medium and PD refers to the primary densifier. The dynamics of
the level of the correct medium tank can be obtained using the principle
of the conservation of volume. Therefore:
𝑑ℎ𝑙𝑒𝑣(𝐶𝑀)

𝑑𝑡
= 1

𝐴𝐶𝑀

(

𝑄𝑖𝑛(𝐶𝑀) −𝑄𝐶𝑀 −𝑄𝑃𝐷
)

, (5)

where 𝑄𝐶𝑀 [m3/s] and 𝑄𝑃𝐷 [m3/s] are the discharge volumetric flow
rates of the correct medium pump and the primary densifier pump re-
spectively, 𝑄𝑖𝑛(𝐶𝑀) [m3/s] is the sum of the volumetric flow of medium
returned to the correct medium tank, and 𝐴𝐶𝑀 [m2] is the cross-
sectional area of the correct medium tank. These discharge volumetric
flow rates are phenomenologically modelled according to Newton’s
second law of motion applied to fluids (Versteeg and Malalasekera,
2007):

𝑘𝑗(𝐶𝑀)
𝑑𝑄𝐶𝑀

𝑑𝑡 = −𝑘𝑝𝑄2
𝐶𝑀 + 𝜌𝐶𝑀𝑔𝐻𝑝(𝐶𝑀)

− 𝜌𝐶𝑀𝑔
(

ℎ𝑑𝑖𝑠(𝐶𝑀) − ℎ𝑙𝑒𝑣(𝐶𝑀)
)

(6)

𝑘𝑗(𝑃𝐷)
𝑑𝑄𝑃𝐷
𝑑𝑡 = −𝑘𝑝𝑄2

𝑃𝐷 + 𝜌𝐶𝑀𝑔𝐻𝑝(𝑃𝐷)

− 𝜌𝐶𝑀𝑔
(

ℎ𝑑𝑖𝑠(𝑃𝐷) − ℎ𝑙𝑒𝑣(𝑃𝐷)
)

,
(7)

where 𝜌𝐶𝑀 [t/m3] is the density of the slurry in the correct medium
tank, 𝑘𝑝 is the resistance coefficient of the pipe, 𝑘𝑗(𝐶𝑀) [t m2] and 𝑘𝑗(𝑃𝐷)
[t m2] are the inertia of the fluid for the correct medium tank and
primary densifier respectively (Kallesoe et al., 2006), and 𝐻𝑝(𝐶𝑀) [m]
and 𝐻𝑝(𝑃𝐷) [m] are given by (2).

A state-space model of the correct medium tank is:

�̇�𝐶𝑀 = 𝑓𝐶𝑀 (𝑡,𝒙𝐶𝑀 , 𝒖𝐶𝑀 ,𝒅𝐶𝑀 ) (8)

=

⎡

⎢

⎢

⎢

⎢

⎣

1
𝐴𝐶𝑀

(

𝑄𝑖𝑛(𝐶𝑀) −𝑄𝐶𝑀 −𝑄𝑃𝐷
)

1
𝑘𝑗(𝐶𝑀)

(

𝜌𝐶𝑀𝑔(𝐻𝑝(𝐶𝑀) − ℎ𝐶𝑀 ) − 𝑘𝑝𝑄2
𝐶𝑀

)

1
𝑘𝑗(𝑃𝐷)

(

𝜌𝐶𝑀𝑔(𝐻𝑝(𝑃𝐷) − ℎ𝑃𝐷) − 𝑘𝑝𝑄2
𝑃𝐷

)

⎤

⎥

⎥

⎥

⎥

⎦

𝒚𝐶𝑀 = 𝑔𝐶𝑀 (𝑡,𝒙𝐶𝑀 , 𝒖𝐶𝑀 ,𝒅𝐶𝑀 ) (9)

=

⎡

⎢

⎢

⎢

⎢

⎣

ℎ𝑙𝑒𝑣(𝐶𝑀)

𝜌𝐶𝑀𝑔
(

𝐻𝑚𝑎𝑥(𝑃𝐷)𝑛2𝑃𝐷 −
𝑄2
𝑃𝐷

2𝐴2
𝑃𝐷𝑔

− ℎ𝑃𝐷

)

𝜌𝐶𝑀

⎤

⎥

⎥

⎥

⎥

⎦

,

where ℎ𝐶𝑀 = ℎ𝑑𝑖𝑠(𝐶𝑀) − ℎ𝑙𝑒𝑣(𝐶𝑀) and ℎ𝑃𝐷 = ℎ𝑑𝑖𝑠(𝑃𝐷) − ℎ𝑙𝑒𝑣(𝐶𝑀). The
model states, inputs, disturbances, and measured variables are given
by 𝒙𝐶𝑀 =

[

ℎ𝑙𝑒𝑣(𝐶𝑀), 𝑄𝐶𝑀 , 𝑄𝑃𝐷
]𝑇 , 𝒖𝐶𝑀 =

[

𝑛𝐶𝑀 , 𝑛𝑃𝐷
]𝑇 , 𝒅𝐶𝑀 =

[

𝜌𝐶𝑀 , 𝑄𝑖𝑛(𝐶𝑀)
]𝑇 , and 𝒚𝐶𝑀 =

[

ℎ𝑙𝑒𝑣(𝐶𝑀), 𝑃𝑃𝐷, 𝜌𝐶𝑀
]𝑇 . respectively.

Note that 𝑄𝑖𝑛(𝐶𝑀) is not measured and is included as a process dis-
turbance. Similarly, 𝜌𝐶𝑀 is measured, and is treated as a known but
uncontrolled disturbance.

Table 2 shows the values of the parameters required for the model.
Parameters 𝐻𝑚𝑎𝑥(𝐶𝑀), 𝐻𝑚𝑎𝑥(𝑃𝐷), 𝑆𝐶𝑀 , and 𝑆𝑃𝐷 are obtained from
the pump curve provided by the manufacturer. Parameters 𝑘𝑗(𝐶𝑀)
and 𝑘𝑗(𝑃𝐷) are functions of 𝜌𝐶𝑀 , as well as the length and cross-
sectional area of the correct medium pump and primary densifier pipes
respectively.

2.3. Secondary tank model

The secondary tank shown in Fig. 1 is redrawn in Fig. 4. It can be
modelled similarly to the correct medium tank. The model is in fact
simpler, as the secondary tank has only one pump extracting slurry
to pump it to the secondary densifier. Table 3 describes the process
variables for the secondary tank in terms of measured and unmeasured
variables, where subscript SD refers to the secondary densifier.

A state-space model of the secondary tank is:

�̇� = 𝑓 (𝑡,𝒙 , 𝒖 ,𝒅 ) (10)
𝑠𝑒𝑐 𝑠𝑒𝑐 𝑠𝑒𝑐 𝑠𝑒𝑐 𝑠𝑒𝑐
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Table 2
Correct medium tank model parameters.

Variable Value Description

𝐻𝑚𝑎𝑥(𝐶𝑀) 34.5 m Maximum head of correct medium pump
𝐻𝑚𝑎𝑥(𝑃𝐷) 17 m Maximum head of primary densifier pump
𝑆𝐶𝑀 0.072 s2/m5 Quadratic term of correct medium pump curve
𝑆𝑃𝐷 0.2 s2/m5 Quadratic term of primary densifier pump curve
𝑘𝑗(𝐶𝑀) 961 t m2 Hydraulic inertia of fluid for correct medium pump
𝑘𝑗(𝑃𝐷) 721 t m2 Hydraulic inertia of fluid for primary densifier pump
𝐴𝐶𝑀 8 m2 Cross-sectional area of correct medium tank
𝐴𝑃𝐷 0.011 m2 Area of primary densifier pump pipe
𝑘𝑝 140 Resistance coefficient of pipe (steel)
ℎ𝑑𝑖𝑠(𝐶𝑀) 10.83 m Height slurry is pumped to by correct medium pump
ℎ𝑑𝑖𝑠(𝑃𝐷) 4.5 m Height slurry is pumped to by primary densifier pump

Fig. 4. Secondary tank unit.

Table 3
Secondary tank model variables.

Variable Unit Description

Measured at the plant

ℎ𝑙𝑒𝑣(𝑠𝑒𝑐) m Secondary tank level
𝑃𝑆𝐷 kPa Secondary densifier pump pressure
𝑛𝑆𝐷 – Secondary densifier pump speed fraction
𝜌𝑠𝑒𝑐 t/m3 Density of slurry in secondary tank

Not measured at the plant

𝑄𝑆𝐷 m3/s Secondary densifier pump flow rate
𝑄𝑖𝑛(𝑠𝑒𝑐) m3/s Flow into secondary tank

=
⎡

⎢

⎢

⎣

1
𝐴𝑠𝑒𝑐

(

𝑄𝑖𝑛(𝑠𝑒𝑐) −𝑄𝑆𝐷
)

1
𝑘𝑗(𝑆𝐷)

(

𝜌𝑠𝑒𝑐𝑔(𝐻𝑝(𝑆𝐷) − ℎ𝑆𝐷) − 𝑘𝑝𝑄2
𝑆𝐷

)

⎤

⎥

⎥

⎦

𝒚𝑠𝑒𝑐 = 𝑔𝑠𝑒𝑐 (𝑡,𝒙𝑠𝑒𝑐 , 𝒖𝑠𝑒𝑐 ,𝒅𝑠𝑒𝑐 ) (11)

=

⎡

⎢

⎢

⎢

⎢

⎣

ℎ𝑙𝑒𝑣(𝑠𝑒𝑐)

𝜌𝑠𝑒𝑐𝑔
(

𝐻𝑚𝑎𝑥(𝑆𝐷)𝑛2𝑆𝐷 −
𝑄2
𝑆𝐷

2𝐴2
𝑆𝐷𝑔

− ℎ𝑆𝐷

)

𝜌𝑠𝑒𝑐

⎤

⎥

⎥

⎥

⎥

⎦

,

where ℎ𝑆𝐷 = ℎ𝑑𝑖𝑠(𝑆𝐷) − ℎ𝑙𝑒𝑣(𝑠𝑒𝑐). The model states, inputs, disturbances
and measured variables are given by 𝒙𝑠𝑒𝑐 =

[

ℎ𝑙𝑒𝑣(𝑠𝑒𝑐), 𝑄𝑆𝐷
]𝑇 , 𝒖𝑠𝑒𝑐 = 𝑛𝑆𝐷,

𝒅𝑠𝑒𝑐 =
[

𝜌𝑠𝑒𝑐 , 𝑄𝑖𝑛(𝑠𝑒𝑐)
]𝑇 , and 𝒚𝑠𝑒𝑐 =

[

ℎ𝑙𝑒𝑣(𝑠𝑒𝑐), 𝑃𝑆𝐷, 𝜌𝑠𝑒𝑐
]𝑇 respectively.

Note that the total flow into the secondary tank, 𝑄𝑖𝑛(𝑠𝑒𝑐), consists of
the overflow from the primary densifier, as well as a small bleed
stream of drained medium from the drain-and-rinse screens. Since these
streams are not measured, 𝑄𝑖𝑛(𝑠𝑒𝑐) is modelled as a process disturbance.
Similarly, 𝜌𝑠𝑒𝑐 is measured, and is treated as a known but uncontrolled
disturbance. Table 4 shows the values of the parameters for the model.

2.4. Dilute medium tank

The dilute medium tank in Fig. 1 is redrawn in Fig. 5. The model
differs from the secondary tank model, as the discharge pressure of the
dilute medium tank is not measured. Furthermore, water is added to
the dilute medium tank via a control valve, which is controlled by a
level control PID. Table 5 describes the process variables for the dilute
medium tank in terms of measured and unmeasured variables, where
subscript DM refers to the dilute medium tank.
4

Table 4
Secondary tank model parameters.

Variable Value Description

𝐻𝑚𝑎𝑥(𝑆𝐷) 32.1 m Maximum head of secondary densifier pump
𝑆𝑆𝐷 0.324 s2/m5 Quadratic term of secondary densifier pump curve
𝑘𝑗(𝑆𝐷) 721 t m2 Hydraulic inertia of fluid for secondary densifier pump
𝐴𝑠𝑒𝑐 2.73 m2 Cross-sectional area of secondary tank
𝐴𝑆𝐷 0.011 m2 Area of secondary densifier pump pipe
𝑘𝑝 140 Resistance coefficient of steel pipe
ℎ𝑑𝑖𝑠(𝑆𝐷) 11 m Height slurry is pumped to by secondary densifier pump

Fig. 5. Dilute medium tank unit.

Table 5
Dilute medium tank model variables.

Variable Unit Description

Measured at the plant

ℎ𝑙𝑒𝑣(𝐷𝑀) m Dilute medium tank level
𝑛𝐷𝑀 – Dilute medium pump speed fraction
𝑙𝐷𝑀 – Water valve opening

Not measured at the plant

𝑄𝐷𝑀 m3/s Dilute medium pump flow rate
𝑃𝐷𝑀 kPa Dilute medium pump pressure
𝑄𝑤𝑎𝑡𝑒𝑟(𝐷𝑀) m3/s Water addition to dilute medium tank
𝑄𝑖𝑛(𝐷𝑀) m3/s Flow into dilute medium tank
𝜌𝐷𝑀 t/m3 Density of slurry in dilute medium tank

The flow rate of water through the control valve (𝑄𝑤𝑎𝑡𝑒𝑟(𝐷𝑀) [m3/s])
is modelled as:

𝑄𝑤𝑎𝑡𝑒𝑟(𝐷𝑀) = 𝐶𝑣𝑓 (𝑙𝐷𝑀 )

√

𝛥𝑃𝑣
𝑔𝑠

(12)

where 𝐶𝑣 [m3/s] is the valve size coefficient supplied by manufacturers,
𝛥𝑃𝑣 [kPa] is the pressure drop across the valve, 𝑔𝑠 is the liquid specific
gravity of the fluid, and 𝑙𝐷𝑀 is the fraction opening of the valve bound
between 0 (fully closed) and 1 (fully opened). The function 𝑓 (𝑙𝐷𝑀 ) is
dependent on the control valve characteristic curve, that is, if it is fast
opening, linear or equal percentage (Seborg et al., 2016). For this work,
it is assumed that the pressure drop across the valve, 𝛥𝑃𝑣 is constant,
while the specific gravity 𝑔𝑠 is known to be constant (and equal to 1).

Therefore, the
√

𝛥𝑃𝑣
𝑔𝑠

term is therefore absorbed with the coefficient

𝐶𝑣(𝐷𝑀) into coefficient 𝑘𝑣. Furthermore, the valve is assumed to be
linear. Therefore Eq. (12) is simplified as:

𝑄𝑤𝑎𝑡𝑒𝑟(𝐷𝑀) = 𝑘𝑣𝑙𝐷𝑀 (13)

A state-space model of the dilute medium tank is:

�̇�𝐷𝑀 = 𝑓𝐷𝑀 (𝑡,𝒙𝐷𝑀 , 𝒖𝐷𝑀 ) (14)

=
⎡

⎢

⎢

⎣

1
𝐴𝐷𝑀

(

𝑄𝑖𝑛(𝐷𝑀) −𝑄𝐷𝑀 + 𝑘𝑣𝑙𝐷𝑀
)

1
𝑘𝑗(𝐷𝑀)

(

𝜌𝐷𝑀𝑔(𝐻𝑝(𝐷𝑀) − ℎ𝐷𝑀 ) − 𝑘𝑝𝑄2
𝐷𝑀

)

⎤

⎥

⎥

⎦

𝒚𝐷𝑀 = 𝑔𝐷𝑀 (𝑡,𝒙𝐷𝑀 , 𝒖𝐷𝑀 ) (15)
= ℎ𝑙𝑒𝑣(𝐷𝑀),

where ℎ𝐷𝑀 = ℎ𝑑𝑖𝑠(𝐷𝑀) − ℎ𝑙𝑒𝑣(𝐷𝑀). The model states, input, distur-
bances and outputs are given by 𝒙 =

[

ℎ ,𝑄
]𝑇 , 𝒖 =
𝐷𝑀 𝑙𝑒𝑣(𝐷𝑀) 𝐷𝑀 𝐷𝑀
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Table 6
Dilute medium tank model parameters.

Variable Value Description

𝐻𝑚𝑎𝑥(𝐷𝑀) 5.14 m Maximum head of dilute medium pump
𝑆𝐷𝑀 0.36 s2/m5 Quadratic term of dilute medium pump curve
𝑘𝑗(𝐷𝑀) 481 t m2 Hydraulic inertia of fluid for dilute medium pump
𝐴𝐷𝑀 4.13 m2 Cross-sectional area of dilute medium tank
𝑘𝑝 140 Resistance coefficient of pipe (steel)
ℎ𝑑𝑖𝑠(𝐷𝑀) 3.4 m Height slurry is pumped to by dilute medium pump

[

𝑛𝐷𝑀 , 𝑙𝐷𝑀
]𝑇 , 𝒅𝐷𝑀 =

[

𝜌𝐷𝑀 , 𝑄𝑖𝑛(𝐷𝑀)
]𝑇 , and 𝒚𝐷𝑀 = ℎ𝑙𝑒𝑣(𝐷𝑀). The

unmeasured variables, 𝑄𝑖𝑛(𝐷𝑀) and 𝜌𝐷𝑀 , are modelled as process dis-
turbances. Table 6 shows the values of the parameters for the model.

2.5. Mixing box

The mixing box receives both ore from the feeder and medium from
the correct medium pump, as can be seen in Fig. 1. The mixing box is
elevated above the dense medium cyclone, which is either gravity-fed
from the mixing box (as in the case of this circuit), or pump-fed. The
mixing box is modelled as a gravity-drained tank, and the conservation
of volume is used to model the level:

𝐴𝑀𝐵
𝑑ℎ𝑙𝑒𝑣(𝑀𝐵)

𝑑𝑡
= 𝑄𝐶𝑀 +𝑄𝑜𝑟𝑒,𝑖𝑛(𝑀𝐵) −𝑄𝑜𝑢𝑡(𝑀𝐵), (16)

where 𝑄𝐶𝑀 [m3/s] and 𝑄𝑜𝑟𝑒,𝑖𝑛(𝑀𝐵) [m3/s] are the volumetric flow rates
of the medium and ore entering the mixing box respectively, 𝑄𝑜𝑢𝑡(𝑀𝐵)
[m3/s] is the volumetric flow rate of the mixture of ore and medium
draining out of the mixing box by gravity, and ℎ𝑙𝑒𝑣(𝑀𝐵) [m] is the height
of slurry in the mixing box. Note that the material in the mixing box
is assumed well-mixed. Therefore the ratio of medium to ore in the
flow out of the mixing box is considered equal to that of the flow in
(by ignoring any hold-up in the mixing box). The flow of the mixture
gravity-draining out can be modelled as follows (Jang, 2016):

𝑄𝑜𝑢𝑡(𝑀𝐵) = 𝑘𝑀𝐵

√

ℎ𝑙𝑒𝑣(𝑀𝐵), (17)

𝑘𝑀𝐵 [m5∕2/s] is a function of the mixing box opening geometry, and it
is a constant. It can, however, be used to model disturbances, such as
a blockage in the mixing box which occurs frequently. Blockages cause
overflows of the mixing box which lead to the loss of medium.

The level of the mixing box is measured, however, the reading is
notoriously unreliable at the plant in question due to the geometry of
the mixing box, as well as the nature of the environment: the medium
entering the mixing box causes significant splashes that interfere with
the instrument. Therefore, the mixing box level is considered unmea-
sured. The feed pressure to the dense medium cyclone is measured,
and this is a function of the difference in height between the dense
medium cyclone and the slurry level in the mixing box. The pressure,
𝑃𝑀𝐵 [kPa], can be calculated as follows:

𝑃𝑀𝐵 = 𝜌𝑀𝐵𝑔(𝐻𝑀𝐵 + ℎ𝑙𝑒𝑣(𝑀𝐵)), (18)

where 𝜌𝑀𝐵 [t/m3] is the density of the ore and medium mixture in the
mixing box, and 𝐻𝑀𝐵 [m] is the height differential between the mixing
box outlet and the pressure gauge.

Fig. 6 illustrates the mixing box. Table 7 describes the process
variables for the mixing box in terms of measured and unmeasured
variables, where subscript MB refers to the mixing box.

Note that while 𝑄𝐶𝑀 is not directly measured, it is available via
state estimation of the correct medium tank system. Additionally, 𝜌𝑀𝐵
is not measured, but can be calculated using the ratio of ore to medium
in the feed, as well as the known bulk density of the ore, 𝜌𝑜𝑟𝑒, and the
measured density of the correct medium being pumped from the correct
medium tank, 𝜌𝐶𝑀 , as follows (by ignoring any hold-up in the mixing
box):

𝜌𝑀𝐵 =
𝑄𝐶𝑀𝜌𝐶𝑀 +𝑄𝑜𝑟𝑒,𝑖𝑛(𝑀𝐵)𝜌𝑜𝑟𝑒 , (19)
5

𝑄𝐶𝑀 +𝑄𝑜𝑟𝑒,𝑖𝑛(𝑀𝐵)
Fig. 6. Mixing box unit.

Table 7
Mixing box tank model variables.

Variable Unit Description

Measured at the plant

𝑄𝑜𝑟𝑒,𝑖𝑛(𝑀𝐵) m3/s Ore flow to mixing box
𝑃𝑀𝐵 kPa Mixing box discharge pressure
𝜌𝑀𝐵 t/m3 Density of slurry in mixing box

Not measured at the plant

ℎ𝑙𝑒𝑣(𝑀𝐵) m Mixing box level
𝑄𝑜𝑢𝑡(𝑀𝐵) m3/s Flow rate out of mixing box

Table 8
Mixing box model parameters.

Variable Value Description

𝐴𝑀𝐵 0.429 m2 Cross-sectional area of mixing box
𝐻𝑀𝐵 5.7 m Height differential of mixing box outlet
𝑘𝑀𝐵 Unknown Mixing box outlet coefficient

A state-space model of the mixing box is:

�̇�𝑀𝐵 = 𝑓𝑀𝐵(𝑡,𝒙𝑀𝐵 , 𝒖𝑀𝐵 ,𝒅𝑀𝐵) (20)

=
𝑄𝐶𝑀 +𝑄𝑜𝑟𝑒,𝑖𝑛(𝑀𝐵) − 𝑘𝑀𝐵

√

ℎ𝑙𝑒𝑣(𝑀𝐵)

𝐴𝑀𝐵

𝒚𝑀𝐵 = 𝑔𝑀𝐵(𝑡,𝒙𝑀𝐵 , 𝒖𝑀𝐵 ,𝒅𝑀𝐵) (21)

=

⎡

⎢

⎢

⎢

⎣

𝜌𝑀𝐵𝑔(𝐻𝑀𝐵 + ℎ𝑙𝑒𝑣(𝑀𝐵))

𝜌𝑀𝐵

𝑄𝐶𝑀

⎤

⎥

⎥

⎥

⎦

,

where the model states, inputs, disturbances and outputs are given
by 𝒙𝑀𝐵 = ℎ𝑙𝑒𝑣(𝑀𝐵), 𝒖𝑀𝐵 = 𝑄𝑜𝑟𝑒,𝑖𝑛(𝑀𝐵), 𝒅𝑀𝐵 = [𝜌𝑀𝐵 , 𝑄𝐶𝑀 ]𝑇 , and
𝒚𝑀𝐵 =

[

𝑃𝑀𝐵 , 𝜌𝑀𝐵 , 𝑄𝐶𝑀
]𝑇 respectively.

2.6. Uninstrumented units

The primary and secondary densifiers, the magnetic separator, the
dense medium cyclone, and the product and waste drain-and-rinse
screens are not instrumented in the plant. Details of the steady-state
models developed for these units can be found in Appendix. The
models are sufficient for an off-line simulation of the plant, whether
for operator training or controller testing purposes.

3. Observability analysis

The dense medium separation circuit, seen in Fig. 1, is analysed for
observability. The analysis is done to determine if the level of instru-
mentation is theoretically sufficient for identifying medium losses. If
model states and parameters are unknown but observable as shown in
this section, these states and parameters can theoretically be estimated
using e.g. an EKF, as is shown in Section 4.
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𝛿
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3.1. Observability theory

For the observability analysis, the unmeasured disturbances in the
unit process models above can be included in an observer by including
the unmeasured disturbances as constant states in the state–vector in
(1). The augmented system is:

�̇� =

[

�̇�

�̇�

]

=

[

𝑓 (𝑡, 𝒛, 𝒖)
0

]

= 𝑔 (𝑡, 𝒛, 𝒖) ,

(22)

here 𝒛 ∈ ℜ𝑛 and 𝑛 = 𝑛𝑥 + 𝑛𝑑 .
The model in (22) can be linearized around an equilibrium point

sing a small signal approach (Seborg et al., 2016). For small deviations
round an equilibrium point (𝒛𝑞 , 𝒖𝑞) where �̇� = 0, the linearized system
an be written as:
�̇� = 𝐴𝛿𝒛 + 𝐵𝛿𝒖

𝒚 = 𝐶𝛿𝒛 +𝐷𝛿𝒖,
(23)

here

𝐴 = 𝜕
𝜕𝒛

𝑓 (𝑡, 𝒛, 𝒖)|(𝒛𝑞 ,𝒖𝑞 ), 𝐵 = 𝜕
𝜕𝒖

𝑓 (𝑡, 𝒛, 𝒖)|(𝒛𝑞 ,𝒖𝑞 ),

𝐶 = 𝜕
𝜕𝒛

𝑔(𝑡, 𝒛, 𝒖)|(𝒛𝑞 ,𝒖𝑞 ), and 𝐷 = 𝜕
𝜕𝒖

𝑔(𝑡, 𝒛, 𝒖)|(𝒛𝑞 ,𝒖𝑞 ).

The deviation variables are defined as 𝛿𝒛 = 𝒛 − 𝒛𝑞 and 𝛿𝒖 = 𝒖 − 𝒖𝑞 .
The dynamical system (23) is state observable if and only if the

observability matrix  has full column rank 𝑛, where (Skogestad and
Postlethwaite, 2005):

 =
[

𝐶𝑇 , 𝐴𝑇𝐶𝑇 ,…𝐴𝑇 𝑛−1𝐶𝑇
]𝑇

. (24)

3.2. Correct medium tank model observability

The correct medium tank nonlinear model in (8) and (9) is aug-
mented such that 𝒛𝐶𝑀 = [𝒙𝑇𝐶𝑀 ,𝒅𝑇

𝐶𝑀 ]𝑇 . The linearized model matrices
(obtained using MATLAB’s symbolic toolbox) as per (23) are given
below after substitution of the known parameter values in Table 2:

𝑨𝐶𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −0.125 −0.125 0 0.125

0.0102𝜌𝐶𝑀 𝑎22(𝐶𝑀) 0 𝑎24(𝐶𝑀) 0

0.0136𝜌𝐶𝑀 𝑎32(𝐶𝑀) −280𝑄𝑃𝐷 𝑎34(𝐶𝑀) 0

0 0 0 0 0

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑩𝐶𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

0.704𝑛𝐶𝑀𝜌𝐶𝑀 0

0.939𝑛𝐶𝑀𝜌𝐶𝑀 0

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑪𝐶𝑀 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0 0

9.81𝜌𝐶𝑀 0 −31.85𝑄𝑃𝐷𝜌𝐶𝑀 𝑐24(𝐶𝑀) 0

0 0 0 1 0

⎤

⎥

⎥

⎥

⎦

,

where:

𝑎22(𝐶𝑀) = − 280𝑄𝐶𝑀 − 4.08 × 10−7𝑄𝐶𝑀𝜌𝐶𝑀

𝑎24(𝐶𝑀) = − 2.04 × 10−7𝑄2
𝐶𝑀 + 0.352𝑛2𝐶𝑀

+ 0.0102ℎ𝑙𝑒𝑣(𝐶𝑀) − 0.213

𝑎32(𝐶𝑀) = − 5.44 × 10−7𝑄𝐶𝑀𝜌𝐶𝑀

𝑎34(𝐶𝑀) = − 2.72 × 10−7𝑄2
𝐶𝑀 + 0.469𝑛2𝐶𝑀

+ 0.0136ℎ𝑙𝑒𝑣(𝐶𝑀) − 0.283

𝑐24(𝐶𝑀) = − 15.92𝑄2
𝑃𝐷 + 122.6𝑛2𝑃𝐷 + 9.81ℎ𝑙𝑒𝑣(𝐶𝑀) − 111.
6

The observability matrix 𝐶𝑀 as determined from (24) has a full rank
of 5, i.e., all states and parameters are observable. The determinant of
the first five rows and columns of the matrix:

det
(

𝐶𝑀5×5
)

= 6.9 × 105𝑄𝐶𝑀𝑄2
𝑃𝐷𝜌

3
𝐶𝑀

will only be zero if 𝑄𝐶𝑀 𝑄𝑃𝐷, or 𝜌𝐶𝑀 is zero. Therefore, the system is
expected to be observable for normal operating conditions.

3.3. Secondary tank model observability

The secondary tank model in (10) and (11) is augmented such that
𝒛𝑠𝑒𝑐 = [𝒙𝑇𝑠𝑒𝑐 ,𝒅𝑠𝑒𝑐]𝑇 . The linearized model matrices as per (23) are given
below after substitution of the known parameter values in Table 4:

𝑨𝑠𝑒𝑐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 −0.366 0 0.366

0.0136 𝜌𝑠𝑒𝑐 𝑎22(𝑠𝑒𝑐) 𝑎23(𝑠𝑒𝑐) 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑩𝑠𝑒𝑐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

0.874 𝑛𝑆𝐷 𝜌𝑠𝑒𝑐
0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑪𝑠𝑒𝑐 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0

9.81 𝜌𝑠𝑒𝑐 −31.8𝑄𝑆𝐷 𝜌𝑠𝑒𝑐 𝑐23(𝑠𝑒𝑐) 0

0 0 1 0

⎤

⎥

⎥

⎥

⎦

,

where:

𝑎22(𝑠𝑒𝑐) = − 280𝑄𝑆𝐷 − 2.45 × 10−6 𝑄𝑆𝐷 𝜌𝑠𝑒𝑐
𝑎23(𝑠𝑒𝑐) = − 1.22 × 10−6 𝑄𝑆𝐷

2 + 0.437 𝑛𝑆𝐷2

+ 0.0136ℎ𝑙𝑒𝑣(𝑠𝑒𝑐) − 0.265

𝑐23(𝑠𝑒𝑐) = − 15.9𝑄𝑆𝐷
2 + 315 𝑛𝑆𝐷2 + 9.81ℎ𝑙𝑒𝑣(𝑠𝑒𝑐) − 191.

The observability matrix 𝑠𝑒𝑐 as determined from (24) has a full
rank of 4, i.e., all states and parameters are observable. The determi-
nant of the first four rows and columns of the matrix:

det
(

𝑠𝑒𝑐4×4
)

= −11.7𝑄𝑆𝐷 𝜌𝑠𝑒𝑐

will only be zero if 𝑄𝑆𝐷 or 𝜌𝑠𝑒𝑐 is zero. Therefore, the system is expected
to be observable for normal operating conditions.

3.4. Dilute medium tank model observability

The dilute medium tank model in (14) and (15) is augmented such
that 𝒛𝐷𝑀 = [𝒙𝑇𝐷𝑀 , 𝑘𝑣,𝒅𝑇

𝐷𝑀 ]𝑇 . The linearized model matrices as per (23)
are given below after substitution of the known parameter values in
Table 6:

𝑨𝐷𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −0.24 0.24 𝑙𝐷𝑀 0 0.24

0.02 𝜌𝐷𝑀 𝑎22(𝐷𝑀) 0 𝑎24(𝐷𝑀) 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑩𝐷𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0.242 𝑘𝑣
0.21 𝑛𝐷𝑀 𝜌𝐷𝑀 0

0 0

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑪𝐷𝑀 =
[

1 0 0 0 0
]

,

where:
−6
𝑎22(𝐷𝑀) = − 280.0𝑄𝐷𝑀 − 4.08 × 10 𝑄𝐷𝑀 𝜌𝐷𝑀
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𝑧

𝑧

𝑎24(𝐷𝑀) = − 2.04 × 10−6 𝑄𝐷𝑀
2 + 0.105 𝑛𝐷𝑀

2

+ 0.0204ℎ𝑙𝑒𝑣(𝐷𝑀) − 0.295.

The observability matrix 𝐷𝑀 as determined from (24) has a rank
of 5. However, the determinant for any square part of the matrix is
zero. Therefore, the system is not considered observable. The model is,
therefore, further simplified by combining the flow rate of water into
the tank from the dilute valve (𝑄𝑤𝑎𝑡𝑒𝑟) with the flow of medium into
the tank 𝑄𝑖𝑛(𝐷𝑀) such that:

�̇�𝐷𝑀 = 𝑓𝐷𝑀 (𝑡,𝒙𝐷𝑀 , 𝒖𝐷𝑀 ) (25)

=
⎡

⎢

⎢

⎣

1
𝐴𝐷𝑀

(

𝑄𝑖𝑛(𝐷𝑀) −𝑄𝐷𝑀
)

1
𝑘𝑗(𝐷𝑀)

(

𝜌𝐷𝑀𝑔(𝐻𝑝(𝐷𝑀) − ℎ𝐷𝑀 ) − 𝑘𝑝𝑄2
𝐷𝑀

)

⎤

⎥

⎥

⎦

𝒚𝐷𝑀 = 𝑔𝐷𝑀 (𝑡,𝒙𝐷𝑀 , 𝒖𝐷𝑀 ) (26)
= ℎ𝑙𝑒𝑣(𝐷𝑀),

with the model states, input, disturbances and outputs given by 𝒙𝐷𝑀 =
[

ℎ𝑙𝑒𝑣(𝐷𝑀), 𝑄𝐷𝑀
]𝑇 , 𝒖𝐷𝑀 = 𝑛𝐷𝑀 , 𝒅𝐷𝑀 =

[

𝜌𝐷𝑀 , 𝑄𝑖𝑛(𝐷𝑀)
]𝑇 , and 𝒚𝐷𝑀 =

ℎ𝑙𝑒𝑣(𝐷𝑀). The unmeasured variables, 𝑄𝑖𝑛(𝐷𝑀) and 𝜌𝐷𝑀 , are modelled
as process disturbances. Augmenting this model such that 𝒛𝐷𝑀 =
[𝒙𝑇𝐷𝑀 ,𝒅𝑇

𝐷𝑀 ]𝑇 , the resultant model has full rank of 4, ie., all states
and parameters are observable. The determinant (which is too large
to show), will only be zero if 𝑄𝐷𝑀 is zero. Therefore, the system is
expected to be observable for normal operating conditions.

3.5. Mixing box model observability

The mixing box model in (20) and (21) is augmented such that
𝒛𝑀𝐵 = [𝒙𝑇𝑀𝐵 , 𝑘𝑀𝐵 ,𝒅𝑇

𝑀𝐵]
𝑇 . The linearized model matrices as per (23)

are given below after substitution of the known parameter values in
Table 8:

𝑨𝑀𝐵 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

− 1.17 𝑘𝑀𝐵
√

ℎ𝑙𝑒𝑣(𝑀𝐵)
−2.33

√

ℎ𝑙𝑒𝑣(𝑀𝐵) 0 2.33

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑩𝑀𝐵 =

⎡

⎢

⎢

⎢

⎣

2.33

0

0

⎤

⎥

⎥

⎥

⎦

𝑪𝑀𝐵 =

⎡

⎢

⎢

⎢

⎣

9.81 𝜌𝑀𝐵 0 9.81ℎ𝑙𝑒𝑣(𝑀𝐵) + 14.7 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎦

.

The observability matrix 𝑀𝐵 as determined from (24) has a full
rank of 4, i.e., all states and parameters are observable. The determi-
nant

det
(

𝑀𝐵3×3
)

= −224.0
√

ℎ𝑙𝑒𝑣(𝑀𝐵) 𝜌𝑀𝐵
2

will only be zero if ℎ𝑙𝑒𝑣(𝑀𝐵) or 𝜌𝑀𝐵 is zero. Therefore, the system is
expected to be observable for normal operating conditions.

4. State estimation using plant data

There are several sources of medium loss in the dense medium
separation circuit. These sources of loss can be grouped into three
categories: mixing box losses (due to overflows of the mixing box),
drain-and-rinse screen losses (due to medium adhesion to the ore, or
due to screen blinding which causes medium to run over the screens),
and losses to the magnetic separator effluent (Dardis, 1989; Napier-
Munn et al., 1995). The model developed in Section 2 can be used to
simulate these sources of loss. Analysis of this simulation gives insight
into how the key variables of the circuit are affected due to these loss
7

Table 9
Table showing response of key circuit variables as a result of medium losses.

scenarios, and the first order responses of these key variables to these
simulated loss scenarios can be seen in Table 9.

Plant data for a period when a blockage in the mixing box occurred
are available. These data are used for state estimation. For all units, the
data were sampled at a rate of T𝑠 = 5 s.

4.1. Extended Kalman filter implementation

The observability analysis conducted in Section 3 indicates that
the states for all the tanks in the circuit as well as the mixing box,
are observable. A discrete time extended Kalman filter (EKF) is used
as observer to estimate these states (Schneider and Georgakis, 2013;
Simon, 2006).

The trapezoidal rule is used to discretize each nonlinear model in
Section 2 as presented in continuous-time form by (22). The system and
measurement equations are:

𝑧𝑘 = 𝑓𝑘−1
(

𝑧𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1
)

𝑦𝑘 = 𝑔𝑘
(

𝑧𝑘, 𝑢𝑘, 𝑣𝑘
)

,
(27)

where the process noise 𝑤𝑘 ∼ (0, 𝑄𝑘) is white noise with covariance
𝑄𝑘 > 0 and the measurement noise 𝑣𝑘 ∼ (0, 𝑅𝑘) is white noise with
covariance 𝑅𝑘 > 0.

Between each measurement, the state estimate �̂�𝑘 and the
estimation-error covariance matrix 𝑃𝑘 is propagated according to the
known non-linear dynamics of the system:

̂−𝑘 = 𝑓𝑘−1
(

�̂�+𝑘−1, 𝑢𝑘−1, 0
)

𝑃−
𝑘 = 𝑇𝑘−1𝑃+

𝑘−1𝑇
𝑇
𝑘−1 + 𝐿𝑘−1𝑄𝑘−1𝐿𝑇

𝑘−1

(28)

where 𝑇𝑘−1 = 𝜕𝑓𝑘−1
𝜕𝑧𝑘−1

∣�̂�+𝑘−1 ,𝑢𝑘−1 ,0 and 𝐿𝑘−1 = 𝜕𝑓𝑘−1
𝜕𝑤𝑘−1

∣�̂�+𝑘−1 ,𝑢𝑘−1 ,0. The state
estimate and its covariance is updated through:

𝐾𝑘 = 𝑃−
𝑘 𝑆𝑇

𝑘
(

𝑆𝑘𝑃−
𝑘 𝑆𝑇

𝑘 + 𝑅𝑘
)−1

̂+𝑘 = �̂�−𝑘 +𝐾𝑘
[

𝑦𝑘 − 𝑔𝑘
(

�̂�−𝑘 , 𝑢𝑘, 0
)]

𝑃+
𝑘 =

(

𝐼 −𝐾𝑘𝑆𝑘
)

𝑃−
𝑘

(29)

where 𝑆𝑘 = 𝜕𝑔𝑘
𝜕𝑧𝑘

∣�̂�−𝑘 ,𝑢𝑘 ,0.

4.2. EKF implementation on correct medium tank plant data

The EKF algorithm was then applied to the correct medium tank
system, using plant data. The filter was initialized at:

𝒛𝐶𝑀,0 =
[

1 0.017 0.017 3.4 0.02
]𝑇

𝑷 𝐶𝑀,0 = diag
[

1 0.1 0.1 10 0.1
]

The measurement noise covariance matrix 𝑹𝐶𝑀 is based on the
noise seen in the instrumentation. The process noise covariance matrix
𝑸𝐶𝑀 assumes equal uncertainty in ℎ𝑙𝑒𝑣(𝐶𝑀), 𝑄𝐶𝑀 , and 𝑄𝑃𝐷, while
𝜌𝐶𝑀 and 𝑄𝑖𝑛(𝐶𝑀) are both assumed to have uncertainty one order
of magnitude greater. 𝑸𝐶𝑀 is also scaled according to the range of
each process variable. Note that the EKF results are robust to different
initialization values of 𝒛 and 𝑷 , as well as to different values
𝐶𝑀,0 𝐶𝑀,0
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Fig. 7. Plant data of inputs to correct medium tank system.

Fig. 8. Plant data and EKF estimates of correct medium tank system.
8

Fig. 9. Plant data of input to mixing box system.

of process noise covariance matrix 𝑸𝐶𝑀 , but are sensitive to changes
of greater than 50% in the measurement covariance matrix 𝑹𝐶𝑀 . (The
KF results for the mixing box, secondary tank and dilute medium tank
escribed in Sections 4.3–4.5 respectively, are also similarly robust to
ifferent initialization values, different values of process noise covari-
nce matrix, and sensitive to changes of greater than 20 to 50% in the
easurement covariance matrix).

𝐶𝑀 = diag
[

7.87 × 10−4 0.0125 2.03 × 10−6
]

𝑸𝐶𝑀 = diag
[

0.1 0.01 0.01 100 1
]

The inputs to the system are given in Fig. 7. Fig. 8 shows plant data and
the corresponding EKF estimates for the correct medium tank system
outputs, as well as EKF estimates of the unmeasured model states. Note
that the speed of the primary densifier pump, 𝑛𝑃𝐷 in Fig. 7, is steadily
increased in order to control the steadily increasing level of the correct
medium tank, ℎ𝑙𝑒𝑣(𝐶𝑀) in Fig. 8.

4.3. Extended Kalman filter implementation on mixing box plant data

The EKF algorithm was then applied to the mixing box system, using
plant data. The filter was initialized at:

𝒛𝑀𝐵,0 =
[

0.688 0.03 3 0.06
]𝑇

𝑷𝑀𝐵,0 = diag
[

1 0.1 10 0.1
]

The measurement noise covariance matrix 𝑹𝑀𝐵 is based on the noise
seen in the instrumentation. The process noise covariance matrix 𝑸𝑀𝐵
assumes the uncertainty in 𝑘𝑀𝐵 , 𝜌𝑀𝐵 and 𝑄𝐶𝑀 is one order of magni-
tude greater than that in ℎ𝑙𝑒𝑣(𝑀𝐵). 𝑸𝑀𝐵 is also scaled according to the
range of each process variable.

𝑹𝑀𝐵 = diag
[

0.027 1.122 × 10−5 1.204 × 10−4
]

𝑸𝑀𝐵 = diag
[

1 10 100 1
]

Fig. 9 gives the input to the mixing box system during this period.
Fig. 10 shows plant data and the corresponding EKF estimates for the
mixing box system. Note that the flow of medium into the mixing box,
𝑄𝐶𝑀 in Fig. 10, while not measured in the plant, is an estimated state
of the correct medium tank system.

In Fig. 10, from 𝑡 = 200 s, the outlet pressure, 𝑃𝑀𝐵 slowly increases,
despite there being no increase in 𝑄𝐶𝑀 (see Fig. 8) or 𝑄𝑜𝑟𝑒,𝑖𝑛(𝑀𝐵)
(see Fig. 9). This indicates a blockage, which is reflected in the state
estimation of the mixing box level, ℎ𝑙𝑒𝑣(𝑀𝐵) (see Fig. 10 at top), and
in the estimation of the outlet coefficient 𝑘𝑀𝐵 (in Fig. 10). The level
increases steadily, while the outlet coefficient 𝑘𝑀𝐵 decreases steadily,
indicating a blockage. It is clear that no overflow occurred, as ℎ𝑙𝑒𝑣(𝑀𝐵)
remains below the maximum level of 1.5 m. It would be expected
that, due to the blockage, the EKF state estimate of 𝑄𝑖𝑛(𝐶𝑀) seen in
Fig. 8 would show a decrease, as the reason the mixing box level is
increasing is because less material is flowing out of the mixing box and
consequently, to the correct medium tank. However, this decrease is
not apparent. This is because the reduction in flow out of the mixing
box (and therefore in 𝑄𝑖𝑛(𝐶𝑀)) is small in magnitude, and therefore not

clear in the state estimation of 𝑄𝑖𝑛(𝐶𝑀) which contains some noise.
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Fig. 10. Plant data and EKF estimates of mixing box system.

Despite not seeing the decrease in 𝑄𝑖𝑛(𝐶𝑀), the EKF estimate results,
hich show a clear decrease in 𝑘𝑀𝐵 during the mixing box blockage

see Fig. 10), are significant as they demonstrate that a blockage in the
ixing box, which could lead to an overflow and subsequent medium

oss, can be detected.

.4. EKF implementation on secondary tank plant data

The EKF algorithm was then applied to the secondary tank system,
sing plant data. The filter was initialized at:

𝒛𝑠𝑒𝑐,0 =
[

0.825 0.017 3.4 0.02
]𝑇

𝑠𝑒𝑐,0 = diag
[

1 0.1 10 0.1
]

he measurement noise covariance matrix 𝑹𝑠𝑒𝑐 is based on the noise
een in the instrumentation. The process noise covariance matrix 𝑸𝑠𝑒𝑐
ssumes equal uncertainty in ℎ𝑙𝑒𝑣(𝑠𝑒𝑐) and 𝑄𝑆𝐷, while 𝜌𝑠𝑒𝑐 and 𝑄𝑖𝑛(𝑠𝑒𝑐)
re both assumed to have uncertainty one order of magnitude greater.
𝑠𝑒𝑐 is also scaled according to the range of each process variable.

𝑠𝑒𝑐 = diag
[

5.7 × 10−3 1.94 2.15 × 10−5
]

𝑸𝑠𝑒𝑐 = diag
[

0.1 0.01 100 1
]

he input (𝑛𝑆𝐷, the speed of the secondary densifier pump) is given in
igs. 11, and 12 shows plant data and the corresponding EKF estimates
or the secondary tank system outputs, as well as EKF estimates of the
9

nmeasured model states. t
Fig. 11. Plant data of input to secondary tank system.

Fig. 12. Plant data and EKF estimates of secondary tank system.

As with 𝑄𝑖𝑛(𝐶𝑀), it is expected that a decrease in 𝑄𝑖𝑛(𝑠𝑒𝑐) is seen when
the blockage in the mixing box at 𝑡 = 200 s occurs. As with the state
estimate of 𝑄𝑖𝑛(𝐶𝑀), this expected decrease is not visible in the EKF
state estimate of 𝑄𝑖𝑛(𝑠𝑒𝑐) seen in Fig. 12. This is because the change in
magnitude of 𝑄𝑖𝑛(𝑠𝑒𝑐) arising from the mixing box blockage is very small,
onsidering that only a small fraction of the flow out of the mixing box
eports to the secondary tank (with the bulk of this flow reporting to
he correct medium tank). Instead, the estimate of 𝑄𝑖𝑛(𝑠𝑒𝑐) increases as
𝑃𝐷 increases (see Fig. 7), as increasing 𝑛𝑃𝐷 results in increasing flow
o the primary densifier, and therefore to the secondary tank.
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Fig. 13. Plant data and EKF estimates of dilute medium tank system.

4.5. EKF implementation on dilute medium tank plant data

The EKF algorithm was then applied to the dilute medium tank
system, using plant data. The filter was initialized at:

𝒛𝐷𝑀,0 =
[

1 0.017 2.6 0.02
]𝑇

𝐷𝑀,0 = diag
[

1 0.1 10 0.1
]

The measurement noise covariance matrix 𝑹𝐷𝑀 is based on the noise
seen in the instrumentation. The process noise covariance matrix 𝑸𝐷𝑀
ssumes equal uncertainty in ℎ𝑙𝑒𝑣(𝐷𝑀) and 𝑄𝐷𝑀 , while 𝜌𝐷𝑀 and 𝑄𝑖𝑛(𝐷𝑀)
re both assumed to have uncertainty one order of magnitude greater.
𝐷𝑀 is also scaled according to the range of each process variable.

𝐷𝑀 = diag
[

8.57 × 10−5
]

𝑸𝐷𝑀 = diag
[

0.1 0.01 100 1
]

ince the dilute medium pump is a fixed speed pump, 𝑛𝐷𝑀 = 1 through-
ut the estimation period. The results of the EKF implementation on the
ystem outputs and states can be seen in Fig. 13.

.6. State estimation for medium loss detection

Section 4 has shown that the key variables in the circuit in which
he effect of medium losses is seen (namely 𝑄𝑖𝑛,(𝐶𝑀), 𝑄𝑖𝑛,(𝑠𝑒𝑐), 𝑘𝑀𝐵
nd ℎ𝑙𝑒𝑣(𝑀𝐵)) can be effectively estimated using an EKF. It is clear
hat losses due to overflow of the mixing box can be detected as 𝑘𝑀𝐵
nd ℎ𝑙𝑒𝑣(𝑀𝐵) are effectively estimated (see Fig. 10). Furthermore, the
esponse seen in these variables due to a blockage (𝑘𝑀𝐵 decreases and
𝑙𝑒𝑣(𝑀𝐵) increases) is unique to this situation, and cannot be caused
y another disturbance. Whether a blockage is causing overflow (and
10
onsequently medium losses), can be confirmed by checking if the
stimate of ℎ𝑙𝑒𝑣(𝑀𝐵) exceeds the maximum mixing box level, and by
hecking if the state estimate of 𝑄𝑖𝑛(𝐶𝑀) shows an unexpected decrease
ie., a decrease that cannot be explained by a decrease in 𝑛𝐶𝑀 ).

However, in the case of the screen losses and the magnetic separator
osses, a change in the split of the primary or secondary densifiers could
roduce the same effect on 𝑄𝑖𝑛,(𝐶𝑀) and 𝑄𝑖𝑛,(𝑠𝑒𝑐) as would be expected
rom these losses. It is therefore not possible to definitively identify
hese losses when they occur. Installing a flow meter on the overflow
f the secondary densifier can resolve this issue, and allow for these
osses to be detected.

. Conclusion and recommendations

A model for the flow of medium through a dense medium separation
ircuit has been developed. The observability of the unit models was
nalysed, including that of adapted unit models which assume that
ome disturbance variables and parameters in the models, not avail-
ble for measurement, are unknown. The models of the primary and
econdary densifiers, the magnetic separator, and the combined dense
edium cyclone and drain-and-rinse screen systems are not instru-
ented, and therefore cannot be verified online. However, the correct
edium, secondary and dilute medium tank systems were shown to be

ully observable, including for the case where the flow rate of medium
nto these tanks is assumed unknown (a necessary assumption given
he lack of instrumentation on the drain-and-rinse screens, primary and
econdary densifiers, and magnetic separator). Additionally, the mixing
ox system was shown to be fully observable, including for the case
here the value of the constant 𝑘𝑀𝐵 is not known.

An EKF was designed for state estimation of the fully observable
nits — the correct medium, secondary, and dilute medium tank sys-
ems, and the mixing box system. Plant data for a mixing box blockage
s available, and so the EKF was applied to this data and could estimate
ll the states of the observable units. The state estimation illustrated
hat the mixing box blockage can be seen in the EKF estimate of the
ixing box states: ℎ𝑙𝑒𝑣(𝑀𝐵) increases without any increase in the flow

f ore or medium into the mixing box, and 𝑘𝑀𝐵 decreases.
An analysis of the three key sources of medium loss indicated that

edium losses can be detected in their effect on key circuit variables:
𝑖𝑛(𝐶𝑀), 𝑄𝑖𝑛(𝑠𝑒𝑐), ℎ𝑙𝑒𝑣(𝑀𝐵), and 𝑘𝑀𝐵 . The observability analysis showed

that these variables are all observable. However, only a mixing box
blockage causes a unique effect in observable variables. Medium losses
at the drain-and-rinse screens, and losses to the magnetic separator,
cause an effect on the circuit that could be caused by other unmeasured
disturbances (such as a change in the split of the secondary densifier).
Therefore, only medium losses due to overflow at the mixing box can
be definitively identified. The state estimation developed here can be
integrated with the live plant data to detect mixing box blockages in
real time, thus enabling reduction of medium losses due to mixing
box overflows and reducing operating costs for the plant. Further
instrumentation will be required to detect the remaining sources of loss.

It should be noted that the approach for assessing medium losses
taken in this paper is qualitative. Fault detection and isolation using
model-based fault detection (Jung and Sundstrom, 2019) can be ap-
plied to this problem in future work to provide a quantitative method.
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Appendix

Dense medium cyclone and drain-and-rinse screens

For the purposes of modelling the flow of medium through the DMS
circuit, the dense medium cyclone and drain-and-rinse screens, shown
in Fig. 1, is simplified as shown in Fig. 14. Therefore, the flow of
medium from the DMC and screens is modelled as follows:

𝑄𝑑𝑟𝑎𝑖𝑛(𝑡) = 𝑘𝐷𝑀𝐶𝑄𝑖𝑛(𝐷𝑀𝐶)(𝑡 − 𝜏𝐷𝑀𝐶 ), (30)

for 𝑡 > 𝜏𝐷𝑀𝐶 , where 𝑄𝑑𝑟𝑎𝑖𝑛 [m3/s] is the flow of medium out of the unit
to the correct medium tank, 𝑄𝑖𝑛(𝐷𝑀𝐶) [m3/s] is the flow of medium out
of the mixing box (obtained from the flow of medium and ore out of the
mixing box, assuming the same ore-to-medium ratio in the mixing box
discharge as that of the mixing box feed) to the dense medium cyclone,
and 𝜏𝐷𝑀𝐶 [s] is the delay term. The inclusion of the parameter 𝑘𝐷𝑀𝐶
is to accommodate any instances where the flow of medium out of the
system might differ from the flow into the system. This can be used to
model instances of medium losses at the drain-and-rinse screens.

Densifiers

The primary densifier is a battery of six hydrocyclones fed from
the primary densifier pump. The hydrocyclones separate feed based
on density into the overflow (lower density) and underflow (higher
density). For this work, a steady-state model of the volumetric split
is used, as the dynamics of this unit process are assumed fast. The
volumetric split of a single hydrocyclone is given by (Flintoff et al.,
1987; Bueno, 2021):

𝑆𝑐𝑦𝑐 =
𝑄𝑈𝐹
𝑄𝑂𝐹

= 𝑘𝑐𝑦𝑐ℎ
0.19
𝑐𝑦𝑐

( 𝑑𝑎𝑝𝑒𝑥
𝑑𝑣𝑜𝑟𝑡𝑒𝑥

)2.64
𝑒−4.33𝛼+8.77𝛼2

𝑃 0.54
𝑓𝑒𝑒𝑑𝑑

0.38
𝑐𝑦𝑐

(31)

where 𝑑𝑎𝑝𝑒𝑥 [mm] is the diameter of the cyclone apex, 𝑑𝑣𝑜𝑟𝑡𝑒𝑥 [mm]
is the diameter of the cyclone vortex, 𝑑𝑐𝑦𝑐 [mm] is the diameter of
the cyclone, ℎ𝑐𝑦𝑐 [mm] is the height of the cyclone, 𝛼 is the solids
fraction in the feed, per volume unit, 𝑃𝑓𝑒𝑒𝑑 [kPa] is the feed pressure
to the hydrocyclone, and 𝑄𝑈𝐹 [m3/s] and 𝑄𝑂𝐹 [m3/s] is the cyclone
under- and overflow respectively. The parameter 𝑘𝑐𝑦𝑐 is a fitting param-
eter (Sepúlveda, 2004). Table A.10 gives the values of the parameters
for (31).

Because the primary densifier consists of a battery of six hydro-
clones, the overall volume split 𝑆𝑃𝐷 is assumed to be equal to the
individual volumetric split 𝑆𝑐𝑦𝑐 of a single hydrocyclone. The underflow
and overflow of the primary densifier can be modelled as follows:

𝑄𝑂𝐹 (𝑃𝐷) =
𝑄𝑓𝑒𝑒𝑑(𝑃𝐷)

𝑆𝑃𝐷 + 1
, (32)

where 𝑄𝑂𝐹 (𝑃𝐷) [m3/s] is the volumetric flow rate of the primary
densifier overflow (which reports to the secondary tank), and 𝑄𝑓𝑒𝑒𝑑(𝑃𝐷)
[m3/s] is the volumetric flow rate of the primary densifier feed.
11
Fig. 14. Diagram showing model simplification of the dense medium cyclone and
drain-and-rinse screens. Only the drained medium flow is shown. The flow of rinsed
medium, which reports to the dilute medium tank, is not depicted, and considered
negligible.

Table A.10
Primary densifier parameters.

Variable Value Description

𝑑𝑎𝑝𝑒𝑥 45 mm Hydrocyclone apex
𝑑𝑣𝑜𝑟𝑡𝑒𝑥 70 mm Hydrocyclone vortex
𝑑𝑐𝑦𝑐 165 mm Hydrocyclone diameter
ℎ𝑐𝑦𝑐 350 mm Hydrocyclone height
𝑘𝑐𝑦𝑐 54.96 Hydrocyclone fitting coefficient

The secondary densifier, in contrast to the primary densifier, is a
pipe densifier. This type of densifier is not well explored in the litera-
ture. Legault-Seguin et al. (2017) gives typical mass balance values for
a pipe densifier found in a dense medium separation circuit, and so for
this work these typical values will be used. Therefore, the volumetric
split of the secondary densifier is assumed to be 𝑆𝑆𝐷 = 2.3 such that:

𝑄𝑂𝐹 (𝑆𝐷) =
𝑄𝑓𝑒𝑒𝑑(𝑆𝐷)

𝑆𝑆𝐷 + 1
=

𝑄𝑓𝑒𝑒𝑑(𝑆𝐷)

3.3
, (33)

where 𝑄𝑂𝐹 (𝑆𝐷) [m3/s] is the volumetric flow rate of the secondary
densifier overflow (which reports to the dilute medium tank), and
𝑄𝑓𝑒𝑒𝑑(𝑆𝐷) [m3/s] is the volumetric flow rate of the secondary densifier
feed.

Magnetic separator

The magnetic separator is modelled in steady-state, as the dynamics
of the volumetric split between the concentrate and the effluent outputs
of the magnetic separator are considered much faster than the rest of
the circuit. The magnetic separator is modelled according to Rayner
and Napier-Munn (2003a), in which a mathematical model of the
concentrate solids content for a wet drum magnetic separator was
developed. The concentrate flow 𝑄𝐷 [m3/h] is modelled as:

𝑄𝐷 = 𝑘1𝑄𝑓

(

𝐷2𝜔
𝑄𝑓

)𝑘2 (𝑥𝑝
𝐷

)𝑘3 (𝑥𝑑
𝐷

)𝑘4
𝛼𝑘5𝑓

(𝜌𝑠𝑄𝑓

𝑀𝑓

)𝑘6
, (34)

where 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6 are parameters to be fitted, 𝐷 [m] is
the drum diameter, 𝜔 [rad/s] is the drum rotational velocity, 𝑥𝑝 [m]
and 𝑥𝑑 [m] are the pickup and discharge gaps respectively, 𝛼𝑓 is the
feed moisture, 𝑄𝑓 [m3/h/m] and 𝑀𝑓 [t/h/m] are the volumetric and
mass feed rates per unit length respectively, and 𝜌𝑠 [t/m3] is the solids
density.

The magnetic separator in operation at the DMS plant is not well
instrumented. The feed density and flow are not measured, and neither
are the drainage flow rate or density. Fitting the parameters in (34) is
therefore impractical, and not the focus of this work. For the purposes
of this work, (34) is simplified as follows:

𝑄 = 𝑄 𝑘 , (35)
𝑀𝑆 𝑓𝑒𝑒𝑑(𝑀𝑆) 𝑀𝑆
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where 𝑄𝑀𝑆 [m3/s] is the flow rate of concentrate from the magnetic
separator to the correct medium tank, 𝑄𝑓𝑒𝑒𝑑(𝑀𝑆) [m3/s] is the feed
flow rate to the magnetic separator, and 𝑘𝑀𝑆 is given a nominal value
of 0.048 (obtained from mass balances of magnetic separators given
in Legault-Seguin et al. (2017)). In future work, this value can be
changed in order to simulate medium losses to the magnetic separa-
tor effluent, which are generally significant contributors to medium
losses (Dardis, 1989).
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