
A female-biased gene expression signature of dominance in 
cooperatively breeding meerkats 

C. Ryan Campbell, Marta Manser, Mari Shiratori, Kelly Williams, Luis Barreiro, Tim Clutton-
Brock, Jenny Tung 

Supplemental Information 

Table of Contents 

Supplementary Methods  
S1: Full linear model description 
S2: Analysis of longitudinal samples 
S3: Dominance-dependent polarization of TLR4 signaling 
S4: Cell composition analysis with CIBERSORT 
 
Supplementary Figures 
S1: Correlates of dominance status in female meerkats 
S2: TM 3’-seq libraries produce the expected mapping bias to the 3’ ends of genes  
S3: Association between pregnancy status and gene expression 
S4: Gene expression responses to treatment by sex 
S5: Gene expression associations with dominance by sex 
S6: Enrichment of dominance associations with gene expression in females by treatment 
condition 
S7: Stability of dominance effect estimates in females controlling for body mass, age, and 
pregnancy status 
S8: Stability of dominance effect estimates in females controlling for CIBERSORT estimates of 
T cell and B cell proportions 
 
Tables (Campbell_etal_SupplementalTables.xlsx) 
S1: Capture metadata 
S2: Sequencing metadata 
S3: Model results: Treatment-control models 
S4: Model results: All conditions, sex-specific 
S5: Model results: Condition-specific, female-only 
S6: Model results: Status x treatment interactions, female-only 
S7: Longitudinal analysis results 
S8: Multispecies GSEA results 



Methods S1: Full linear model description 

To identify genes that were significantly associated with treatment condition or 
dominance status we used linear mixed effects models that control for relatedness within the 
sample, implemented in EMMREML (R package: EMMREML version 3.1, Akdemir & Okeke, 
2015).  

 
i) Treatment-control Models 

We first explored the effect of a single treatment (LPS, Gard, or Dex stimulation) 
compared to control, both in the full data set (including both males and females) and in models 
for males and females separately. For each gene, for data from a single treatment (LPS, Gard, 
or Dex) with matched control, we estimated the effect of treatment condition and social status 
on gene expression levels using the following model: 

 
All Animals (Males & Females) 

(1) 𝑦  ൌ 𝜇  𝑡𝛿  𝑔𝜌  𝑠𝛽  𝑎𝛾  𝑤𝜂  𝑝  𝑍𝑢  𝜀, 

𝑢~𝑀𝑉𝑁ሺ0, 𝜎௨
ଶ𝐾ሻ, 𝜀~𝑀𝑉𝑁ሺ0, 𝜎

ଶ𝐼ሻ 
 
where y is an n x 1 vector of gene expression levels across all sex-condition combinations, and 
yijk is the residual gene expression level for individual i in treatment condition j for capture k (as 
some individuals were repeatedly sampled). μ is the intercept; t is an n x 1 vector of sample 
condition and δ is its effect size; g is an n x 1 vector of sex (female = 0, male = 1) and ρ its 
effect size; s is an n x 1 vector of dominance status (dominant = 1; subordinate = 0) and β its 
effect size; a is an n x 1 vector of age in years at the time of sampling (centered) and γ is its 
effect size; w is an n x 1 vector of individual body mass (centered), and η is its effect size; and p 
is an n x 1 vector of pregnancy status (males = 0, females = -1 or 1), and  is its effect size. 
 The vector u is an m x 1 vector is a random effects term to control for genetic structure in 
the population. Here, m is the number of unique animals in the analysis, the m x m matrix K 
contains estimates of pairwise relatedness derived from a pedigree (pedantics v 1.7, Morrissey 
& Wilson, 2010), 𝜎௨

ଶ is the genetic variance component, and Z is an n x m matrix of 1’s and 0’s 
which maps gene expression measurements to unique individuals in u to account for repeated 
samplings from the same animals. Residual errors are represented by the n x 1 vector ε 
representing the environmental variance component, I is the identity matrix, and MVN denotes 
the multivariate normal distribution. The relatedness matrix is derived from pedigrees generated 
by genotyping 18 microsatellite loci (Leclaire et al., 2013). 

To test for responses to the treatment condition, for each gene, we tested the null 
hypothesis that δ = 0 versus the alternative hypothesis, δ ≠ 0. To investigate dominance status 
effects, we tested the null hypothesis that 𝛽 = 0 versus the alternative hypothesis, 𝛽 ≠ 0. We 
created empirical null distributions by permuting either treatment condition within capture or 
dominance status across captures, in blocks corresponding to treatment conditions for a single 
capture, 100 times and rerunning the analysis for each of the permutations. We then calculated 
false discovery rates using custom code (see: https://github.com/cryancampbell/meerkatPaper) 
that utilizes permutations following Storey and Tibshirani (2003). 



 We also performed parallel analyses to investigate responses to treatment within sex. 
These models were identical to Model 1 above, but removed the fixed effect of sex and were fit 
separately to either data for females only or data for males only. 
 

ii) All conditions, sex-specific 
We next investigated sex-specific associations with dominance rank by modeling data 

from all treatment conditions together, for either females only or males only, as follows: 
(2) 𝑦  ൌ 𝜇  𝛿𝑡  𝑠𝛽  𝑎𝛾  𝑤𝜂  𝑝  𝑍𝑢  𝜀, 

        𝑢~𝑀𝑉𝑁ሺ0, 𝜎௨
ଶ𝐾ሻ, 𝜀~𝑀𝑉𝑁ሺ0, 𝜎

ଶ𝐼ሻ 
 

where y is a n x 1 vector of gene expression levels across all conditions (control, dex, 
gard, and LPS), and yijk is the residual gene expression level for individual i in treatment 
condition j for capture k. μ is the intercept; t is an n x 1 vector of sample condition (Dex = 1, 
Gard = 2, LPS = 3) and δj is the effect size (where control is the reference condition); s is an n x 
1 vector of social status (dominant = 1; subordinate = 0) and β its effect size; a is an n x 1 vector 
of age in years at the time of sampling (centered) and γ is its effect size; w is an n x 1 vector of 
individual body mass (centered), and η is its effect size; and p is an n x 1 vector of pregnancy 
status (-1 or 1), and  is its effect size. 

 
iii) Condition-specific, female-only 

To investigate the conditions that drive the association between dominance status and 
gene expression in females, we ran a third set of models that investigated dominance effects 
within each condition separately.  

 
(3) 𝑦  ൌ 𝜇  𝑠𝛽  𝑎𝛾  𝑤𝜂  𝑝  𝑍𝑢  𝜀, 

 𝑢~𝑀𝑉𝑁ሺ0, 𝜎௨
ଶ𝐾ሻ, 𝜀~𝑀𝑉𝑁ሺ0, 𝜎

ଶ𝐼ሻ 
 

These models parallel equation 2 above, but remove the fixed effect of treatment 
because they fit only data from a single treatment condition (control, dex, Gard, or LPS).  

 
iv) Status x treatment interactions, female-only 

Finally, to investigate whether dominance status influences the gene expression 
response to stimulation, we fit a final set of models, for the set of 735 genes with significant 
associations with dominance status in Model (3). 

 
(4) 𝑦  ൌ 𝜇  𝑠𝛽 ൈ 𝑓ሺ𝑡 ൌ 0ሻ  𝑠𝛽ଵ ൈ 𝑓ሺ𝑡 ൌ 1ሻ  𝑎𝛾  𝑤𝜂  𝑝  𝑍𝑢  𝜀, 

𝑢~𝑀𝑉𝑁ሺ0, 𝜎௨
ଶ𝐾ሻ, 𝜀~𝑀𝑉𝑁ሺ0, 𝜎

ଶ𝐼ሻ 
  

 where y is a n x 1 vector of gene expression levels across the control and one stimulated 
condition (either Dex, Gard, or LPS, depending on the condition in which a significant 
association with status was identified in Model 3; no genes were identified in the control 
condition only), and yijk is the residual gene expression level for individual i in treatment 
condition j for capture k. f is an indicator variable for the treatment condition (Control = 0, 
Treatment = 1), s is an n x 1 vector of social status (dominant = 1; subordinate = 0), β0 is the 



effect size of status in the control condition, and β1 is the effect size of status in the relevant 
treatment condition. To measure the interaction between treatment and status variables we 
compared the effect sizes of status estimated within Treatment (1) and Control (0) conditions. 
Here, positive interaction interaction effects indicate an increased response to the treatment 
condition in dominant animals. P-values for interaction effects were calculated on the 
standardized interaction effect sizes, treating the standardized effect size as a t-statistic. 

Methods S2: Analysis of longitudinal samples 

 To measure the effect of the transition from subordinate to dominant status on meerkat 
gene expression we focused on females intentionally sampled both before and after they 
transitioned status. To assess the difference in gene expression across this transition, we 
measured the log-fold change difference in gene expression between a sample collected when 
the individual was dominant and a sample collected, in the same treatment condition, when she 
was subordinate. If the animal had more than one sample taken when dominant or when 
subordinate, a single sample was chosen at random. We required females to be in the same 
pregnancy state across subordinate and dominant samples. For example, we excluded a 
repeated sample pair from the longitudinal analysis if an animal was captured only as a non-
pregnant subordinate and then only as a pregnant dominant. 

To test for significant within-individual shifts in gene expression when females 
transitioned to dominant status, we used paired t-tests for genes that exhibited congruent 
directional changes in longitudinal and cross-sectional analyses. To avoid biasing our 
comparison of cross-sectional and longitudinal analyses by including longitudinal data in the 
cross-sectional analysis, for all comparisons here we re-ran the cross-sectional analysis 
excluding all but one capture date for individuals used for the longitudinal comparison. Because 
we had fewer samples from dominant females than subordinate females, this exclusion meant, 
in practice, that we removed all samples collected when these females were subordinate. 
Importantly, this smaller data set recapitulates the results we obtain in the full data set, but with 
slightly reduced power (514 status-associated genes in instead of 709 in the full data set for 
Model 3, LPS condition). 

Methods S3: Dominance-dependent polarization of TLR4 
signaling 

To investigate status-dependent polarization of the TLR4 signaling pathways through 
TRIF and MyD88-dependent signaling pathways, we used the results from Ramsey et al (2008), 
who identified sets of genes in mouse for which the response to antigen induction was either 
MyD88- or TRIF-dependent. Ramsey et al compared the gene expression responses of 
macrophages from wild-type mice to those of MyD88 and TRIF knock-out mice, using six 
purified TLR agonists. They reported 334 genes that require MyD88 for normal stimulation-
dependent increases in activity, and 274 that require TRIF. Of these genes, 126 and 103 have 
meerkat orthologues in our data set, respectively. Ramsey et al also reported 109 genes that 
require MyD88 for normal stimulation-dependent decreases in activity and 339 that require 



TRIF, of which 48 and 155 have meerkat orthologues in our data set, respectively. Using these 
gene lists, we tested for enrichment of TRIF and MyD88-dependent genes among meerkat 
genes that are also upregulated in response to immune stimulation and are more highly 
expressed in dominant female meerkats. We also measured the correlation between 
standardized effect sizes for the effect of status in female meerkats with three species-sex 
combinations of non-human primate (female macaques, female baboons, male baboons) 
among all genes in the TRIF and MyD88-dependent gene sets. 

Methods S4: Cell composition analysis with CIBERSORT 

 Using the Tabula Muris mouse single cell atlas (Schaum et al., 2018) we gathered 
marker information from droplet-sorted marrow cells. Schaum et al. (2018) determined marker 
genes for marrow cell subtypes including granulocytes, hematopoietic precursor cells, late pro-B 
cells, macrophages, early pro-B cells, monocytes, T cells, granulocytopoietic cells, 
erythroblasts, proerythroblasts, and basophils. In total, 53% of the marker genes for all subtypes 
had orthologues in the union set of all genes analyzed in meerkat models. 
 We used these gene markers as input for CIBERSORT (Newman et al., 2015), along 
with gene expression values in the control condition, to estimate the relative proportions of cells 
belonging to each subtype in the meerkat samples. In the initial run of CIBERSORT considering 
all 11 cell types from Schaum et al. (2018), several of the subtypes were assigned a proportion 
of 0 for the vast majority (>90%) of meerkat samples. We therefore re-ran CIBERSORT 
including only late pro-B cells, macrophages, early pro-B cells, monocytes, and T cells. We 
used these estimates to test for cell composition differences in by meerkat status across our 
sample, using t-tests. 
 Among these cell types, only B cells (late pro-B cells) and T cells were significantly, 
albeit weakly, correlated with female dominance status. We therefore fit post hoc models of 
gene expression including the B cell (late pro-B cells) and T cell estimates as additional fixed 
effects. These models otherwise follow the structure in Equation 3 above.  



Supplementary Figures 

 
Figure S1. Correlates of dominance status in female meerkats. A) Violin plot comparing the ages at capture for 
dominant (D, blue) and subordinate (S, red) female meerkats (one-sided Wilcoxon Test, W = 327.5, p = 9.5 x 10-9). B) 
Violin plot comparing mean weight in the 60 days surrounding capture for dominant (D, blue) and subordinate (S, red) 
female meerkats (one-sided T-Test, t = -4.18, p = 5.57 x 10-5). C) Barplot displaying the number of dominant (D) and 
subordinate (S) animals that were pregnant (green) versus not pregnant (purple) at the time of capture (FET log2(OR) 
= 2.58, p = 0.012). D) Barplot displaying proportion of dominant (D) and subordinate (S) animals that were in early 
pregnancy (green) versus not pregnant (purple) at the time of capture. 



 
Figure S2. TM 3’-seq libraries produce the expected mapping bias to the 3’ ends of genes. Mean CPM of top 
8,141 expressed genes, plotted by position relative to transcription end site (TES), for a representative set of 15 
meerkat samples. 



 
Figure S3. Association between pregnancy status and gene expression. Quantile-quantile plot of observed p-
values (y-axis) versus expected p-values from a uniform distribution (x-axis), by condition (Control:gray, Dex:blue, 
Gard:yellow, LPS:red). The modest enrichment suggests a weak signature of pregnancy status in the gene 
expression data. 



 
Figure S4. Gene expression responses to treatment by sex. The effect of treatment (A-LPS, B-Gardiquimod, C-
Dexamethasone) on gene expression in male (y-axis) versus female (x-axis) meerkats. Black diagonal line shows 
x=y, and blue line represents line of best fit. 

 

Figure S5. Gene expression associations with dominance by sex. The effects of dominance status in males and 
females are poorly correlated (A-LPS, B-Gardiquimod, C-Dexamethasone. Black diagonal line shows x=y, and blue 
line represents line of best fit. 

  



 

 
Figure 6. Enrichment of dominance associations with gene expression in females by treatment condition. 
Quantile-quantile plot of observed p-values (y-axis) versus expected p-values from a uniform distribution (x-axis), by 
condition (Control:gray, Dex:blue, Gard:yellow, LPS:red). 

 



 
Figure S7. Stability of dominance effect estimates in females controlling for body mass, age, and pregnancy 
status. A) Estimated effect of dominance status in females, measured as in Model iii above (x-axis) versus estimated 
effect after regressing out pregnancy status from the gene expression data prior to modeling (y-axis). B) Estimated 
effect of dominance status in females, measured as in Model iii above (x-axis) versus estimated effect after 
regressing out age from the gene expression data prior to modeling (y-axis). C) Estimated effect of dominance status 
in females, measured as in Model iii above (x-axis) versus estimated effect after regressing out body mass from the 
gene expression data prior to modeling (y-axis). 



 

Figure S8. Stability of dominance effect estimates in females controlling for CIBERSORT estimates of T cell 
and B cell proportions. A) Estimated effect of dominance status in females as reported in Model iii (x-axis) versus 
when including estimates of B cell and T cell composition as fixed effect covariates (y-axis). Blue line represents line 
of best fit. B) qqPlot of the female dominance status effect, comparing observed p-values to those expected under a 
uniform null distribution. Gray dots show the qq plot for effects estimated in Model iii; blue dots show the same values 
when also controlling for cell composition. 
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