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Abstract
In this paper, we present the definitions of nonfragile high-gain observers and
design method for lower-triangular nonlinear systems with output uncertainty.
Radial basis function neural networks (RBFNNs) are used to approximate the
output uncertainty. By inserting an output filter and an input-output filter, a
new augmented adaptive observable canonical form is derived. Then, a corre-
sponding observer with gain perturbations is designed to estimate the states and
the coefficients of the RBFNNs, and a disturbance observer is designed to esti-
mate the approximation error. The maximum allowable gain perturbation is also
given. Then, the obtained results are extended to nonlinear systems in adaptive
observer form with output uncertainty. Finally, some numerical simulations are
offered to corroborate the theoretical results.
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1 INTRODUCTION

It is a very hot topic in automation and control field to estimate unknown states for a nonlinear system based on
measured outputs. Quite a number of design methods have been proposed in the literature. Among these methods,
high-gain observers associated with the triangular structure have a higher important position in nonlinear observer
design. Researchers have been carried out new developments in various directions.1-9

The above results are derived under the condition that the output can be accurately measured. However, in prac-
tice, the output sensitivity of some systems such as electrical devices10 and mechanical systems,11 may not be constant.
In other words, there inevitably exists output uncertainty. In order to resist unknown measurement uncertainty, robust
high-gain observer design methods were introduced and well discussed in References 12-16. Compared with a constant
high-gain, a dynamic high-gain could achieve better balance between the speed of state reconstruction and the mea-
surement noise sensitivity.12,17,18 However, larger high-gain brought about the phenomena of oscillation and variation
in the presence of measurement uncertainty.19,20 Therefore, studies on the high-gain observer design with measurement
disturbance by filtering technique have received more attention. In Reference 21, the states were estimated by inserting
filtered measurements for single-output linear observable systems. Some researchers also analyzed the effect of output
noise on high-gain observers when low-pass filter was used.22,23 Motivated by the high sensitivity of high-gain observers to
output disturbance, filtered high-gain observers were addressed in the presence of measurement uncertainty with
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saturation function.19,24 In the latest work,14 a low-pass filter on the measurement channel was inserted to reduce the
sensitivity to measurement noise. It should be noted that the error of the output and its estimation was filtered. Then, the
filtered error was used to construct an observer.

In order to estimate unknown states and parameters simultaneously, the adaptive technique has been developed
for linear systems with unknown parameters,25-30 and nonlinear systems with unknown parameters as well.31-34 The
unknown parameters appear in two different ways, that is, linear and nonlinear parameterized ways. Therefore, adaptive
observer design has been studied for nonlinear systems with parameters in linear parameterized way,25-28,35 and nonlin-
ear parameterized way,36-42 respectively. However, the observers based on adaptive technique show erratic performance
if there exist measurement disturbances.43,44

Besides unknown parameters or uncertainties in the presence of system states and outputs, another significant issue
in observer design field is that the observer gains are referred to fragility or nonresilience.45 For example, the authors in
Reference 46 pointed out that the closed-loop system presented ambiguous when the control gain involved some distur-
bances. In addition, it is revealed that observer gains may show insignificant drifts because sensor equipment gets aging
since they are produced offline. More outcomes on nonfragile cases and states uncertainty cases for nonlinear systems can
be found in References 47-54. However, there are some limitations in present works: (a) The observer gains are obtained
by solving some linear matrix inequalities (LMIs). (b) The design methods may be unsuccessful if the LMIs are infeasible.

Motivated by above investigations, we firstly present the definition of nonfragile high-gain observer for
lower-triangular systems with output uncertainty. Then, by inserting an output filter, an augmented nonlinear system
is obtained and the output uncertainty is transformed into the state equation. Radial basis function neural networks
(RBFNNs) are used to approximate the measurement uncertainty. By an input–output filter on the augmented system, a
new augmented adaptive observable canonical form is derived. Then, a corresponding adaptive observer with gain per-
turbations is designed to estimate the states and the coefficients of the RBFNNs, and a disturbance observer is designed
to estimate the approximation error. By constructing a Lyapunov function, it is shown that the estimation errors of the
states and the approximation error are uniformly ultimately boundedness (UUB). If the measurement uncertainty can be
exactly approximated by the RBFNNs, then, the estimation errors of the states will converge to origin. Moreover, under
a persistent excitation condition, the estimation errors of the coefficients of the RBFNNs will converge to origin as well.
At last, the obtained results are extended to nonlinear system with adaptive observer form and output disturbance.

The main contributions of this paper summarize as follows: (a) For the first time, definition of nonfragile high-gain
observer is presented for lower-triangular nonlinear systems with output uncertainty. (b) By an output filter and an
input–output filter and RBFNNs approximation theory, a new augmented adaptive observable canonical form is derived.
The design of nonfragile high-gain observer is transformed into the design an adaptive observer with gain perturbations.
(c) By constructing a Lyapunov function, the convergence of the estimation errors is analyzed. In addition, nonfragile
adaptive observers are also extended to nonlinear systems with unknown parameters in the state equation and uncertainty
in the measured output.

This paper is organized as follows. We introduce the problem description and some lemmas in Section 2. In Section 3,
we propose a new augmented adaptive observable canonical form and nonfragile observers for nonlinear systems with
the observer sensitivities and measurement disturbance. In Section 4, the results are extended to nonlinear systems in
adaptive observer form with output uncertainty. The experimental simulation results are shown in Section 5. The last
Section summarizes this paper.

2 PRELIMINARIES AND PROBLEM DESCRIPTION

In this section, we introduce some fundamentals for later use.

Lemma 1. (Reference 55): A continuous function g(𝜐) defined on a compact set Υ ⊂ Rq, can be approximated
by the following RBFNNs,

ĝ(𝜐) = ÔT
𝜑(𝜐) + 𝜇,

where 𝜐 = (𝜐1, 𝜐2, … , 𝜐q)T ∈ Υ, Ô ∈ Rp and 𝜇 are the input vector, the weight vector and the approximation
error, respectively. The approximation error 𝜇 satisfies |𝜇| ≤ 𝜇 and 𝜇 > 0. The basis function vector 𝜑(𝜐) =
(𝜑1(𝜐), 𝜑2(𝜐), … , 𝜑p(𝜐))T ∈ Rp and is continuous. The ideal weight O∗ is given by

O∗ = arg min
Ô∈hg

{sup
𝜐∈Υ

|ĝ(𝜐|Ô) − g(𝜐)|},
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where hg = {Ô ∶ ||Ô|| ≤ h} and h is a designed constant. Then,

g(𝜐) = O∗T
𝜑(𝜐) + 𝜇∗,

|𝜇∗| ≤ 𝜇,

where 𝜇∗ is the optimal approximation error and 𝜇 > 0 is the upper bound of the approximation error.

Lemma 2. Meyer–Kalman–Yacubovich Lemma56: Let H1, H2, and H3 are three matrices with appreciate
dimensions. If and only if the triples (H1,H2,H3) satisfy the strictly positive real condition, that is,
Re{H3(j𝜔I −H1)−1H2} > 0, then, there exist two positive definite matrices P0 and W0, a constant real vector J0,
and a positive real number 𝜖0 such that

HT
1 P0 + P0H1 = −J0JT

0 − 𝜖0W0,

P0H2 = HT
3 .

Lemma 3. Let

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0 −k1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 · · · 0 −kn

1 0 0 · · · 0 −kn+1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Then the characteristic polynomial of the matrix A is 𝜆n+1 + kn+1𝜆
n + k1𝜆

n−1 + · · · + kn−1𝜆 + kn.

Proof. The characteristic polynomial of A is

det (𝜆I − A) =

|
|
|
|
|
|
|
|
|
|
|
|
|
|

𝜆 −1 0 · · · 0 k1

0 𝜆 −1 · · · 0 k2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 · · · 𝜆 kn

− 1 0 0 · · · 0 𝜆 + kn+1

|
|
|
|
|
|
|
|
|
|
|
|
|
|

.

Expanding by the last row of the determinant yields,

det (𝜆I − A) = 𝜆n(𝜆 + kn+1) − (−1)n+2

|
|
|
|
|
|
|
|
|
|
|

− 1 0 · · · 0 k1

𝜆 −1 · · · 0 k2

⋮ ⋮ ⋮ ⋮ ⋮

0 0 · · · 𝜆 kn

|
|
|
|
|
|
|
|
|
|
|

.

Then, we expand the above determinant by the last column. Therefore,

det (𝜆I − A) = 𝜆n(𝜆 + kn+1) +
n∑

i=1
(ki𝜆

n−i)

= 𝜆n+1 + kn+1𝜆
n + k1𝜆

n−1 + · · · + kn−1𝜆 + kn.

The proof is completed. ▪

Next, we consider the following nonlinear system with measurement uncertainty,

ẋ(t) = A0x(t) + B0u(t) + 𝜙0(t, x),
y(t) = C0x(t) + d(t), (1)
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where

A0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1 · · · 0
⋮ ⋮ ⋱ ⋮

0 0 · · · 1
0 0 · · · 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, B0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮

0
1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and C0 =
(

1 0 · · · 0
)

, x(t), y(t) and u(t),

are the state variable, the output variable and the control variable, respectively. The measurement uncertainty d(t) is
a continuous nonlinear function. The nonlinear function 𝜙0(t, x) = (𝜙1(t, x𝜄1), 𝜙2(t, x𝜄2), … , 𝜙n(t, x𝜄n))T ∈ Rn, 𝜙i(t, x𝜄i) ∈ R
are continuous nonlinear functions and satisfy

|𝜙i(t, x𝜄i) − 𝜙i(t, x̂𝜄i)| ≤ 𝜚(|x1(t) − x̂1(t)| + |x2(t) − x̂2(t)| + · · · + |xi(t) − x̂i(t)|),

where x𝜄i = (x1, x2, … , xi), (i = 1, … ,n) and 𝜚 > 0 is a constant. The measurement noise d(t), by Lemma 1, can be
approximated by RBFNNs,

d(t) =
m∑

i=1
a∗i 𝜑i(t) + v∗(t), (2)

where 𝜑i(t) are the radial basis functions, a∗i represent the optimal coefficients and v∗(t) is the optimal approximation
error. We assume that the optimal approximation error v∗(t) and its derivative v̇∗(t) satisfy |v∗(t)| ≤ v∗ and |v̇∗(t)| ≤ ̄̇v∗

where v∗ and ̄̇v∗ are two positive constants. Our aim is to design a nonfragile observer for the nonlinear system (1) with
the measurement noise (2).

Remark 1. Except for RBFNNs, FLS (fuzzy logic system) is also able to approximate the measurement distur-
bance by implementing adaptive laws to identify the weights. It is proposed based on fuzziness characteristics
of human brain thinking, and has superior adaptability and approximation ability.57-59 RBFNNs are two-layer
forward networks. The hidden nodes implement a set of radial basis functions. The output nodes implement
linear summation functions. Whereas, FLS consists of a knowledge base, a fuzzifier, a fuzzy inference machine
and a defuzzifier. In the point of estimating measurement disturbance, they share the same effectiveness.

3 THE NONFRAGILE OBSERVER DESIGN STRATEGIES

Introduce the following filtering action to the output with disturbance. Then,
̇xn+1(t) = −Lkn+1𝜃n+1(t)xn+1(t) + y(t), (3)

where 𝜃n+1(t) is an unknown function and denotes the gain perturbation, L and kn+1 are two positive parameters. We can
obtain the following augmented system,

̇x(t) = A1x(t) + B1u(t) + 𝜙(t, x) + B2d(t),
y(t) = xn+1(t), (4)

where x(t) and y(t) are the state variable and output of the system (4), respectively.

A1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1 · · · 0
⋮ ⋮ ⋮ ⋮

0 0 · · · 0
1 0 · · · −Lkn+1𝜃n+1(t)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, B1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮

1
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, B2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
⋮

0
1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and 𝜙(t, x) =

(
𝜙0(t, x)

0

)

.

Let bn+1 = 1, and choose n positive constants b1, … , bn such that the polynomial 𝜆n + b1𝜆
n−1 + · · · + 𝜆bn−1 + bn

is Hurwitz.
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We insert the following input–output filter on the system (4),

𝜂j(t) = xj(t) −
m∑

i=1
𝛼j[i]a∗i , j = 1, … ,n,

𝜂n+1(t) = xn+1(t), (5)

where 𝛼̇[i] = D𝛼[i] + E𝜑i(t), 𝛼[i](0) = 0 and 𝛼j[i] is the jth element of the vector 𝛼[i].
The matrices D and E are given as,

D =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

− Lb1 1 0 · · · 0
⋮ ⋮ ⋮ ⋮ ⋮

− Ln−1bn−1 0 0 · · · 1
− Lnbn 0 0 · · · 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and E =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

− Lb1

⋮

− Ln−1bn−1

− Lnbn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Let 𝜑max be the upper bound of |𝜑i(t)| (i = 1, … ,m). Then, the following results can be obtained.

Lemma 4. For the filter system 𝛼̇[i] = D𝛼[i] + E𝜑i(t), 𝛼[i](0) = 0, the following inequalities hold,

|𝛼j[i]| ≤ Lj−1 2𝜆
1
2
1 ||b||

c3𝜆
1
2
2

𝜑max, j = 1, … ,n, i = 1, … ,m,

where b =
(

b1, … , bn
)T , P1 is a positive definite matrix, 𝜆1 and 𝜆2 are the maximum and the minimum

eigenvalues of the matrix P1, respectively, and c3 is a positive constant,

Proof. Make the coordinate transformations as follows,

𝜗j[i](t) =
𝛼j[i]
Lj , j = 1, … ,n, i = 1, … ,m.

Let 𝜗[i](t) = (𝜗1[i](t), … , 𝜗n[i](t))T . Then, we have

𝜗̇[i](t) = LA2𝜗[i](t) + b𝜑i(t),

where

A2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

− b1 1 0 · · · 0
⋮ ⋮ ⋮ ⋮ ⋮

− bn−1 0 0 · · · 1
− bn 0 0 · · · 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Since the polynomial 𝜆n + b1𝜆
n−1 + · · · + 𝜆bn−1 + bn is Hurwitz, there exists a positive definite matrix P1 and

a positive constant c3 satisfying AT
2 P1 + P1A2 ≤ −c3P1.

Construct the Lyapunov function as V0(t) = 𝜗T[i](t)P1𝜗[i](t). Then,

V̇ 0(t) = L𝜗T[i](t)(AT
2 P1 + P1A2)𝜗[i](t) + 2𝜗T[i](t)P1b𝜑i(t)

≤ −c3L𝜗T[i](t)P1𝜗[i](t) + 2(𝜗T[i](t)P1𝜗[i](t))
1
2 (b

T
P1b)

1
2𝜑max

≤ −c3LV0(t) + 2𝜆
1
2
1 ||b||𝜑maxV

1
2

0 (t).

Since

V̇
1
2
0 (t) =

1
2

V
− 1

2
0 (t)V̇ 0(t) ≤ −

c3

2
LV

1
2

0 (t) + 𝜆
1
2
1 ||b||𝜑max,

5
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thus,

V
1
2

0 (t) ≤
2𝜆

1
2
1 ||b||
c3L

𝜑max.

Moreover, we have

|𝛼j[i]| = Lj||𝜗[i](t)|| ≤ Lj−1 2𝜆
1
2
1 ||b||

c3𝜆
1
2
2

𝜑max,

which completes the proof. ▪

From (2) and (5), the system (4) can be rewritten as

𝜂̇(t) = A1𝜂(t) + B1u(t) + 𝜙(t, 𝜂) + B𝛽T(t)a + B2v∗(t),
𝛾(t) = C𝜂(t), (6)

where 𝛾(t) is the output,

a =
⎛
⎜
⎜
⎜
⎝

a∗1
⋮

a∗m

⎞
⎟
⎟
⎟
⎠

, 𝛽(t) =
⎛
⎜
⎜
⎜
⎝

𝛼1[1] + 𝜑1(t)
⋮

𝛼1[m] + 𝜑m(t)

⎞
⎟
⎟
⎟
⎠

, C = (0 · · · 0 1), B =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Lb1

⋮

Lnbn

bn+1,

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

The system (6) is called an augmented adaptive observable canonical form.
We will proceed the observer design under two cases. The first case is that the optimal approximation error v∗(t) ≠ 0.

The second case is that the optimal approximation error v∗(t) ≡ 0, that is, the output uncertainty d(t) can be written as
d(t) =

∑m
i=1a∗i 𝜑i(t).

Under the first case, we propose the following observer,

̇
𝜂̂(t) = A1𝜂̂(t) + G(𝜂n+1(t) − 𝜂̂n+1(t)) + B1u(t) + 𝜙(t, 𝜂̂) + B𝛽T(t)â(t) + B2v̂(t),
̇â(t) = LΛ𝛽(t)(𝛾(t) − C𝜂̂),
̇v̂(t) = −𝜅0v̂(t) + 𝜅0(𝛾(t) − C𝜂̂),

̂xj(t) = 𝜂̂j(t) +
m∑

i=1
𝛼j[i]âi, j = 1, … ,n,

̂xn+1(t) = 𝜂̂n+1(t), (7)

where

G =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

L2k1𝜃1(t)
L3k2𝜃2(t)

⋮

Lnkn−1𝜃n−1(t)
Ln+1kn𝜃n(t)

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝜃1(t), 𝜃2(t), … , 𝜃n+1(t),

are the observer gain perturbations, Λ is a positive definite matrix and 𝜅0 is a constant satisfying 𝜅0 >
5
2
.

Remark 2. Due to manufacturing reasons, such as sensor equipments aging or round-off errors in numerical
calculations, there always exist gain perturbations.60 For example, in Reference 61, the authors pointed out
that there exists ±10% sensitivity error in the displacement sensor of a magnetic bearing suspension system.
Moreover, there are two basic forms of observer gain perturbations, that is, multiplicative perturbations62 and
additive perturbations.45 In fact, these two forms of perturbations are interconvertible, for example, 𝜃(t)x1(t) =
x1(t) + (𝜃(t) − 1)x1(t), and x1(t) + d(t) =

(

1 + d(t)
x1(t)

)

x1(t) when x1(t) ≠ 0.

6
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Under the second case, the following observer is presented,

̇
𝜂̂(t) = A1𝜂̂(t) + G(𝜂n+1(t) − 𝜂̂n+1(t)) + B1u(t) + 𝜙(t, 𝜂̂) + B𝛽T(t)â(t),
̇â(t) = LΛ𝛽(t)(𝛾(t) − C𝜂̂),

̂xj(t) = 𝜂̂j(t) +
m∑

i=1
𝛼j[i]âi, j = 1, … ,n,

̂xn+1(t) = 𝜂̂n+1(t). (8)

Now, we give the following definitions.

Definition 1. For the nonlinear system (1), we construct the system (7) with unknown gain perturba-
tions 𝜃i(t), i = 1, … ,n. If the gain perturbation 𝜃i(t) ∈ (1 − 𝜃, 1 + 𝜃) (𝜃 is the maximum allowable gain
perturbation), and there exist two positive real numbers t1, d1 such that

|xj(t) − ̂xj(t)| ≤ d1, j = 1, … ,n, t > t1, (9)

then, we call the system (7) is an UUB nonfragile high-gain observer of the nonlinear system (1).

Definition 2. For the nonlinear system (1), we establish the system (8) with unknown gain perturba-
tions 𝜃i(t), i = 1, … ,n. If the gain perturbation 𝜃i(t) ∈ (1 − 𝜃, 1 + 𝜃) (𝜃 is the maximum allowable gain
perturbation), and the output uncertainty d(t) can be exactly approximated by RBFNNs, and

lim
t→∞

|xj(t) − ̂xj(t)| = 0, j = 1, … ,n, (10)

then, we call the system (8) is a nonfragile high-gain observer of the system (1).
In addition, if the unknown parameters a∗i can be identified, that is

lim
t→∞

(â(t) − a) = 0, (11)

then, we call the system (8) is a nonfragile high-gain observer with identification of the nonlinear
system (1).

For the first case, make the following coordinates transformation,

zi(t) =
𝜂i(t) − 𝜂i(t)

Li , i = 1, … ,n,

zn+1(t) = 𝜂n+1(t) − 𝜂̂n+1(t). (12)

From (6), (7), and (12), it is easy to infer the error system as follows,

ż(t) = LĀz(t) + 𝜙̃(t, 𝜂) + b𝛽T(t)ã(t) + B2ṽ(t),
ã̇(t) = −LΛ𝛽(t)Cw,
̇̃v(t) = v̇∗(t) + 𝜅0v̂(t) + 𝜅0Cw, (13)

where

Ā =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0 −k1𝜃1(t)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 · · · 0 −kn𝜃n(t)
1 0 0 · · · 0 −kn+1𝜃n+1(t)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, w =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Lz1

⋮

Lnzn

zn+1,

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, b =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

b1

⋮

bn

bn+1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and 𝜙̃(t, 𝜂) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
L
(𝜙1(t, 𝜂𝜄1) − 𝜙1(t, 𝜂̂𝜄1))

⋮
1

Ln (𝜙n(t, 𝜂𝜄n) − 𝜙n(t, 𝜂̂𝜄n))
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

7



ZHOU et al.

The system (13) can be rewritten as

ż(t) = LAz(t) + L𝜒zn+1(t) + 𝜙̃(t, 𝜂) + b𝛽T(t)ã(t) + B2ṽ(t),
ã̇(t) = −LΛ𝛽(t)Cw,
̇̃v(t) = v̇∗(t) + 𝜅0v̂(t) + 𝜅0Cw, (14)

where

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0 −k1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 · · · 0 −kn

1 0 0 · · · 0 −kn+1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and 𝜒 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(1 − 𝜃1(t))k1

(1 − 𝜃2(t))k2

⋮

(1 − 𝜃n+1(t))kn+1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

The observer gain vector k = (k1, … , kn, kn+1)T is produced by

k = A3b + sb,

where

A3 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1 · · · 0
⋮ ⋮ ⋱ ⋮

0 0 · · · 0
1 0 · · · 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

and s is a positive real number.
For the matrices A, b, and C given in (14), we have the following result.

Lemma 5. The matrices A, b, and C given in (14) satisfy the strictly positive real condition. Moreover, there exist
two positive definite matrices P and W , a constant real vector J, and a positive real number 𝜖 such that

ATP + PA = −JJT − 𝜖W , (15)

and
Pb = CT

. (16)

Proof. Note that

𝜆
n+1 + 𝜆n−1k1 + · · · + 𝜆kn−1 + kn + 𝜆nkn+1

= (𝜆 + s)(𝜆n + b1𝜆
n−1 + 𝜆n−2b2 + · · · + 𝜆bn−1 + bn).

By simple calculation, we have

C(𝜆I − A)−1b = 1
s + 𝜆

.

Therefore,

C(j𝜔I − A)−1b = 1
s + j𝜔

= s
s2 + 𝜔2 −

j𝜔
s2 + 𝜔2 .

According to Lemma 2, the triples (A, b,C) are strictly positive real. Therefore, the conclusions (15) and (16)
hold, which completes the proof.

Let 𝜆3 be the minimum eigenvalue of matrix JJT + 𝜖W , 𝜆4 and 𝜆5 be the maximum and minimum eigen-
values of the matrix P, respectively, and 𝜆6 be the minimum eigenvalue of matrix Λ−1. Then, we have the
following result of the UUB nonfragile high-gain observer. ▪

8
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Theorem 1. If the high-gain L satisfies that L > max
{

8||P||𝜚n
𝜆3

,
4||P||2

𝜆3
,

4𝜅2
0

2𝜆3

}

, the observer gain perturbations 𝜃i(t)

(i = 1, … ,n) fall in the interval
(

1 − 𝜆3

8𝜆4||k||
√

n+1
, 1 + 𝜆3

8𝜆4||k||
√

n+1

)

and 𝛽(t) in (6) is an uniformly bounded
function, then the system (7) is an UUB non-fragile high-gain observer for the system (1).

Proof. Construct the following Lyapunov function

V(t) = V1(t) + V2(t),

and

V1(t) =
1
2

ṽT(t)ṽ(t),

V2(t) = zT(t)Pz(t) + ãT(t)Λ−1ã(t).

The derivative of V1(t) is given as follows,

V̇ 1(t) = ṽT(t)(v̇∗(t) + 𝜅0v̂(t) + 𝜅0zn+1(t))
= ṽT(t)(v̇∗(t) + 𝜅0v∗(t) − 𝜅0ṽ(t) + 𝜅0zn+1(t))
≤ −2𝜅0V1(t) + ṽT(t)v̇∗(t) + 𝜅0ṽT(t)v∗(t) + 𝜅0ṽT(t)zn+1(t)

≤ (−2𝜅0 + 3)V1(t) +
𝜅

2
0

2
||z(t)||2 + c4, (17)

where c4 = 1
2
̄̇v∗2 + 𝜅

2
0

2
v∗2.

The derivative of V2(t) can be calculated as,

V̇ 2(t) = żT(t)Pz(t) + zT(t)Pż(t) + ã̇T(t)Λ−1ã(t) + ãT(t)Λ−1ã̇(t)
= LzT(t)(ATP + PA)z(t) + 2LzT(t)Pb𝛽T(t)ã(t) − 2LãT(t)ΛΛ−1

𝛽(t)Cw + 2zT(t)P𝜙̃(t, 𝜂)
+ L𝜒TPz(t)zn+1(t) + LzT(t)P𝜒zn+1(t) + 2zT(t)PB2ṽ(t). (18)

Due to

||𝜙̃(t)|| ≤

√
√
√
√
√
𝜚

2(|z1(t)|)2 · · · + 𝜚2

(
|
|
|
|
|

z1(t)
Ln−1

|
|
|
|
|

+ · · · + |zn(t)|

)2

≤ 𝜚

√

n2(z2
1(t) + · · · + z2

n(t)) ≤ 𝜚n||z(t)||, (19)

and

2zTPB2ṽ(t) ≤ ||P||2||z(t)||2 + 2V1(t), (20)

and

L𝜒TPz(t)zn+1(t) + LzT(t)P𝜒zn+1(t)

≤ 2L(zT(t)Pz(t))
1
2
(
𝜒

TP𝜒
) 1

2 |zn+1(t)|

≤ 2L𝜆4||z(t)||2
(n+1∑

i=1
(1 − 𝜃i)2k2

i

) 1
2

≤ 2L𝜆4
√

n + 1𝜃max||k||||z(t)||2, (21)

where 𝜃max is the maximum value of |1 − 𝜃i|, i = 1, … ,n + 1.

9
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Then, by combining with (15)–(21), we can indicate that

V̇(t) ≤ −𝜆3L||z(t)||2 + ||P||2||z(t)||2 + 2||P||𝜚n||z(t)||2 + 2L𝜆4
√

n + 1𝜃max||k||||z(t)||2

+
𝜅

2
0

2
||z(t)||2 + (−2𝜅0 + 3)V1(t) + 2V1(t) + c4

≤ −c1L||z(t)||2 + c4,

where c1 =
𝜆3

4
− 2𝜆4

√
n + 1𝜃max||k|| > 0.

If c1L||z(t)||2 ≥ 2c4, we can imply

∫

t

t0

V̇(t)dt = V(t) − V(t0) ≤ −c4(t − t0).

Let t1 = t0 +
V(t0)

c4
− 2𝜆5

c1L
. When t > t1, we have

V(t) ≤ V(t0) − c4(t − t0) ≤ 𝜆5
2c4

c1L
.

and
||z(t)|| ≤ L−

1
2

√
2c4

c1
,

||ã(t)|| ≤ L−
1
2

√
2c4𝜆5

c1𝜆6
. (22)

From Lemma 4 and (22), when t > t1, we have

|xj(t) − ̂xj(t)| = |𝜂j(t) − 𝜂̂j(t) +
m∑

i=1
𝛼j[i]ãi|

≤ Lj||z(t)|| + Lj−1 2m𝜆
1
2
1 ||b||

c3𝜆
1
2
2

𝜑max||a||

≤ Lj− 1
2 c6, j = 1, … ,n, (23)

where c6 = c
1
2
4

⎛
⎜
⎜
⎝

√
2
c1
+ L−1

2
√

2m𝜆
1
2
1 𝜆

1
2
5 ||b||

c3
√

c1𝜆
1
2
2 𝜆

1
2
6

𝜑max

⎞
⎟
⎟
⎠

. The proof is completed.
▪

Remark 3. Note that c4 = 1
2
̄̇v∗2 + 𝜅

2
0

2
v∗2 is dependent on the optimal approximation error of the RBFNNs.

Since RBFNNs can be able to approximate a continuous function with an arbitrary accuracy, thus c4 can be
arbitrarily small. Therefore, the estimation errors of the states can be arbitrarily small as well.

For the second case, from (6), (8), and (12), the dynamical error system is given by,

ż(t) = LAz(t) + L𝜒z(t) + 𝜙̃(t, 𝜂) + b𝛽T(t)ã(t),
ã̇(t) = −LΛ𝛽(t)Cw. (24)

Next, we give the following result of the nonfragile high-gain observer.

Theorem 2. If the high-gain L satisfies that L > 4||P||𝜚n
𝜆3

, the observer gain perturbations 𝜃i(t) fall in the interval
(

1 − 𝜆3

4𝜆4||k||
√

n+1
, 1 + 𝜆3

4𝜆4||k||
√

n+1

)

and 𝛽(t) in (6) is an uniformly bounded function, then the system (8) is a
nonfragile high-gain observer for the system (1).

Proof. We focus on the Lyapunov function V2(t) such as

V2(t) = zT(t)Pz(t) + ãT(t)Λ−1ã(t).

10



2583

The derivative of V2(t) can be expressed as follows,

V̇ 2(t) ≤ −𝜆3L||z(t)||2 + 2L𝜆4
√

n||k||𝜃max||z(t)||2 + 2||P||𝜚n||z(t)||2

≤ −c2L||z(t)||2, (25)

where c2 =
𝜆3

2
− 2𝜆4

√
n + 1𝜃max||k|| > 0.

Therefore ||z(t)|| and ||ã(t)|| are uniformly bounded for any t > t0. Note that ||z(t)|| and ||ż(t)|| are uniformly
bounded and

c2L
∫

t

t0

zT(𝜏)z(𝜏)d𝜏 < V2(t0) − V2(∞) < V2(∞).

By Barbalat’s lemma,63 we can imply that

lim
t→∞

||z(t)|| = lim
t→∞

||𝜂(t)|| = lim
t→∞

||x(t)|| = 0, (26)

which confirms the correctness of Theorem 2.
If 𝛽(t) in (6) satisfies the following persistent excitation condition

∫

t+l1

t
𝛽(𝜏)𝛽T(𝜏)d𝜏 ≥ l2I, (27)

where l1 and l2 are two positive reals, then, the result of the non-fragile high-gain observer with identification
is given as follows. ▪

Theorem 3. If the high-gain L satisfies that L > 4||P||𝜚n
𝜆3

, the observer gain perturbations 𝜃i(t) fall in the interval
(

1 − 𝜆3

4𝜆4||k||
√

n+1
, 1 + 𝜆3

4𝜆4||k||
√

n+1

)

and 𝛽(t) in (6) satisfies the following persistent excitation condition (27), then,
the system (8) is a non-fragile high-gain observer with identification of the system (1).

Proof. According to Theorem 2, we have ||z(t)|| and ||ã(t)|| are uniformly bounded ∀t > t0.
From (13) and (26), we can also indicate

lim
t→∞

ã̇(t) = 0.

Then, there is a constant ā such that lim
t→∞

ã(t) = ā. Thus, for any r > 0, there exists t2 > 0 to reveal that

||ã(t) − ā|| < r, t > t2. (28)

Next, we prove ā = 0 by contradiction. Assume that ā ≠ 0.
Consider the following bounded function,

Ω(ã(t), t) = 1
2
(

ãT(t + l1)Λ−1ã(t + l1) − ãT(t)Λ−1ã(t)
)
.

Then,

dΩ(ã(t), t)
dt

= ãT(t + l1)Λ−1ã̇(t + l1) − ãT(t)Λ−1ã̇(t)

=
∫

t+l1

t

d
d𝜏

ãT(𝜏)Λ−1ã̇(𝜏)d𝜏

= −L
∫

t+l1

t

d
d𝜏

ãT(𝜏)𝛽(𝜏)zn+1(𝜏)d𝜏

= L
∫

t+l1

t
zn+1(𝜏)𝛽T(𝜏)Λ𝛽(𝜏)zn+1(𝜏)d𝜏 − L

∫

t+l1

t
ãT(𝜏)𝛽̇(𝜏)zn+1(𝜏)d𝜏

− L
∫

t+l1

t
ãT(𝜏)𝛽(𝜏)(z1(𝜏) − kn+1zn+1(𝜏))d𝜏 − L

∫

t+l1

t
ãT(𝜏)𝛽(𝜏)𝛽T(𝜏)ã(𝜏)d𝜏. (29)

11
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From (27) and lim
t→∞

||z(t)|| = 0, when t > t2, there exists a positive constant R satisfying

dΩ(ã(t), t)
dt

≤ RL
∫

t+l1

t
z2

n+1(𝜏)d𝜏 − L
∫

t+l1

t
āT
𝛽(𝜏)𝛽T(𝜏)ād𝜏

− 2L
∫

t+l1

t
āT
𝛽(𝜏)𝛽T(ã(𝜏) − ā)d𝜏 − L

∫

t+l1

t
(ã(𝜏) − ā)𝛽(𝜏)𝛽T(𝜏)(ã(𝜏) − ā)d𝜏

≤ RL
∫

t+l1

t
z2

n+1(𝜏)d𝜏 −
l2L
2

āTā

≤ − l2L
4

āTā. (30)

The inequality (30) contradicts the boundedness ofΩ(ã(t), t). Therefore, we can conclude that lim
t→∞

ã(t) = 0.
The proof is completed. ▪

Remark 4. If 𝜃i(t) ≡ 1 (i = 1, … ,n + 1), which means that there don’t exist observer gain perturbations, our
conclusions also hold.

Remark 5. Based on the technology of LMIs, some authors investigated the observer design with non-fragile
characteristics.48-50 However, if the LMIs-based sufficient conditions are infeasible, then, the design method
will fail. While, our nonfragile observers is always available.

Remark 6. In References 12-14 and 16, robust high gain observers were studied for nonlinear systems with
unknown measurement uncertainties. In order to suppress the effect of the measurement uncertainties fur-
ther, dynamic high-gain observers were investigated in References 12,17,18. However, larger high-gains may
yield the problems, such as oscillations and variations.19,20 Recently, it is shown that filtering technique is an
effective way to resist unknown measurement uncertainty.14,21-23 Especially in Reference 14, a low-pass filter
on the measurement channel was inserted to reduce the sensitivity to measurement noise. For measurement
noise such as a finite sum of sinusoids, the estimation errors have the low-pass filtering behavior. However,
in all the literature mentioned above, the following problems are neglected: (i) estimation the unknown mea-
surement uncertainties to suppress the effect of the measurement uncertainties and (ii) the effect of observer
gain perturbations.

In this paper, for the first time, the definitions of nonfragile high-gain observers are presented for nonlinear
systems with unknown measurement uncertainty. After an output filter, an augmented nonlinear system
is derived and the output uncertainty is put into the state equation. Then, the measurement uncertainty is
approximated by RBFNNs. An adaptive observer with gain perturbations and a disturbance estimator are
designed to estimate the states, coefficients of the RBFNNs, and the approximation error, respectively. The
estimation errors of the states are UUB and can be arbitrarily small if the RBFNNs have enough approximation
accuracy and the observer gains can be varied in a prescribed range. If the measurement uncertainty can
be exactly approximated by the RBFNNs and the observer gain perturbations do not exceed the maximum
allowable range, then, the estimation errors of the states will converge to origin. Moreover, the estimation
errors of the coefficients of the RBFNNs will converge to origin under a persistent excitation condition.

Remark 7. In Reference 64, an observer was designed for a nonlinear system with immeasurable states,
multiplicative noises and measurement noise. However, the observer gains are required to guarantee a
positive-definite matrix and a small convergence region. Since both the matrix and the convergence region
are dependent on the observer gains, it may be difficult to select appropriate design parameters. However, by
introducing the output filter in this paper, such a problem can be settled.

4 FURTHER EXTENSIONS

With regard to the nonlinear systems with unknown parameters in the state equation and uncertainty in the mea-
sured output, we can also apply the above observer design strategies to resist the negative influence of the uncertainties.
Consider the following classical nonlinear adaptive canonical form with the output disturbance,

12



2585

ẋ(t) = A0x(t) + B0u(t) + 𝜙0(t, x) +
p∑

i=1
𝜁iΓi(t),

y(t) = C0x(t) + d(t), (31)

where 𝜁i are unknown parameters, Γi(t) =

(
𝜑i,1(t)
⋮

𝜑i,n(t)

)

and 𝜑i,j(t) (i = 1, … , p, j = 1, … ,n) are continuous functions.

From (2), the system (31) becomes

ẋ(t) = A0x(t) + B0u(t) + 𝜙0(t, x) +
p∑

i=1
𝜁iΓi(t),

y(t) = C0x(t) +
m∑

i=1
a∗i 𝜑i(t) + v∗(t). (32)

By inserting the output filter (3), we can obtain the following augmented system,

̇x(t) = A1x(t) + B1u(t) + 𝜙(t, x) +
p+m∑

i=1
Θi(t)𝜉i + B2v∗(t),

y(t) = xn+1(t), (33)

where 𝜉 =
(
𝜁1, … , 𝜁p, a∗1, … , a∗m

)T , Θ(t) =
(
Γ1 · · · Γp 0 · · · 0
0 · · · 0 𝜑1(t) · · · 𝜑m(t)

)

and Θi(t) is the ith column vector of

matrix Θ(t).
Similar to the filtering transformation (5), we make the following transformation,

𝜂j(t) = xj(t) −
p+m∑

i=1
𝛿j[i]𝜉i, j = 1, … ,n,

𝜂n+1(t) = xn+1(t).

where 𝛿̇[i] = D𝛿[i] + E1Θi(t), 𝛿̇[i](0) = 0, 𝛿j[i] is the jth element of the vector 𝛿[i] and the matrix

E1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 −Lb1

0 1 · · · 0 −L2b2

⋮ ⋮ ⋮ ⋮ ⋮

0 0 · · · 1 −Lnbn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, we can obtain the augmented adaptive observable canonical form as

𝜂̇(t) = A1𝜂(t) + B1u(t) + 𝜙(t, 𝜂) + BΔT(t)𝜉 + B2v∗(t),
𝛾(t) = C𝜂(t), (34)

where

Δ(t) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛿1[1]
⋮

𝛿1[p]
𝛿1[p + 1] + 𝜑1(t)

⋮

𝛿1[p +m] + 𝜑m(t)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

13
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For the system (34), the UUB nonfragile high-gain observer can be designed as follows,

̇
𝜂̂(t) = A1𝜂̂(t) + G(𝜂n+1(t) − 𝜂̂n+1(t)) + B1u(t) + 𝜙(t, 𝜂̂) + BΔT(t)𝜉(t) + B2v̂(t),
̇
𝜉(t) = LΛΔ(t)(𝛾(t) − C𝜂̂),
̇v̂(t) = −𝜅0v̂(t) + 𝜅0(𝛾(t) − C𝜂̂),

̂xj(t) = 𝜂̂j(t) +
p+m∑

i=1
𝛿j[i]𝜉i, j = 1, … ,n,

̂xn+1(t) = 𝜂̂n+1(t). (35)

Similar to the observer (8), we establish the nonfragile high-gain observer (with identification) as,

̇
𝜂̂(t) = A1𝜂̂(t) + G(𝜂n+1(t) − 𝜂̂n+1(t)) + B1u(t) + 𝜙(t, 𝜂̂) + BΔT(t)𝜉(t),
̇
𝜉(t) = LΛΔ(t)(𝛾(t) − C𝜂̂),

̂xj(t) = 𝜂̂j(t) +
p+m∑

i=1
𝛿j[i]𝜉i, j = 1, … ,n,

̂xn+1(t) = 𝜂̂n+1(t). (36)

Based on the results in Section 3, we have following corollaries.

Corollary 1. If the high-gain L satisfies that L > max
{

8||P||𝜚n
𝜆3

,
4||P||2

𝜆3
,

4𝜅2
n+1

2𝜆3

}

, the observer gain perturbations 𝜃i(t)

fall in the interval
(

1 − 𝜆3

8𝜆4||k||
√

n+1
, 1 + 𝜆3

8𝜆4||k||
√

n+1

)

and Δ(t) in (34) is an uniformly bounded function, then the
system (35) is an UUB non-fragile high-gain observer for the system (31).

Corollary 2. If the high-gain L satisfies that L > 4||P||𝜚n
𝜆3

, the observer gain perturbations 𝜃i(t) fall in the interval
(

1 − 𝜆3

4𝜆4||k||
√

n+1
, 1 + 𝜆3

4𝜆4||k||
√

n+1

)

and Δ(t) in (34) is an uniformly bounded function, then the system (36) is a
non-fragile high-gain observer for the nonlinear system (31).

If Δ(t) in (34) satisfies the persistent excitation condition

∫

t+l3

t
Δ(𝜏)ΔT(𝜏)d𝜏 ≥ l4I, (37)

where l3 and l4 are two positive reals, then we can obtain the following corollary.

Corollary 3. If the high-gain L satisfies that L > 4||P||𝜚n
𝜆3

, the observer gain perturbations 𝜃i(t) fall in the inter-

val
(

1 − 𝜆3

4𝜆4||k||
√

n+1
, 1 + 𝜆3

4𝜆4||k||
√

n+1

)

and Δ(t) in (34) satisfies the persistent excitation condition (37), then, the
system (36) is a nonfragile high-gain observer with identification of the nonlinear system (31).

The proofs of Corollary 1, Corollary 2, and Corollary 3 are similar to those of Theorem 1, Theorem 2, and Theorem 3,
and omitted.

5 SIMULATIONS

In this section, some numerical simulations are presented to illustrate the correctness and validity of our observer design
strategies.

Example 1. Consider the following one-link manipulator system shown in Figure 1. The dynamic equation
of such a system is described by65-67

{
Dq̈ + Bq̇ + N sin q = 𝜏 + 𝜏d,

M𝜏̇ +H𝜏 = u − Kmq̇,
(38)
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where q, q̇, q̈ are the link position, velocity and acceleration, respectively. The torque 𝜏 is produced by the
electrical system and 𝜏d denotes the torque disturbance. u is the system input. Set the mechanical inertia
D = 1 kg m2, the coefficient of viscous friction at the joint B = 1 Nm s∕rad, N = 10 as the positive constant
related to the coefficient of gravity and the mass of the load, the armature inductance M = 0.1 H, the armature
resistance H = 1 Ω and the back electromotive force coefficient Km = 0.2 Nm∕A.

By letting x1(t) = q, x2(t) = q̇, x3(t) = 𝜏 and y = x1(t) + d(t), the one-link manipulator system (38) can be
represented as

⎧
⎪
⎪
⎨
⎪
⎪
⎩

ẋ1(t) = x2(t),
ẋ2(t) = − B

D
x2(t) − N

D
sin x1 + 1

D
(x3(t) + 𝜏d(t)),

ẋ3(t) = −
Km
M

x2(t) − H
M

x3(t) + u
M
,

y(t) = x1(t) + d(t)

(39)

where u = 5 cos 0.5t.
For the purpose of comparison with Reference 14, we set the torque disturbance 𝜏d = 0 and the observer

gain perturbations 𝜃(t) = (1, 1, 1, 1)T in this scenario. Make an output filtering action and introduce RBFNNs
to approximate the disturbance d(t). Then, the following augmented system can be derived,

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

̇x1(t) = x2(t),
̇x2(t) = x3(t) − x2(t) − 10 sin x1(t),
̇x3(t) = 10u(t) − 2x2(t) − 10x3(t),
̇x4(t) = x1(t) − Lk3x4(t) +

∑4
i=1a∗i 𝜑i(t) + v∗(t),

y(t) = x4(t).

Further, make an input–output filtering transformation. Thus,

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝜂̇1(t) = 𝜂2(t) + Lb1(a∗1𝛼1[1] + a∗1𝜑1(t) + a∗2𝛼1[2] + a∗2𝜑2(t) + a∗3𝛼1[3] + a∗3𝜑3(t) + a∗4𝛼1[4] + a∗4𝜑4(t)),
𝜂̇2(t) = 𝜂3(t) − 𝜂2(t) − 10 sin 𝜂1(t) + L2b2(a∗1𝛼1[1] + a∗1𝜑1(t) + a∗2𝛼1[2] + a∗2𝜑2(t) + a∗3𝛼1[3]
+ a∗3𝜑3(t) + a∗4𝛼1[4] + a∗4𝜑4(t)),
𝜂̇3(t) = 10u(t) − 2𝜂2(t) − 10𝜂3(t) + L3b3(a∗1𝛼1[1] + a∗1𝜑1(t) + a∗2𝛼1[2] + a∗2𝜑2(t) + a∗3𝛼1[3]
+ a∗3𝜑3(t) + a∗4𝛼1[4] + a∗4𝜑4(t)),
𝜂̇4(t) = 𝜂1(t) − Lk4𝜂4 + (a∗1𝛼1[1] + a∗1𝜑1(t) + a∗2𝛼1[2] + a∗2𝜑2(t) + a∗3𝛼1[3] + a∗3𝜑3(t)
+ a∗4𝛼1[4] + a∗4𝜑4(t)) + v∗(t),
𝛾(t) = 𝜂4(t),

F I G U R E 1 The model of one-link manipulator.
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where 𝛼[i] are produced by
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝛼̇1[1] = −Lb1𝛼1[1] + 𝛼2[1] − Lb1𝜑1(t),
𝛼̇2[1] = −L2b2𝛼1[1] + 𝛼3[1] − L2b2𝜑1(t),
𝛼̇3[1] = −L3b3𝛼1[1] − L3b3𝜑1(t),
𝛼̇1[2] = −Lb1𝛼1[2] + 𝛼2[2] − Lb1𝜑2(t),
𝛼̇2[2] = −L2b2𝛼1[2] + 𝛼3[2] − L2b2𝜑2(t),
𝛼̇3[2] = −L3b3𝛼1[2] − L3b3𝜑2(t),
𝛼̇1[3] = −Lb1𝛼1[3] + 𝛼2[3] − Lb1𝜑3(t),
𝛼̇2[3] = −L2b2𝛼1[3] + 𝛼3[3] − L2b2𝜑3(t),
𝛼̇3[3] = −L3b3𝛼1[3] − L3b3𝜑3(t),
𝛼̇1[4] = −Lb1𝛼1[4] + 𝛼2[4] − Lb1𝜑4(t),
𝛼̇2[4] = −L2b2𝛼1[4] + 𝛼3[4] − L2b2𝜑4(t),
𝛼̇3[4] = −L3b3𝛼1[4] − L3b3𝜑4(t).

Then, we design the UUB nonfragile high-gain observer as follows

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

̇
𝜂̂1(t) = 𝜂̂2(t) + L2k1𝜃1(t)(𝜂4(t) − 𝜂̂4(t)) + Lb1(â1𝛼1[1] + â1𝜑1(t) + â2𝛼1[2] + â2𝜑2(t)
+ â3𝛼1[3] + â3𝜑3(t) + â4𝛼1[4] + â4𝜑4(t)),
̇
𝜂̂2(t) = 𝜂̂3(t) − 𝜂̂2(t) − 10 sin 𝜂̂1(t) + L3k2𝜃2(t)(𝜂4(t) − 𝜂̂4(t)) + L2b2(â1𝛼1[1]
+ â1𝜑1(t) + â2𝛼1[2] + â2𝜑2(t) + â3𝛼1[3] + â3𝜑3(t) + â4𝛼1[4] + â4𝜑4(t)),
̇
𝜂̂3(t) = 10u(t) − 2𝜂̂2(t) − 10𝜂̂3(t) + L3k3𝜃3(t)(𝜂4(t) − 𝜂̂4(t)) + L3b3(â1𝛼1[1] + â1𝜑1(t)
+ â2𝛼1[2] + â2𝜑2(t) + â3𝛼1[3] + â3𝜑3(t) + â4𝛼1[4] + â4𝜑4(t)),
̇
𝜂̂4(t) = 𝜂̂1(t) − Lk4𝜃4(t)𝜂̂4 + (â1𝛼1[1] + â1𝜑1(t) + â2𝛼1[2] + â2𝜑2(t)
+ â3𝛼1[3] + â3𝜑3(t) + â4𝛼1[4] + â4𝜑4(t)) + v̂(t),
̇â1(t) = 50000L(𝛼1[1] + 𝜑1(t))(𝜂4(t) − 𝜂̂4(t)),
̇â2(t) = 50000L(𝛼1[2] + 𝜑2(t))(𝜂4(t) − 𝜂̂4(t)),
̇â3(t) = 50000L(𝛼1[3] + 𝜑3(t))(𝜂4(t) − 𝜂̂4(t)),
̇â4(t) = 50000L(𝛼1[4] + 𝜑4(t))(𝜂4(t) − 𝜂̂4(t)),
̇v̂(t) = −𝜅0v̂(t) + 𝜅0(𝜂4(t) − 𝜂̂4(t)),
̂x1(t) = 𝜂̂1(t) + â1𝛼1[1] + â2𝛼1[2] + â3𝛼1[3] + â4𝛼1[4],
̂x2(t) = 𝜂̂2(t) + â1𝛼2[1] + â2𝛼2[2] + â3𝛼2[3] + â4𝛼2[4],
̂x3(t) = 𝜂̂3(t) + â1𝛼3[1] + â2𝛼3[2] + â3𝛼3[3] + â4𝛼3[4],
̂x4(t) = 𝜂̂4(t).

In Reference 14, a finite sum of sinusoids was applied to model the measurement noise and demon-
strated that high-gain observers have the low-pass filtering behavior. Firstly, similar to Reference 14, we set
the measurement disturbance d(t) as,

d(t) = 3 sin(250t + 1) + 5 sin(433t + 2). (40)

The initial conditions are given by x(0) = (0.1, 0.2, 0.3, 0.4)T , â(0) = (1.5, 2.5, 1, 2)T and
𝜂̂(0) = (1.1, 1.2, 1.3, 1.4)T . Set L = 3, 𝜅0 = 200, b = (1, 2, 1.5, 1)T and s = 3. The observer
gain can be obtained as k = (5, 7.5, 4.5, 4)T . The basis function vector is give by 𝜑(t) =
(

1
1+e−h(t) + 3.5, 1

1+e−h(t) − 1.9, 1
1+e−h(t) − 2.6, 1

1+e−h(t) + 1.2
)T

, where h(t) = 150(cos(500t)−5)
1+80t

+ sin(500t). We plot the
trajectories of the estimation errors of the UUB high-gain observer and the three degree low-pass filtered
observer proposed in Reference 14 in Figures 2, 3, and 4, respectively. It is observed that our observer design
methods have superior steady-state performance.
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F I G U R E 2 The comparison trajectories of the estimation errors of x1(t) with the disturbance (40).

Secondly, in order to reveal the performance of our proposed observer design further, we set the measure-
ment disturbance as,

d(t) = 3 sin(0.2t + 1) + 5 sin(200t + 2), (41)

which is a finite sum of both high- and low-frequency sinusoids. Under the same conditions, we plot the
estimation error trajectories of the UUB high-gain observer and the three degree low-pass filtered observer14

in Figures 5,6, and 7, respectively. Our observer design methods also yield more superior steady-state
performance than the method in Reference 14.

Example 2. Consider the one-link manipulator system (39) with d(t) =
∑2

i=1ai𝜑i(t), and the torque distur-
bance 𝜏d =

∑2
i=1𝜁i𝜑i,2(t), where 𝜁i are unknown parameters, and 𝜑1,2(t) = sin(100t), 𝜑2,2(t) = sin(200t). By

inserting the output filter, the one-link manipulator system (39) can be rewritten as,

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

̇x1(t) = x2(t),
̇x2(t) = x3(t) − x2(t) − 10 sin x1(t) +

∑2
i=1𝜁i𝜑i,2(t),

̇x3(t) = 10u(t) − 2x2(t) − 10x3(t),
̇x4(t) = x1(t) − Lk3x4(t) +

∑2
i=1ai𝜑i(t),

y(t) = x4(t).

Let 𝜉 = (𝜁1, 𝜁2, a1, a2)T . After the input–output filtering transformation, we have the following augmented
adaptive observable canonical form

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝜂̇1(t) = 𝜂2(t) + Lb1(𝜉1𝛿1[1] + 𝜉2𝛿1[2] + 𝜉3𝛿1[3] + 𝜉3𝜑1(t) + 𝜉4𝛿1[4] + 𝜉4𝜑2(t)),
𝜂̇2(t) = 𝜂3(t) − 𝜂2(t) − 10 sin 𝜂1(t) + L2b2(𝜉1𝛿1[1] + 𝜉2𝛿1[2] + 𝜉3𝛿1[3]
+ 𝜉3𝜑1(t) + 𝜉4𝛿1[4] + 𝜉4𝜑2(t)),
𝜂̇3(t) = 10u(t) − 2𝜂2(t) − 10𝜂3(t) + L3b3(𝜉1𝛿1[1] + 𝜉2𝛿1[2] + 𝜉3𝛿1[3]
+ 𝜉3𝜑1(t) + 𝜉4𝛿1[4] + 𝜉4𝜑2(t)),
𝜂̇4(t) = 𝜂1(t) − Lk4𝜂4 + (𝜉1𝛿1[1] + 𝜉2𝛿1[2] + 𝜉3𝛿1[3] + 𝜉3𝜑1(t) + 𝜉4𝛿1[4] + 𝜉4𝜑2(t)),
𝛾(t) = 𝜂4(t),
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0 10 20 30 40 50 60 70 80 90 100
Time (s)

–40

–30

–20

–10

0

10

20

30

40

50

Es
tim

at
ion

 e
rro

r

The estimation error of x3(t) obtained by our observer

The estimation error of x3(t) obtained by the observer in Reference 14

99 99.2 99.4 99.6 99.8 100

–0.05

0

0.05
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F I G U R E 5 The comparison trajectories of the estimation errors of x1(t) with the disturbance (41).
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F I G U R E 6 The comparison trajectories of the estimation errors of x2(t) with the disturbance (41).
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F I G U R E 7 The comparison trajectories of the estimation errors of x3(t) with the disturbance (41).

where 𝛿j[i] are produced by

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝛿̇1[1] = −Lb1𝛿1[1] + 𝛿2[1],

𝛿̇2[1] = −L2b2𝛿1[1] + 𝛿3[1] + 𝜑1,2(t),

𝛿̇3[1] = −L3b3𝛿1[1],

𝛿̇1[2] = −Lb1𝛿1[2] + 𝛿2[2],

𝛿̇2[2] = −L2b2𝛿1[2] + 𝛿3[2] + 𝜑2,2(t),

𝛿̇3[2] = −L3b3𝛿1[2],

𝛿̇1[3] = −Lb1𝛿1[3] + 𝛿2[3] − Lb1𝜑1(t),

𝛿̇2[3] = −L2b2𝛿1[3] + 𝛿3[3] − L2b2𝜑1(t),

𝛿̇3[3] = −L3b3𝛿1[3] − L3b3𝜑1(t),

𝛿̇1[4] = −Lb1𝛿1[4] + 𝛿2[4] − Lb1𝜑2(t),

𝛿̇2[4] = −L2b2𝛿1[4] + 𝛿3[4] − L2b2𝜑2(t),

𝛿̇3[4] = −L3b3𝛿1[4] − L3b3𝜑2(t).

Therefore, we can establish the nonfragile high-gain observer with identification as follows,
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F I G U R E 9 The trajectories of the unknown parameters identification of the nonfragile high-gain observer.
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⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

̇
𝜂̂1(t) = 𝜂̂2(t) + L2k1𝜃1(t)(𝜂4(t) − 𝜂̂4(t)) + Lb1(𝜉1𝛿1[1] + 𝜉2𝛿1[2] + 𝜉3𝛿1[3] + 𝜉3𝜑1(t)
+ 𝜉4𝛿1[4] + 𝜉4𝜑2(t)),
̇
𝜂̂2(t) = 𝜂̂3(t) − 𝜂̂2(t) + 10 sin 𝜂̂1(t) + L3k2𝜃2(t)(𝜂4(t) − 𝜂̂4(t)) + Lb1(𝜉1𝛿1[1]
+ 𝜉2𝛿1[2] + 𝜉3𝛿1[3] + 𝜉3𝜑1(t) + 𝜉4𝛿1[4] + 𝜉4𝜑2(t)),
̇
𝜂̂3(t) = 10u(t) − 2𝜂̂2(t) − 10𝜂̂3(t) + L4k3𝜃3(t)(𝜂4(t) − 𝜂̂4(t)) + L3b3(𝜉1𝛿1[1]
+ 𝜉2𝛿1[2] + 𝜉2𝜑1(t) + 𝜉3𝛿1[3] + 𝜉3𝜑2(t)),
̇
𝜂̂4(t) = 𝜂̂1(t) − Lk4𝜃4(t)𝜂̂4 + (𝜂4(t) − 𝜂̂4(t)) + Lb1(𝜉1𝛿1[1] + 𝜉2𝛿1[2] + 𝜉3𝛿1[3]
+ 𝜉3𝜑1(t) + 𝜉4𝛿1[4] + 𝜉4𝜑2(t)),
̇
𝜉1(t) = 50,000L(𝛿1[1])(𝜂4(t) − 𝜂̂4(t)),
̇
𝜉2(t) = 50,000L(𝛿1[2])(𝜂4(t) − 𝜂̂4(t)),
̇
𝜉3(t) = 10,000L(𝛿1[3] + 𝜑1(t))(𝜂4(t) − 𝜂̂4(t)),
̇
𝜉4(t) = 10,000L(𝛿1[4] + 𝜑2(t))(𝜂4(t) − 𝜂̂4(t)),
̂x1(t) = 𝜂̂1(t) + 𝜉1𝛿1[1] + 𝜉2𝛿1[2] + 𝜉3𝛿1[3] + 𝜉4𝛿1[4],
̂x2(t) = 𝜂̂2(t) + 𝜉1𝛿2[1] + 𝜉2𝛿2[2] + 𝜉3𝛿2[3] + 𝜉4𝛿2[4],
̂x3(t) = 𝜂̂3(t) + 𝜉1𝛿3[1] + 𝜉2𝛿3[2] + 𝜉3𝛿3[3] + 𝜉4𝛿3[4],
̂x4(t) = 𝜂̂4(t).

Set 𝜑1(t) = sin(200t) and 𝜑2(t) = sin(300t), 𝜉 = (1, 2, 1.5, 0.5)T and the observer gain perturbations 𝜃(t) =
(1 + 0.5 sin(t), 1 − 0.2 sin(t), 1 + 0.2 sin(t), 1 + 0.01 sin(t))T . The rest parameters are same to those in
Example 1. In Figure 8, we can plot the trajectories of the estimation errors. The estimation errors of the
unknown parameter are also shown in Figure 9. The simulation results demonstrate the validity and efficiency
of our methods.

6 CONCLUSION

For the first time, we presented the definitions of nonfragile high-gain observers and design method for lower-triangular
nonlinear systems with output uncertainty. The output uncertainty was approximated by RBFNNs. After an output filter
and an input–output filter, a new augmented adaptive observable canonical form was derived. Then, we designed an
observer with gain perturbations to estimate the states and the coefficients of the RBFNNs. Besides, a disturbance observer
was also designed to estimate the approximation error. We gave the maximum allowable gain perturbations as well. At
last, the obtained results were extended to nonlinear systems in adaptive observer form with output uncertainty.
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