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Abstract

The sterile insect technique (SIT) is a technique to control pests and vectors of diseases by releasing
mainly sterile males. Several challenges need to be solved before large-scale field application in order to
guarantee its success. In this paper we intend to focus on two important issues: residual (sterile) male
fertility and contamination by sterile females. Indeed, sterile males are never 100% sterile, that is there
is always a small proportion, ε, of fertile males (sperm of) within the sterile males population. Among
the sterile insects that are released, a certain proportion, ϵF , of them are sterile females due to imperfect
mechanical sex-separation technique. This can be particularly problematic when arthropod viruses are
circulating, because mosquito females, even sterile, are vectors of diseases.

Various upper bound values are given in the entomological literature for ϵF and ε without clear
explanations. In this work, we aim to show that these values are related to the biological parameters of
the targeted vector, the sterile insects release rate, and the epidemiological parameters of a vector-borne
disease, like Dengue. We extend results studied separately in [4, 7].

To study the impact of both issues, we develop and study a SIT-entomological-epidemiological math-
ematical model, with application to Dengue. Qualitative analysis of the model is carried out to highlight
threshold values that shape the overall dynamics of the system.

We show that vector elimination is possible only when N ε < 1, where N is the basic-offspring
number related to the targeted wild population. In that case, we highlight a critical sterile males release
rate, Λcrit

M , above which the control of the wild population is always effective, using a strategy of massive
releases, and then small releases, to reach elimination and nuisance reduction. In contrary, when εN > 1,
then SIT-induced vector elimination is unreachable, whatever the size of the releases.

Moreover, we compute a critical value for the release rate of sterile females, Λcrit
F , such that if

the release rate of the sterilized females is greater than Λcrit
F , then the epidemiological risk increases.

When the sterile females releases rate is low, less than Λcrit
F , then whatever the value taken by εN ,

the epidemiological risk can be controlled using SIT. However, this is more difficult when N ε > 1. We
illustrate our theoretical results with numerical simulations, and we show that early SIT control is better
to prevent or mitigate the risk of an epidemic, when residual fertility and contamination by sterile females
occur simultaneously. We also highlight the importance of combining SIT with mechanical control.

In order to guarantee the success of SIT control, we recommend to solve in priority the issue of
residual fertility, and, then, to decay the contamination by sterile females as low as possible.

1 Introduction

Vector-borne diseases have become very strong issues all around the World. After decades of chemical
control, the use of biological control methods are more than necessary. Many research programs are ongoing
to develop new biocontrol tools. Among them, an old control technique, the Sterile Insect Technique (SIT), is
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always under study and improvements [8, 14]. SIT is an environmentally safe, cost-effective, species-specific,
and efficient method of insect control. It is a form of insect population control that relies on the mass-
rearing and sterile release of large numbers of male insects to mate with wild female insects. This prevents
the production of viable eggs, thus reducing the overall population of the target species. This technique was
first developed in the 1950s by entomologists Edward Knipling and Raymond Bushland, who were working
for the U.S. Department of Agriculture (USDA) [12] (see also [8][chapter 1.1]). The original purpose of SIT
was to control the screwworm fly, which was devastating the cattle industry in the southern United States
[13]. Since then, SIT has been used to control a variety of other insect pests, including the Mediterranean
fruit fly, tsetse fly, and also against vectors of diseases, including anopheles and aedes mosquitoes, with
more or less success [8]. Initially, sterile insects were obtained only by ionization or irradiation, but now
new techniques have been developed for mosquitoes control in particular. One of them consists of releasing
only males carrying the bacteria Wolbachia [19]. This is called the Incompatible Insect Technique (IIT)
[14], where the sperm of Wolbachia-carrying males, W-males, is altered so that it can no longer successfully
fertilize uninfected eggs. Thus, IIT can be seen as a classical SIT. A third method exists but it is more
controversial since it relies of genetic-modified mosquitoes: this is called the RIDL method, where RIDL
stands for ”Release of Insects carrying Dominant Lethals” [22].

However, while conceptually very simple, the conditions and the difficulties to implement SIT in the field
are numerous and that is why a drastic control quality is needed. To this end, IAEA (the International
Atomic Energy Agency) has published several manuals where several control steps have to be checked in
order to ensure/maximize the success of SIT [9, 26, 16].

While several field programs are ongoing, very few have a mathematical modelling component involved.
This is a pity because mathematical modelling can bring new insights on several issues that can be detrimental
to the efficacy of SIT: see, for instance, [3, 4, 5, 7], and references therein.

Among these controls, it is necessary to evaluate an upper bound for the contamination by sterile females,
i.e. the maximal amount of sterile females that can be released during each field release in order to insure
that SIT is efficient. Indeed, in order to produce sterile males only, it is necessary to separate the females
from the males. Up to now, the sex-separation system is mechanical as male nymphs are (in general)
smaller than female nymphs. However, since sex-sorting is highly operator-dependent, a certain number of
female nymphs can accidentally fall in the male nymphs bucket and, then, be irradiated to become fully
sterilized. Thus, when sterile mosquitoes are released, if the amount of released sterile females is too large,
this could maintain or increase the epidemiological risk. Moreover, when the Incompatible Insect technique is
considered, releasing Wolbachia-carrying females, even a small amount, can induce a population replacement
as showed in [6].

For Aedes albopictus, estimates of contamination by sterile females, done in Mauritius island [10], were
around 4%, while in a recent SIT program in Réunion island estimates were around 1%. Note also carefully
that sterilized females are always 100% sterile and thus cannot participate in the wild insect dynamics. In
[7], we have showed that when no vector-borne viruses are circulating, then the release of sterile females is
not an issue, as long as enough sterile males are released. When a virus is circulating, we showed existence of
a contamination threshold for sterile females, such that if the amount of released sterile females per hectare is
lower than this threshold, then it is possible to control the wild mosquitoes population. Otherwise, whatever
the size of the releases, the basic reproduction number will always be greater than 1 and thus it will be
impossible to control the epidemiological risk even if the wild population has been reduced using massive
sterile insects releases.

Another control test to take care is the (sterile) male residual fertility, when sterilized males (sperm of)
are not necessarily 100% sterile, even if an optimal dose of radiation is used. Indeed, males are sterilized
in boxes such that full sterility is not guaranteed: There are always irradiated males with a small amount
of sperm that remains fertile. This is called residual fertility. For Aedes albopictus, some estimates done
in Mauritius [11] lead to a residual fertility between 3.8% and 4.1%, while in the SIT-program in Réunion
island, an average value of 1% was obtained. In Italy, in [17], the authors found a residual fertility between
0.82± 0.14% and 4.93± 4.72% thanks to the age of the males, for an irradiation at 40 Gy.

In [4], using a very simple model, the authors showed that the proportion of fertile sperms, ε, has to be
lower than 1/N , where N is the basic offspring number related to the targeted wild population. If, for any
reason, ε > 1/N , then, whatever the amount of sterile males released, the wild population will always be
above a threshold, that can be estimated, numerically at least.

Up to know we have studied these two issues separately in [4, 7], while, in fact, they do occur simulta-
neously. Thus, it would be useful to know how the combination of both issues could be problematic in the
implementation of SIT program either for nuisance reduction or to reduce the epidemiological risk.
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The paper is organized as follows. In section 2, we present the full SIT-entomological-epidemiological
model and we recall theoretical results without SIT obtained in [3, 7] and we derive theoretical results
for the SIT-entomological model. The full SIT model is studied in section 3. Finally, in section 4, we
derive some numerical simulations to illustrate our theoretical results and to discuss the impact of low/high
residual fertility as well as low/high contamination by sterile females. The paper ends with a conclusion and
perspectives in section 5.

2 The SIT-entomological-epidemiological Model

Based on [7], we briefly describe the full SIT model, taking into account residual male fertility and contam-
ination by sterile females.

From the entomological point of view, we split the mosquito population into immature stage (larvae and
pupae), A, male adults, M , and mature females, FW .

We consider Λtot the release rate of all sterile insects, i.e. sterile males and sterile females, such that
Λtot = ΛM +ΛF , where ΛM = (1−ϵF )Λtot, ΛF = ϵFΛtot, and ϵF is the proportion of sterile females released.

Male residual sterility is modeled by considering that a proportion, εMS , of sterile males is fertile, such

that emerging immature females will become fertile with a probability of
M + εMS

M +MS
or they will become

sterile with a probability of
εMS

M +MS
.

Thus, in order to take into account the release of sterile females and the effect of residual fertility, we
have to consider a sub-populations of sterile females, S. Moreover, to take into account the circulation of a
vector-borne virus, with an extrinsic incubation period of the virus within the vector population, we consider
three epidemiological states, i.e. the susceptible, exposed and infected states, for the sterile and the wild
females, SS , SE , SI , FW,S , FW,E , and FW,I . We assume that the total population of humans, Nh, is positive
and constant. It is also divided in three epidemiological states, i.e. Nh = Sh + Ih + Rh. When (wild and
sterile) female mosquitoes are infected, we assume that their mortality rate can be impacted. Thus following
[7], and the flow diagram given in Fig. 1, page 4, we derive the following SIT-entomological-epidemiological
model 

dSh

dt
= µhNh −Bβmh

FW,I + SI

Nh
Sh − µhSh,

dIh
dt

= Bβmh
FW,I + SI

Nh
Sh − νhIh − µhIh,

dRh

dt
= νhIh − µhRh,

(1)



dA

dt
= ϕ(FW,S + FW,E + FW,I)− (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFW,S

dt
=

M + εMS

M +MS
rγA−Bβhm

Ih
Nh

FW,S − µSFW,S ,

dFW,E

dt
= Bβhm

Ih
Nh

FW,S − (νm + µS)FW,E ,

dFW,I

dt
= νmFW,E − µIFW,I ,

dSS

dt
= ϵFΛtot +

(1− ε)MS

M +MS
rγA−Bβhm

Ih
Nh

SS − µSSS ,

dSE

dt
= Bβhm

Ih
Nh

SS − (νm + µS)SE ,

dSI

dt
= νmSE − µISI ,

dMS

dt
= (1− ϵF )Λtot − µMS

MS ,

(2)

with appropriate non-negative initial conditions.
We summarize all the model parameters in Table 1, page 5. In [27], the authors have considered varying

parameters to take into account variations of temperature and raining along the year in Réunion island and
their impact on SIT strategies to reduce the nuisance or the epidemiological risk. Thus, in Table 1, page
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Figure 1: Flow diagram of model (1)-(2).

5, we derive the variations for each parameters from a daily average temperature varying between 15◦ and
30◦. These interval values will be used for a global sensitivity analysis done in section 4. In the simulations
part, we will consider parameter values related to an average temperature of 25◦, that is (close to) the most
favorable temperature for Aedes albopictus mosquito dynamics.

2.1 The wild insect model without SIT

We deduce from system (1)-(2) that dynamics of wild insects, without SIT, is modelled by system (3):

dA

dt
= ϕFW,S − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFW,S

dt
= rγA− µSFW,S .

(3)

System (3) is quite simple and assumes implicitly that there are always adults of both sex (male and female),
such that emerging females will always mate with a male and thus become fertile. In addition, system (3)
has been considered and studied in previous works, see e.g. [3, 7]. Hence, below we recall its main qualitative
results without any proofs.

The basic offspring number related to model (3) is

N =
rγϕ

µS(γ + µA,1)
. (4)

Setting the right-hand side of system (3) to zero we obtain the extinction equilibrium 0R3 = (0, 0, 0)T

4



Parameters Description Unit Range Baseline for sim-
ulation (T =
25◦)

Reference

1/µh Average human lifespan Day [60, 80]× 365 78× 365

1/νh Average DENV viremic period Day [1, 7] 7 [25]

B daily number of mosquito bites
on human

- [0.1, 1] 0.25

βmh Rate of transmission of DENV
from Infected mosquito to Sus-
ceptible human

Day−1 [0.12; 0.57] 0.3427 [27]

βhm Rate of transmission of DENV
from Infected human to Suscep-
tible mosquito

Day−1 [0.4; 0.96] 0.872 [27]

µA,1 Natural death rate for larvae and
pupae stage.

Day−1 [0.019; 0.299] 0.0262 [27]

µA,2 Density-induced death rate for
larvae and pupae stage.

Day−1Ind−1 [2×10−5; 0.02] 1.76× 10−4 [7, 27]

ϕ Daily hatching eggs deposit Day−1 [0, 11] 10 [27]

γ Transition rate from non-adult
stage to adult-stage.

Day−1 [0.028, 0.12] 0.0962 [27]

r Sex-ratio - [0.4, 0.6] 0.5

µS Female mosquito death rate Day−1 [0.035, 0.07] 0.0453 [27]

µI Infected female mosquito death
rate

Day−1 [0.035, 0.07] 0.0453 [27]

µM Male mosquito death rate Day−1 [0.05, 0.082] 0.0722 [27]

µMS
Sterile Male mosquito death rate Day−1 [0.1, 0.2] 0.1 [27]

νm Extrinsic incubation rate Day−1 [0.015, 0.25] 0.184 [27]

Λtot Sterile insect release rate Ind Day−1 [0; 18000] varying

ε Residual fertility - [0; 0.05] varying

ϵF Sterile female contamination - [0; 0.05] varying

Table 1: Parameters description and parameters values for the entomological-epidemiological model related
to Dengue circulation, for an average temperature of T = 25◦C and Nh = 20000.

and the equilibrium E∗ = (A∗,M∗, F ∗
W,S)

T given by

A∗ =
(γ + µA,1)

µA,2
(N − 1),

M∗ =
(1− r)γA∗

µM
=

(1− r)γ

µM

(γ + µA,1)

µA,2
(N − 1),

F ∗
W,S =

rγA∗

µS
=

rγ

µS

(γ + µA,1)

µA,2
(N − 1).

(5)

The inequalities between vectors are considered here in their usual coordinate-wise sense. Clearly, E∗ > 0R3

if and only if N > 1. We summarize these results with some more details related to basins of attraction of
equilibria in the following theorem.

Theorem 1 ([3, 7]). Model (3) defines a forward dynamical system on D = {x ∈ R3 : x ≥ 0R3}. Further-
more,

1) If N ≤ 1 then 0R3 is globally asymptotically stable on D.

2) If N > 1 then E∗ is stable with basin of attraction

D \ {x = (A,M,FW,S)
T ∈ R3

+ : A = FW,S = 0},

5



and 0R3 is unstable with the non negative M−axis being a stable manifold.

Proof. See [3, 7, Theorem 1].

Remark 1. Mechanical control, that is the removing of mosquito breeding sites, has an impact on µA,2

because it depends on K, the larvae-carrying capacity that is defined by K = 3×Nh [7][section 7]

µA,2 =
γ + µA,1

K
N . (6)

Thus reducing K by a certain percentage, say pmc, will increase µA,2 by a factor
1

1− pmc
.

2.2 The wild insect model with SIT

We now consider the following SIT-entomological model that occurs when no virus is circulating. Its study
is helpful to derive the Disease Free Equilibrium, DFE, thanks to several release sizes. Thanks to the fact

that t is sufficiently large or that the initial releases are such that MS(0) = M∗
S = (1 − ϵF )

Λtot

µMS

. The

entomological model assumes the form

dA

dt
= ϕFW,S − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFW,S

dt
=

M + εM∗
S

M +M∗
S

rγA− µSFW,S ,

dSS

dt
= ϵFΛtot +

(1− ε)M∗
S

M +M∗
S

rγA− µSSS .

(7)

Since the released sterile females do not play a role in the wild mosquito dynamics, we derive the following
reduced SIT-entomological model

dA

dt
= ϕFW,S − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFW,S

dt
=

M + εM∗
S

M +M∗
S

rγA− µSFW,S .

(8)

We now deal with equilibria of model (8). Of course, given an equilibrium Ē = (Ā, M̄ , F̄W,S)
T of system (8),

we can recover the SS-component of the corresponding equilibrium of system (7), by setting

S̄S =
1

µS

(
ϵFΛtot +

(1− ε)M∗
S

M̄ +M∗
S

rγĀ

)
.

We follow the methodology developed in [3]. When A = 0, we obtain the elimination equilibrium E0 =
(0, 0, 0)T . Assuming A ̸= 0, then from the first equation, we derive

ϕrγ

µS

M + εM∗
S

M +M∗
S

= (γ + µA,1 + µA,2A). (9)

Then, using the fact that

A =
µM

(1− r)γ
M,

setting

Q =
µA,2µM

(γ + µA,1)(1− r)γ
,

and

α =
M∗

S

M
,
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we derive
1 + εα

1 + α
N = 1 +

QM∗
S

α
. (10)

Setting QS = M∗
SQ > 0, equation (10) becomes

(1−N ε)α2 + (1 +QS −N )α+QS = 0. (11)

The discriminant of (11) is

∆(QS) = (QS)
2 +QS (4N ε− 2 (N + 1)) + (N − 1)

2
. (12)

To study the sign of ∆(QS), we consider the sub-determinant of ∆

∆′ = 16 (1−N ε) (1− ε)N . (13)

Since 1− ε ≥ 0, ∆′ has the same sign as 1−N ε.

1. Assume that N ε < 1. Then, ∆′ > 0 and ∆ has two real roots QS1
and QS2

such that:

QS1
QS2

= (1−N )
2
> 0,

QS1
+QS2

= 2 (1−N ε+N (1− ε)) > 0,

QS1
=
(√

N (1− ε)−
√
1−N ε

)2
> 0,

QS2
=
(√

N (1− ε) +
√
1−N ε

)2
> QS1

.

(14)

It therefore follows that ∆(QS) ≥ 0 when QS ∈ (0,QS1
] ∪ [QS2

,+∞) and ∆(QS) < 0 when QS ∈
(QS1

,QS2
). The following discussion is valid:

• Assume that QS ∈ (0,QS1
) . Then, (11) admits two real roots α−, α+ where

α± =
(N −QS − 1)±

√
∆(QS)

2 (1−N ε)
. (15)

Note that

N − 1−QS > N − 1−QS1
= 2

(√
(1−N ε) (1− ε)N − (1−N ε)

)
> 0.

Since

α−α+ =
QS

1−N ε
> 0, N − 1 − QS > 0 and α+ + α− =

N − 1−QS

1−N ε
> 0, we deduce that

0 < α− < α+.

• Assume that QS ∈ (QS2
,+∞) . Then, (11) admits two real roots α−, α+ where

α± =
(N −QS − 1)±

√
∆(QS)

2 (1−N ε)
. (16)

Note that

N − 1−QS < N − 1−QS2 = −2
(√

(1−N ε) (1− ε)N + (1−N ε)
)
< 0.

Since

α−α+ =
QS

1−N ε
> 0, N − 1 − QS < 0 and α+ + α− =

N − 1−QS

1−N ε
< 0, we deduce that

α− < α+ < 0.

• Assume that QS ∈ (QS1
,QS2

) . Then, (11) does not admit real roots.

• Assume that QS = QS1 . Then, (11) has only one real solution

α⋄ =
N − 1−QS1

2 (1−N ε)
> 0. (17)
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• Assume that QS = QS2
. Then, (11) has only one real solution

α− = α+ =
N − 1−QS2

2 (1−N ε)
< 0.

2. Assume that N ε > 1. Then ∆′ < 0 and ∆(QS) > 0. Therefore, (11) admits two real roots α−, α+.

Since α−α+ =
QS

1−N ε
< 0. It follows that

α− < 0 < α+ =
− (N − 1−QS) +

√
∆(QS)

2 (N ε− 1)
. (18)

3. Assume that N ε = 1. Then, (11) admits a unique solution

α♯ =
QS

N − 1−QS
. (19)

α♯ > 0 whenever QS < N − 1.

From the previous discussion, we deduce, for M∗
S =

ΛM

µMS

, the following:

Theorem 2. System (7) always admits the trivial equilibrium E0 =

(
0, 0, 0,

ϵFΛtot

µS

)T

. In addition:

1. Assume that N ε < 1. Consider the threshold

Λcrit
M =

µMS

Q

(√
N (1− ε)−

√
1−N ε

)2
. (20)

(a) If (1−ϵF )Λtot ∈
(
0,Λcrit

M

)
, then system (7) admits two positive equilibria E1 = (A1,M1, FW,S1

, SS1
)
T

and E2 = (A2,M2, FW,S2
, SS2

)
T
, such that (A1,M1, FW,S1

)T < (A2,M2, FW,S2
)T and

M1 =
(1− ϵF )Λtot

µMS
α+

, where α+ is computed from (15),

M2 =
(1− ϵF )Λtot

µMS
α−

, where α− is computed from (15),

A1,2 =
µM

(1− r) γ
M1,2,

FW,S1,2
=

(γ + µ1 + µ2A1,2)A1,2

ϕ
,

SS1,2
=

1

µS

(
ϵFΛtot +

(1− ε)M∗
S

M1,2 +M∗
S

rγA1,2

)
.

(b) If (1− ϵF )Λtot = Λcrit
M , then system (7) admits a unique equilibrium E⋄ = (A⋄,M⋄, FW,S⋄ , SS⋄)

T

where 

M⋄ =
ΛM

µMS
α⋄

, where α⋄ is computed from (17),

A⋄ =
µM

(1− r) γ
M⋄,

F⋄ =
(γ + µ1 + µ2A⋄)A⋄

ϕ
,

SS⋄ =
1

µS

(
ϵFΛtot +

(1− ε)M∗
S

M⋄ +M∗
S

rγA⋄

)
.

2. Assume that N ε > 1. Then, for any (1− ϵF )Λtot > 0, system (7) admits a unique positive equilibrium

8



E† =
(
A†,M†, FW,S† , SS†

)T
where

M† =
(1− ϵF )Λtot

µMS
α+

, where α+ is computed from (18),

A† =
µM

(1− r) γ
M†,

FW,S† =
(γ + µ1 + µ2A†)A†

ϕ
,

SS† =
1

µS

(
ϵFΛtot +

(1− ε)M∗
S

M† +M∗
S

rγA†

)
.

3. Assume that N ε = 1. Consider the threshold

Λcrit
M,♯ = Λcrit

M |Nε=1 =
µMS

Q
(N − 1) > 0.

If (1−ϵF )Λtot ∈
(
0,Λcrit

M,♯

)
, then system (7) admits a unique positive equilibrium E♯ =

(
A♯,M♯, FW,S♯

, SS♯

)T
where 

M♯ =
(1− ϵF )Λtot

µMS
α♯

, where α♯ is computed from (19),

A♯ =
µM

(1− r) γ
M♯,

FW,S♯
=

(γ + µ1 + µ2A♯)A♯

ϕ
,

SS♯
=

1

µS

(
ϵFΛtot +

(1− ε)M∗
S

M♯ +M∗
S

rγA♯

)
.

Remark 2. When ε = 0, we recover the critical rate Λcrit
M defined in [3, 7].

Taking into account the fact that system (8) is cooperative, we are able to study stability properties of
its equilibria and then to deduce the stability properties for system (7). Thus, following [2, 3, 7], we obtain
Theorem 3 where x = (A,M,FW,S , S)

T .

Theorem 3. The following results are valid for system (7):

1. Assume that N ε < 1.

(a) If (1− ϵF )Λtot > Λcrit
M , then E0 is globally asymptotically stable.

(b) If (1−ϵF )Λtot ∈
(
0,Λcrit

M

)
, then E1 is unstable, and the set {x ∈ R4 : (0, 0, 0)T ≤ (A,M,FW,S)

T <
(A1,M1, FW,S1)

T } is in the basin of attraction of E0 and the set {x ∈ R4 : (A1,M1, FW,S1)
T <

(A,M,FW,S)
T } is in the basin of attraction of E2.

(c) If (1− ϵF )Λtot = Λcrit
M , then the set {x ∈ R4 : (0, 0, 0)T ≤ (A,M,FW,S)

T < (A⋄,M⋄, FW,S⋄)
T } is

in the basin of attraction of E0, while the set {x ∈ R4 : (A⋄,M⋄, FW,S⋄)
T ≤ (A,M,FW,S)

T } is in
the basin of attraction of E⋄.

2. Assume that N ε > 1. Then, the elimination equilibrium E0 is unstable and the coexistence equilibrium
E† is globally asymptotically stable for any (1− ϵF )Λtot > 0.

3. Assume that N ε = 1.

(a) If (1− ϵF )Λtot ≥ Λcrit
M,♯, then E0 is globally asymptotically stable.

(b) If (1 − ϵF )Λtot ∈
(
0,Λcrit

M,♯

)
, then the elimination equilibrium E0 is unstable and the coexistence

equilibrium E♯ is globally asymptotically stable.

Proof. See Appendix B.
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3 Qualitative analysis of the full SIT epidemiological model

Now we turn to the more complex model described in the introduction. In the sequel, we assume that N > 1.
Indeed, in the case where N ≤ 1, by a comparison argument, the system will always converge toward the
trivial disease-free equilibrium.

Without SIT, this model has been studied in [7] where we derived the Basic Reproduction Number defined
as follows

R2
0 =

νm
νm + µS

Bβmh

µI

Bβhm

νh + µh

F ∗
W,S

Nh
. (21)

We assume that, without any control,
R2

0 > 1.

From [7], there exists a unique endemic equilibrium

EE = (S♯
h, I

♯
h, R

♯
h, A

♯,M ♯, F ♯
W,S , F

♯
E , F

♯
I )

T

when R2
0 > 1.

We will now proceed like in [7, section 5]. In this section, we consider that constant and permanent SIT
releases are done as a control tool. Hence, following (8), the dynamics of human and mosquito populations
are described by system (22)-(23):

dSh

dt
= µhNh −Bβmh

FW,I + SI

Nh
Sh − µhSh,

dIh
dt

= Bβmh
FW,I + SI

Nh
Sh − νhIh − µhIh,

dRh

dt
= νhIh − µhRh,

(22)



dA

dt
= ϕ(FW,S + FW,E + FW,I)− (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFW,S

dt
=

M + εM∗
S

M +M∗
S

rγA−Bβhm
Ih
Nh

FW,S − µSFW,S ,

dFW,E

dt
= Bβhm

Ih
Nh

FW,S − (νm + µS)FW,E ,

dFW,I

dt
= νmFW,E − µIFW,I ,

dSS

dt
= ϵFΛtot +

(1− ε)M∗
S

M +M∗
S

rγA−Bβhm
Ih
Nh

SS − µSSS ,

dSE

dt
= Bβhm

Ih
Nh

SS − (νm + µS)SE ,

dSI

dt
= νmSE − µISI .

(23)

In the sequel, we provide qualitative results of system (22)-(23). Let us set

x(t) = (Sh(t), Ih(t), Rh(t), A(t),M(t), FW,S(t), FW,E(t), FW,I(t), SS(t), SE(t), SI(t))
T .

3.1 Boundedness of solutions and existence of equilibria

Using similar arguments as in [7, Lemmas 1 & 2], it is straightforward to obtain the following Lemma

Lemma 1 (Boundedness of solutions). The set

Γ =
{
x ∈ R11

+ : Sh + Ih +Rh = Nh; (A,M)T ≤ (A∗,M∗)
T
;FW,S + FW,E + FW,I ≤ F ∗

W,S ;

SS + SE + SI ≤ ϵFΛtot + rγA∗

µS

}
is positively invariant for system (22)-(23) where (A∗,M∗, F ∗

W,S)
T is given by (5).

10



Using Theorem 2, page 8, we deduce:

Proposition 1 (Trivial and non-trivial disease-free equilibria). Whatever N ε ≥ 0, system (22)-(23) always
has a trivial disease-free equilibrium, TDFE, such that

TDFE =

(
Nh, 0R7 ,

ϵFΛtot

µS
, 0R2

)T

. (24)

1. Assume N ε < 1. Let Λcrit
M defined by (20), page 8.

• If (1 − ϵF )Λtot ∈ (0,Λcrit
M ), then system (22)-(23) has two non-trivial disease-free equilibria

DFE1,2 =
(
Nh, 0R2 , A1,2,M1,2, FW,S1,2

, 0R2 , SS1,2
, 0R2

)T
with (A1,M1, FW,S1

)T < (A2,M2, FW,S2
)T

and A1,2, M1,2, FW,S1,2 , and SS1,2 given in Theorem 2.

• If (1− ϵF )Λtot = Λcrit
M , then system (22)-(23) has one non-trivial disease-free equilibrium

DFE⋄ = (Nh, 0R2 , A⋄,M⋄, FW,S⋄ , 0R2 , SS⋄ , 0R2)
T
,

with A⋄, M⋄, FW,S⋄ , and SS⋄ given in Theorem 2.

2. Assume N ε > 1. System (22)-(23) admits one non-trivial disease-free equilibrium

DFE† =
(
Nh, 0R2 , A†,M†, FW,S† , 0R2 , SS† , 0R2

)T
,

where A†, M†, FW,S† , and SS† are given in Theorem 2.

3. Assume that N ε = 1. If (1 − ϵF )Λtot ∈ (0,Λcrit
M,♯), where Λcrit

M,♯ = µMS

N − 1

Q
, then system (22)-(23)

has the following non-trivial disease-free equilibrium

DFE♯ =
(
Nh, 0R2 , A♯,M♯, FW,S♯

, 0R2 , SS♯
, 0R2

)T
where A♯, M♯, FW,S♯

, and SS♯
are given in Theorem 2.

Note that using the relation N ε = 1 in the expression of Λcrit
M , we recover Λcrit

M,♯. Thus, in order to simplify
the reading of the paper, we will not consider the particular case N ε = 1 in the rest of the paper because
most of the forthcoming results are similar to those obtained when N ε < 1.

Following point 1.b) of Theorem 3, page 9, in the disease-free case, equilibrium DFE1 is unreachable
because it is always unstable. Therefore, in addition to TDFE, the meaningful disease-free equilibrium of
system (22)-(23) is

DFESITc
=



DFE†, when N ε > 1,

DFE2, when N ε < 1 and (1− ϵF )Λtot ∈ (0,Λcrit
M ),

DFE⋄, when N ε < 1 and (1− ϵF )Λtot = Λcrit
M ,

TDFE, when N ε < 1 and (1− ϵF )Λtot > Λcrit
M .

(25)

Remark 3. Note that in the last case, only TDFE exists, while in the other cases DFESITc
and TDFE

co-exist.

Using the next generation matrix approach, see e.g. [24], the basic reproduction number of system
(22)-(23) is

11



R2
0,SITc

=



νm
νm + µS

Bβmh

µI

Bβhm

νh + µh

(FW,S† + SS†)

Nh
, when N ε > 1,

νm
νm + µS

Bβmh

µI

Bβhm

νh + µh

(FW,S2
+ SS2

)

Nh
, when N ε < 1 and (1− ϵF )Λtot ∈ (0,Λcrit

M ),

νm
νm + µS

Bβmh

µI

Bβhm

νh + µh

(FW,S⋄ + SS⋄)

Nh
, when N ε < 1 and (1− ϵF )Λtot = Λcrit

M ,

νm
νm + µS

Bβmh

µI

Bβhm

νh + µh

ϵFΛtot

µSNh
, when N ε < 1 and (1− ϵF )Λtot > Λcrit

M .

(26)

Remark 4. In some cases, as expected, R2
0,SITc

has two parts: the first part

R2
0,SITc,W =

νm
νm + µS

Bβmh

µI

Bβhm

νh + µh

FW,S†,2,⋄

Nh
,

is related to the wild susceptible females that are still fertile while the second part,

R2
0,SITc,S =

νm
νm + µS

Bβmh

µI

Bβhm

νh + µh

SS†,2,⋄

Nh
,

is related to susceptible females, wild and released ones, that are sterile.
The main question is: when R2

0,SITc,W
< 1, is it possible that the releases of sterile females together with

the releases of males which are assumed not to be fully sterile imply R2
0,SITc

> 1?

Remark 5. Since FW,S2,†,⋄ +SS2,†,⋄ =
rγA2,†,⋄ + ϵFΛtot

µS
and F ∗

W,S =
rγA∗

µS
, and using (21), it is interesting

to observe that

R2
0,SITc

= R2
0



ϵFΛtot

rγA∗ +
A†

A∗ , when N ε > 1,

ϵFΛtot

rγA∗ +
A2

A∗ , when N ε < 1 and (1− ϵF )Λtot ∈ (0,Λcrit
M ),

ϵFΛtot

rγA∗ +
A⋄

A∗ , when N ε < 1 and (1− ϵF )Λtot = Λcrit
M ,

ϵFΛtot

rγA∗ , when N ε < 1 and (1− ϵF )Λtot > Λcrit
M ,

(27)

where A∗ is defined in (5), page 5. Thus, clearly, when ϵFΛtot is too large, i.e. ϵFΛtot > rγA∗, we
always have R2

0,SITc
> R2

0. In this case, if we already have R2
0 > 1, then R2

0,SITc
> 1 such that the SIT will

fail to lower the epidemiological risk. Conversely, since A∗ > A2,†,♯, then R2
0,SITc

< R2
0 whenever ϵFΛtot is

sufficiently low, i.e.
ϵFΛtot < rγ(A∗ −A2,†,⋄). (28)

We recover the same result like in [7] when N ε ≤ 1.

Remark 6. Since A2,†,⋄ is an increasing function of ϵFΛtot, it is straightforward to deduce that R2
0,SITc

increases with respect to ϵFΛtot.

Remark 7. According to (27), when N ε ≤ 1 and (1− ϵF )Λtot > Λcrit
M , then R2

0,SITc
< 1 iff

ϵFΛtot <
rγA∗

R2
0

=
rγ(γ + µA,1)(N − 1)

µA,2R2
0

:= Λcrit
F . (29)

Also, it follows from (27) that
ϵFΛtot > Λcrit

F ⇒ R2
0,SITc

> 1.

12



Remark 8. Clearly, ϵF has to be chosen such that

ϵF <
Λcrit
F

Λtot
. (30)

This result is in complete contradiction with the constant maximal percentage given by IAEA for contami-
nation by sterile females: we can clearly see that the percentage of contamination may depend on the total
amount of sterile insects per release.

Thanks to the case of sterile female contamination, straightforward computations lead to

Proposition 2. When ϵFΛtot > Λcrit
F , then there exists a wild insects-free boundary equilibrium, WIFE,

such that A# = M# = F#
S = F#

E = F#
I = 0, S#

S > 0, S#
E > 0, S#

I > 0 and

S#
h =

µS +Bβhm
µh

µh + νh

Bβhm
µh

µh + νh
+ µS

ϵFΛtot

Λcrit
F

Nh,

S#
I =

νm
µI (νm + µS)

1− µS

µS +Bβhm
µh

µh + νh

(
1−

S#
h

Nh

)
 ϵFΛtot.

(31)

Proof. See Appendix C.

We now have a look at the existence of non-trivial endemic equilibria.

Proposition 3. Assume µI = µS.

• Let N ε ≤ 1, and set

Λcrit
M,EE =

µMS

Q

(√
N + (1−N ε)−

√
1−N ε

)2
. (32)

Assume 0 < (1− ϵF )Λtot < Λcrit
M,EE, and ϵFΛtot ≥ 0 is chosen such that

ϵFΛtot + rγAEE
1 >

F ∗
W,S

R2
0

, (33)

where

AEE
1 =

1

2Q (1− r)γ

µM

(
N −QM∗

S −
√(

(QM∗
S −N )

2 − 4Q (1−N ε)M∗
S

))
.

Then there exists two endemic equilibria, EESIT,1 and EESIT,2. In addition EESIT,1 = EESIT,2 when
N ε = 1.

• Let N ε > 1. For all (1− ϵF )Λtot > 0, assume that ϵFΛtot ≥ 0 is chosen such that

ϵFΛtot + rγAEE
∗ >

F ∗
W,S

R2
0

,

where

AEE
1 =

1

2Q (1− r)γ

µM

(
N −QM∗

S −
√(

(QM∗
S −N )

2
+ 4Q (N ε− 1)M∗

S

))
.

Then, there exists one positive equilibrium EESIT,∗.

Proof. See Appendix C.
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We consider the case where µS < µI . We first set the following thresholds

α =
νm
µI

Bβmh

νh + µh

Bβhm

νm + µS

1

N2
h

,

Λcrit,1
F,EE =

µS

ϵFα

N ε

1−
1 +

νm
µI

1 +
νm
µS


1−N ε

1 +
νm
µI

1 +
νm
µS


, (34)

Λcrit,2
tot =

rγ(γ + µA,1)

N
1 +

νm
µI

1 +
νm
µS

− 1


µA,2

(
(1− ϵF )

r

1− r

µM

µMS

+ ϵF

) , (35)

Λcrit,3
tot =

1

2
Q(1− ϵF )

µMS

αϵF

√∆+

αµM (1− ϵF )r

(1− r)µMS

1−N ε

1 +
νm
µI

1 +
νm
µS

+ αϵF

1−N
1 +

νm
µI

1 +
νm
µS



 , (36)

where

∆ =


αµM (1− ϵF )r

(1− r)µMS

1−N ε

1 +
νm
µI

1 +
νm
µS

+ αϵF

1−N
1 +

νm
µI

1 +
νm
µS





2

+4
Q(1− ϵF )

µMS

αϵFNµS

1−
1 +

νm
µI

1 +
νm
µS

 > 0.

Then, we derive

Proposition 4. Assume µS < µI .

• Let N ε ≤
1 +

νm
µS

1 +
νm
µI

.

– If Λcrit,1
tot < Λtot < Λcrit,3

tot , or

– If Λtot > max{Λcrit,3
tot ,Λcrit,1

tot }, and N ≥
1 +

νm
µS

1 +
νm
µI

and Λtot < Λcrit,2
tot ,

then, there exist no or 2 endemic equilibria.

– If Λtot > max{Λcrit,3
tot ,Λcrit,1

tot }, and

∗ N >

1 +
νm
µS

1 +
νm
µI

and Λtot > Λcrit,2
tot , or

∗ N <

1 +
νm
µS

1 +
νm
µI

,

then, no endemic equilibrium exists.

– If Λtot < min{Λcrit,3
tot ,Λcrit,1

tot }, then exists one endemic equilibrium.
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• Let N ε ≥
1 +

νm
µS

1 +
νm
µI

.

– If Λtot < Λcrit,3
tot , or

– If Λtot > max{Λcrit,2
tot ,Λcrit,3

tot },

then, only one endemic equilibrium exists.

– If Λcrit,3
tot < Λtot < Λcrit,2

tot

then, one endemic equilibrium exists or three endemic equilibria.

Proof. See Appendix C.

3.2 Stability analysis of the disease-free equilibria and uniform persistence

Let us set

R2
0,TDFE =

Bβmh

νh + µh

νm
(νm + µS)µS

Bβhm

Nh

ϵFΛtot

µS
= R2

0

ϵFΛtot

rγA∗ . (37)

A straightforward computation of the Jacobian related to system (22)-(23) at equilibrium TDFE leads to

Theorem 4. Assume N ε < 1 and Λtot > 0. Let ϵF ≥ 0 such that R2
0,TDFE < 1, then, the Trivial

Disease-Free Equilibrium, TDFE, is locally asymptotically stable, and unstable when R2
0,TDFE > 1.

The previous theorem shows that, when N ε < 1, nuisance reduction with SIT is always possible with low
contamination by sterile females, as long as Λtot > 0, and the wild population is small or not yet established.
When the wild population is large or established we need further results.

Using [24, Theorem 2], the stability properties of the biological disease-free equilibrium DFESITc
∈

{DFE†,2,⋄, TDFE} is summarized as follows.

Theorem 5. The following results hold true for system (22)-(23).
Assume N ε < 1.

1. Let (1− ϵF )Λtot ∈ (0,Λcrit
M )

(a) If R2
0,SITc

< 1, then DFE2, defined in Proposition 1-(1), is locally asymptotically stable.

(b) If R2
0,SITc

> 1, then DFE2 is unstable.

2. Let (1− ϵF )Λtot = Λcrit
M

(a) If R2
0,SITc

< 1, then DFE⋄, defined in Proposition 1-(1), is locally asymptotically stable.

(b) If R2
0,SITc

> 1, then DFE⋄ is unstable.

3. Let (1− ϵF )Λtot > Λcrit
M .

(a) If R2
0,SITc

= R2
0,TDFE < 1, then TDFE, defined in Proposition 1, is globally asymptotically

stable.

(b) If R2
0,SITc

= R2
0,TDFE > 1, then TDFE is unstable.

Assume N ε > 1.

1. If R2
0,SITc

< 1, then DFE†, defined in Proposition 1-(2), is locally asymptotically stable.

2. If R2
0,SITc

> 1, then DFE† is unstable.

In fact, when the residual fertility level is low, i.e. ε <
1

N
, system (22)-(23) may exhibit a bistable

dynamics in the disease-free context. Indeed, based on Theorem 3 together with Theorems 4 and 5, it is
straightforward to establish:
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Theorem 6. Assume N ε < 1 and (1 − ϵF )Λtot ∈ (0,Λcrit
M ). If R2

0,SITc
< 1, then equilibria DFE2 and

TDFE are locally asymptotically stable (LAS).

Clearly, from the two previous theorems, when contamination by sterile females is low, such that
R2

0,TDFE < 1, we derive that:

• nuisance reduction is only possible when N ε < 1. In particular, for established wild population,
massive sterile insects releases can drive the wild population close to TDFE.

• reducing the epidemiological risk is possible whatever the values taken by N ε.

Remark 9. Based on a comparison argument and a limit system argument we observe the following:

• System (22)-(23) may undergo a bistability involving the wild insects-free boundary equilibrium, WIFE
and the ‘full’ endemic equilibrium EE when N ε ≤ 1, R2

0,TDFE > 1 and (1− ϵF )Λtot ∈ (0,Λcrit
M ).

• The wild insects-free boundary equilibrium, WIFE is GAS when N ε ≤ 1, R2
0,TDFE > 1 and (1 −

ϵF )Λtot > Λcrit
M .

In order to deal with the uniform persistent of system (22)-(23), we prove the following result:

Theorem 7. If N ε > 1 and R2
0,TDFE > 1, then the system is uniformly persistent.

Proof. See Appendix D.

However, the previous result does not give information on how SIT can impact R2
0,SITc

.

3.3 Impact of insect releases on the SIT basic reproduction number

Now, we want to find Λtot and ϵF , such that the epidemiological risk is low, i.e. lead R2
0,SITc

< 1.

As stated in Remark 7, page 12, if ϵFΛtot is large, that is ϵFΛtot > Λcrit
F , then whatever the release rate

of sterile males (1− ϵF )Λtot is, we will always have R2
0,SITc

> 1. Hence, in the sequel, we first assume that

ϵFΛtot < Λcrit
F .

Moreover, following Remark 5, page 12, R2
0,SITc

≤ R2
0 iff ϵFΛtot is sufficiently low. However, this does not

necessarily imply that there exists (1 − ϵF )Λtot > 0 such that R2
0,SITc

< 1. Straightforward computations
lead:

A2 =
1

2
A∗
(
1− QS

N − 1

)(
1 +

√
1− 4QS(1−N ε)

(N − 1−QS)
2

)
> 0, when N ε ≤ 1 and (1− ϵF )Λtot ∈ (0,Λcrit

M )

A⋄ =
A∗

N − 1

(√
(1− ε)N
(1−N ε)

− 1

)
, when N ε < 1 and (1− ϵF )Λtot = Λcrit

M

A† =
1

2
A∗

(
1− QS

N − 1
+

√(
1− QS

N − 1

)2

+
4QS(N ε− 1)

(N − 1)
2

)
> 0, when N ε > 1.

(38)
Using (27), (29) and (38), we deduce that
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R2
0,SITc

=



ϵFΛtot

Λcrit
F

+
R2

0

2

(
1− QS

N − 1

)(
1 +

√
1− 4QS(1−N ε)

(N − 1−QS)
2

)
, when N ε ≤ 1 and (1− ϵF )Λtot ∈ (0,Λcrit

M ),

ϵFΛtot

Λcrit
F

+
R2

0

N − 1

(√
(1− ε)N
(1−N ε)

− 1

)
, when N ε < 1 and (1− ϵF )Λtot = Λcrit

M

ϵFΛtot

Λcrit
F

, when N ε ≤ 1 and (1− ϵF )Λtot > Λcrit
M ,

ϵFΛtot

Λcrit
F

+
R2

0

2

(
1− QS

N − 1
+

√(
1− QS

N − 1

)2

+
4QS(N ε− 1)

(N − 1)
2

)
, when N ε > 1.

(39)
It is straightforward to obtain the following result.

Lemma 2. 1. If ϵFΛtot > Λcrit
F , then R2

0,SITc
> 1.

2. Assume that N ε ≤ 1 and (1− ϵF )Λtot > Λcrit
M . Then R2

0,SITc
< 1 iff 0 < ϵFΛtot < Λcrit

F .

Lemma 2 depicts the fact that when the epidemiological risk is high, that is, when R2
0 > 1, and if in

addition the release rate of sterile females is large, that is ϵFΛtot > Λcrit
F , then whatever the amount of

released sterile males, the SIT will fail since we will always have R2
0,SITc

> 1. However, massive releases of

sterile males ((1− ϵF )Λtot > Λcrit
M ) could be successful provided that ϵFΛtot < Λcrit

F .
The next question to investigate deals with the possibility to lower the epidemiological risk using small

sterile males releases when ϵFΛtot < Λcrit
F and also to investigate if there exist necessary conditions to ensure

that R2
0,SITc

< 1 when N ε > 1.

3.4 When N ε < 1

Using (39)2, we define the following threshold

R2
0,Nε<1 =

N − 1

ϵFΛtotµA,2

rγ(γ + µA,1)
+

√
(1− ε)N
(1−N ε)

− 1

. (40)

We derive the following result

Theorem 8. Assume 0 ≤ ϵFΛtot < Λcrit
F . Consider system (22)-(23) and set

Λ∗
M,R2

0,ε
=

µMS
(N − 1)

Q

1−
R4

0(1−N ε) + (N − 1)

(
1− ϵFΛtot

Λcrit
F

)2

R4
0(1−N ε) +R2

0 (N − 1)

(
1− ϵFΛtot

Λcrit
F

)
 . (41)

1. If R2
0 ≥ R2

0,Nε<1, then the following results hold true:

• When (1− ϵF )Λtot > Λcrit
M , the equilibrium TDFE is globally asymptotically stable.

• When (1− ϵF )Λtot ≤ Λcrit
M , then R2

0,SITc
> 1 and SIT fails.

2. If 1 < R2
0 < R2

0,Nε<1, then the following results hold true:

• When (1− ϵF )Λtot > Λcrit
M , the equilibrium TDFE is globally asymptotically stable.

• When (1− ϵF )Λtot = Λcrit
M , then R2

0,SITc
< 1, DFE⋄ and TDFE are locally asymptotically stable.

The set

{(S, I,R,A,M,FW,S , FW,E , FW,I , SS , SE , SI)
T ∈ R11

+ : (A,M,FW,S)
T < (A⋄,M⋄, FW,S⋄)

T }
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belongs to the basin of attraction of TDFE while the set

{(S, I,R,A,M,FW,S , FW,E , FW,I , SS , SE , SI)
T ∈ R11

+ : (A,M,FW,S)
T ≥ (A⋄,M⋄, FW,S⋄)

T }

belongs to the basin of attraction of DFE⋄.

• when (1− ϵF )Λtot > Λ∗
M,R2

0,ε
, then R2

0,SITc
< 1, and the equilibria DFE2 and TDFE are locally

asymptotically stable. Moreover, the set

{(S, I,R,A,M,FW,S , FW,E , FW,I , SS , SE , SI)
T ∈ R11

+ : (A,M,FW,S)
T < (A1,M1, FW,S1)

T }

belongs to the basin of attraction of TDFE while the set

{(S, I,R,A,M,FW,S , FW,E , FW,I , SS , SE , SI)
T ∈ R11

+ : (A,M,FW,S)
T > (A1,M1, FW,S1

)T }

belongs to the basin of attraction of DFE2.

Proof. We follow the same methodology used in [7, Theorem 6] to derive (41). Then, the results follow from
Theorem 6, page 16.

Remark 10. Of course, when ε = 0, we recover the results obtained in [7].

Clearly the constraint on the releases size given by (41) can be strong, i.e. close to Λcrit
M , such that it

seems to be preferable to use massive releases, i.e. (1− ϵF )Λtot > Λcrit
M .

In that case, the strategy developed in [1, 3], using massive and then small releases can be adequate to
reduce the epidemiological risk and maintain this risk at a lower level.

Thus, in terms of vector control: when R2
0 ≤ 1, vector control is not necessary; when R2

0 > 1 and
0 ≤ ϵFΛtot < Λcrit

F , then two cases should be considered:

• when R2
0 ≥ R2

0,Nε<1, then massive releases of sterile insect, i.e. (1 − ϵF )Λtot > Λcrit
M , should be

advocated.

• When R2
0 < R2

0,Nε<1, then small, but large enough (Λ∗
M,R2

0,ε
< (1− ϵF )Λtot ≤ Λcrit

M ), releases of sterile

insects could be useful to control the disease. However, since Λ∗
M,R2

0,ε
is close to Λcrit

M , from a practical

point of view, it is preferable to consider massive releases of sterile insects too.

When N ε ≤ 1, we summarize all qualitative results of system (22)-(23) related to the disease-free equilibria
in Table 2, page 18.

N R2
0 ϵFΛtot R2

0 (1− ϵF )Λtot Observations
≤ 1 TDFE is GAS

≤ 1 Releases of sterile insects are useless
because the DFE is already GAS

> 1 ≥ Λcrit
F Even massive releases could not be efficient

to reduce the epidemiological risk: R2
0,SITc

> 1.

WIFE and/or EE are/is LAS

> 1 ≥ R2
0,Nε<1 > Λcrit

M TDFE is GAS

≤ Λcrit
M SIT failed since R2

0,SITc
> 1

> Λcrit
M TDFE is GAS

< Λcrit
F < R2

0,Nε<1 = Λcrit
M R2

0,SITc
< 1: TDFE and DFE⋄ are both stable

> Λ∗
M,R2

0,ε
R2

0,SITc
< 1: TDFE and DFE2 are both stable

Table 2: Summary table of the qualitative analysis of system (22)-(23) when N ε ≤ 1.
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3.5 The case where N ε > 1

We want to derive if, for a given ϵFΛtot < Λcrit
F , there exists Λcrit

M,Nε>1 such that for all (1−ϵF )Λtot > Λcrit
M,Nε>1,

we always have R2
0,SITc

> 1. Conversely, for a given Λtot it is possible to find a rate ϵF such thatR2
0,SITc

> 1?

Assuming R2
0 > 1, 0 ≤ ϵFΛtot < Λcrit

F , and using (39)4, we have the following:

• Assume that
ϵFΛtot

Λcrit
F

+
R2

0

2

(
1− QS

N − 1

)
≥ 1 or equivalently

(
1− ϵFΛtot

Λcrit
F

)
2

R2
0

−
(
1− QS

N − 1

)
≤ 0.

Then it holds
R2

0,SITc
> 1.

Note also that

(
1− ϵFΛtot

Λcrit
F

)
2

R2
0

−
(
1− QS

N − 1

)
≤ 0 ⇐⇒ (1− ϵF )Λtot ≤

µMS

Q
(N − 1)

1−
2

(
1− ϵFΛtot

Λcrit
F

)
R2

0

 := Λcrit,♯
M .

• Assume that
ϵFΛtot

Λcrit
F

+
R2

0

2

(
1− QS

N − 1

)
< 1 or equivalently

(
1− ϵFΛtot

Λcrit
F

)
2

R2
0

−
(
1− QS

N − 1

)
> 0

or equivalently

(1− ϵF )Λtot > (N − 1)
µMS

Q

1−
2

(
1− ϵFΛtot

Λcrit
F

)
R2

0

 := Λcrit,♯
M .

Let us set

R2
0,Nε>1 =

(N − 1)

(N ε− 1)

(
1− ϵFΛtot

Λcrit
F

)
.

Then we have

R2
0,SITc

> 1 ⇐⇒ ϵFΛtot

Λcrit
F

+
R2

0

2

(
1− QS

N − 1
+

√(
1− QS

N − 1

)2

+
4QS(N ε− 1)

(N − 1)
2

)
> 1,

⇐⇒ 1− QS

N − 1
+

√(
1− QS

N − 1

)2

+
4QS(N ε− 1)

(N − 1)
2 >

(
1− ϵFΛtot

Λcrit
F

)
2

R2
0

,

⇐⇒

√(
1− QS

N − 1

)2

+
4QS(N ε− 1)

(N − 1)
2 >

(
1− ϵFΛtot

Λcrit
F

)
2

R2
0

−
(
1− QS

N − 1

)
.

⇐⇒ QS

 N ε− 1

(N − 1)2
−

1− ϵFΛtot

Λcrit
F

R2
0(N − 1)

 >

1− ϵFΛtot

Λcrit
F

R2
0

1− ϵFΛtot

Λcrit
F

R2
0

− 1

 ,

⇐⇒ QS

 N ε− 1

(N − 1)

R2
0

1− ϵFΛtot

Λcrit
F

− 1

 > (N − 1)

1− ϵFΛtot

Λcrit
F

R2
0

− 1

 ,

⇐⇒ QS

(
1− R2

0

R2
0,Nε>1

)
< (N − 1)

1−
1− ϵFΛtot

Λcrit
F

R2
0

 .

Thus, we deduce the two following cases:

(i) If R2
0 > R2

0,Nε>1, then R2
0,SITc

> 1 for all (1− ϵF )Λtot > 0.
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(ii) If R2
0 < R2

0,Nε>1, then we set

Λcrit
M,Nε>1 =

µMS

Q

(N − 1)

1−
1− ϵFΛtot

Λcrit
F

R2
0


(
1− R2

0

R2
0,Nε>1

)
and we have {

R2
0,SITc

> 1 ⇐⇒ (1− ϵF )Λtot < Λcrit
M,Nε>1,

R2
0,SITc

< 1 ⇐⇒ (1− ϵF )Λtot > Λcrit
M,Nε>1.

To summarize the previous discussion, when N ε > 1, we have three configurations

1. When (1− ϵF )Λtot ≤ Λcrit,♯
M or ((1− ϵF )Λtot > Λcrit,♯

M and R2
0 > max(1,R2

0,Nε>1)), then R2
0,SITc

> 1.

2. When 1 < R2
0 < R2

0,Nε>1 and (1− ϵF )Λtot > max(Λcrit
M,Nε>1,Λ

crit,♯
M ) then R2

0,SITc
< 1.

3. When 1 < R2
0 < R2

0,Nε>1 and Λcrit,♯
M < (1− ϵF )Λtot < Λcrit

M,Nε>1 then R2
0,SITc

> 1.

We therefore summarize all qualitative results of system (22)-(23) related to the disease free equilibria in
Table 3, page 20.

N R2
0 ϵFΛtot R2

0 (1− ϵF )Λtot Observations
≤ 1 Releases of sterile insects are useless

because the DFE is already GAS

> 1 ≥ Λcrit
F Even massive releases could not be efficient

to reduce the epidemiological risk

≥ R2
0,Nε>1 SIT fails since R2

0,SITc
> 1

< Λcrit
F < R2

0,Nε>1 > max{Λcrit
M,Nε>1,Λ

crit,♯
M } R2

0,SITc
< 1, DFE† is LAS

< max{Λcrit,♯
M ,Λcrit

M,Nε>1} SIT fails since R2
0,SITc

> 1

Table 3: Summary table of the qualitative analysis of system (22)-(23) when N ε > 1.

4 Numerical simulations

4.1 Sensitivity analysis

It is interesting to study the impact of parameter changes on the dynamics of our systems, and to find
which parameters are the most sensitive on the variable outputs. In Figs 2, 3, 4 and 5, we provide a LHS-
PRCC sensitivity analysis, where LHS stands for Latin Hypercube Sampling and PRCC for Partial Rank
Correlation Coefficient. The LHS-PRCC method provides mainly information about how the outputs are
impacted if we increase (or decrease) the inputs of a specific parameter. The analysis is done on the time
interval [800,1000]. The results are ordered from the most negative to the most positive ones. We derive
a LHS-PRCC analysis for the variable F from the entomological model, and the variables SI , FW,I and Ih
from the epidemiological model. It is very interesting to compare the impact of the parameters thanks to
the considered variables. In Fig. 2, the parameters ϕ, ε, µMS

and µA,1 are the parameters for which the
Female variable, related to the entomological model (7), is the more sensitive to. Then, the infected sterile
female variable, SI , is mostly sensitive to µMS

, νh, µA,2, ϵF , Λtot, and B. A similar trend is observed in
Fig. 4, when dealing with wild infected female variable, FW,I , except that now βhm and ϕ are now the main
parameters, while ϵF and Λtot not. The residual fertility parameter, ε has also almost no effect. Finally,
considering the infected human variable, Ih, it is mostly sensitive to parameters µMS

, µA,1 ε and ϕ (see also
Fig. 5).

We can notice that the two parameters of interest throughout this work ε and ϵF have a strong impact
on F , Ih, and SI .

For all PRCC analysis, we used the PCC function (R software [18]) and 1000 bootstrap replicates, with
a probability level of 0.95 for (the bootstrap) confidence intervals.
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LHS−PRCC Sensitivity Analysis − SIT Mosquito Model

Figure 2: LHS-PRCC Sensitivity analysis of the Entomological model - Wild Females

4.2 Simulations

All forthcoming numerical simulations are done using the ode23 solver of Matlab [15]. Results are obtained
in a couple of seconds.

Like in [7], we will consider the effective reproduction number, Reff (t) for all time t > 0. Indeed, SIT
control is a long term strategy and the starting time of SIT treatment is important thanks to the starting
time of the risky period from the epidemiological point of view, that is when Dengue virus starts to circulate,
tDENV . That is why, it is important to consider the effective reproduction number, Reff (t), that is defined
as follow

Reff (t) =
νm

νm + µS

B2βmhβhm

µI (νh + µh)

FW,S(t) + SS(t)

Nh
. (42)

In particular, we will estimate Reff at time tDENV . Clearly, if Reff (tDENV ) < 1 and R2
0,SITc

< 1, then no

epidemics will occur. In contrary, even if R2
0,SITc

< 1 but Reff (tDENV ) > 1 then an outbreak will occur.
We consider the parameter values defined in Table 1, page 5. For these values we derive N ≈ 86.75.

This is a high value but meaningful since we have considered the “best” case for the mosquito dynamics, i.e.
the most difficult case in terms of control. For the epidemiological parameters, at a mean temperature of
T = 25◦C, we find that R2

0 ≈ 7.298, which is quite large value.
Then, according to formula (29) and the parameters values, the critical sterile females release rate, Λcrit

F ,
is around 391.

We provide simulations with several combination of values for ϵF from 0% to 3%, and ε from 0% to 2%.
Since Λtot varies from 0 to 20000, then according to ϵF , Λ

crit
F varies from 0 to 400, when ϵF = 0.01, from

0 to 800, , when ϵF = 0.02, from 0 to 1200, when , when ϵF = 0.03. Thus, in the forthcoming simulations,
for sufficiently large values of Λtot, we will have ΛF > Λcri

F .
In Tables 4 and 5, we illustrate some of the cases given in Tables 2 and 3. Clearly, when N ε > 1 (see Table

5), we highlight the fact that it is more difficult to control the epidemiological risk, even with a release rate
just above the critical threshold, and such that εFΛtot << Λcrit

F . In contrary, when N ε < 1, epidemiological
control is easier to reach even with a substantial increase of the contamination by sterile females: see Table
4. These results are also supported by the forthcoming simulations.

In Figs. 6, and 7, page 25, we consider the case where there is no contamination by sterile females, with
ε such that εN < 1 and εN > 1, that is where ε = 0 and ε = 0.02. Roughly speaking, it is easy to observe
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LHS−PRCC Sensitivity Analysis − SIT Epidemiological Model

Figure 3: LHS-PRCC Sensitivity analysis of the Epidemiological model - Infected Sterile Females

ϵF 0 0.01 0.02 0.03 0.05

(1− ϵF )Λtot 3700 3663 3626 3589 3515
ϵFΛtot 0 37 74 111 185

R2
0,Nε<1 3.51 3.314 3.143 2.99 2.72

R2
0,SITc,W

0 0 0.422 0.527 0.701

R2
0,SITc,S

0 0.095 0.189 0.284 0.406

R2
0,SITc

0 0.095 0.61 0.81 1.17

Table 4: Threshold values to lower the epidemiological risk for DENV when ε = 0.01, such that N ε < 1,
Λcrit
M = 3653, Λcrit

F = 391, and R2
0 > R2

0,Nε<1.

that residual fertility has less impact on the rate needed to decay Reff below 0.5. When εN > 1, it is not
possible to lower the wild population under any given small threshold, to reduce the nuisance for instance,
but it is still possible to reduce the epidemiological risk, at least when no female contamination occurs.

From Fig. 8, page 26, to Fig. 14, page 29, we consider contamination by sterile females with a residual
fertility varying from 1% to 2% in order to consider both cases N ε < 1 and N ε > 1. It is interesting
to notice that the shape of the level sets change according to ϵF , such that when ϵF increases, the area
where Reff < 0.5 decays. In fact, when ϵF is large, say 2% or 3%, then very massive releases are such that
ϵFΛtot > Λcrit

F which implies R2
0,TDFE > 1 and Reff > 1: see Figs. 11, 13, and 14. This simulation clearly

shows that increasing the release rate is not the right response, whatever if εN is less or greater than 1,
when SIT is used to decay the epidemiological risk. Clearly, as long as the female contamination is large,
increasing the release rate will take the sterile females close to the release rate threshold, Λcrit

F , such that
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Figure 4: LHS-PRCC Sensitivity analysis of the Epidemiological model - Infected Wild Females

ϵF 0 0.01 0.02 0.03

(1− ϵF )Λtot 3700 3663 3626 3515
ϵFΛtot 0 37 74 111

R2
0,Nε>1 116.7 105.6 94.58 83.53

Λcrit,♯
M 2869 2971 3074 3176

Λcrit
M,Nε>1 3638 3718 3806 3905

R2
0,SITc,W

0.925 0.0.969 1.01 1.06

R2
0,SITc,S

0 0.095 0.19 0.28

R2
0,SITc

0.925 1.064 1.20 1.34

Table 5: Threshold values to lower the epidemiological risk for DENV when ε = 0.02, such that N ε > 1,
Λcrit
F = 391, and R2

0 < R2
0,Nε>1.

.

Reff > 1. Note also, that our simulations show In that an optimal release rate exists for a given, sufficiently
large, SIT starting time.

Mechanical control is clearly beneficial to reduce the time needed to decay Reff below 0.5 and also the
(optimal) release rate: compare Figs. 13 and 15, page 29, where the time needed to reach 0.5 for Reff decay
from 500 days, for Λopt ≈ 6000, to, only 300 days with Λopt ≈ 4000, to reduce Reff before DENV starts to
circulate. Compare also Figs. 11 and 14 with Figs. 16 and 17.

In fact, when N ε > 1, serious problem occurs when contamination by sterile females increases, without
mechanical control: see Fig. 14, page 29. As seen, it is no more possible to decay Reff below 0.5 and,
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Figure 5: LHS-PRCC Sensitivity analysis of the Epidemiological model - Infected Humans

as explained before, very massive release can be such that Reff > 1. In that case, SIT cannot be used to
control the epidemiological risk, at least without mechanical control. In fig. 17, page 30, mechanical control
allows to lower the time needed to decay Reff but does not really increase the maximal release rate such
that Reff < 1.

Altogether, our numerical simulations, that the first parameter to lower is ε, the residual fertility. How-
ever, even with a low residual fertility, say 1%, contamination by sterile females should be contained: compare
Fig. 9, page 26, with Fig. 10, page 27.

5 Conclusion

Conducting SIT programs in the field is a very complex and difficult task. However, before reaching field
releases and in order to be successful, several steps have to be checked in laboratory and in semi-field, before
and during field releases. In fact, it is better to find and solve issues before starting field releases: to this
aim control quality is an essential process within SIT programs. However, SIT programs against mosquitoes
can fail, and this is in general due to a combination of several factors, among them residual male fertility
and contamination by sterile females that seem not to be always studied as deep as they should be. Indeed,
sometimes (numerical) upper bound values are given for these parameters but they do not rely on biological
parameters related to the targeted vectors nor on epidemiological parameters when epidemiological control
is the main objective. We aim to fill this gap.

Thus, using modelling and mathematical analysis, we provide threshold parameters for residual male
fertility and contamination by sterile females. We also show that these thresholds impose constraints on SIT
programs to be met. If not, then, the risk of SIT failure is high.

Our results could be used and helpful for field experts to estimate the risk of SIT failures and, thus, to
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Figure 6: Reff (tI) vs the starting time without sterile female contamination, without residual fertility
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Figure 7: Reff (tI) vs the starting time and the level of the control, without contamination by sterile females,
and with 2% of residual fertility, without Mechanical control

target the main parameters to improve before field releases and to follow carefully along the SIT process.
Theoretically, we show that while residual fertility can be an issue to control the wild population, i.e. to

lower it under a given threshold, to reduce the nuisance, it is not when it comes to control the epidemiological
risk. In other words, when εN < 1, both nuisance reduction and epidemiological risk reduction are feasible
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Figure 8: Reff (tI) vs the starting time and the level of the control with 1% of contamination by sterile
females, 0% of residual fertility, and without Mechanical control
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Figure 9: Reff (tI) vs the starting time and the level of the control with 1% of contamination by sterile
females, 1% of residual fertility, and without Mechanical control

as long as the sterile female contamination is low, that is ϵΛtot < Λcrit
F . While, when εN > 1, only

epidemiological risk reduction is feasible but under rather severe constraints, that is ϵΛtot < Λcrit
F and

R2
0 < R2

0,Nε>1, with releases that are sufficiently massive.
In fact, once εN < 1 is not met, we strongly encourage the SIT program to solve this issue before going

further.
Finally, in several SIT reports/manuals or SIT papers [10], a percentage is given for the maximal con-

tamination by sterile females. We show that this percentage is useless since the maximal amount of sterile
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Figure 10: Reff (tI) vs the starting time and the level of the control with 2% of contamination by sterile
females, 1% of residual fertility, and without Mechanical control
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Figure 11: Reff (tI) vs the starting time and the level of the control with 3% of contamination by sterile
females, 1% of residual fertility, and without Mechanical control

females allowed to be released will depend on the size of the total release. Indeed, you don’t release the same
amount of sterile females when you consider 1% of 10000 or 1% of 20000 sterile insects: for the first case,
ΛF < Λcrit

F , while in the second case, ΛF > Λcrit
F , such that the dynamics of the whole system is completely

different and so is the impact of SIT.
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Figure 12: Reff (tI) vs the starting time and the level of the control with 1% of contamination by sterile
females, 2% of residual fertility, and without Mechanical control

0.5
0.5

0.5

0.5
0.5 0.5

0.750.75
0.75

0.75

0
.7

5

0.75
0.75 0.75

11
1

1

1

1

1
1 1 1

1.51.51.5

1.5

1
.5

1
.5

1
.5

222
2

2
2

2

3333

3

3
3

3

4444

4

4
4

4

6666
6

6
6

6

0.5
0.5

0.5

0.5
0.5 0.5

11
1

1

1

1

1
1 1 1

0 100 200 300 400 500 600 700 800 900 1000

SIT starting Time from the start of a DENGUE outbreak

2000

4000

6000

8000

10000

12000

14000

16000

18000

S
te

ri
le

 I
n
s
e
c
t 
re

le
a
s
e
 r

a
te

 -
 

to
t

Figure 13: Reff (tI) vs the starting time and the level of the control with 2% of contamination by sterile
females, 2% of residual fertility, and without Mechanical control

To conclude, our study shows that both contamination by sterile females, ϵFΛtot, and residual male
fertility, ε, matter in the efficiency of SIT. We provide upper bounds for these values that guarantee the
efficiency of SIT, both for nuisance and epidemiological risk reduction.

Of course, several improvements are possible, like considering impulsive releases, like in [7]. In addition
other control quality tests could be taken into account in future SIT models in order to provide more
realistic results, and eventually, when possible, to consider variable parameters, like in [27] to take into
account temporal and spatial variation of the environmental parameters that can affect the dynamics of the
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Figure 14: Reff (tI) vs the starting time and the level of the control with 3% of contamination by sterile
females, 2% of residual fertility, and without Mechanical control
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Figure 15: Reff (tI) vs the starting time and the level of the control with 2% of contamination by sterile
females, 2% of residual fertility, and 40% of Mechanical control

vectors and thus its control. Last, migration could be also taken into account [5].
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Figure 16: Reff (tI) vs the starting time and the level of the control with 3% of contamination by sterile
females, 1% of residual fertility, and 40% of Mechanical control
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Figure 17: Reff (tI) vs the starting time and the level of the control with 3% of contamination by sterile
females, 2% of residual fertility, and 40% of Mechanical control
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Jérémy Bouyer, Vincent Corbel, Luca Facchinelli, Florence Fouque, Martin Geier, Antonios Michaelakis,
David Roiz, Frédéric Simard, Carlos Tur, and Louis-Clément Gouagna. Sterile insect technique (sit)
against aedes species mosquitoes: A roadmap and good practice framework for designing, implementing
and evaluating pilot field trials. Insects, 12(3), 2021.

[17] Bellini R., Medici A., Puggioli A., Balestrino F F., and Carrieri M. Pilot field trials with aedes albopictus
irradiated sterile males in italian urban areas. J Med Entomol., 50(2):317–25, 2013.

[18] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2022.

31



[19] S.P. Sinkins. Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochemistry and Molec-
ular Biology, 34(7):723 – 729, 2004.

[20] Hal L. Smith and Paul Waltman. The Theory of the Chemostat: Dynamics of Microbial Competition.
Cambridge Studies in Mathematical Biology. Cambridge University Press, 1995.

[21] H. R. Thieme. Convergence results and a poincare–bendixson trichotomy for asymptotically autonomous
differential equations. J. Math. Biol., 30:755–763, 1992.

[22] Dean D. Thomas, Christl A. Donnelly, Roger J. Wood, and Luke S. Alphey. Insect population control
using a dominant, repressible, lethal genetic system. Science, 287(5462):2474–2476, 2000.
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A A useful result on monotone systems

Let us consider an n dimensional autonomous differential system:

dx

dt
= f(x) (43)

where f is a given vector function, i.e., f = (fi)i=1,...,n, with fi : Rn 7→ R. System (43) is called cooperative if
for every i, j ∈ {1, 2, ..., n} such that i ̸= j, the function fi(x1, ..., xn) is monotone increasing with respect to
xj . For cooperative system, the global asymptotic stability of an equilibrium can be studied by the following
theorem, see also [2]:

Theorem 9. Assume that system (43) is a cooperative system. Let a, b ∈ Ω ⊆ Rn such that a < b, [a, b] ⊆ Ω
and f(b) ≤ 0 ≤ f(a); where [a, b] = {x ∈ Rn : a ≤ x ≤ b}. Then (43) defines a (positive) dynamical system
on [a, b]. Moreover, if [a, b] contains a unique equilibrium p, then p is globally asymptotically stable on [a, b].

B Proof of Theorem 3

For reader convenience, we recall that M∗
S =

(1− ϵF )Λtot

µMS

.

1. Assume that N ε < 1. By computing the eigenvalues of the Jacobian matrix of system (8) at the
elimination equilibrium E0 it is straightforward to obtain E0 is locally asymptotically stable when
N ε < 1 while it is unstable when N ε > 1.

• Let us set X = (A,M,F ) ∈ R4
+ and f((1 − ϵF )Λtot, X) the right hand side of system (8). For

(1 − ϵF )Λtot > 0, we have that f((1 − ϵF )Λtot, X) ≤ f(0, X). Note that for (1 − ϵF )Λtot = 0,
we recover [3, system (1)]. If (1 − ϵF )Λtot > Λcrit

M , then system (8) admits a unique equilibrium
which is E0. Using [3, Theorem 3, point (1)], we deduce that E0 is globally asymptotically stable
in R3

+.
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• The proof of points (b) and (c) is done in the same way like the proof of [3, Theorem 3, points
(2) & (3)].

2. Assume that N ε > 1. Then, the elimination equilibrium E0 is unstable. Moreover, the inequality

γ + µ1 + µ2A

γ + µ1
> 4N (44)

holds for all sufficiently large A. Let n > 0 and let An be so large that in addition to (44) the following
inequalities also hold:

An ≥ n,

Mn :=
2 (1− r) γ

µM
An ≥ n,

FW,Sn :=
(γ + µ1 + µ2An)An

2ϕ
≥ n.

(45)

Let bn = (An,Mn, FW,Sn) and f be the right hand side of (8). Then

f((1− ϵF )Λtot, bn) ≤ f(0, bn) =


−ϕFW,Sn

−1

2
µMMn

rγAn

(
1− γ + µ1 + µ2An

4N (γ + µ1)

)
 < 0R3 . (46)

Similarly, for an arbitrary δ > 0, let aδ = (Aδ, FW,Sδ
,Mδ) with

Mδ =
(1− ϵF )Λtot

µMS
(α+ + δ)

< M†,

Aδ =
µM

(1− r) γ
Mδ < A†,

FW,Sδ
=

(γ + µ1 + µ2Aδ)

ϕ
Aδ < FW,S† .

(47)

We also have that

Mδ + εM∗
S

Mδ +M∗
S

rγAδ − µSFW,Sδ
=

µS(γ + µA,1)Aδ

ϕ

(
1 + ε (α+ + δ)

1 + α+ + δ
N − 1− QS

α+ + δ

)
(48)

=
µS(γ + µA,1)Aδ

ϕ

(N ε− 1) δα+ + (N ε− 1) δ2 +
δQS

α+

(1 + α+ + δ) (α+ + δ)
(49)

> 0. (50)

Thus, it is straightforward to obtain that

f((1− ϵF )Λtot, aδ) =


0
0

Mδ + εM∗
S

Mδ +M∗
S

rγAδ − µSFW,Sδ

 > 0R3 . (51)

Applying Theorem 9 with a = aδ and b = bn, we obtain that for n sufficiently large, system (8) defines
a dynamical system on [aδ, bn] and that E† is globally asymptotically stable on [aδ, bn]. Since bn can
be selected to be larger than any point in R3

+ and aδ can be selected to be lower than any point in
R3

+ − {0R3}, this implies that E† is globally asymptotically stable in R3
+ − {0R3}.

3. Assume that N ε = 1.

(a) If (1 − ϵF )Λtot ≥ Λcrit
M,♯, then E0 = (0, 0, 0) is the only equilibrium of system (8). Based on (46)

and Theorem 9, we obtain that for n sufficiently large, system (8) defines a dynamical system
on [E0, bn]. Since bn can be selected to be larger than any point in R3

+, this implies that E0 is
globally asymptotically stable on R3

+.

(b) (1− ϵF )Λtot ∈
(
0,Λcrit

M,♯

)
, then we proceed as in point 2 by replacing E† by E♯. Hence, we obtain

that E♯ is globally asymptotically stable. Then, the elimination equilibrium E0 is unstable and
the coexistence equilibrium E♯ is globally asymptotically stable in R3

+ − {0R3}.
This ends the proof.
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C Proofs of Propositions 3-4: existence of endemic equilibria

First, it is interesting to check after an artificial endemic equilibrium, without wild insect, called WIFE,
Wild Insect-Free boundary Equilibrium. This is a particular case, but it can exists. To find it it suffices to
solve 

0 = µhNh −Bβmh
SI

Nh
Sh − µhSh,

0 = Bβmh
SI

Nh
Sh − νhIh − µhIh,

0 = νhIh − µhRh,

and 
0 = ϵFΛtot −Bβhm

Ih
Nh

SS − µSSS ,

0 = Bβhm
Ih
Nh

SS − (νm + µS)SE ,

0 = νmSE − µSSI .

Straightforward computations show that

S#
I =

νm
µI (νm + µS)

1− µS

µS +Bβhm
µh

µh + νh

(
1−

S#
h

Nh

)
 ϵFΛtot,

such that 0 <
S∗
h

Nh
≤ 1 is a positive root of the second order equation

(
µS +Bβhm

µh

µh + νh

)
−
(
µS + 2Bβhm

µh

µh + νh
+ µS

ϵFΛtot

Λcrit
F

)
X +

(
Bβhm

µh

µh + νh
+ µS

ϵFΛtot

Λcrit
F

)
X2 = 0.

Assuming ϵFΛtot < Λcrit
F , we derive

S#
h

Nh
= 1, the TDFE equilibrium, and

S#
h

Nh
=

µS +Bβhm
µh

µh + νh

Bβhm
µh

µh + νh
+ µS

ϵFΛtot

Λcrit
F

> 1,

that is not a viable root. When ϵFΛtot = Λcrit
F , we recover

S#
h

Nh
= 1. Then, assuming ϵFΛtot > Λcrit

F or equiv-

alently R2
0,TDFE > 1, a boundary wild insects-free equilibrium WIFE = (S♯

h, I
♯
h, R

♯
h, 0, 0, 0, 0, 0, S

♯
S , S

♯
E , S

♯
I)

exists such that

S#
h

Nh
=

µS +Bβhm
µh

µh + νh

Bβhm
µh

µh + νh
+ µS

ϵFΛtot

Λcrit
F

< 1,

I♯h =
Bβmh

νh + µh

S♯
I

Nh
S♯
h,

S♯
S =

ϵFΛtot

µS +
Bβmh

Nh
I♯h

,

S♯
E =

µS

νm
S♯
I ,

R♯
h =

νh
µh

I♯h.
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The assumption µI = µS is to simplify the forthcoming computations. In order to derive existence of a
positive endemic equilibrium, such that Ih > 0, FW,I > 0, and SI > 0, we solve

0 = µhNh −Bβmh
FW,I + SI

Nh
Sh − µhSh,

0 = Bβmh
FW,I + SI

Nh
Sh − νhIh − µhIh,

0 = νhIh − µhRh,

(52)



0 = ϕ(FW,S + FW,E + FW,I)− (γ + µA,1 + µA,2A)A,
0 = (1− r)γA− µMM,

0 =
M + εM∗

S

M +M∗
S

rγA−Bβhm
Ih
Nh

FW,S − µSFW,S ,

0 = Bβhm
Ih
Nh

FW,S − (νm + µS)FW,E ,

0 = νmFW,E − µSFW,I ,

0 = ϵFΛtot +
(1− ε)M∗

S

M +M∗
S

rγA−Bβhm
Ih
Nh

SS − µSSS ,

0 = Bβhm
Ih
Nh

SS − (νm + µS)SE ,

0 = νmSE − µSSI .

(53)

Thanks to (53)1, and summing (53)4 and (53)5 such that

FW,E + FW,I =
Bβhm

µS

Ih
Nh

FW,S ,

we derive

ϕ

(
1 +

Bβhm

µS

Ih
Nh

)
FW,S = (γ + µA,1 + µA,2A)A,

From (53)3, we have
M + εM∗

S

M +M∗
S

rγA =

(
Bβhm

Ih
Nh

+ µS

)
FW,S ,

that is, since A > 0,

N (M + εM∗
S) =

(
1 +

µA,2

γ + µA,1
A

)
(M +M∗

S) .

Then, using (53)2,

M =
(1− r)γ

µM
A,

we obtain

N
(
(1− r)γ

µM
A+ εM∗

S

)
=

(
1 +

µA,2

γ + µA,1
A

)(
(1− r)γ

µM
A+M∗

S

)
,

that is equivalent to the following second order equation

Q
(
(1− r)γ

µM

)2

A2 +
(1− r)γ

µM
(QM∗

S −N )A+ (1−N ε)M∗
S = 0. (54)

We calculate

∆ =

(
(1− r)γ

µM
(QM∗

S −N )

)2

− 4
µA,2

γ + µA,1

(1− r)γ

µM
(1−N ε)M∗

S ,

that is

∆ =

(
(1− r)γ

µM

)2 (
(QM∗

S −N )
2 − 4Q (1−N ε)M∗

S

)
.

When N ε ≥ 1, then ∆ > 0, and we deduce the existence of one positive root

AEE
∗ =

1

2Q (1− r)γ

µM

(
N −QM∗

S +

√(
(QM∗

S −N )
2
+ 4Q (N ε− 1)M∗

S

))
, when N ε > 1,
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for all M∗
S > 0, or

AEE
∗ =

1

Q (1− r)γ

µM

(N −QM∗
S) , when N ε = 1

for all QM∗
S < N , that is (1− ϵF )Λtot <

µMS

Q
N .

When N ε < 1, we have now to study the sign of ∆ according to QM∗
S , and solve

(QM∗
S −N )

2 − 4 (1−N ε)QM∗
S = (QM∗

S)
2
+ (N )

2 − 2 (N + 2 (1−N ε))QM∗
S = 0,

for which with

∆S = 4
(
((N + 2 (1−N ε)))

2 − (N )
2
)
= 16 (1−N ε) (N + (1−N ε)) > 0,

we can deduce the following threshold

QM∗
S,1 =

(√
N + (1−N ε)−

√
1−N ε

)2
> 0.

Remark 11. Surprisingly, we derive a threshold almost similar to the threshold obtained in (14).

Using the same reasoning than in section 2.2, we deduce that, since QM∗
S < QM∗

S,1, then there exists
two positive roots of (54), that is

AEE
1 =

1

2Q (1− r)γ

µM

(
N −QM∗

S −
√(

(QM∗
S −N )

2 − 4Q (1−N ε)MS

))
,

AEE
2 =

1

2Q (1− r)γ

µM

(
N −QM∗

S +

√(
(QM∗

S −N )
2 − 4Q (1−N ε)M∗

S

))
.

Then, we deduce that

MEE
i =

(1− r)γ

µM
AEE

i i = 1, 2.

Thus for a given AEE
i , we are able to estimate

(1− ε)M∗
S

M +M∗
S

rγA and
M + εM∗

S

M +M∗
S

rγA. In order to deduce the

other variables, some computations are needed. From (53)7 and (53)8, we have

SI =
νm
µS

SE =
νm

µS(νm + µS)
Bβhm

Ih
Nh

SS =

νm
µS(νm + µS)

Bβhm
Ih
Nh

µS +Bβhm
Ih
Nh

(
ϵFΛtot +

(1− ε)M∗
S

M +M∗
S

rγA

)
,

Similarly, from (53)3, (53)4, and (53)5

FW,I =
νm
µS

FE,I =
νm

µS(νm + µS)
Bβhm

Ih
Nh

FW,S =

νm
µS(νm + µS)

Bβhm
Ih
Nh

µS +Bβhm
Ih
Nh

M + εM∗
S

M +M∗
S

rγA

Thus, from the two previous estimates, we deduce that

SI + FW,I

Nh
=

νm
µS(νm + µS)

Bβhm
Ih
Nh

µS +Bβhm
Ih
Nh

(ϵFΛtot + rγA)

Nh
.

Then, from (52)1

µhNh = Bβmh
FW,I + SI

Nh
Sh + µhSh,
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and replacing
SI + FW,I

Nh
leads to

µhNh =

(
Bβmh

νm
µS(νm + µS)

Bβhm
Ih
Nh

µS +Bβhm
Ih
Nh

(ϵFΛtot + rγA)

Nh
+ µh

)
Sh,

µhNh

(
µS +Bβhm

Ih
Nh

)
=

(
Bβmh

νm
µS(νm + µS)

Bβhm
Ih
Nh

(ϵFΛtot + rγA)

Nh
+ µh

(
µS +Bβhm

Ih
Nh

))
Sh,

from which we deduce

Sh =
µhNh

(
µS +Bβhm

Ih
Nh

)
(
Bβmh

νm
µS(νm + µS)

Bβhm
Ih
Nh

(ϵFΛtot + rγA)

Nh
+ µh

(
µS +Bβhm

Ih
Nh

))
In particular, we can deduce

SI + FW,I

Nh
Sh =

(ϵFΛtot + rγA)

Nh

νm
µS(νm + µS)

Bβhm
Ih
Nh

µhNh(
Bβmh

νm
µS(νm + µS)

Bβhm
Ih
Nh

(ϵFΛtot + rγA)

Nh
+ µh

(
µS +Bβhm

Ih
Nh

))
and, using (52)2, i.e.

Bβmh
FW,I + SI

Nh
Sh = (νh + µh) Ih,

we have

Bβmh
(ϵFΛtot + rγA)

Nh

νm
µS(νm + µS)

Bβhm
Ih
Nh

µh(
Bβmh

νm
µS(νm + µS)

Bβhm
Ih
Nh

(ϵFΛtot + rγA)

Nh
+ µh

(
µS +Bβhm

Ih
Nh

)) = (νh + µh)
Ih
Nh

.

Assuming Ih > 0

Bβmh
(ϵFΛtot + rγA)

Nh

νm
µS(νm + µS)

Bβhmµh =

(νh + µh)

(
Bβmh

νm
µS(νm + µS)

Bβhm
Ih
Nh

(ϵFΛtot + rγA)

Nh
+ µh

(
µS +Bβhm

Ih
Nh

))
,

we finally deduce

IEE
1,h = µh

Bβmh

(
ϵFΛtot + rγAEE

1

)
Nh

νm
µS(νm + µS)

Bβhm − (νh + µh)µS

(νh + µh)Bβhm

(
µh +Bβmh

νm
µS(νm + µS)

(
ϵFΛtot + rγAEE

1

)
Nh

)Nh > 0,

assuming (
ϵFΛtot + rγAEE

1

)
Nh

νmBβhmBβmh

µS(νm + µS) (νh + µh)µS
> 1,

that is

ϵFΛtot + rγAEE
1 >

F ∗
W,S

R2
0

. (55)

From the previous formulae, we deduce SEE
h,1 , R

EE
h,1 , F

EE
W,S,1, F

EE
W,E,1, F

EE
W,I,1, S

EE
I,1 , S

EE
E,1 , and finally SEE

S,1 . We
proceed similarly to get the second endemic equilibrium EESIT,2 or EESIT,∗, under the same condition (55)
because AEE

1 < AEE
1 .
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We now assume that µS < µI . To derive the equilibria, such that Ih > 0, A > 0 and SI > 0, we have to
solve 

0 = µhNh −Bβmh
FW,I + SI

Nh
Sh − µhSh,

0 = Bβmh
FW,I + SI

Nh
Sh − νhIh − µhIh,

0 = νhIh − µhRh,

(56)



0 = ϕ(FW,S + FW,E + FW,I)− (γ + µA,1 + µA,2A)A,
0 = (1− r)γA− µMM,

0 =
M + εM∗

S

M +M∗
S

rγA−Bβhm
Ih
Nh

FW,S − µSFW,S ,

0 = Bβhm
Ih
Nh

FW,S − (νm + µS)FW,E ,

0 = νmFW,E − µIFW,I ,

0 = ϵFΛtot +
(1− ε)M∗

S

M +M∗
S

rγA−Bβhm
Ih
Nh

SS − µSSS ,

0 = Bβhm
Ih
Nh

SS − (νm + µS)SE ,

0 = νmSE − µISI .

(57)

Let us consider the auxiliary variable X =
M + εM∗

S

M +M∗
S

. It follows from system (56)-(57) that:

FW,S =
rγAX

µS +Bβhm
Ih
Nh

,

FW,E =
Bβhm

νm + µS

Ih
Nh

FW,S ,

=
Bβhm

νm + µS

Ih
Nh

rγAX

µS +Bβhm
Ih
Nh

,

FW,I =
νm
µI

FW,E ,

=
νm
µI

Bβhm

νm + µS

Ih
Nh

rγAX

µS +Bβhm
Ih
Nh

,

SS =

ϵFΛtot +
(1− ε)M∗

S

M +M∗
S

rγA

µS +Bβhm
Ih
Nh

,

SE =
Bβhm

νm + µS

Ih
Nh

SS ,

=
Bβhm

νm + µS

Ih
Nh

ϵFΛtot +
(1− ε)M∗

S

M +M∗
S

rγA

µS +Bβhm
Ih
Nh

,

SI =
νm
µI

SE ,

=
νm
µI

Bβhm

νm + µS

Ih
Nh

ϵFΛtot +
(1− ε)M∗

S

M +M∗
S

rγA

µS +Bβhm
Ih
Nh

.

Therefore, equation (57)1 assumes the form A = 0 or

rγϕX

(
1 +

Bβhm

νm + µS

Ih
Nh

(
1 +

νm
µI

))
− (γ+µA,1)

(
µS +Bβhm

Ih
Nh

)
−µA,2

(
µS +Bβhm

Ih
Nh

)
A = 0. (58)
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From (56)2, we derive

Ih =
Bβmh

νh + µh

FW,I + SI

Nh
.

However,

FW,I + SI =
νm
µI

Bβhm

νm + µS

Ih
Nh

rγAX

µS +Bβhm
Ih
Nh

+
νm
µI

Bβhm

νm + µS

Ih
Nh

ΛF +
(1− ε)M∗

S

M +M∗
S

rγA

µS +Bβhm
Ih
Nh

,

=
νm
µI

Bβhm

νm + µS

Ih
Nh

ΛF + rγA

µS +Bβhm
Ih
Nh

.

Therefore, for Ih > 0, we have

µS +Bβhm
Ih
Nh

=
νm
µI

Bβmh

νh + µh

Bβhm

νm + µS

1

N2
h

(ΛF + rγA) = α(ΛF + rγA), (59)

where for simplicity, we set

α =
νm
µI

Bβmh

νh + µh

Bβhm

νm + µS

1

N2
h

.

Hence (58) assumes the form

rγϕ

1 +

1 +
νm
µI

νm + µS
(α(ΛF + rγA)− µS)

X − (γ + µA,1 + µA,2A)(ΛF + rγA)α = 0 (60)

or equivalently

a3A
3 + a2A

2 + a1A+ a0 = 0, (61)

where

a3 = − (1− r) γ2µA,2α r < 0,

a2 =

r2γ3ϕ (1− r)

(
1 +

νm
µI

)
α

νm + µS
− µMM∗

SµA,2α rγ − (1− r) γ ((γ + µA,1) rγ α+ µA,2αΛF ) ,

= (1− r)αγ

rγ(γ + µA,1)

N
1 +

νm
µI

1 +
νm
µS

−QM∗
S − 1

− µA,2ΛF

 ,

a1 =

r2γ2ϕµMεM∗
S

(
1 +

νm
µI

)
α

νm + µS
+ rγ2ϕ (1− r)

1 +

(
1 +

νm
µI

)
(αΛF − µS)

νm + µS


−µMM∗

S ((γ + µA,1) rγ α+ µA,2αΛF )− (1− r) γ (γ + µA,1) ΛFα,

= µMM∗
Srγα(γ + µA,1)

N ε

1 +
νm
µI

1 +
νm
µS

− 1

− (1− r)γ(γ + µA,1)ΛFα(QM∗
S + 1)

+rγ2ϕ(1− r)

1 +

1 +
νm
µI

1 +
νm
µS

(
αΛF

µS
− 1

) ,

= (1− r)γ(γ + µA,1)

αµMM∗
Sr

1− r

N ε

1 +
νm
µI

1 +
νm
µS

− 1

+NµS

1−
1 +

νm
µI

1 +
νm
µS

+ αΛF

N
1 +

νm
µI

1 +
νm
µS

−QM∗
S − 1


 ,
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a0 = µMM∗
S

rγ ϕ ε

1 +

(
1 +

νm
µI

)
(αΛF − µS)

νm + µS

− (γ + µA,1)αΛF

 ,

= µMM∗
S (γ + µA,1)

µSN ε

1 +

1 +
νm
µI

1 +
νm
µS

(
αΛF

µS
− 1

)− αΛF

 ,

= µMM∗
S (γ + µA,1)µS

N ε

1−
1 +

νm
µI

1 +
νm
µS

+

1 +
νm
µI

1 +
νm
µS

αΛF

µS

− αΛF

µS

 .

Recall that since µS < µI , it follows that

1 +
νm
µI

1 +
νm
µS

< 1.

To discuss the number of real positive solutions of equation (61) we use the Descartes’ rule of sign, see for
instance Table 6.

a3 a2 a1 a0 Number of positive real solutions
- - - - 0
- - - + 1
- - + - 2 or 0
- + - - 2 or 0
- + + - 2 or 0
- + - + 3 or 1
- - + + 1
- + + + 1

Table 6: Number of positive solutions of equation (61) with the Descartes’ rule of sign.

As explained in the numerical part, we consider a total release rate of sterile insects, Λtot, and a parameter
ϵF , the percentage of sterile females released, such that

ΛM = (1− ϵF ) Λtot, and ΛF = ϵFΛtot.

Doing like that, M∗
S = (1− ϵF )

Λtot

µMS

and we deduce all parameters thanks to Λtot, that is

a0 = µMM∗
S (γ + µA,1)µS

N ε

1−
1 +

νm
µI

1 +
νm
µS

− αϵFΛtot

µS

1−N ε

1 +
νm
µI

1 +
νm
µS



 ,

a1 = (1− r)γ(γ + µA,1)

NµS

1−
1 +

νm
µI

1 +
νm
µS

−

αµM (1− ϵF )r

(1− r)µMS

1−N ε

1 +
νm
µI

1 +
νm
µS

+ αϵF

1−N
1 +

νm
µI

1 +
νm
µS


Λtot

−Q(1− ϵF )

µMS

αϵF (Λtot)
2

)
,

and

a2 = (1− r)αγ

rγ(γ + µA,1)

N
1 +

νm
µI

1 +
νm
µS

− 1

− µA,2

(
(1− ϵF )

r

1− r

µM

µMS

+ ϵF

)
Λtot

 .

From a0, it is easy to deduce the following discussion thanks to N ε and for a given ϵF :
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• a0 > 0 if N ε ≥
1 +

νm
µS

1 +
νm
µI

> 1 or if N ε ≤
1 +

νm
µS

1 +
νm
µI

and

Λtot ≤ Λcrit,1
F,EE =

µS

ϵFα

N ε

1−
1 +

νm
µI

1 +
νm
µS


1−N ε

1 +
νm
µI

1 +
νm
µS


.

Otherwise, when Λtot > Λcrit,1
F,EE , a0 < 0

• It is interesting to notice that a2 < 0, whatever Λtot ≥ 0 if N ≤
1 +

νm
µS

1 +
νm
µI

. In addition N ≤
1 +

νm
µS

1 +
νm
µI

implies N ε ≤
1 +

νm
µS

1 +
νm
µI

because 0 ≤ ε < 1. When N >

1 +
νm
µS

1 +
νm
µI

, then a2 > 0 if

Λtot < Λcrit,2
tot =

rγ(γ + µA,1)

N
1 +

νm
µI

1 +
νm
µS

− 1


µA,2

(
(1− ϵF )

r

1− r

µM

µMS

+ ϵF

) .

It is negative, otherwise.

• Straightforward computations show that a1 > 0 if

Λtot < Λcrit,3
tot =

1

2
Q(1− ϵF )

µMS

αϵF

√∆+

αµM (1− ϵF )r

(1− r)µMS

1−N ε

1 +
νm
µI

1 +
νm
µS

+ αϵF

1−N
1 +

νm
µI

1 +
νm
µS



 ,

where

∆ =


αµM (1− ϵF )r

(1− r)µMS

1−N ε

1 +
νm
µI

1 +
νm
µS

+ αϵF

1−N
1 +

νm
µI

1 +
νm
µS





2

+4
Q(1− ϵF )

µMS

αϵFNµS

1−
1 +

νm
µI

1 +
νm
µS

 > 0.

• Thus, we derive

– Assume N ε ≥
1 +

νm
µS

1 +
νm
µI

. If Λtot < Λcrit,3
tot , then a0 > 0 and a1 > 0,

– Assume N ε ≥
1 +

νm
µS

1 +
νm
µI

. If Λtot > max{Λcrit,2
tot ,Λcrit,3

tot }, then a0 > 0, a1 < 0, and a2 < 0 because

N ε ≥
1 +

νm
µS

1 +
νm
µI

implies N ≥
1 +

νm
µS

1 +
νm
µI

,
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– Assume N ε ≤
1 +

νm
µS

1 +
νm
µI

and Λtot < min{Λcrit,3
tot ,Λcrit,1

tot }, then a0 > 0 and a1 > 0,

such that, thanks to Table 6 page 40, we deduce that only one positive equilibrium exists.

– Assume N ε ≥
1 +

νm
µS

1 +
νm
µI

. If Λcrit,3
tot < Λtot < Λcrit,2

tot , then a0 > 0, a1 < 0, and a2 > 0,

such that, thanks to Table 6, we deduce that there exists 1 or 3 positive equilibria.

• Assume N ε ≤
1 +

νm
µS

1 +
νm
µI

.

– If Λcrit,1
tot < Λtot < Λcrit,3

tot , then a0 < 0 and a1 > 0,

– If Λtot > max{Λcrit,3
tot ,Λcrit,1

tot }, then a0 < 0 and a1 < 0. If N ≥
1 +

νm
µS

1 +
νm
µI

and Λtot < Λcrit,2
tot , then

a2 > 0,

such that, thanks to Table 6, whatever the sign of a2, we deduce that no or 2 positive equilibria.

• Assume N ε ≤
1 +

νm
µS

1 +
νm
µI

. If Λtot > max{Λcrit,3
tot ,Λcrit,1

tot }, then a0 < 0 and a1 < 0.

– If N ≤
1 +

νm
µS

1 +
νm
µI

, then a2 < 0,

– If N ≥
1 +

νm
µS

1 +
νm
µI

, and Λtot > Λcrit,2
tot , then a2 < 0,

such that, according to Table 6 page 40, there is no positive equilibrium.

D Proof of Theorem 7

Assume that N ε > 1 and R2
0,TDFE > 1. Let us consider the following sets

x(t) := (Sh, Ih, Rh, A,M,FW,S , FW,E , FW,I , SS , SE , SI)(t),

Γ := {x ∈ R11
+ : Ih > 0, Rh > 0, A > 0,M > 0, FW,S > 0, FW,E > 0, FW,I > 0, SE > 0, SI > 0},

∂Γ := {x ∈ R11
+ : Ih ×Rh ×A×M × FW,S × FW,E × FW,I × SE × SI = 0}.

Direct computations, see e.g. [23], lead that the sets Γ and ∂Γ are positively invariant with respect to system
(22)-(23). All solutions are bounded and system (22)-(23) is a point dissipative system. We denote φt(x0)
the flow corresponding to system (22)-(23), such that the solution of system (22)-(23) starting at x0 at t > 0
is x(t, x0) = φt(x0). Let M∂ = {x ∈ ∂Γ : φt(x) ∈ ∂Γ for t ≥ 0}. Then we have M∂ = ∂Γ. The trivial
disease-free equilibrium TDFE, the wild insects-free equilibrium WIFE and the disease-free equilibrium
DFE are in M∂ . Let W s(TDFE), W s(WIFE) and W s(DFE) be the stable manifold of TDFE, WIFE
and DFE, respectively. In the sequel, we prove that W s(TDFE) ∩ Γ = ∅, W s(WIFE) ∩ Γ = ∅ and
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W s(DFE) ∩ Γ = ∅ hold when N ε > 1 and R2
0,TDFE > 1. We first show that W s(TDFE) ∩ Γ = ∅. Since

N ε > 1 and R2
0,TDFE > 1, by continuity, there exists ϵ0 such that for all ϵ ∈ [0, ϵ0], we have

rγϕ(
µS +

Bβhm

Nh
ϵ

)
(γ + µA,1 + µA,2ϵ)

ε > 1

and

νm
νm + µS

Bβmh

µI

Bβhm

νh + µh

1

N2
h

(
ϵFΛtot

µS
− ϵ

)
(Nh − ϵ) > 1.

We claim that there exists η0 > 0, such that for all x0 ∈ Γ, lim sup
t→+∞

∥φt(x0) − TDFE∥ > η0. Indeed,

suppose that this is not true. Hence, there exists T > 0 such that for t > T , we have:

Nh − ϵ ≤ Sh ≤ Nh + ϵ,
ϵFΛtot

µS
− ϵ ≤ SS ≤ ϵFΛtot

µS
+ ϵ, Ih ≤ ϵ, A ≤ ϵ.

From system (22)-(23), it follows that
dA

dt
≥ ϕFW,S − (γ + µA,1 + µA,2ϵ)A,

dFW,S

dt
≥ εrγA−B

βhmϵ

Nh
FW,S − µSFW,S ,

(62)

and 

dIh
dt

≥ Bβmh
SI

Nh
(Nh − ϵ)− νhIh − µhIh,

dRh

dt
= νhIh − µhRh,

dSE

dt
≥ Bβhm

Ih
Nh

(
ϵFΛtot

µS
− ϵ

)
− (νm + µS)SE ,

dSI

dt
= νmSE − µISI .

(63)

Let us consider the matrices

J1 =

−(γ + µA,1 + µA,2ϵ) ϕ

εrγ −B
βhmϵ

Nh
FW,S − µS


and

J2 =


−(νh + µh) 0 0 Bβmh

Nh − ϵ

Nh

νh −µh 0 0
Bβhm

Nh

(
ϵFΛtot

µS
− ϵ

)
0 −(νm + µS) 0

0 0 νm −µI

 .

Let s(J) be the stability modulus of the matrix J . It therefore follows that s(J1) > 0 and s(J2) > 0. Hence,
the positive solutions A, FW,S , Ih, Rh, SE and SI of systems (22)-(23) are unbounded which is a contradiction.
Thus, W s(TDFE) ∩ Γ = ∅. Exactly the same computations show also that W s(WIFE) ∩ Γ = ∅. To show
that W s(DFE)∩Γ = ∅, we first recall that following (27), R2

0,TDFE > 1 ⇒ R2
0,SITc

> 1. Hence by continuity
there exists ϵ0 such that for all ϵ ∈ [0, ϵ0], we also have

νm
νm + µS

Bβmh

µI

Bβhm

νh + µh

1

N2
h

(SS,DFE − ϵ) (Nh − ϵ) > 1.

As before, we claim that there exists η0 > 0, such that for all x0 ∈ Γ, lim sup
t→+∞

∥φt(x0) − TDFE∥ > η0.

Indeed, suppose that this is not true. Hence, there exists T > 0 such that for t > T , we have:

Nh − ϵ ≤ Sh ≤ Nh + ϵ, SS,DFE − ϵ ≤ SS ≤ SS,DFE + ϵ, Ih ≤ ϵ, A ≤ ϵ.
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Hence, (63)3 assumes the form

dSE

dt
≥ Bβhm

Ih
Nh

(SS,DFE − ϵ)− (νm + µS)SE ,

and matrix J2 now becomes

J2 =


−(νh + µh) 0 0 Bβmh

Nh − ϵ

Nh

νh −µh 0 0
Bβhm

Nh
(SS,DFE − ϵ) 0 −(νm + µS) 0

0 0 νm −µI

 .

As previously, we have that s(J1) > 0 and s(J2) > 0. Hence, the positive solutions A, FW,S , Ih, Rh, SE

and SI of system (22)-(23) are unbounded which a contradiction. Thus, W s(DFE) ∩ Γ = ∅. Therefore, we
have W s(TDFE) = {TDFE}, W s(WIFE) = {x ∈ R11

+ : A = M = FW,S = FW,E = FW,I = 0, Ih > 0, Rh >
0, SE > 0, SI > 0} and W s(DFE) = {x ∈ R11

+ : A > 0,M > 0, FW,S > 0, FW,E = FW,I = Ih == SE = SI =
0} such that M∂ = W s(TDFE) ∪W s(WIFE) ∪W s(DFE). In addition, each equilibrium is isolated and
acyclic in M∂ . Based on Theorem [21, Theorem 4.6], we found that system (22)-(23) is uniformly persistent
with respect to (Γ, ∂Γ) whenever N ε > 1 and R2

0,TDFE > 1. Moreover, using the invariance of Γ, the
dissipativity of system (22)-(23) and its uniform persistence, we can deduce, following [20, Theorem D.3],
the existence of a least one positive coexistence equilibrium.
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