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Abstract

The sterile insect technique (SIT) is a technique to control pests and vectors of diseases by releasing
mainly sterile males. Several challenges need to be solved before large-scale field application in order to
guarantee its success. In this paper we intend to focus on two important issues: residual (sterile) male
fertility and contamination by sterile females. Indeed, sterile males are never 100% sterile, that is there
is always a small proportion, e, of fertile males (sperm of) within the sterile males population. Among
the sterile insects that are released, a certain proportion, er, of them are sterile females due to imperfect
mechanical sex-separation technique. This can be particularly problematic when arthropod viruses are
circulating, because mosquito females, even sterile, are vectors of diseases.

Various upper bound values are given in the entomological literature for er and e without clear
explanations. In this work, we aim to show that these values are related to the biological parameters of
the targeted vector, the sterile insects release rate, and the epidemiological parameters of a vector-borne
disease, like Dengue. We extend results studied separately in [4, 7].

To study the impact of both issues, we develop and study a SIT-entomological-epidemiological math-
ematical model, with application to Dengue. Qualitative analysis of the model is carried out to highlight
threshold values that shape the overall dynamics of the system.

We show that vector elimination is possible only when Ne < 1, where A is the basic-offspring
number related to the targeted wild population. In that case, we highlight a critical sterile males release
rate, A7, above which the control of the wild population is always effective, using a strategy of massive
releases, and then small releases, to reach elimination and nuisance reduction. In contrary, when e N > 1,
then SIT-induced vector elimination is unreachable, whatever the size of the releases.

Moreover, we compute a critical value for the release rate of sterile females, A%, such that if
the release rate of the sterilized females is greater than A%, then the epidemiological risk increases.
When the sterile females releases rate is low, less than A$®, then whatever the value taken by eN,
the epidemiological risk can be controlled using SIT. However, this is more difficult when Ne > 1. We
illustrate our theoretical results with numerical simulations, and we show that early SIT control is better
to prevent or mitigate the risk of an epidemic, when residual fertility and contamination by sterile females
occur simultaneously. We also highlight the importance of combining SIT with mechanical control.

In order to guarantee the success of SIT control, we recommend to solve in priority the issue of
residual fertility, and, then, to decay the contamination by sterile females as low as possible.

1 Introduction

Vector-borne diseases have become very strong issues all around the World. After decades of chemical
control, the use of biological control methods are more than necessary. Many research programs are ongoing
to develop new biocontrol tools. Among them, an old control technique, the Sterile Insect Technique (SIT), is
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always under study and improvements [8, 14]. SIT is an environmentally safe, cost-effective, species-specific,
and efficient method of insect control. It is a form of insect population control that relies on the mass-
rearing and sterile release of large numbers of male insects to mate with wild female insects. This prevents
the production of viable eggs, thus reducing the overall population of the target species. This technique was
first developed in the 1950s by entomologists Edward Knipling and Raymond Bushland, who were working
for the U.S. Department of Agriculture (USDA) [12] (see also [8][chapter 1.1]). The original purpose of SIT
was to control the screwworm fly, which was devastating the cattle industry in the southern United States
[13]. Since then, SIT has been used to control a variety of other insect pests, including the Mediterranean
fruit fly, tsetse fly, and also against vectors of diseases, including anopheles and aedes mosquitoes, with
more or less success [8]. Initially, sterile insects were obtained only by ionization or irradiation, but now
new techniques have been developed for mosquitoes control in particular. One of them consists of releasing
only males carrying the bacteria Wolbachia [19]. This is called the Incompatible Insect Technique (IIT)
[14], where the sperm of Wolbachia-carrying males, W-males, is altered so that it can no longer successfully
fertilize uninfected eggs. Thus, IIT can be seen as a classical SIT. A third method exists but it is more
controversial since it relies of genetic-modified mosquitoes: this is called the RIDL method, where RIDL
stands for ”Release of Insects carrying Dominant Lethals” [22].

However, while conceptually very simple, the conditions and the difficulties to implement SIT in the field
are numerous and that is why a drastic control quality is needed. To this end, TAEA (the International
Atomic Energy Agency) has published several manuals where several control steps have to be checked in
order to ensure/maximize the success of SIT [9, 26, 16].

While several field programs are ongoing, very few have a mathematical modelling component involved.
This is a pity because mathematical modelling can bring new insights on several issues that can be detrimental
to the efficacy of SIT: see, for instance, [3, 4, 5, 7], and references therein.

Among these controls, it is necessary to evaluate an upper bound for the contamination by sterile females,
i.e. the maximal amount of sterile females that can be released during each field release in order to insure
that SIT is efficient. Indeed, in order to produce sterile males only, it is necessary to separate the females
from the males. Up to now, the sex-separation system is mechanical as male nymphs are (in general)
smaller than female nymphs. However, since sex-sorting is highly operator-dependent, a certain number of
female nymphs can accidentally fall in the male nymphs bucket and, then, be irradiated to become fully
sterilized. Thus, when sterile mosquitoes are released, if the amount of released sterile females is too large,
this could maintain or increase the epidemiological risk. Moreover, when the Incompatible Insect technique is
considered, releasing Wolbachia-carrying females, even a small amount, can induce a population replacement
as showed in [6].

For Aedes albopictus, estimates of contamination by sterile females, done in Mauritius island [10], were
around 4%, while in a recent SIT program in Réunion island estimates were around 1%. Note also carefully
that sterilized females are always 100% sterile and thus cannot participate in the wild insect dynamics. In
[7], we have showed that when no vector-borne viruses are circulating, then the release of sterile females is
not an issue, as long as enough sterile males are released. When a virus is circulating, we showed existence of
a contamination threshold for sterile females, such that if the amount of released sterile females per hectare is
lower than this threshold, then it is possible to control the wild mosquitoes population. Otherwise, whatever
the size of the releases, the basic reproduction number will always be greater than 1 and thus it will be
impossible to control the epidemiological risk even if the wild population has been reduced using massive
sterile insects releases.

Another control test to take care is the (sterile) male residual fertility, when sterilized males (sperm of)
are not necessarily 100% sterile, even if an optimal dose of radiation is used. Indeed, males are sterilized
in boxes such that full sterility is not guaranteed: There are always irradiated males with a small amount
of sperm that remains fertile. This is called residual fertility. For Aedes albopictus, some estimates done
in Mauritius [11] lead to a residual fertility between 3.8% and 4.1%, while in the SIT-program in Réunion
island, an average value of 1% was obtained. In Italy, in [17], the authors found a residual fertility between
0.82 +0.14% and 4.93 + 4.72% thanks to the age of the males, for an irradiation at 40 Gy.

In [4], using a very simple model, the authors showed that the proportion of fertile sperms, ¢, has to be
lower than 1/A, where A is the basic offspring number related to the targeted wild population. If, for any
reason, € > 1/N, then, whatever the amount of sterile males released, the wild population will always be
above a threshold, that can be estimated, numerically at least.

Up to know we have studied these two issues separately in [4, 7], while, in fact, they do occur simulta-
neously. Thus, it would be useful to know how the combination of both issues could be problematic in the
implementation of SIT program either for nuisance reduction or to reduce the epidemiological risk.



The paper is organized as follows. In section 2, we present the full SIT-entomological-epidemiological
model and we recall theoretical results without SIT obtained in [3, 7] and we derive theoretical results
for the SIT-entomological model. The full SIT model is studied in section 3. Finally, in section 4, we
derive some numerical simulations to illustrate our theoretical results and to discuss the impact of low/high
residual fertility as well as low/high contamination by sterile females. The paper ends with a conclusion and
perspectives in section 5.

2 The SIT-entomological-epidemiological Model

Based on [7], we briefly describe the full SIT model, taking into account residual male fertility and contam-
ination by sterile females.

From the entomological point of view, we split the mosquito population into immature stage (larvae and
pupae), A, male adults, M, and mature females, Fyy.

We consider A, the release rate of all sterile insects, i.e. sterile males and sterile females, such that
Aot = Aps+Ap, where Ay = (1—€ep)Asor, Ap = € Aior, and ep is the proportion of sterile females released.

Male residual sterility is modeled by considering that a proportion, e Mg, of sterile males is fertile, such

M+eM
that emerging immature females will become fertile with a probability of ﬁ or they will become
s
EMS

M+ Mg’

Thus, in order to take into :ccofmt the release of sterile females and the effect of residual fertility, we
have to consider a sub-populations of sterile females, S. Moreover, to take into account the circulation of a
vector-borne virus, with an extrinsic incubation period of the virus within the vector population, we consider
three epidemiological states, i.e. the susceptible, exposed and infected states, for the sterile and the wild
females, Sg, Sg, S, Fw,s, Fw.g, and Fy, ;. We assume that the total population of humans, N}, is positive
and constant. It is also divided in three epidemiological states, i.e. N, = S + I, + Rp. When (wild and
sterile) female mosquitoes are infected, we assume that their mortality rate can be impacted. Thus following
[7], and the flow diagram given in Fig. 1, page 4, we derive the following SIT-entomological-epidemiological
model

sterile with a probability of

dsy, Fwr+ 51
— N — BBl 0l g
7t tnNp Bmh N, h — HhSh
dl F + S
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S I —
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dA
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d Iy
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dSE Ih
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7 Bn N, Ss = (Vm + ps)SE
dSy
E = vnSe — urSr,
WS = (1 - 6F>At0t - MMSMS7

with appropriate non-negative initial conditions.

We summarize all the model parameters in Table 1, page 5. In [27], the authors have considered varying
parameters to take into account variations of temperature and raining along the year in Réunion island and
their impact on SIT strategies to reduce the nuisance or the epidemiological risk. Thus, in Table 1, page
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Figure 1: Flow diagram of model (1)-(2).

5, we derive the variations for each parameters from a daily average temperature varying between 15° and
30°. These interval values will be used for a global sensitivity analysis done in section 4. In the simulations
part, we will consider parameter values related to an average temperature of 25°, that is (close to) the most
favorable temperature for Aedes albopictus mosquito dynamics.

2.1 The wild insect model without SIT
We deduce from system (1)-(2) that dynamics of wild insects, without SIT, is modelled by system (3):

dA
’ = ¢Fw,s — (v +pa1+paAd)A,
dM
o = (I—-7)yA—puM, (3)
dFy
thV’S = A - psFws.

System (3) is quite simple and assumes implicitly that there are always adults of both sex (male and female),
such that emerging females will always mate with a male and thus become fertile. In addition, system (3)
has been considered and studied in previous works, see e.g. [3, 7]. Hence, below we recall its main qualitative
results without any proofs.

The basic offspring number related to model (3) is

-1 (4)

ps(y+pan)

Setting the right-hand side of system (3) to zero we obtain the extinction equilibrium Ogs = (0,0,0)”



Parameters | Description Unit Range Baseline for sim- | Reference
ulation (T =
25°)
1/pn Average human lifespan Day [60,80] x 365 | 78 x 365
1/vp Average DENV viremic period Day [1,7] 7 [25]
B daily number of mosquito bites | - [0.1,1] 0.25
on human
Bimh Rate of transmission of DENV | Day~! [0.12;0.57] 0.3427 [27]
from Infected mosquito to Sus-
ceptible human
Bhm Rate of transmission of DENV | Day~! [0.4;0.96] 0.872 [27]
from Infected human to Suscep-
tible mosquito
HA1 Natural death rate for larvae and | Day~! [0.019;0.299] 0.0262 [27]
pupae stage.
pA2 Density-induced death rate for | Day 'Ind~!| [2x107°;0.02] | 1.76 x 10~* [7, 27]
larvae and pupae stage.
0 Daily hatching eggs deposit Day~! [0, 11] 10 [27]
o Transition rate from non-adult | Day ! [0.028,0.12] 0.0962 [27]
stage to adult-stage.
T Sex-ratio - [0.4,0.6] 0.5
ws Female mosquito death rate Day~* [0.035,0.07] 0.0453 [27]
wr Infected female mosquito death | Day~! [0.035,0.07] 0.0453 [27]
rate
M Male mosquito death rate Day~* [0.05,0.082] 0.0722 [27]
Mg Sterile Male mosquito death rate | Day~! [0.1,0.2] 0.1 [27]
Vm Extrinsic incubation rate Day~* [0.015,0.25] 0.184 [27]
Ao Sterile insect release rate Ind Day~! | [0;18000] varying
€ Residual fertility - [0;0.05] varying
€p Sterile female contamination - [0;0.05] varying

Table 1: Parameters description and parameters values for the entomological-epidemiological model related

to Dengue circulation, for an average temperature of 7' = 25°C and N;, = 20000.

and the equilibrium E* = (A*, M*, F;‘MS)T given by

(7"’ MA,l) (N

A* = - 1)7
HA 2
1-— A* 1-—
yr o= dorpdt (- (7+MA,1)(N_1)
1233 1238 HA2
ry ATy (y+pan)
F* = =L (N —1).
w.s us Hs  HA2 ( )

The inequalities between vectors are considered here in their usual coordinate-wise sense. Clearly, E* > Ogs
if and only if ' > 1. We summarize these results with some more details related to basins of attraction of
equilibria in the following theorem.

Theorem 1 ([3, 7]). Model (3) defines a forward dynamical system on D = {x € R : © > Ogs}. Further-

more,

1) If N <1 then Ogs is globally asymptotically stable on D.

2) If N > 1 then E* is stable with basin of attraction

D\{x: (A,M,FW’S)T € Ri A= FW7S = 0},




and Ogs is unstable with the non negative M —axis being a stable manifold.

Proof. See [3, 7, Theorem 1]. O

Remark 1. Mechanical control, that is the removing of mosquito breeding sites, has an impact on ji42
because it depends on K, the larvae-carrying capacity that is defined by K = 3 x Ny, [7][section 7]

+
HA2 = %N (6)

Thus reducing K by a certain percentage, say pme, will increase pa 2 by a factor
— Pmec

2.2 The wild insect model with SIT

We now consider the following SIT-entomological model that occurs when no virus is circulating. Its study
is helpful to derive the Disease Free Equilibrium, DFE, thanks to several release sizes. Thanks to the fact

A
that t is sufficiently large or that the initial releases are such that Mg(0) = Mg = (1 — €F)Nt0t. The
M.

entomological model assumes the form °

dA

o = PFws = (7 + pag + papd)A,

dM

o (1 —r)vA—puM,

dFws _ MteMy o (7)

dt _M+M§ g Hst'w,s,

dSs (1— )M

—= =€ephior + ——2ryA— .

g = eFheor + ST YA — psSs

Since the released sterile females do not play a role in the wild mosquito dynamics, we derive the following
reduced SIT-entomological model

dA

o = $Fws — (v + paq + pagA)A,

dM

o = A=A - puM, (8)

dFW,S o M"‘EME
dt M+ M

ryA — psFw,s.

We now deal with equilibria of model (8). Of course, given an equilibrium E = (A, M, Fyy.s)T of system (8),
we can recover the Sg-component of the corresponding equilibrium of system (7), by setting

- 1 1—-e)M; <
Sg = — A ~— 2 pyA .
s e (GF tot + M+ M . >

We follow the methodology developed in [3]. When A = 0, we obtain the elimination equilibrium Ey =
(0,0,0)”. Assuming A # 0, then from the first equation, we derive

ory M + eM3
— = = (7 + + A). 9
fs M+ M (v + a1+ pagd) (9)
Then, using the fact that
A= ”7]‘/[]\47
(1—=r)y
setting
_ HA 21 M
(v + pan)(L =)y’
and M
_ Ms
a = i



we derive N
1+Ea/\/:1+ QMS.
1+« o

Setting Qg = M$Q > 0, equation (10) becomes

(1-Ne)a?+(1+ Qs —N)a+ Qs =0.
The discriminant of (11) is
A(Qs) = (Qs)* + Qs (ANe —2(N + 1)) + (N = 1)*.
To study the sign of A(Qg), we consider the sub-determinant of A
A'=16(1-Neg)(1—-¢)N.
Since 1 — ¢ > 0, A’ has the same sign as 1 — Ne.
1. Assume that Me < 1. Then, A’ > 0 and A has two real roots Qg, and Qg, such that:

Q4,Q4, = (1—N)* >0,
Qs,+Qs, =2(1-Ne+N(1-¢)) >0,

Qg, = (x/./\/(l—e)—\/l—/\/s)2 >0,
Qs, = <\/N(1—5)+\/1—N€)2 > Qg, .

(12)

(13)

It therefore follows that A(Qg) > 0 when Qg € (0,Qs,] U [Qs,,+00) and A(Qg) < 0 when Qg €

(Qs,, 9s,)- The following discussion is valid:

e Assume that Qg € (0, Qg,). Then, (11) admits two real roots a_, a where

N —-Qs - 1)+ VA(Qs)

= 2(1— Ne) ' (15)
Note that
N—-1-9Qs>N-1-Qg, :2(\/(1—N6)(1—6)N—(1—N5)> > 0.
Since
—1—
a_oy = 1—Q7j\f5 >0, N—-1-—Qgs >0and ay +a_ = Nl_ij\[fs > 0, we deduce that
O<a_ < Q.
e Assume that Qg € (Qg,, +00). Then, (11) admits two real roots a_, ay where
N —-Qs—1)+£/A(Q
e 1o
Note that
N-1-Qs<N-1-0Qg = —2(\/(1—/\[5) (1—5)N+(1—N5)) <0.
Since
11—
a_oy = 1?77\/5 >0 N—-1-Qs <0and ay +a_ = Nl_ij\[fs < 0, we deduce that
a_ < ay <0.
e Assume that Qg € (Qg,, Qs,) . Then, (11) does not admit real roots.
e Assume that Qg = Qg,. Then, (11) has only one real solution
N - 1 - QS1
= ———>0.
YT AN (17)



e Assume that Qg = Qg,. Then, (11) has only one real solution

N—-1-0Qg,

20—y

a_ = o4 =

2. Assume that N'e > 1. Then A’ < 0 and A(Qg) > 0. Therefore, (11) admits two real roots a_, a.
Qs

Since a_ay = ———— < 0. It follows that

1—-Ne
— (N —=1-0Q9s)+ /A(Qs)

_ <0 = . 18
a-siEos 2(Ne—1) 18)
3. Assume that Ne = 1. Then, (11) admits a unique solution
Qs
== 19
ay > 0 whenever Qg < N — 1.
. . . Ay :
From the previous discussion, we deduce, for M¢ = M—, the following:
Ms
erlA T
Theorem 2. System (7) always admits the trivial equilibrium Ey = (0,0, 0, F”uwt> . In addition:
s
1. Assume that Ne < 1. Consider the threshold
, 2
AGit = Lgs (VN =29 - vI=NZ) (20)

(a) If (1—€p)Ator € (O,Ajzit), then system (7) admits two positive equilibria By = (Aq, My, FW)SI,SSI)T
and Ey = (AQ,MQ,FW’S2,SS2)T, such that (A, My, Fyw.s,)T < (A2, Ma, Fiy.s,)T and

1—er)Aso .
M, = w7 where ay is computed from (15),
MM Ot
1—ep)A
My = w, where a_ is computed from (15),
[0 Q-
123,74
Al g= ———M
1,2 =) 1,2,
I (v ppArg) Al
W,SLQ - )
1 (I —e)M;§
Ss,, = — Aot + ——F—2ryA .
S1,2 lis <€F tot + M1,2 +M§T'7 1,2

(b) If (1 — ep)Aior = A}, then system (7) admits a unique equilibrium Es = (As, Mo, Fyy s, , SSQ)T

where
Am :
M, = , where ay, is computed from (17),
Hnrs o
Kar
Ay = ————M
> (1 . ’I")’Y &9
poo Ot pede) Ao
o )
1 (1— )M}
Sg, = — Apor + Sy A, | .
So = g (€F tot + M<>+M§m <>>

2. Assume that Ne > 1. Then, for any (1 — ep)Ayor > 0, system (7) admits a unique positive equilibrium



ET = (AT,MT,FV[@ST,SS*)T where

1—ep)A
M; = (671%’ where a is computed from (18),
5M3a+
Ay = HM ar
R
oo = 0+ pady) Ay
w,Sy — )
)M
=~ (epAs Sy A
S5, = g (et Gy )

3. Assume that Ne = 1. Consider the threshold

ASH = Afi|yems = BEEN = 1) > 0.

Q
If(1—ep)Aior € (O,Af\}fﬁ), then system (7) admits a unique positive equilibrium Ey = (Aﬁ, My, Fw,s,, Ssu)T
where
1—ep)As .
My = w, where oy is computed from (19),
Hnis Oy
2
Ay = ——— M;,
ey
F N (’Y+M1+u2Aﬁ)Au
Ww,Sy — )
¢
1 (1—¢e)M§
Ss, = — Aot + ———=rvAy | .
Sy HS(€F tt+Mﬂ+M§T’Y ﬁ)

Remark 2. When e =0, we recover the critical rate AS}" defined in [3, 7].

Taking into account the fact that system (8) is cooperative, we are able to study stability properties of
its equilibria and then to deduce the stability properties for system (7). Thus, following [2, 3, 7], we obtain
Theorem 3 where x = (A, M, Fyy.5,5)7.

Theorem 3. The following results are valid for system (7):
1. Assume that Ne < 1.

(a) If (1 — €p)Nior > ASSE, then Ey is globally asymptotically stable.

(b) If (1—€p) Ao € (0, A5}, then Ey is unstable, and the set {x € R*: (0,0,0)T < (A, M, Fy,s)"
(A1, My, Fyw,s,)T} is in the basin of attraction of Ey and the set {x € R* : (A1, My, Fw.s,)”
(A, M, Fyw.s)T} is in the basin of attraction of Es.

(c) If (1 — er)Asor = A, then the set {x € R*: (0,0,0)T < (A, M, Fw.s)T < (Ao, Mo, Fw,s,)T} is
in the basin of attraction of Eo, while the set {x € R* : (Ao, Mo, Fiv.s,)T < (A, M, Fy,5)T} is in
the basin of attraction of F.

<
<

2. Assume that N'e > 1. Then, the elimination equilibrium Eq is unstable and the coexistence equilibrium
E; is globally asymptotically stable for any (1 — ep)Asor > 0.

3. Assume that Ne = 1.
(a) If (1 — ep)Aior > A‘j&fé, then Ey is globally asymptotically stable.

—€er)N\ior € (0, / , then the elimination equilibrium Ey is unstable and the coexistence
b) If (1 A OA?V’}fﬁ h he el lib E bl d th

equilibrium Ey is globally asymptotically stable.

Proof. See Appendix B. 0



3 Qualitative analysis of the full SIT epidemiological model

Now we turn to the more complex model described in the introduction. In the sequel, we assume that N > 1.
Indeed, in the case where N' < 1, by a comparison argument, the system will always converge toward the
trivial disease-free equilibrium.

Without SIT, this model has been studied in [7] where we derived the Basic Reproduction Number defined

as follows "
Vm Bﬁmh Bﬁhm FW,S

Um +ps i1 Vh+pn Np oo

6 (21)

We assume that, without any control,
2
Ro > 1.
From [7], there exists a unique endemic equilibrium

EE = (S}, I}, R, A M* F}y, o FE F})T

when RZ > 1.

We will now proceed like in [7, section 5]. In this section, we consider that constant and permanent SIT
releases are done as a control tool. Hence, following (8), the dynamics of human and mosquito populations
are described by system (22)-(23):

dsy, Fw.r+ 51
_— = N —B m —— S - Sa
o7 thNp Bmn N, h — HhSh
dly, Fwi+Sr
e M Lt Bl S A 22
7t Bmh N, n— Undn — pndn (22)
dR
Tth = vplp — pp Ry,
dA
’ = ¢(Fws+ Fwe+Fwr)— (v+pa1+pad)A,
dM
T = (I—=r)vyA—puuM,
dFWS M+€M§ Ih
’ S A — BBy~ Furs — s Fw s,
7 MM Ty Bh N, Fws usFw s
d Iy I
VB BﬂhmiFW,S — (Um + 1s)Fw,g,
dt Ny,
APy 1 (23)
dt’ = Untwe—prfwr,
dSs (1 )M I
— = Aot + ——"21r7A — BBhm—Ss — ;
o erhior + ST Ty Bh NhSS usSs
dSEg 1,
- = B mar — Vm 5
it Bn NhSS (Vm + 1s)SE
dST
—_ mSE — WS-
dt UmOE — U191

In the sequel, we provide qualitative results of system (22)-(23). Let us set

Jf(t) = (Sh(t)a Ih(t)th(t)7A(t)7 M(t)7 FW,S(t)aFW,E(t)v FW,I(t)7 SS(t)a SE'(t)v Sl(t))T

3.1 Boundedness of solutions and existence of equilibria
Using similar arguments as in [7, Lemmas 1 & 2], it is straightforward to obtain the following Lemma

Lemma 1 (Boundedness of solutions). The set

r= {x €RY Sy + I + Ry = Nis (A, M)T < (A", M*)"; Fyws + Fw,p + Fwr < Fiy g5

erlior + Ty A* }
s

Ss+Sg+ 51 <
is positively invariant for system (22)-(23) where (A*, M*, Fy, )" is given by (5).

10



Using Theorem 2, page 8, we deduce:
Proposition 1 (Trivial and non-trivial disease-free equilibria). Whatever Ne > 0, system (22)-(23) always
has a trivial disease-free equilibrium, TDFFE, such that

er\ T
TDFE = (Nh,oR7, FM,OR2> . (24)
Hs

1. Assume Ne < 1. Let A§} defined by (20), page 8.

o If (1 —ep)Nior € (0,AS}), then system (22)-(23) has two non-trivial disease-free equilibria

T .
DFE; 5 = (Np,Op2, A1,2, M1 2, Fivs, ,,0r2, Ss, 5, 0r2) " with (Ay, My, Fiv,s,)" < (A, M, Fiw,s,)"
and Ay 2, M1, Fw,s, ,, and Ss, , given in Theorem 2.

o If (1 —ep)Aior = A, then system (22)-(23) has one non-trivial disease-free equilibrium
DFEO = (Nh7 0R27A<>a M<>7 FW,Soa O]R27 SSO,ORZ’)T )
with Ay, My, Fws,, and Ss, given in Theorem 2.

2. Assume Ne > 1. System (22)-(23) admits one non-trivial disease-free equilibrium
DFE; = (Np,Ogz, Ay, My, Fy.s,, Og2, Ss, , 0z2) ",

where Ay, My, Fws,, and Ss, are given in Theorem 2.

3. Assume that Ne = 1. If (1 — er)Asor € (0, AS7L), where AG)} = ,uMSN_

1
o then system (22)-(23)

has the following non-trivial disease-free equilibrium
DFEﬁ = (Nqu]RzaAﬁ7MﬁaFW,Su70R27SSﬁ7OR2)T
where Ay, My, Fws,, and Ss, are given in Theorem 2.

Note that using the relation N'e = 1 in the expression of A$}*, we recover Ac”é Thus, in order to simplify
the reading of the paper, we will not consider the partlcular case Ne = 1 in the rest of the paper because
most of the forthcoming results are similar to those obtained when Ne < 1.

Following point 1.b) of Theorem 3, page 9, in the disease-free case, equilibrium DFF; is unreachable
because it is always unstable. Therefore, in addition to TDFE, the meaningful disease-free equilibrium of
system (22)-(23) is

DFFE;, when Ne>1,

DFE5, when Ne<1 and (1—ep)Air € (0,A51),
DFEsrr, = (25)
DFE,, when Ne<1 and (1—epr)Ay = A,

TDFE, when Ne<1 and (1—ep)Air > A§HE

Remark 3. Note that in the last case, only TDFE exists, while in the other cases DF Esrr, and TDFE
co-exist.

Using the next generation matrix approach, see e.g. [24], the basic reproduction number of system
(22)-(23) is

11



Um BBmn BBrm (FW,ST + sz)

, when Ne>1,
Um + s H1 Vh+ pn Ny,

VUm, Bﬂmh Bﬂhm (FW,SQ + SSQ)

R2 _ ) Vmtps pro vntopn Ny, ’
0,SIT.

when Ne <1 and (1 —ep)Ai € (0, A1),

VUm Bﬂmh Bﬂhm (FW,SQ + SSQ)
Um + WS HI  Vh+ i Np ’

when Ne <1 and (1—ep)Ayr = ASS,

Um Bﬁmh Bﬁhm 6FAtot
Um + s B Un+ pn psNp '

when Ne <1 and (1 —ep)Air > AGHE.
(26)

Remark 4. In some cases, as expected, R&SIQ has two parts: the first part

Vm BBmn BBhrm FW7ST,2,0
Um+ s pr vhtpn  Np
is related to the wild susceptible females that are still fertile while the second part,

VUm Bﬂmh Bﬁhm 551,2,0
Um + s p1 Vet pn Ni

is related to susceptible females, wild and released ones, that are sterile.
The main question is: when R rr. w < 1, is it possible that the releases of sterile females together with
the releases of males which are assumed not to be fully sterile imply RE grp, > 17

2 _
R, srr.w =

2 —
RO,SITC,S -

A Ay, A*
Remark 5. Since Fw,s, . ,+5s,;, = I f2te T ERMot g Fj = 2 and using (21), it is interesting
o w Hs ’
to observe that
Ao A
ef%;*t + A—I, when Ne > 1,
Ao A ,
e::yi*t + A—i, when Ne <1 and (1—ep)Aior € (0, A5}),
R§ sir, = Ry A A (27)
%+A—j, when Ne <1 and (1—ep)Aior = ASH,
€r Ao when Ne <1 and (1—ep)Aior > A
’I"’}/A* ) F ){tot M

where A* is defined in (5), page 5. Thus, clearly, when epAyor is too large, i.e. epAior > ryA*, we
always have R&Sln > RZ. In this case, if we already have R3 > 1, then R&Sln > 1 such that the SIT will
fail to lower the epidemiological risk. Conversely, since A* > Ay +y, then R(%’SITC < R3 whenever epAyop is
sufficiently low, i.e.
erlhior < T’Y(A* — AQ’T,Q). (28)
We recover the same result like in [7] when Ne < 1.

Remark 6. Since Az ;. is an increasing function of epAior, it is straightforward to deduce that RaSITC
increases with respect to epMior.

Remark 7. According to (27), when Ne <1 and (1 — ep)Aor > AS}Y, then Rg,SlTC < 1iff

ATy pa)NV - 1) it
= , = AG 29
R3 pasR3 d (29)

erhio <

Also, it follows from (27) that .
EFAtOt > A(I,’;lt = R(Q),SITC > 1.

12



Remark 8. Clearly, ep has to be chosen such that
Acm't

Atot

ep < (30)

This result is in complete contradiction with the constant maximal percentage given by IAEA for contami-
nation by sterile females: we can clearly see that the percentage of contamination may depend on the total
amount of sterile insects per release.

Thanks to the case of sterile female contamination, straightforward computations lead to

Proposition 2. When epAior > NS, then there exists a wild insects-free boundary equilibrium, WIFE,
such that A% = M# = Ff = Fff = Ff =0, 8% >0, S5 >0, S7 >0 and

15 + BBpn—
S# — I’Lh + Vh N
h - hs
BS h €r Aot
"+ v, s AgH
(31)
S}% = Vim 1-— Hs EFAtot
ur (Vm+,u5) +Bﬂ I 1 S#
1 "+ o N,
Proof. See Appendix C. 0O
We now have a look at the existence of non-trivial endemic equilibria.
Proposition 3. Assume u; = pg.
o Let Ne <1, and set
4 2
AGit = “gs (¢N+ 1 —Nz) - V1 —Ns) . (32)
Assume 0 < (1 — ep)Apor < Aﬁ}f‘};E, and egAior > 0 is chosen such that
pe _ Fivs
€rlior +1vATT > Rg ) (33)
0
where
EE 1 * * 2 *
AFE — — o (W - oM — [ ((QMg — N)? —4Q (1 - Ne) M3) | .
(I—r)y
20—
1238

Then there exists two endemic equilibria, EFEsrr1 and EEgrr 2. In addition EEsir1 = EEgir.2 when

Ne=1.

o Let Ne > 1. For all (1 — ep)Aor > 0, assume that epAior > 0 is chosen such that
Fyy s

erhior + T’VA*EE > R2
0

where

1

29(1 — )
122,74

Then, there exists one positive equilibrium EEgrr ..

EE _
AT" =

(N— oM — \/((QM; ~N)? + 40 (Ne — 1)M§)> .

Proof. See Appendix C. 0
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We consider the case where pug < py. We first set the following thresholds

Vm Bﬂmh BBym 1
[L1 Vh + ph Vm + ps NZ

1 Ym
Nell- #ﬂi
1+ —
Acrit71 s 125
FEE €ErQ 14+ Vm \ 7
K
1—-Ne T
Hs
140
K
ry(y+pan) [N Vi
Acrit,Q _ Hs
tot " <<1 ) T UM )
2 — €F F
' 1—r Kt
v,
) 1 app (1 —ep)r 1+;Tm
Acmt,?) - - \/Z+ halatl Sl A I ] _./\/'571 + aep
! QMQEF (1—7) pas 1+ Ym
UMs Hns
where
Um Um 2
1+ — 1+ —
«Q 1—ep)r 1—¢€
A= W 1—/\/’5752 +oaep |1 -N l‘,ﬁi +4Q( )
- Ms 14— 1+ —
Hs Hs
Then, we derive
Proposition 4. Assume pg < py.
142
o Let Ne < ’l,js
1+ =
Mr
— If A:gth < Atot < A](ﬁ::;zlt,?)} or
— If Apor > max{AZ73 AN and N> 17/55 and Ao < A2,
1224

then, there exist no or 2 endemic equilibria.

— If Ayor > maX{Aggtit’gaA%tit’l}; and
v
1+-=
x N > ’i‘i and Ayor > Afgzt’Q, or
14 -2
[ir

1+Vﬂ

* N < bs |
1+ﬂ

K

then, no endemic equilibrium exists.

. it,3 A crit,1 , : I
— If Apor < min{A;;"7 Aj,77 ), then exists one endemic equilibrium.
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crit,3
- If Atot < Atot , or
crit,2 crit,3

= If Aor > max{Ay, ", Ay 7},

then, only one endemic equilibrium exists.
crit,3 crit,2

= If Ny ™" < Ao < Mgy

then, one endemic equilibrium exists or three endemic equilibria.

Proof. See Appendix C. 0O

3.2 Stability analysis of the disease-free equilibria and uniform persistence

Let us set

Bﬁmh Vm Bﬁhm 6FAiEot EF'Aifot
R2 — = R2 . 37
OTPEE ™ vy 4 iy, (Wm + ps) s Nn  pis O pyAx (37)

A straightforward computation of the Jacobian related to system (22)-(23) at equilibrium TDFE leads to

Theorem 4. Assume Ne < 1 and Ay > 0. Let ep > 0 such that Ry pppp < 1, then, the Trivial
Disease-Free Equilibrium, TDFE, is locally asymptotically stable, and unstable when ’R&TDFE > 1.

The previous theorem shows that, when AMe < 1, nuisance reduction with SIT is always possible with low
contamination by sterile females, as long as A;,; > 0, and the wild population is small or not yet established.
When the wild population is large or established we need further results.

Using [24, Theorem 2], the stability properties of the biological disease-free equilibrium DFEgrr, €
{DFE;3.,, TDFE} is summarized as follows.

Theorem 5. The following results hold true for system (22)-(23).
Assume Ne < 1.

1. Let (1 — ep)Aor € (0,A5)

(a) If R(Q)’SITC < 1, then DFEs, defined in Proposition 1-(1), is locally asymptotically stable.
(b) If R§ srr. > 1, then DFE;y is unstable.

2. Let (1 - GF)Atot = A?\Zit
(a) If R(Q)’SITC < 1, then DFE,, defined in Proposition 1-(1), is locally asymptotically stable.
(b) If R%)Sm > 1, then DFE, is unstable.

3. Let (1 - GF)Atot > A%}Zt

(a) If R&SITC = RaTDFE < 1, then TDFE, defined in Proposition 1, is globally asymptotically
stable.

(b) If RS sir. = Rerpre > 1, then TDFE is unstable.
Assume Ne > 1.
1. If R&SITC <1, then DFEx, defined in Proposition 1-(2), is locally asymptotically stable.
2. If R§ sy, > 1, then DFE; is unstable.

1
In fact, when the residual fertility level is low, i.e. £ < N system (22)-(23) may exhibit a bistable

dynamics in the disease-free context. Indeed, based on Theorem 3 together with Theorems 4 and 5, it is
straightforward to establish:
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Theorem 6. Assume Ne < 1 and (1 — er)Aor € (0,A5"). If R§ g1, < 1, then equilibria DFE, and
TDFE are locally asymptotically stable (LAS).

Clearly, from the two previous theorems, when contamination by sterile females is low, such that
R(zJ,TDFE < 1, we derive that:

e nuisance reduction is only possible when AMe < 1. In particular, for established wild population,
massive sterile insects releases can drive the wild population close to TDF'E.

e reducing the epidemiological risk is possible whatever the values taken by Ne.
Remark 9. Based on a comparison argument and a limit system argument we observe the following:

o System (22)-(23) may undergo a bistability involving the wild insects-free boundary equilibrium, WIFE
and the ‘full” endemic equilibrium EE when Ne <1, RE pppp > 1 and (1 — ep) Ao € (0, AF).

o The wild insects-free boundary equilibrium, WIFE is GAS when Ne < 1, R&TDFE > 1 and (1 —
€F)Atot > A?&”

In order to deal with the uniform persistent of system (22)-(23), we prove the following result:
Theorem 7. If Ne > 1 and R rppp > 1, then the system is uniformly persistent.

Proof. See Appendix D. 0O

However, the previous result does not give information on how SIT can impact R g7, -

3.3 Impact of insect releases on the SIT basic reproduction number

Now, we want to find Ay and ep, such that the epidemiological risk is low, i.e. lead Ra s, <1

As stated in Remark 7, page 12, if ep Ay, is large, that is ep Ay > A%T“, then whatever the release rate
of sterile males (1 — ep)Aor is, we will always have R%’ srr. > 1. Hence, in the sequel, we first assume that

crit
erlhior < AF .

Moreover, following Remark 5, page 12, Ra sit, < RZ iff €p Ao is sufficiently low. However, this does not
necessarily imply that there exists (1 — ep)Asr > 0 such that Rgﬁ srr, < 1. Straightforward computations
lead:

p— } * QS M crat
4 = A (1_/\/—1) <1+\/1—(N_1_QS)2> >0, when M2 <1 and (1 — ep)Asor € (0, ASTH)
A* 1-— .
A, = N—l( ((1_?/,';\;1>, when Ne <1 and (1 —ep)Aior = A§
_ 1 Qs Os \°  4Qs(Ne—1)
AT = §A (1_N1+\/<1_N1> +W >O,When N€>1.
(38)

Using (27), (29) and (38), we deduce that
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erlior | RE 4Qs5(1 — NE) cri
g —|—70 (1— 1) <l—|—\/l N o105 , when Ne <1 and (1 —ep)Ar € (0,A5),
EFA o R2 1 - E)N ori
A%“Ztt ./\/'—O 1 ( A=No) -1 when Ne <1 and (1 —ep)Aior = A
Rg,SlTC =

€rMiot

ey when Ne<1 and (1—ep)Ayr > A
A%‘zt
erlior | R2 Qs Qs \7 | 4Qs(Ne—1)

: 01— 1-— h L.
Agrit + 9 ./\/—1+ N_1 + (N—1)2 , when Ne>

It is straightforward to obtain the following result.

Lemma 2. 1. IfepAior > AG™, then R gp > 1.
2. Assume that Ne <1 and (1 — ep)Aor > AG/". Then RY gp7, < 1 iff 0 < epAyor < A

Lemma 2 depicts the fact that when the epidemiological risk is high, that is, when R3 > 1, and if in
addition the release rate of sterile females is large, that is epAyr > ACFT“, then whatever the amount of
released sterile males, the SIT will fail since we will always have R%’ srr. > 1. However, massive releases of
sterile males ((1 — ex)Asor > ASH) could be successful provided that €pAgy < AGH.

The next question to investigate deals with the possibility to lower the epidemiological risk using small
sterile males releases when ep Aoy < Ac”t and also to investigate if there exist necessary conditions to ensure
that R§ g7, < 1 when Ne > 1.

3.4 When Ne <1
Using (39)2, we define the following threshold

-1
Ro Ne<1 — N . (40)
erhiotpia e n (L-gN )

ry(y 4 pan) (1 —Ne)

We derive the following result

Theorem 8. Assume 0 < epAior < AZ. Consider system (22)-(23) and set

2
401 _ _ _6FAtot
ey |, R0 Wy (- Sa)

MR2,e — Q

1— (41)

R4(1— Ne) + RE (N — 1) (1 - EFA??)
A

1. If R3 > RO Ne<ls then the following results hold true:

o When (1 —ep)Aior > A}, the equilibrium TDFE is globally asymptotically stable.
o When (1 —ep)Aior < A, then RaSITC > 1 and SIT fails.

2. If1<RE< RO Ne<ts then the following results hold true:

o When (1 —ep)Aior > A}, the equilibrium TDFE is globally asymptotically stable.

o When (1 —ep)Aior = A}, then R%,SITC <1, DFEs and TDFE are locally asymptotically stable.
The set

{(S,I,R,A7M,FW’S7FW’E,FW’[,SS,SE,S])T S R}: : (Aa MaFW,S)T < (A<>7M<>7FW,S<>)T}
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belongs to the basin of attraction of TDFE while the set
{(S7I7R7 AvMa FW,S7 FW,E7 FW,17 557 SE; SI)T S Ril : (A; M; FW,S)T Z (A<>7 M<>7FW,S<>>T}

belongs to the basin of attraction of DFE,.

o when (1 —ep)Aior > A}, o, then R g < 1, and the equilibria DFEy and TDFE are locally
R2, ,SIT,

asymptotically stable. Moreover, the set

{(S,I,R,A, M, Fws, Fw,g, Fwr,Ss,Sp, S1)T € R 1 (A, M, Fws)" < (A1, M1, Fiv,s,)"}
belongs to the basin of attraction of TDFE while the set

{(S,I,R,A, M, Fw,s, Fw,e, Fw,1,Ss,Sg, S1)" € RI' : (A, M, Fw,s)" > (A1, My, Fw,s,)"}
belongs to the basin of attraction of DF E;.

Proof. We follow the same methodology used in [7, Theorem 6] to derive (41). Then, the results follow from
Theorem 6, page 16. 0O

Remark 10. Of course, when € = 0, we recover the results obtained in [7].

Clearly the constraint on the releases size given by (41) can be strong, i.e. close to A}, such that it
seems to be preferable to use massive releases, i.e. (1 —ep)Ayor > AT

In that case, the strategy developed in [1, 3], using massive and then small releases can be adequate to
reduce the epidemiological risk and maintain this risk at a lower level.

Thus, in terms of vector control: when R2 < 1, vector control is not necessary; when RZ > 1 and
0 < epAsor < AG™, then two cases should be considered:

o when R§ > Rf ..y, then massive releases of sterile insect, i.e. (1 —ep)Ayr > A§;", should be

advocated.

o When Rf < R pr.;, then small, but large enough (A’M,Rg,s < (1—€p)Aor < ASTIY), releases of sterile
*

M,R2,e
point of view, it is preferable to consider massive releases of sterile insects too.

insects could be useful to control the disease. However, since A is close to A§}', from a practical

When Ne < 1, we summarize all qualitative results of system (22)-(23) related to the disease-free equilibria
in Table 2, page 18.

N | RE | erhio R2 (1 — er)Asor | Observations
<1 TDFE is GAS
<1 Releases of sterile insects are useless
because the DFE is already GAS
>1 > A§rt Even massive releases could not be efficient

to reduce the epidemiological risk: R&SITC > 1.
WIFE and/or EE are/is LAS

>1 > RE Arect > NS TDFE is GAS
< A%“‘ SIT failed since R(Q), SIT, > 1
>AY7 | TDFE is GAS
<AF* | < RE areca = A§ Ri.srr, < 1: TDFE and DFE, are both stable
> Ny 2 Ri.srr, < 1: TDFE and DFE; are both stable

Table 2: Summary table of the qualitative analysis of system (22)-(23) when Ne < 1.
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3.5 The case where Ne > 1

We want to derive if, for a given epAsor < Aif“, there exists A?\%\/Dl such that for all (1—ep)Asor > A?\?j\f@lv
we always have R&SITC > 1. Conversely, for a given Ay, it is possible to find a rate ep such that R&Sln > 17
Assuming R2 > 1, 0 < epAsor < AS™, and using (39)4, we have the following:

Ao 2 Ao 2
e Assume that eiil':tt + % (1 — NQf 1> > 1 or equivalently (1 — 65;%;;) R—g — <1 — NQj 1> <0.
Then it holds

R s, > 1.
Note also that

2(1— erior
erhior\ 2 Qs 5Ys Agrit crit g
(1_ Aijz’t)73(2)_(1_N_1)<0<:>(1_6F)Atot< QS(N—I) 11— —————2 [ = A"

Aso R? ) Aso 2
e Assume that eigitt + 70 (1 — NQ51> < 1 or equivalently (1 — eigztt> R—% — (1 — Qs ) >0

or equivalently

2 (1 - GXCAT’T}?)
1237} crit,
(I—EF)Atot>(N—1) QS 1-— RgF = AM u.

Let us set

R2 _ (N* 1) 1— 6FAt_ot )
0,Ne>1 (NE — 1) A(j,r”

Then we have

2 €FAtot __9s t L AQsWe—1)
Rosir, >1 < At (1 N \/(1 Nl) + (N_l)g > 1,

2
4QS(NE — 1) ( EFAtot) 2
— + >(1- =) =,
\/ (N o 1)2 A%'zt R%
495/ NE -1) erhior ) 2 Qs
1-— - — — (1 - —].
<=>¢< = >+ O
. €FAtot 1_ erliot 1— erAior
— Q N€ -1 Acrzt . A%rzt A%'it 1
Tl W= RV -1 R3 R3 ’
1— erlior
Ne-1 R3 Agt
-1 > —1 =11,
= Qs N-1) 1_ er\iot W-1) R2

A%’it
R L
= Qs O lew-1|1-—2F
< RO NE>1> R%

Thus, we deduce the two following cases:

(i) If R > 7'\’,0 Nes1, then RaSITC > 1 for all (1 —ep)Aior > 0.
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(1) Tt R < R§ pres1, then we set

1 erNiot
- ACFmt
0
crit _ HMMs
AM7NE>1 - Q : R%
72%,./\/5>1

and we have ,
R%,SITC > 1 <— (1 — EF)Atot < A%}?\/E>1,
Risrr, <1 = (1 —ep)Aior > A Nosr-

To summarize the previous discussion, when N'e > 1, we have three configurations
1. When (1 — ep)Awr < AYF or (1 - ep)Aror > AG"F and R > max(1, R3 y.o,)), then R2 g7 > 1.
2. When 1 < R < R§ presq and (1 — ep)Ayop > max( ?&fj\[Dl,A?&it’ﬁ) then R§ g7, < 1.

3. When 1 < R < R3 yr.oy and AY/“F < (1= €p) Aot < A§osy then R2 g > 1.

We therefore summarize all qualitative results of system (22)-(23) related to the disease free equilibria in
Table 3, page 20.

N | RE | erhio R2 (1 —er)Niot Observations
<1 Releases of sterile insects are useless
because the DFE is already GAS
>1 > Agt Even massive releases could not be efficient
to reduce the epidemiological risk
> R%,Ns>1 SIT fails since R(Q),SITC >1
<AF | <RE ooy | > max{A§F o, AY Y | R2gpp < 1, DFE; is LAS
< max{AS;"F A es1} | SIT fails since Rf ;7 > 1

Table 3: Summary table of the qualitative analysis of system (22)-(23) when Ne > 1.

4 Numerical simulations

4.1 Sensitivity analysis

It is interesting to study the impact of parameter changes on the dynamics of our systems, and to find
which parameters are the most sensitive on the variable outputs. In Figs 2, 3, 4 and 5, we provide a LHS-
PRCC sensitivity analysis, where LHS stands for Latin Hypercube Sampling and PRCC for Partial Rank
Correlation Coefficient. The LHS-PRCC method provides mainly information about how the outputs are
impacted if we increase (or decrease) the inputs of a specific parameter. The analysis is done on the time
interval [800,1000]. The results are ordered from the most negative to the most positive ones. We derive
a LHS-PRCC analysis for the variable F' from the entomological model, and the variables Sy, Fw,; and Ij
from the epidemiological model. It is very interesting to compare the impact of the parameters thanks to
the considered variables. In Fig. 2, the parameters ¢, ¢, pars and pa1 are the parameters for which the
Female variable, related to the entomological model (7), is the more sensitive to. Then, the infected sterile
female variable, Sy, is mostly sensitive to parg, UV, 142, €F, Aior, and B. A similar trend is observed in
Fig. 4, when dealing with wild infected female variable, Fyy 1, except that now B, and ¢ are now the main
parameters, while ep and A,y not. The residual fertility parameter, € has also almost no effect. Finally,
considering the infected human variable, I, it is mostly sensitive to parameters g, pa,1 € and ¢ (see also
Fig. 5).

We can notice that the two parameters of interest throughout this work ¢ and ep have a strong impact
on F, Ih, and S].

For all PRCC analysis, we used the PCC function (R software [18]) and 1000 bootstrap replicates, with
a probability level of 0.95 for (the bootstrap) confidence intervals.
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LHS-PRCC Sensitivity Analysis — SIT Mosquito Model
(SF contamination+RF) — Female stage - time—interval: [800,1000]

0.5-
. . = .
' [ [ !

—+

1 1 1
Hmg Hai Ha2 Aot WUr Hm € r YA € [

Figure 2: LHS-PRCC Seunsitivity analysis of the Entomological model - Wild Females

4.2 Simulations

All forthcoming numerical simulations are done using the ode23 solver of Matlab [15]. Results are obtained
in a couple of seconds.

Like in [7], we will consider the effective reproduction number, R.;(t) for all time ¢ > 0. Indeed, SIT
control is a long term strategy and the starting time of SIT treatment is important thanks to the starting
time of the risky period from the epidemiological point of view, that is when Dengue virus starts to circulate,
tpenv. That is why, it is important to consider the effective reproduction number, Ry f(t), that is defined

as follow )
VUm B ﬁmhﬁhm FW7S(t) + SS(t)
Um + s pr (Vh + pin) Ny,

Rejs(t) = : (42)
In particular, we will estimate Ry at time tpgny. Clearly, if Res¢(tpenyv) < 1 and R(%’SITC < 1, then no
epidemics will occur. In contrary, even if Rg, siT, < 1 but Resr(tpeny) > 1 then an outbreak will occur.

We consider the parameter values defined in Table 1, page 5. For these values we derive N ~ 86.75.
This is a high value but meaningful since we have considered the “best” case for the mosquito dynamics, i.e.
the most difficult case in terms of control. For the epidemiological parameters, at a mean temperature of
T = 25°C, we find that R3 ~ 7.298, which is quite large value.

Then, according to formula (29) and the parameters values, the critical sterile females release rate, A%,
is around 391.

We provide simulations with several combination of values for ex from 0% to 3%, and e from 0% to 2%.

Since Ay,: varies from 0 to 20000, then according to €p, A%”t varies from 0 to 400, when ex = 0.01, from
0 to 800, , when ep = 0.02, from 0 to 1200, when , when ez = 0.03. Thus, in the forthcoming simulations,
for sufficiently large values of Ay, we will have Ap > A,

In Tables 4 and 5, we illustrate some of the cases given in Tables 2 and 3. Clearly, when Ne > 1 (see Table
5), we highlight the fact that it is more difficult to control the epidemiological risk, even with a release rate
just above the critical threshold, and such that e Ao << A%, In contrary, when Ne < 1, epidemiological
control is easier to reach even with a substantial increase of the contamination by sterile females: see Table
4. These results are also supported by the forthcoming simulations.

In Figs. 6, and 7, page 25, we consider the case where there is no contamination by sterile females, with
¢ such that eA/ < 1 and eN > 1, that is where ¢ = 0 and ¢ = 0.02. Roughly speaking, it is easy to observe
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LHS-PRCC Sensitivity Analysis — SIT Epidemiological Model
(SF contamination+RF) — Infected Sterile female stage — time-interval: [800,1000]
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Figure 3: LHS-PRCC Sensitivity analysis of the Epidemiological model - Infected Sterile Females

y €F | 0 [0.01 ] 0027 0037] 005 |
(1—€p)Asor | 3700 | 3663 | 3626 | 3589 | 3515
er Aot 0 37 74 111 | 185
R Nect 3.51 | 3.314 | 3.143 | 2.99 | 2.72
R simow 0 0 | 0.422 | 0.527 | 0.701
R sit..s 0 |0.095 | 0.189 | 0.284 | 0.406
R s, 0 |0.095 | 061 | 0.81 | 1.17

Table 4: Threshold values to lower the epidemiological risk for DENV when £ = 0.01, such that Ne < 1,
A§F = 3653, A% = 391, and R3 > Rg,/\/’s<1~

that residual fertility has less impact on the rate needed to decay Ry below 0.5. When e > 1, it is not
possible to lower the wild population under any given small threshold, to reduce the nuisance for instance,
but it is still possible to reduce the epidemiological risk, at least when no female contamination occurs.
From Fig. 8, page 26, to Fig. 14, page 29, we consider contamination by sterile females with a residual
fertility varying from 1% to 2% in order to consider both cases Ne < 1 and Ne > 1. It is interesting
to notice that the shape of the level sets change according to ep, such that when ep increases, the area
where R.yy < 0.5 decays. In fact, when ep is large, say 2% or 3%, then very massive releases are such that
erAior > AF which implies R(%’TDFE > 1 and Repp > 1: see Figs. 11, 13, and 14. This simulation clearly
shows that increasing the release rate is not the right response, whatever if e is less or greater than 1,
when SIT is used to decay the epidemiological risk. Clearly, as long as the female contamination is large,
increasing the release rate will take the sterile females close to the release rate threshold, A%®, such that

22



LHS-PRCC Sensitivity Analysis — SIT Epidemiological Model
(SF contamination+RF) - Infected Wild female stage — time—interval: [800,1000]
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Figure 4: LHS-PRCC Sensitivity analysis of the Epidemiological model - Infected Wild Females

[ [0 [ 001 [ 0.02 ] 0.03 |

(1—er)Arr | 3700 | 3663 | 3626 | 3515
erhior 0 37 74 | 111
RZ o1 | 1167 105.6 | 94.58 | 83.53
NS 2869 | 2971 | 3074 | 3176

A§iesy | 3638 | 3718 | 3806 | 3905
Ré.srrw | 0925 | 0.0.969 | 1.01 | 1.06
RE sit..s 0 0.095 | 0.19 | 0.28
RS si7, 0.925 | 1.064 | 1.20 | 1.34

Table 5: Threshold values to lower the epidemiological risk for DENV when & = 0.02, such that Ne > 1,
A =391, and R3 < R&NDI.

Resr > 1. Note also, that our simulations show In that an optimal release rate exists for a given, sufficiently
large, SIT starting time.

Mechanical control is clearly beneficial to reduce the time needed to decay R.rs below 0.5 and also the
(optimal) release rate: compare Figs. 13 and 15, page 29, where the time needed to reach 0.5 for R¢ys decay
from 500 days, for Aype ~ 6000, to, only 300 days with A,y ~ 4000, to reduce R.ss before DENV starts to
circulate. Compare also Figs. 11 and 14 with Figs. 16 and 17.

In fact, when Ne > 1, serious problem occurs when contamination by sterile females increases, without
mechanical control: see Fig. 14, page 29. As seen, it is no more possible to decay R.ss below 0.5 and,
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LHS-PRCC Sensitivity Analysis — SIT Epidemiological Model
(SF contamination+RF) - Infected Human stage - time—-interval: [800,1000]

0.5-

| .;.ﬁ..

“Il..** ]

-1.0-
1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1
Hms  Had Ha2 Vh Hm Aot Hn Bhm M €F VF Brmn r B B}/ € []

Figure 5: LHS-PRCC Sensitivity analysis of the Epidemiological model - Infected Humans

as explained before, very massive release can be such that R.fs > 1. In that case, SIT cannot be used to
control the epidemiological risk, at least without mechanical control. In fig. 17, page 30, mechanical control
allows to lower the time needed to decay R.¢s but does not really increase the maximal release rate such
that Reff < 1.

Altogether, our numerical simulations, that the first parameter to lower is ¢, the residual fertility. How-
ever, even with a low residual fertility, say 1%, contamination by sterile females should be contained: compare
Fig. 9, page 26, with Fig. 10, page 27.

5 Conclusion

Conducting SIT programs in the field is a very complex and difficult task. However, before reaching field
releases and in order to be successful, several steps have to be checked in laboratory and in semi-field, before
and during field releases. In fact, it is better to find and solve issues before starting field releases: to this
aim control quality is an essential process within SIT programs. However, SIT programs against mosquitoes
can fail, and this is in general due to a combination of several factors, among them residual male fertility
and contamination by sterile females that seem not to be always studied as deep as they should be. Indeed,
sometimes (numerical) upper bound values are given for these parameters but they do not rely on biological
parameters related to the targeted vectors nor on epidemiological parameters when epidemiological control
is the main objective. We aim to fill this gap.

Thus, using modelling and mathematical analysis, we provide threshold parameters for residual male
fertility and contamination by sterile females. We also show that these thresholds impose constraints on SIT
programs to be met. If not, then, the risk of SIT failure is high.

Our results could be used and helpful for field experts to estimate the risk of SIT failures and, thus, to
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Figure 6: Rcf¢(t7) vs the starting time without sterile female contamination, without residual fertility
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Figure 7: Reys(tr) vs the starting time and the level of the control, without contamination by sterile females,
and with 2% of residual fertility, without Mechanical control

target the main parameters to improve before field releases and to follow carefully along the SIT process.
Theoretically, we show that while residual fertility can be an issue to control the wild population, i.e. to

lower it under a given threshold, to reduce the nuisance, it is not when it comes to control the epidemiological

risk. In other words, when e < 1, both nuisance reduction and epidemiological risk reduction are feasible
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Figure 9: Ress(tr) vs the starting time and the level of the control with 1% of contamination by sterile
females, 1% of residual fertility, and without Mechanical control

as long as the sterile female contamination is low, that is eAspr < A%”t. While, when eN > 1, only
epidemiological risk reduction is feasible but under rather severe constraints, that is eAsp; < A%”t and
RE < R§ qres1> With releases that are sufficiently massive.

In fact, once eV < 1 is not met, we strongly encourage the SIT program to solve this issue before going

further.

Finally, in several SIT reports/manuals or SIT papers [10], a percentage is given for the maximal con-
tamination by sterile females. We show that this percentage is useless since the maximal amount of sterile
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Figure 11: Rcsf(t7) vs the starting time and the level of the control with 3% of contamination by sterile
females, 1% of residual fertility, and without Mechanical control

females allowed to be released will depend on the size of the total release. Indeed, you don’t release the same
amount of sterile females when you consider 1% of 10000 or 1% of 20000 sterile insects: for the first case,
Ap < A§ while in the second case, Ap > A%, such that the dynamics of the whole system is completely
different and so is the impact of SIT.
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Figure 12: R.s¢(t;) vs the starting time and the level of the control with 1% of contamination by sterile

females, 2% of residual fertility, and without Mechanical control
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Figure 13: R.s;(t7) vs the starting time and the level of the control with 2% of contamination by sterile

females, 2% of residual fertility, and without Mechanical control

To conclude, our study shows that both contamination by sterile females, exA;o:, and residual male
fertility, e, matter in the efficiency of SIT. We provide upper bounds for these values that guarantee the

efficiency of SIT, both for nuisance and epidemiological risk reduction.

Of course, several improvements are possible, like considering impulsive releases, like in [7]. In addition
other control quality tests could be taken into account in future SIT models in order to provide more
realistic results, and eventually, when possible, to consider variable parameters, like in [27] to take into
account temporal and spatial variation of the environmental parameters that can affect the dynamics of the
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Figure 15: Rcsf(tr) vs the starting time and the level of the control with 2% of contamination by sterile
females, 2% of residual fertility, and 40% of Mechanical control

vectors and thus its control. Last, migration could be also taken into account [5].
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A A useful result on monotone systems

Let us consider an n dimensional autonomous differential system:

dx

) (13)
where f is a given vector function, i.e., f = (fi)i=1,....n, with f; : R™ — R. System (43) is called cooperative if
for every i,j € {1,2,...,n} such that ¢ # j, the function f;(z1,...,z,) is monotone increasing with respect to
x;. For cooperative system, the global asymptotic stability of an equilibrium can be studied by the following
theorem, see also [2]:

Theorem 9. Assume that system (43) is a cooperative system. Let a, b € Q@ C R"™ such that a < b, [a,b] C Q
and f(b) <0< f(a); where [a,b] = {x € R" : a < x < b}. Then (43) defines a (positive) dynamical system
on [a,b]. Moreover, if [a,b] contains a unique equilibrium p, then p is globally asymptotically stable on [a, b].

B Proof of Theorem 3

(1 - €F)Atot

For reader convenience, we recall that Mg =
HMs

1. Assume that Me < 1. By computing the eigenvalues of the Jacobian matrix of system (8) at the
elimination equilibrium FEj it is straightforward to obtain Fj is locally asymptotically stable when
Ne < 1 while it is unstable when Me > 1.

o Let us set X = (A, M,F) € R} and f((1 — €p)Asor, X) the right hand side of system (8). For
(1 — ep)Ator > 0, we have that f((1 — ep)Asor, X) < f(0,X). Note that for (1 — ep)Aior = 0,
we recover [3, system (1)]. If (1 — ep)Asor > A, then system (8) admits a unique equilibrium
which is Ey. Using [3, Theorem 3, point (1)], we deduce that Ey is globally asymptotically stable

. 3
in R
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e The proof of points (b) and (c) is done in the same way like the proof of [3, Theorem 3, points

(2) & (3)].
2. Assume that N'e > 1. Then, the elimination equilibrium Ej is unstable. Moreover, the inequality
A
A ped > AN (44)
Y+ M1

holds for all sufficiently large A. Let n > 0 and let A,, be so large that in addition to (44) the following
inequalities also hold:

A'(l 2 n?
2(1—17)y
= >
MTL MM ATL - n? (45)
Fug = (’Y + p1 + HZAn) An > n.
W~n 2¢
Let b, = (An, My, Fiw,s,,) and f be the right hand side of (8). Then
—¢Fw,s,
—— M,
F((1 = €p)Aror, bp) < £(0,bn) = gt Hin < Ogs. (46)
ity (1 bt
! AN'(v + 1)
Similarly, for an arbitrary 6 > 0, let as = (As, Fw,s;, Ms) with
1—er)A
Ms = w < M,
pins (s +6)
K
As = —————M;s < Ay, 47
(I—=r)y f (47)
+ 1+ peA
Fiw.s, = (v M1¢ H2 5)A§ < Fws,.
We also have that
M5+€M§ ,us(’)/+u,4 1)A5 1+€(O¢++5) Qg
———— 2y As — pgk = ’ —1- 48
M5+M§T75 HsLw,s; P 1+a++6N as +0 (48)
0Qs
Ne—1)day + Ne—-1)6%2 4+ —=
_ wus(y+ pa)As ( ) day + ) oy (49)
(;5 (1+OL++§)(OL++6)
> 0. (50)
Thus, it is straightforward to obtain that
0
0
f((l - 6F)Atot,aé) = M; + SMg'r A . > Ops. (51)
7M5 T M; YAs — USLwW,Ss

Applying Theorem 9 with a = as and b = b,,, we obtain that for n sufficiently large, system (8) defines
a dynamical system on [as, by] and that E; is globally asymptotically stable on [as,b,]. Since b,, can
be selected to be larger than any point in ]Ri and ags can be selected to be lower than any point in
R3 — {Ogs}, this implies that F; is globally asymptotically stable in R3 — {Ogs}.

3. Assume that Ne = 1.

(a) TIf (1 — ep)Asor > AG/L, then Eg = (0,0,0) is the only equilibrium of system (8). Based on (46)
and Theorem 9, we obtain that for n sufficiently large, system (8) defines a dynamical system
on [Ep,by,]. Since b, can be selected to be larger than any point in RY, this implies that Eq is
globally asymptotically stable on ]R‘i.

(b) (1 —€ep)Aiot € (O7 Aﬁ}“é), then we proceed as in point 2 by replacing Ey by Ey. Hence, we obtain
that Fy is globally asymptotically stable. Then, the elimination equilibrium FEj is unstable and
the coexistence equilibrium Ey is globally asymptotically stable in Ri — {Ogs}.

This ends the proof.
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C Proofs of Propositions 3-4: existence of endemic equilibria

First, it is interesting to check after an artificial endemic equilibrium, without wild insect, called WIFE,
Wild Insect-Free boundary Equilibrium. This is a particular case, but it can exists. To find it it suffices to
solve

S
0 = pnNp— Bﬁmhﬁlsh — UnSh,
h
St
0 = BﬁmhFSh —vpdy — pndy,
h
0 = l/h-[h - /«Ltha
and
1,
0 = 6FAitoif - BﬂhmFSS - ;U'SSSa
h
Ip,
0 = B/B}L"LFSS - (Vm + MS)SE7
h
0 = vnSeE—nsSr.
Straightforward computations show that
S}# = Yim 1-— Hs erhiot,
Hr (Vm + ,U'S) . Bﬁ b ] S#
Hs M+ o Np

*

S
such that 0 < Fh < 1 is a positive root of the second order equation
h

€AO €Ao
(us+Bﬂhm Hh )—(us+235hm Ph F”)X+(Bﬁhm M F”>X2=0.

M+ vp Hh + vh s Agrit Kh +vn 5 Agrit
_ S
Assuming epAior < AG™, we derive N—h =1, the TDFE equilibrium, and
h
Hh
ws + BB
ﬂ — " o+ v > 1
Ny, Uh erhio ’
B g
Bhm n + vn + ps A%”t
, S .
that is not a viable root. When epAsor = A%, we recover —h — 1. Then, assuming epAsor > A or equiv-

h
alently R&TDFE > 1, a boundary wild insects-free equilibrium WIFE = (S%Iﬁ, R?L, 0,0,0,0,0, Sg, SﬁE, S?)
exists such that

h
g#  hs+BBun—

Ph _ Kh + Vn <1
Ny, Hh erhio ’
By, .
ﬁhmﬂh""l/h +,US A%«zt
¢ BBmn 5? "

I; = —/——=5;,

Vp + pn Ny,
erhiot
st = et
Bﬂmh ﬁ7
I
s + N, 5
HS o
st = 224,
E I;m !
R =
h Hh h
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The assumption gy = pg is to simplify the forthcoming computations. In order to derive existence of a
positive endemic equilibrium, such that I, > 0, Fyy; > 0, and S; > 0, we solve

Fwi+S
0 = ,U*hNh - Bﬁmh%sh - :UhSha
F S
0 = Bﬁmh%—’—lsh — vpdn — pndp, (52)
h
0 = vplp— pnRn,
0 = ¢(Fws+Fwe+Fwr)— (v +pag +pagd)A,
0 = (I1—r)vA—puM,
M + eM Iy,
0 = =TS A~ BBum - Fivs — usFw s,
M 1 M Ty Bh N, Fws —psFw.s
1
0 = BﬂhmlFW,S — (Um + 1s)Fw,E,
N}L (53)
0 = vpltwe—psFwr,
(1—e)M I
. 0 )
0 erlior + N+ M Yy Br NhSS psSs
I
0 = Bﬁhmﬁhss — (Um + us)Se,
h
0 = vnSeE—usSr.
Thanks to (53)1, and summing (53)4 and (53)5 such that
BBy I
Fwe+ Fwi = P iFw,S,
ps  Np
we derive BBy I
¢ (1 + hmh) Fw,s = (v+paq+pa2A)A,
s Np
From (53)3, we have
M + eM I,
S A = ( BBum Firs,
M+ M 7y ( Br N, +,us> W,s
that is, since A > 0,
HA2
N (M +eMj) = (1+’A> M+ MY).
(0 +e5) = (14 442 a) (1 4 2
Then, using (53)2,
1—
Y Gl )
1228
we obtain ) )
N <( _ r)7A+5M§> = (1 + HAz A> <( — ’"”A+M§) :
war Y+ Al B
that is equivalent to the following second order equation
1— 2 1—
Q((m) A2+M(QM§—N)A+(1—N5)M§:O. (54)
K Kt

We calculate

A= ((1 —" (oum —N)>2 PRV B Gl AR VR
1Y, o 0l L/ W R 15V o

that is )
1—
A= (W) ((QM; — N)?—4Q(1 - Ne) Mg) .
M
When Ne > 1, then A > 0, and we deduce the existence of one positive root

A*EE:; ./\/'—QMg-i-\/((QMg—N)2+4Q(NE—1)M§> , when Ne > 1,
2Q(l—r)v

2578
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for all M > 0, or
1

1—r
o=
Kt
. . [iM s
for all QME < N, that is (1 — ep)Aior < 0 N.
When Ne < 1, we have now to study the sign of A according to QM. and solve

EE _
Al =

(N —QMY), when Ne=1

(QME —N)? —4(1 = Ne) QMg = (QME)* + (N)? —2(N +2(1 — Ne)) QME =0,
for which with
Ag = 4 (((N+ 2(1-Ne)))? - (N)z) = 16(1—Ne) (N + (1 — Ne)) >0,

we can deduce the following threshold

oug, = (VN1 -Ne) - VI Nz) >0,

Remark 11. Surprisingly, we derive a threshold almost similar to the threshold obtained in (14).

Using the same reasoning than in section 2.2, we deduce that, since QM < QM 1. then there exists
two positive roots of (54), that is

APE ﬁ (/\/_ QM — \/((QM; —N)? —4Q(1 - Ne) Mg)) 7
2Q 1227}
AQEE:ﬁ (N_QM§+\/((QMg—N)2—4Q(1—N€)M§)>-
20— "1
75

Then, we deduce that
RV Gt VRIS
K3 ‘LLM (] )
1—¢e)M:g M MG
Thus for a given APF we are able to estimate (J\/[_:)]VI;TVA and ﬁe]\@f
other variables, some computations are needed. From (53); and (53)s, we have

rvA. In order to deduce the

— BB
v v I pis(Vm + ps) " Nn < (1—e)Mg
Sy =Ymg, - ¥Ym  _pg Ihg o _ ephyor + S A
1= 050E 1o + 113) ﬁthh 5 Ms+35hm1{,’; o M ol

Similarly, from (53)3, (53)4, and (53)5

B B
Fug='mpp, = — Ym  _pg Anpo o psmtps) T MteMs
’ ns ps(Vm + ps) "N /«LerBﬂhmJ{T’; M + M}

Thus, from the two previous estimates, we deduce that

VimBﬁhmi
Sr+ Fw 1 _ s (Vim + 115) Ni (epAior + 17A)
Np, 15 + BBhm A Ny,
Then, from (52);
Fwr+ S
(1 Ni = BB —2E 2L 4 1, S,

Np
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Sr+ F
and replacing % leads to
h

1% Bﬂh?ni er\ f A
,uhNh = <Bﬁmh B D ( Frtor 2 ) + tn Sha

s(Wm + 115) pus + BBhm A Ni
I, Vi, I}, (epAior +17A) I,
- m m B m )
1r Ny (us + BBhm Nh> (Bﬁ s+ 1) Bj N, N, + pon | s + BBn N, Sh

from which we deduce

MhNh (MS + Bﬁhm]{,*’;)

Sy =
U, (GFAtot +ryA) I,
BBmhn——— m - BBhm~
( B h o+ i) Bpn N, + pn | s + BB N,
In particular, we can deduce
v
—— " BBpm - up N
S+ Fwr S, = (erAior +1vA) Ms(Vm + ps) Bnm 3 1N
Ny, o Ny, ( Um (EFAtot =+ T’YA) ( 1, ))
BB ——————BBym o ———————— + + BBhm——
" 115 (Wi + i) P Nh Ny, Hn\ s P Ny,
and, using (52)s, i.e.
Fwr+ S
Bﬂmh%&z = (vn + pn) In,
h
we have
v
(erAror +74) psln ) o 5 41 _ A
BB = (vn + pn) -
Np, B3 Vm BB (GFAtot +ry4) n + BB In Nn
mh (Vm +,US) hm Nh Hh { 1S hm Nh
Assuming I, > 0
(epAior + 177 A) Vm
B m B m =
Bmh N, s m + 15) Bhm bt
U, (epAtor + 1y A) ;
+ BBy ————B ml’——&— ( +Bm"),
(Vn + pn) ( B e e Bh N, pn (s Bh
we finally deduce
erAior + ryAFE Um,
Bpmn (erhrot ") BBhm — (v + 1) s
EE Np, s (Vm + 1is)
Il h = Mh EE Nh > 07
(vh + 1n) BB + BB vm___(erfio + 1y AYT)
1% m m
hor hom | " s (Wi + 1) Ny,
assuming
(CFAtot + r’yAlEE) VmBﬂhmBﬂmh -1
Ny, 15 (Vi + ps) (Vn + pn) pos ~
that is I
erNior + T’}/AlEE > 7?25 . (55)

From the previous formulae, we deduce S,‘?f:, RE’{J, FV]{J,% 1 FV‘?,% 1 FV‘?,% 1 SIE{E, SE]”;, and finally 55115
proceed similarly to get the second endemic equlhbrlum EES IT,2 Or EES IT, % under the same condition (55)
because AFF < AFE,
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We now assume that pg < py. To derive the equilibria, such that I;, > 0, A > 0 and S; > 0, we have to
solve
0 = ppNp— BﬁmhFW’IT—FSI
h
Fwi+ 51
Ny
0 = wvplp — pn Ry,

0 = ¢(Fws+Fwe+Fwr)—(v+pmai+paA)A,
0 = (I—r)vA—puuM,
M—FEM; Ih
0 = L TEVS A BBy Fws — usFivs,
M 1 M Ty Bh N, fws = pskws
I,

0 = B/maFFW,S — (Um + ps)Fw,e,
3

0 = vmFwre—uFwr,

1—¢e)MZ I
0 = EFAtot + (]W-F)]WL;T’YA - BﬁhmF};SS - ,USSSa

Sh — pnSh,

Sk — vidy — pndp,
(57)

I
0 - BﬂthlSS_(Vm+MS)SE7
h
0 = VmSE — MISI-

M +eM
Let us consider the auxiliary variable X = ﬁ It follows from system (56)-(57) that:
K

ryAX
Fys = W—Ih’
+B m -
s Bn N,

Fop = PP Inp
’ V7n+,USNh =7

B/ma Ii T’YAX
Um + pus Np

)

1,
B 7
,US"' maNh
V.
Fw; = —Fwg,
1274
Vm BBrm In ryAX
W N, I,
KT Vm + l4s hﬂS"‘Bﬁhth
h

1—¢e)MZ
erior + 7(M mn )jW*S ryA
SS = IS )
h
BBhm
us + BBy N,
B/ma Ih s
Vm + ps N 7’

Sp =

(1— )Mz
Ao -2
BB L T M arg

Um + pis Np,

~yA

Ip,

B _

ks + ﬂthh
S = S,

1224

(1—¢e)Mg

A T EPs

L M+ Mg

LI Um + pis Ny,

~vA

I,
BBhm—
ps + BBy N,

Therefore, equation (57); assumes the form A =0 or

Bﬁhm Ih < Vm>> ( Ih ) ( Ih >
X (14— (142 ) ) = (v + + BBhm~ | — + BBrm—~— | A=0. (58
Y ( o+ pis Ny e (v+nan) | ws + Bbu N, ) Haz(#s Bi N, (58)
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From (56)2, we derive
BBmn Fw.r + St

I =
"ot N
However,
1—e)M;
F ( 6) ST”'}/A
Vm BBhm In ryAX Um BBrm In M + M}
Fwr+S = P N, T, +7V T A In )
HI Vm us h,uSJV_BmaNi HI Vm Hs INp ,UfS'""BﬂhmF
h h
_ Um BBpm In Ap+ryA
TN Ny I,
UI Um + s hMS"*‘BmaFh
h
Therefore, for I, > 0, we have
I, vm BBmn BBum 1
+ BBhm— = — — (Ap +1rvA) = a(Ar + rvyA), 59
1s P Np MIVh“FMth‘f',uSN;?( F+ryA) (hr +rrd) (59)
where for simplicity, we set
Um Bﬂmh Bﬁhm 1
[L1 Vh + p Vi + ps NE
Hence (58) assumes the form
140
ryg [ 1+ ﬁ(a(AF +ryA) —ps) [ X = (v+ pay + pa2d)(Ar +ryA)a =0 (60)
or equivalently
CL3A3 +CL2A2 +CL1A+CLO = 0, (61)
where
az = —(1—=7r)y?pazar <0,
293¢ (1 —7) <1 + Vm) @
az = PL7 i MEpazary — (L—1)y (v + pag) rya + pasaAp),
Vm + Us
Um
1+ -2
= (I-=r)ay|rmy(y+par) Nl #JL — QMg 1| —pa2Ar |,
us
2.2 * Vm Um
ey ¢ pnre M3 1+/~T Q@ 1—&-#— (aAp — ps)
I 2 I
ar = +r 1—r)| 1+
! Vm + Us 7o ) Um + s

—pun MG (v +pa)rya+ pagsalAp) — (1 —1r)y (v+ paq1) Ara,

Um
1+ -2
= umMgrya(y +pan) /\/51 llf,i—l — (@ =r)y(v+ pa1)Apa(QMS + 1)
+7
Hs
Vim
1+ — aA
+ry2p(l —r) 1—1—751 (F—l) )
1+ = \ Hs
Hs
VUm, Um Vm
oy Mgr L+ L+ L.
= (= +pan) | ST Ne—BL 1| e Nps [ 1 —bL | tahp | N—EL —omg -1
L=r 14+ -2 +-= —
Hs Hs Hs

)



ay = pmMG|ryoe |1+

= pup MG (v +pan) | psNe [ 1+

= pupMG(y+pan)ps | Ne|1—

Hr (OéAF 1

Hns

1+

Vm

—(v+pa1)alr |,

) —OtAF s

EQAF aAF

Recall that since pug < g, it follows that

142 ps

Hs

Hs

To discuss the number of real positive solutions of equation (61) we use the Descartes’ rule of sign, see for

instance Table 6.

az | as | a1 | ag | Number of positive real solutions

0

+

1

+ |

2 or0

2 or0

2 or0

]
+|

3 orl

1

+
+
+

+
+[+

1

Table 6: Number of positive solutions of equation (61) with the Descartes’ rule of sign.

As explained in the numerical part, we consider a total release rate of sterile insects, Aso¢, and a parameter

€r, the percentage of sterile females released, such that

A]y[ = (1 — EF) At0t7 and

A
Doing like that, M& = (1 — ep) —2

Ap = €FAtot-

HMs

1+@ aerp
ap = par M5 (v + pan) ps | Ne | 1— —FL Fowot 1

1+ — Hs

Hs

1+ app (1 —ep)r
o= (L= )y + pan) | N [ 1 - —4L | - [ Qe

1+ = (1—7) parg

Hs

,MQEF (Atot)2> ’
HMs

and

o2 = (1= oy [ 120+ pa) [ A—HE <1 | <z (0= )

and we deduce all parameters thanks to A, that is

Hs

12374
1—r /L]y]s

+ €F) Aot

From ayg, it is easy to deduce the following discussion thanks to N'e and for a given ep:
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14 2 142
oa0>OifNEZ#>1orist§ 55 and
1+-= 1+ =
K Hr
142
221
Nel1l T
crit,] _ MS Hs
Aot < Appp = e 1+ Upn,
RV T
1+ -2
Hs
Otherwise, when Ao > Ag%; ap <0
14 2 142
e It is interesting to notice that as < 0, whatever Ay > 0 if N < 55 . In addition N < ,’Ljs
1+ - 1+ =
v v 224 1224
1+-= 1+ =
implies Ne < # because 0 < e < 1. When N > 55 , then as > 0 if
1+ - 1+ =
K 1224
142
(v +par) | N—FE -1
Atot < A?;:ta == ,U,S .
r 12373
A2 ((1 —€p) 1 €F>
— T HMs
It is negative, otherwise.
e Straightforward computations show that a; > 0 if
VUm, Um
rit 1 o (1~ ep)r o o
PV DR S I (710710 L Y VI O [ VO
QQ(l_eF)aeF (1—7) parg 14 2m 14+ 2
where
VUm, Um 2
1+ — 1+ —
1-— 1-—
A= a1 = ep)r 1—/\/5751 + aep 1—/\/751 +4Q( ¢ )aeFNus 1-—
(1 =7) pass 14+ 1+ - s
s Hs
e Thus, we derive
1 Vm
— Assume Ne > fji I Aoy < AT then ag > 0 and ay > 0,
14 -
Hr
1+ Ym . -
— Assume Ne > 17%5; If Aor > max{AS79% A1) then ag > 0, a1 < 0, and ay < 0 because
+ -
v Hi v,
1+ -2 1+ =
Ne > 55 implies N > #,
14 m 1+ m
Hr Hr
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— Assume Ne < lii and Agor < min{AS3 A1 then ag > 0 and a; > 0,
1+ Ty
such that, thanks to Table 6 page 40, we deduce that only one positive equilibrium exists.
142
— Assume Ne > 755 If AT < Ay < ASTT92 then ag > 0, a1 < 0, and ag > 0,
1+ e
such that, thanks to Table 6, we deduce that there exists 1 or 3 positive equilibria.

14 2
e Assume Ne < 753
1+ _m
K
— IF AT < Aoy < AT then ag < 0 and ay > 0,
. . 1 + V7m .
— If Ayor > max{AS"3 A1 then ag < 0 and a; < 0. If N > ’55 and Aor < AS52 ) then
14 -2
I

(LQ>O,

such that, thanks to Table 6, whatever the sign of as, we deduce that no or 2 positive equilibria.
e Assume Ne < 752 If Agor > max{A71"? AT then ag < 0 and a1 < 0.
1+ —
K

— N < —2E5 then ay <0,
1+ﬂ
1234

Um
14+ -2

-IUUN> ) '[VL:; ,and Ay > AS2 ) then ag < 0,
+

nr

such that, according to Table 6 page 40, there is no positive equilibrium.

D Proof of Theorem 7

Assume that A'e > 1 and ngT pre > 1. Let us consider the following sets

xz(t) = (Sh,In,Rn, A, M, Fws, Fwg, Fwr,Ss,Se, S1)(t),
r = {;CGRE:Ih>0,Rh>0,A>0,M>0,FW’S>0,FW’E>0,FW’]>0,SE>O,SI>0},
or = {ZCER}:ZIhXRhXAXMXFw)SXFW’EXFW’]XSEXSIZO}.

Direct computations, see e.g. [23], lead that the sets I" and OI" are positively invariant with respect to system
(22)-(23). All solutions are bounded and system (22)-(23) is a point dissipative system. We denote ¢; (o)
the flow corresponding to system (22)-(23), such that the solution of system (22)-(23) starting at zo at t > 0
is x(t,z0) = pi(xg). Let My = {x € OT' : ¢y(x) € I for t > 0}. Then we have My = OI'. The trivial
disease-free equilibrium TDFFE, the wild insects-free equilibrium WIFE and the disease-free equilibrium
DFE are in My. Let W*(TDFE), Ws(WIFE) and W*(DFE) be the stable manifold of TDFE, WIFE
and DFE, respectively. In the sequel, we prove that WS(TDFE)NT = @, WS(WIFE)NT = § and
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W*(DFE)NT = § hold when Ne > 1 and R§ rppp > 1. We first show that W¥(TDFE)NT = ). Since
Ne >1and Rf pppp > 1, by continuity, there exists ¢ such that for all € € [0, o], we have

ks e>1
B/ma
s+ e (v + pa + paze)
h
and
m BBmn BBnm 1 Ao
v Bmn BB 2(€F tte)(Nhe)>l.
Um + s pr Ve +pn N\ ps

We claim that there exists 19 > 0, such that for all 2o € T', lim sup ||¢:(z9) — TDFE| > no. Indeed,
t——+oo
suppose that this is not true. Hence, there exists T' > 0 such that for ¢ > T', we have:

er\ er\
Ny —e<Sp<Njte Lo ccgec @t [<e A<e

Hs Hs

From system (22)-(23), it follows that

dA
= 2 dFw,s — (v + pay + pae)A, (62)
62
dFWS 6h'm6
J > A—-B F — gy
i Z Ery N, w,s — Ust'w,S,
and
dIy, St
“h s BBt (N, =€) — valn — pnl
T 5thh( h—€) = Updp — ppdp,
dR
7; = vpdp — ppBR,
dSE > Bp I, (erAio (v + 115)S (63)
3, m yr — € - m b)
dt - h Ny, ns Hs)PE
dSr
— = v, Sg—urSr.
7t UmSE — UIS]
Let us consider the matrices
—(v+ pa + pra2€) o)
h= ery —Bﬁx}jer,s — Us
and N
—€
~(vn + ) 0 0 BB —5;
h
J Vn —Hh 0 0
2= Bﬁhm (GFAtot )
—¢€ 0 —(vm + 0
Np, Hs ( Hs)
0 0 VUm —HI

Let s(J) be the stability modulus of the matrix J. It therefore follows that s(.J;) > 0 and s(Jz) > 0. Hence,
the positive solutions A, Fw. g, Iy, Ry, Sg and St of systems (22)-(23) are unbounded which is a contradiction.
Thus, W*(TDFE) NI = (. Exactly the same computations show also that WS(WIFE)NT' = (. To show
that W*(DFE)NT = (), we first recall that following (27), R§ 7ppg > 1 = R g7, > 1. Hence by continuity
there exists g such that for all € € [0, €g], we also have 4

Um Bﬁmh Bﬁhm 1
Um +ls  pr Un+ pn N}
As before, we claim that there exists ng > 0, such that for all g € T, lim sup ||¢:(xo) — TDFE]| > no.

t——+o0

Indeed, suppose that this is not true. Hence, there exists 7' > 0 such that for ¢ > T, we have:

(SS,DFE — 6) (Nh — 6) > 1.

Np—€e< S5, <Np+e, Sspre—€<Ss<Sspre+e Iy<e A<e
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Hence, (63)3 assumes the form

dSg Iy

— 2> B m a7 - - \Um ’
7 = Bh N, (Ss,prE — €) — (Vm + 1s)SE

and matrix Jo now becomes

—(vn + pn) 0 0 BﬂthhT;e
Jy = B Vh —[n 0 0
N, (Sspre—€) 0 —(Vm + ps) 0
0 0 VUm, —HrI

As previously, we have that s(J;) > 0 and s(J2) > 0. Hence, the positive solutions A, Fw.s, I, Rn, Sk
and Sy of system (22)-(23) are unbounded which a contradiction. Thus, W*(DFE) NI = (. Therefore, we
have W*(TDFE) = {TDFE}, W (WIFE)={z e R} : A= M = Fw,s = Fw,g = Fw,r = 0,1, > 0, R, >
0,5 > 0,57 > 0} and WS<DFE) = {JI S R}Fl cA>0,M > O,FW,S > O,FW7E = FWJ =1, ==Sg=51=
0} such that My = W*(TDFE)UW*¢(WIFE)UW?#(DFE). In addition, each equilibrium is isolated and
acyclic in My. Based on Theorem [21, Theorem 4.6], we found that system (22)-(23) is uniformly persistent
with respect to (I',0T') whenever Ne > 1 and R(Q)’TDFE > 1. Moreover, using the invariance of I', the
dissipativity of system (22)-(23) and its uniform persistence, we can deduce, following [20, Theorem D.3],
the existence of a least one positive coexistence equilibrium.
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