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SUPPLEMENTARY METHODS
Statistical shape modelling

Establishing correspondence among facial meshes.

The CBCT and CT scans were collected as Digital Imaging and Communications in Medicine
(DICOM) files. These were first transformed into mesh representations of the facial images by
importing the volume into MeVisLab,* and applying threshold segmentation to segment the
soft tissue surface of the face only. In this way, an iso-surface is generated which is then
tessellated to create the triangular mesh and exported as a wavefront object (Supplementary
text Fig. 2A). Constructing an SSM and imputing missing parts of a shape from it requires that
each face be represented by the same number of vertices and that these vertices should
correspond across all instances of the shapes. This can be accomplished via a non-rigid
registration of a template face onto each mesh. A standard template face (section 1.1.2) is
gradually deformed into the shape of the target, imposing onto the target shape its vertices
and topology comprising approximately 20 000 dense quasi-landmarks. In general, we use a
non-rigid iterative closest point (ICP) framework,? which, over multiple iterations, updates
both the estimated corresponding (closest) points on the target to the template as well as the
non-rigid deformation from the template to the target. Combined with the gradual relaxation
of a regularization parameter on the deformation field, this allows the template to gradually
become more flexible in its approach to the target. We employ the non-parametric non-rigid
ICP registration implemented in the MeshMonk toolbox,?

(https://gitlab.kuleuven.be/mirc/meshmonk) in MATLAB version R2021b.* The approach is

non-parametric in that it incorporates no prior model of allowable deformations. In theory,

this allows it to deform to any shape, but another impact is that, if the target is too dissimilar



from the template, it can run to anatomically implausible solutions and correspondence is

then incorrectly established.

To improve the precision of the final registration, the non-rigid ICP was initialized with a
landmark-guided non-rigid deformation. Twenty landmarks (Supplementary text Fig. 1) were
carefully placed on each target mesh and the template mesh (Supplementary text Fig. 2B).
This initial non-rigid deformation was modelled as three thin-plate spline interpolants each
predicting the scalar x, y, or z coordinates of the landmarks on the target, from the x, y and z
coordinates of the landmarks on the template. Evaluating the interpolants for all points on the
template yielded their deformed coordinates. For registration of the defect scans not all
landmarks could be placed so the full set of 20 landmarks was reduced to only those that were

not on a defective region.

Following initialization, the non-rigid ICP was performed. The MeshMonk framework allows
for user-specified regions of the face to be ignored while computing the deformation towards
the target. For those participants where the chin was supported by a chin strut or had closed
eyes, these regions were ignored in the calculation of the deformation field. Any participants
that still failed the registration were excluded and a total of 148 samples were included in the

final model.



Supplementary text figure 1: Anatomical landmarks used for initialization during mapping.
1. Nasion 2. Pronasale 3. Subnasale 4. Labiale superius 5. Labiale inferius 6. Sublabiale 7. Endocanthion
(right) 8. Exocanthion (right) 9. Upper lid (right) 10. Lower lid (right) 11. Endocanthion (left) 12.
Exocanthion (left) 13. Upper lid (left) 14. Lower lid (left) 15. Alare (right) 16. Alare (left) 17. Cheilion

(right) 18. Christa philtre (right) 19. Christa philtre (left) 20. Cheilion (left)
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Supplementary text figure 2: Methodology overview. The left side of the figure shows the steps involved in generating the statistical shape model used to
estimate missing regions of the defective face. The right side of the figure shows the steps involved in creating a sample of simulated defects, mapping the
defective sample, and using the SSM to estimate the defective regions. (A) A training set of DICOMS was segmented and the resulting iso-surface of the soft
tissue face was tessellated into meshes for further processing. (B) To achieve correspondence, a set of 20 landmarks was placed on the meshes and a standard
facial template. Non-rigid mapping was conducted in the MeshMonk toolbox to ensure a standardized topology across all meshes. (C) and (D) An iterative
bootstrapping approach was followed to estimate chins and eyes for samples without complete chin morphology or with closed eyes and sequentially added
to the SSM. (E) The final SSM was generated by calculating the modes of variation (through Principal Component Analysis) for the total sample including open-
eye and chin estimations. (F) Six classes of facial defects were simulated using the Avizo software. (G) Defect faces were segmented and tessellated into
meshes for further processing. (H) Missing landmarks due to defect regions were masked from the subsequent mapping during (1) by assigning ‘target flags’.
(J) The defect regions were estimated using the SSM by the same process used to estimate the chins and eyes in (C) and (D) and visualized in the context of

the original unprocessed defective mesh.



Construction of the standard template

One of the sample meshes was selected that showed clear and crisp details and had open
eyes and full chin morphology. The mesh was trimmed to shape and resampled to ensure an
even distribution of vertices using the isotropic explicit re-meshing tool in Meshlab.> Each
mesh in the training sample was brought into correspondence with the resampled template
mesh using the same method described in section 1.1.1 above. Once correspondence was
achieved, the average face of an SSM was generated as described in section 1.1.3 below.
Three iterations of mapping for each of the faces in the training sample with complete chin
morphology and open eyes (n = 41) were completed using the average face as template, with
the template being updated continuously. The final average face was used as the standard

template for all further steps. Figure 3 shows the final standard template used in this study.

Supplementary text figure 3: Standard facial template obtained by using a bootstrapping approach

and used for correspondence throughout the study.

Model building
The mixed nature of the data (i.e., some with complete chin morphology, some with chin

struts, some with open eyes and some with closed eyes) presented a particular challenge.
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This was addressed by following a bootstrapping approach in which those with incomplete
morphology were first estimated and added to the model sequentially. Given a sample of
shapes represented by the same landmarks, the SSM was built as follows. Firstly, only samples
with complete chin morphology were included to generate the first version of the SSM. Non-
shape-related variation is removed by generalized Procrustes analysis (GPA) which aligns all
landmark configurations onto the sample mean and scales all configurations to unit size. Over
multiple iterations, each face is alighed to the mean configuration via a rigid scaled least-
squares Procrustes alignment. Following this, the mean configuration is re-calculated. To
minimize the influence of the chin region for those scans including the chin support we used
a weighted least-squares Procrustes superimposition with weights of zero assigned to the
chin region and ones assigned to all other points. Similarly, the mean configuration is the
weighted mean configuration, employing the same weights. The first version of the model
was used to estimate (see next paragraph below) the chins of samples where these features
were missing or unusable (Supplementary text Fig. 2C). A second version of the SSM was then
generated including all the complete and estimated chins, as well as all samples with open
eyes (Supplementary text Fig. 2D). We again used a weighted least-squares Procrustes
superimposition, this time with weights of zero assigned to the eye region and ones assigned
to all other points. This version of the SSM was used to estimate the eyes of the samples with
closed eyes. Finally, the SSM was updated to include all samples (Supplementary text Fig. 2E).
Each SSM was created by principal components analysis (PCA) of the GPA-aligned landmarks.
An SSM comprises modes of variation or PCs, which each correspond to a linear
transformation of facial shape, as well as the normal range variance along each mode

together defining multinormal parameterization of shape variation. The modes of variation



were calculated (through Principal Component Analysis) by a singular value decomposition of

the n (observations) by 3k(k landmarks) matrix.

To estimate user-identified missing parts of the face, the vertices to be estimated are assigned
weights of zeros and those to remain unchanged are assighed a value of one. To avoid
discontinuities in the final result the weights are smoothed with 10 iterations of Laplacian
smoothing. Alignment and scaling to the model average, followed by a weighted fit to the
SSM is accomplished as described by Matthews et al.® to estimate the linear combination of
the modes of variation that most closely approximates the face in a weighted least-squares
sense. In essence, the linear combination is such that it aims to correctly reconstruct the parts
of the face with high weighting while ignoring the regions of low weighting, as a result, the
regions of low weighting are simply filled in with the most likely shape given the regions of
high weighting. The estimated ‘weighted fit face’ can then be reconstructed by evaluating the
linear combination. The weighted fit face is then returned to the coordinate system and the
size of the face prior to the estimation. The final estimated face is created by blending the
face before estimation with the weighted fit face as the weighted sum of the two landmark
configurations, with the original face weighted according to the weights described above and

the weighted fit face weighted according to 1 minus the weights.

Model evaluation

We evaluated the model's representation of the target population by calculating its
generalization and specificity. In principle, both of these properties contribute to the ability
of the model to realistically estimate missing parts of the face. All these computations require

the calculation of inter-shape distances. To avoid the chin and eye regions influencing these
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calculations where it is not informative, weights of zero were assigned to these regions. The
inter-shape distance was then calculated as the weighted root mean squared (RMS) distance
between the two shapes. Generalization represents how well the model can represent
realistic faces not used in training and can also be interpreted as the mean of the average
reconstruction error between the model and an unseen shape,” or the out-of-sample
reconstruction error of the training data. The reconstruction error is calculated as the
difference between the face and the reconstruction of that face from their projections onto
the modes of variation. It was calculated by sequentially holding each face out of the training
of the SSM and then estimating their ‘weighted fit face’ from the model and calculating the
inter-shape distance between the two. The average of all these inter-shape distances is the
model generalization. In-sample accuracy is computed identically to the generalization,
except that the face is not held out from training the model. The in-sample accuracy for a
given number of modes constitutes the lower bound of what is the possible generalization

error and calibrates the interpretation of the generalization.

Model specificity concerns the ability of the SSM to represent only realistic or valid faces. This
is calculated by randomly simulating 1000 faces by randomly sampling linear combination
coefficients from their multivariate Gaussian distribution and reconstructing the
corresponding faces. The verisimilitude of each simulated face is calculated as the inter-shape
distance to the most similarly shaped face from the training sample. Both generalization and
specificity were calculated using SSMs trimmed to only the modes of variation that explained
up to 96% of the variation in the sample. To express model specificity, generalization and in-
sample accuracy in mm units, before calculating the inter-shape distance, the simulated

shapes and weighted fit shapes were scaled to the size of the face to which they were being
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compared. This is weighted to ignore estimated areas such as the chin and eyes where

applicable.

Whether the model could be improved by collecting further data was assessed by evaluating
how generalization evolves when gradually more and more data are added up to the available
amount. Specifically for 10 repetitions, 15 samples were randomly chosen to train an SSM
and iteratively 15 subjects are randomly selected and added to the model training data up to
the total sample size. At each iteration, the distribution of the average error values over the

10 repetitions was plotted as boxplots.

Simulation of facial defects

Facial defects included only extra-oral defects. These were classed into six groups and
simulated on a sample of 30 open-eyed faces using the Avizo® v. 8.0.0 software.? A total of
240 defect instances were simulated (30 faces x 8 simulations per face). The classes and their

descriptions are represented in Supplementary Table 1.

Sample volumes were imported into the Avizo and visualized in three planes. Essentially, the
voxels corresponding to each defect must be deselected (Supplementary text Fig. 2F). Firstly,
the entire head was selected by thresholding and exported as a DICOM stack. The labels were
then edited manually in Avizo to deselect the defective regions to be removed
(Supplementary text Fig. 4 a) and each set of labels, corresponding to each defect class 1-5
was again exported as a DICOM stack. For class 1-5 defects, the labelled DICOM stacks were
each individually imported into MeVisLab, an iso-surface was generated, tessellated into a
mesh and exported as a wavefront object (Supplementary text Fig. 2G) (Supplementary text
Fig. 4 b). For class 6 combination defects, we imported labels for the entire head and for all
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class 1-5 defects into MeVisLab at the same time. Defects were combined for an individual by
taking the intersection of labels from a selection of class 1-5 defects and tessellating the
resulting isosurface of the intersection. Three selections were done per individual. The first
selection simulated bi-orbital defects, where both the right and left orbits were involved, the
second selection (composite 1) simulated a large defect involving three facial features (e.g.,
orbital, cheek, and lips etc.), while the third selection (composite 2) simulated smaller defects

only involving two features (e.g., orbital & full nasal, or partial nasal and cheek etc.).

To establish correspondence for the meshes in the defect sample a modification of the
process as described in section 1.1.1 above was used. Landmarks that could not be placed on
the defect scan were not used to estimate the landmark-guided non-rigid initialization
(Supplementary text Fig. 21). Points corresponding to the defect region of the scan (section
1.3) were ignored by assigning ‘target flags’ to MeshMonk’s ShapeMapper (Supplementary

text Fig. 2H).
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Supplementary text figure 4: Simulating the defective region on Avizo 8.0.0. a) A label field was created from which voxels corresponding to a defect were

deselected and the remainder exported as a DICOM stack, which was then b) imported into MeVisLab to visualize the isosurface of the defective face.
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Estimation of facial defects

The same process to estimate defects was followed as described above for imputing the chins
and eyes used in the SSMs, the only difference being that the weights were applied to the
defective region, instead of the chin or eye regions. Supplementary text Fig. 5 shows how the
defective regions were identified by isolating the vertices corresponding to the defect on the
unmapped isosurface of the defective face using MeVisLab. The defective regions were then
transferred onto the registered version of the face by flagging the closest points on the
mapped mesh that corresponds to the defective region. The final SSM was used to estimate
the linear combination of the modes of variation that most closely approximates the intact
regions of each face and estimated the missing regions using a weighted projection onto the
modes of variation (section 1.1.3). The face reconstructed from these projections was
blended with the mapped version of the defective face by smoothing the flagged points to
blend in with the surrounding areas. This result is the mapped version of the defective face
with vertices of the defective region substituted with those of the weighted fit face. The
estimated region was then visualized and interpreted in the context of the original

unprocessed defective mesh (Supplementary text Fig. 2J).

In the future, the manual selection of points to be estimated can be executed via several
methods, for example, using an interactive brush tool to select points

(https://github.com/harrymatthews50/MeshEditor).
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Supplementary text figure 5: a) Identifying the defective region. b) The vertices corresponding to the
defective region were isolated by removing the rest of the isosurface (areas not part of the defective
region) in MeVisLab. c) The closest points corresponding to the defective region are transferred onto
the mapped version of the face and weighted 0 during the estimation (dark blue). d) Selected points

are smoothed to blend in with the surrounding area.

SUPPLEMENTARY RESULTS

Model evaluation

Forty-three modes of variation were required to model 96% of the shape variation and were
retained. The first 5 modes of variation are shown in Supplementary text Fig. 6 a. Video
representations of the first 5 modes of variation can be viewed in the Supplementary
Materials (supplementary video files 1 to 5). The first mode of variation, responsible for the
most variation, predominantly represents total facial height and width, with changes in the
length of the maxillary alveolar processes, mode 2 relates to midfacial projection with
changes in the zygomatic width, mode 3 represents primarily variability in upper facial height
and nose height. In mode 4, the depth of the eyes is influenced by the zygomatic width and

frontal area bossing and mode 5 relates to maxillary and mandibular protrusion.
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Supplementary text Fig. 6 c displays the distributions of out-of-sample reconstruction errors
corresponding to various training sample sizes. As the model generalization error decreases
with increasing sample size, the model better represents the population. As the curve is
reaching a plateau, the errors as a function of the sample size are decreasing very slowly. This
indicates that beyond the current sample size, a large number of additional participants would
result in only an incremental improvement to the model. No difference in out-of-sample
reconstruction error was observed between imaging modality (Supplementary text Fig. 6 d)
or sex (Supplementary text Fig. 6 ) and age (Supplementary text Fig. 6 f). In Supplementary
text Fig. 6 g and h, the weighted RMS per point is also shown as a color map for mean
generalization and specificity. The mean generalization error was 1.09 mm (Supplementary
text Fig. 6 g). Specificity, the model’s ability to represent only valid or realistic faces, resulted
in @ mean error of 2.75 mm (Supplementary text Fig. 6 h). Regions of slightly higher errors

include the eyelids, nose bridge, and lips (Supplementary text Fig. 6 g and h).
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Supplementary text figure 6: Statistical shape model evaluation. a) The first 5 modes of variation are
shown. b) The In-sample accuracy in terms of the RMSE shows the lower bound of the possible
generalization error and calibrates the interpretation of the generalization for a given number of
modes. c) The individual Out of Sample error for different sample sizes (generalization) indicates that
beyond the current sample size, a large number of additional participants would result in only an

incremental improvement to the model. d) e) and f) indicate the Out of Sample error for modality, sex
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and age and showed no differences in the reconstruction error. g) A color map of the mean
generalization error shows an acceptable error of 1.09 mm and h) a color map of the specificity of the

model indicates a mean error of 2.75 mm.

Qualitative defect evaluation

In approximately 38% of cases, visual inspection of the defect estimations showed that the
defect was not smoothly blended with the surrounding tissue. Supplementary text Fig. 7 b
shows the weightings used in one case for blending the weighted-fit face to the defective
face. Deep blue regions were completely estimated whereas yellow regions were not, and are
expected to match the target face perfectly. For areas colored in-between yellow and deep
blue, the shape is a weighted combination of the face estimated from the SSM and the target
face and as such may not match the target face perfectly. Essentially the mismatch between
the two surfaces is because the region selected for estimation extends beyond the true
defective region. The scope of the estimated region is determined by both the manual
selection of points to define initial binary weights and the number of smoothing passes
applied to these initial weights. This smoothing is necessary for even blending, but it also blurs

and effectively extends, the boundary of the selected region (section 1.3).
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Supplementary text figure 7: Example of a poor defect estimation of the lips. a) The corners of the
mouth and parts of the chin (in grey) are cut off due to the flagged defective region seen in blue in b)

being too small.
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SUPPLEMENTARY TABLES

Supplementary Table 1: Classification of facial defects according to facial feature involvement

Class

Description

1. Orbital

2. Cheek and upper lip

3. Lips or isolated lower

lip

4. Full nasal

5. Partial nasal

6. Combined

Defects of the eye and orbit: including the globe, extraocular
muscles, eyelashes, and at least part of the eyelids, orbital fat,
and periorbita as seen in orbital exenteration

Defects of the soft tissue and bony tissue, or soft tissue only,
of maxillary and zygomatic regions, including the upper lip.
May extend into the maxillary sinuses.

Defects of the soft tissue and bony tissue, or soft tissue only,
of mental and mandibular regions, involving the lower lip
alone, or both upper and lower lips

Defects of the entire soft tissue (and cartilaginous) nose

Defects involving only parts of the soft tissue (and
cartilaginous) nose e.g., ala and columella only

Defects involving more than one facial feature in 3 assorted
combinations (bi-orbital, large and small), e.g., both eyes;

orbital, cheek, and full nose; partial nose and lips etc.

Supplementary Table 2: ANOVA for the effects of defect type, imaging modality, sex and age on the

RMSE

Sumsq Meansq NumDF DenDF Statistic p-value
Defect type 40.194 5.742 7 203 27.030 <0.001
Modality 0.433 0.433 1 26 2.036 0.165
Sex 0.200 0.200 1 26 0.942 0.341
Age 3.601 3.601 1 26 16.950 <0.001
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SUPPLEMENTARY FIGURES

Predicted values of RMSE

RMSE

O n:-. orbital FN
defectType

Supplementary figure 1: The expected RMSE values and 95% confidence intervals of the expectation
for each defect type. As can be seen, these can be grouped into two distinct groups: composite, bi-
orbital and full nose defects; and individual feature defects (cheek, lip, orbital and partial nose

defects).
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Supplementary figure 2
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Supplementary figure 3
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Supplementary figure 4
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Supplementary figure 5
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Supplementary figure 7
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Supplementary figure 8
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Supplementary figure 11
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Supplementary figure 12
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Supplementary figure 13

33



Supplementary figure 14
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Supplementary figure 15
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Supplementary figure 16
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