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Refractometry models for compositional analysis of binary 

and ternary mixtures 

Abstract 

A review of existing compositional binary mixture models for refractive indices was 

undertaken and showed that they can be recast in forms that are linear in mole or volume 

fraction. Typically, mole fractions proved to be the better composition descriptor when 

analysing literature data and the molar refraction was shown to be virtually temperature 

independent. Depending on whether temperature, density or refractive index measurements of 

the mixture are available, different correlations were developed to predict the composition (as 

shown below). Furthermore, refractive index measurements on mixtures of n-alkanes with 

DEET were taken to determine phase equilibrium behaviour. With extrapolation to infinite 

molar mass, these alkanes approach polyethylene, which is the material from which DEET-

containing mosquito-repellent devices were made. The results show that the microporous 

structure was likely formed by liquid-liquid phase separation. Lastly, it was shown that Padé 

approximants provide good representations of binary and ternary refractive index data. The 

temperature dependence of the pure components was elegantly subsumed in a pure component 

property, namely, the molar volume. Various constraints were applied to reduce the number of 

adjustable parameters even further and this proved to be successful. 

Keywords: refractive index, polymer solutions, phase equilibrium, n-alkanes 

 
 
 



iii 

 

 

  

                             

           

                 

       

        

                

       

        

       

                        

        
               

       
     

                        

                    

       
       
     

       
     

       
     

               

                                                          

 
 
 



iv 

 

Acknowledgements 

I am indebted to so many for their support during this project: 

• Firstly, to God who gave me the strength and wisdom to undertake this project. 

• Prof. Walter Focke and Ms. Elizbé du Toit for their guidance and mentorship during 

this project. Thank you for major assistance with analysis, feedback on my work and 

for truly impacting me and shaping the start of my professional development.  

• Pethile Dzingai and Kgaugelo Mashiachidi for assistance in gathering literature data. 

• Dr Isbé van der Westhuizen for her plentiful assistance in the laboratory. 

• CSIR for generous bursary support. 

• Lastly, my parents, family members and friends for your love, help, patience, and 

prayers.  

I really appreciate you all! 

  

 
 
 



v 

 

 

All the darkness in the world cannot extinguish the light of a single candle. 

—St. Francis Of Assisi 

 

 

Your word is a lamp for my feet, a light on my path.  

—Psalms 119:105 

 

 

It's better to light a single candle than to curse the darkness. 

—English proverb 

  

 
 
 



vi 

 

Declaration 

I hereby declare that this manuscript is my own original work and has not previously been 

submitted to any other institution of higher education. Furthermore, all sources cited or quoted 

are indicated and acknowledged by means of a comprehensive list of references. Extensive 

portions of this work have already been published and are indicated as such in the text. 

Franco Pretorius 2024-01-23 

Signatory name Date 

 

 

  

 
 
 



vii 

 

Contents 

Abstract ...................................................................................................................................... ii 

Acknowledgements ................................................................................................................... iv 

Declaration ................................................................................................................................ vi 

List of figures ............................................................................................................................ ix 

List of tables ............................................................................................................................. xii 

Nomenclature ......................................................................................................................... xiii 

Abbreviations .......................................................................................................................... xvi 

1 Introduction ........................................................................................................................ 1 

2 Literature ............................................................................................................................ 3 

2.1 Liquid mixture properties .......................................................................................... 3 

2.2 Refractometry ............................................................................................................ 4 

2.3 Mixing rules for the refractive index ......................................................................... 6 

2.3.1 Pure components .................................................................................................... 6 

2.3.2 Binary mixtures ...................................................................................................... 7 

2.3.3 Alternative mixing rules ...................................................................................... 11 

2.4 Polymer-solution phase equilibrium ........................................................................ 13 

2.4.1 Flory-Huggins theory ........................................................................................... 13 

2.4.2 Modelling the critical point .................................................................................. 15 

2.5 Polynomial expressions for physical property data ................................................. 17 

2.5.1 Scheffé and Bernstein polynomials ..................................................................... 17 

2.5.2 Projection functions leading to Scheffé polynomials .......................................... 22 

2.5.3 Padé approximants for physical properties .......................................................... 25 

2.6 Summary .................................................................................................................. 26 

3 Materials and methods ..................................................................................................... 27 

3.1 Materials .................................................................................................................. 27 

3.2 Methods.................................................................................................................... 27 

 
 
 



viii 

 

3.2.1 Evaluation of mixing rules ................................................................................... 27 

3.2.2 Refractometry ...................................................................................................... 28 

3.2.3 Determination of phase envelopes ....................................................................... 29 

3.2.4 Padé expression fitting ......................................................................................... 30 

4 Results and discussion ..................................................................................................... 33 

4.1 Refractometry mixing rules ..................................................................................... 33 

4.1.1 Single compounds ................................................................................................ 33 

4.1.2 Binary mixtures containing an n-alkane .............................................................. 36 

4.1.3 Mixture models requiring only refractive index information .............................. 44 

4.2 DEET phase envelopes ............................................................................................ 46 

4.3 Padé approximants ................................................................................................... 50 

5 Conclusions and recommendations.................................................................................. 58 

6 References ........................................................................................................................ 60 

Appendix A Derivations ..................................................................................................... 70 

A.1 Composition in binary mixtures from density and refractive index measurements 70 

A.2 Extension of two binary data sets to the other in a ternary system .......................... 72 

 

  

 
 
 



ix 

 

List of figures 

Figure 1: Reflection and refraction of light (Korotchenkov, 2011: 317). .................................. 5 

Figure 2: Water refractive index repeatability curve as compared to literature data (Bashkatov 

and Genina, 2003; Thormählen et al, 1985). ........................................................ 29 

Figure 3: Measured refractive index values for measured for selected linear n-alkanes: C12: 

Dodecane; C16 Hexadecane; C20 Eicosane; C24 Tetracosane; C28 Octacosane and 

C32 Dotriacontane. ............................................................................................... 34 

Figure 4: Data for (a) the molar refraction R, and (b) the molar-mass scaled form R/M for 

selected alkanes in the liquid state. The scale bar in (b) shows a  0.5 % deviation 

from one third........................................................................................................ 34 

Figure 5: The Lorentz-Lorenz molar refraction R and molar volume at 25 C for binary 

mixtures of acetone with selected alkanes calculated using the data sources listed 

in Table 4. ............................................................................................................. 37 

Figure 6: The Lorentz-Lorenz molar refraction R and molar volume V at 25 C for binary 

mixtures of anisole with selected alkanes calculated using the data sources listed in 

Table 4................................................................................................................... 37 

Figure 7: The Lorentz-Lorenz molar refraction R and molar volume V at 25 C for binary 

mixtures of benzene with selected alkanes calculated using the data sources listed 

in Table 4. ............................................................................................................. 38 

Figure 8: The Lorentz-Lorenz molar refraction R and molar volume V at 25 C for binary 

mixtures of chlorobenzene with selected alkanes calculated using the data sources 

listed in Table 4. .................................................................................................... 38 

Figure 9: The Lorentz-Lorenz molar refraction R and molar volume V at 25 C for binary 

mixtures of cyclohexanone with selected alkanes calculated using the data sources 

listed in Table 4. .................................................................................................... 39 

Figure 10: The temperature dependence of the Lorentz-Lorenz molar refraction R and molar 

volume for binary mixtures of 1,4-dioxane with n-hexane ................................... 40 

Figure 11: The temperature dependence of the Lorentz-Lorenz molar refraction R and molar 

volume V for binary mixtures of ethanol with pentane or heptane or nonane. ..... 40 

Figure 12: Testing the applicability of the linear mixture models using the binary data of all 

systems. (a) Equation (94a) applied to the molar volume (Equation (15)) and the 

 
 
 



x 

 

Lorentz-Lorenz molar refraction (Equation (18a)). (b) Equation (94b) applied to 

the mixing rules that assume linear variation with volume fraction. .................... 42 

Figure 13: Refractive index data obtained at 25 C. The solid lines and dashed lines are 

predictions obtained by applying Equation (18) (the L-L-R-mixing rule) and 

Equation (22) (the L-L-N-mixing rule) respectively. The two lines for the 

chlorobenzene-decane system virtually coincide. ................................................. 43 

Figure 14: Plots illustrating the link between N = (n2−1)/(n2+2), which is the Lorentz-Lorenz 

expression and the molar volume of binary mixtures of 1,4-dioxane with some 

alkanes. .................................................................................................................. 44 

Figure 15: Performance of the Modified Eykman and volume fraction weighted power mean 

model for correlating the data for the binary systems listed in Table 8. ............... 45 

Figure 16: Data for three different mixtures of DEET with octacosane, initially equilibrated as 

homogeneous solutions at 90 C. (a) Measured refractive indices as the samples 

were cooled. Pure DEET and octacosane are indicated as solid black lines at the 

top and bottom of the plot. (b) Outline of the phase envelopes. The red square 

shows the critical temperature at the critical volume fraction. ............................. 47 

Figure 17: Homogenous dodecane-DEET mixtures in the oven. ............................................ 47 

Figure 18: Heterogenous dodecane-DEET mixtures after cooling with two liquid layers. ..... 48 

Figure 19: Solid eicosane or octacosane on top of a liquid DEET layer at room temperature.

 ............................................................................................................................... 48 

Figure 20: Phase diagram derived from refractive index temperature scans for binary mixtures 

of DEET with the series of alkanes listed in Table 3. The temperature is plotted 

against the volume fraction alkane in the mixture. ............................................... 50 

Figure 21: (a) Variation of c vs. the UCST (Tc) for mixtures of DEET with a series of alkanes. 

(b) Variation of the UCST (Tc) with the critical temperature of the alkane (Tcrit) in 

the mixture with DEET. ........................................................................................ 50 

Figure 22: Scaled AIC values for the six model variants averaged over the nine ternary 

systems (listed in Table 5) for the mixture refractive index. ................................ 51 

Figure 23: Average absolute deviation (AAD) values achieved with the six model variants for 

refractive index for the nine ternary systems listed in Table 5. ............................ 52 

Figure 24: Ternary surface plot of System II at 25 °C with source listed in Table 5. ............. 53 

Figure 25: Ternary surface plot of System III at 25 °C with source listed in Table 5. ............ 53 

Figure 26: Ternary surface plot of System IV at 25 °C with source listed in Table 5. ............ 54 

 
 
 



xi 

 

Figure 27: Ternary surface plot of System V at 25 °C with source listed in Table 5. ............. 54 

Figure 28: Ternary surface plot of System VI at 25 °C with source listed in Table 5 (note the 

outlier clearly indicated). ...................................................................................... 55 

Figure 29: Ternary surface plot of System VII at 35 °C with source listed in Table 5. .......... 55 

Figure 30: Ternary surface plot of System VIII at 25 °C with source listed in Table 5. ......... 56 

Figure 31: Ternary surface plot of System IX at 30°C with source listed in Table 5. ............. 56 

Figure 32: Ternary surface plot of System X at 30°C with source listed in Table 5. .............. 57 

 

  

 
 
 



xii 

 

List of tables 

Table 1: Different measurement combinations for temperature (T), density () and refractive 

index (n) ................................................................................................................ 10 

Table 2: Summary of the mixing rules proposed in the literature including possible definitions 

for the variable N in Equation (18b) or in Equation (22b) .................................... 12 

Table 3: Chemical details......................................................................................................... 27 

Table 4: List of data sources for density and refractive index for pure components and binary 

mixtures ................................................................................................................. 28 

Table 5: Data sources of refractive index measurements of ternary systems .......................... 31 

Table 6: Padé-type projection model variants (based on parameter constraints) .................... 32 

Table 7: Pure components: Average values of the molar volumes and molar refractions with 

the density predicted from R ................................................................................. 36 

Table 8: -2 correlation coefficients and values for the adjustable parameters (p and d) for 

the modified Eyckman and volume fraction weighted power mean models ........ 45 

Table 9: Projected Tc (UCST) values for the DEET-polyethylene system. ............................. 49 

 

  

 
 
 



xiii 

 

Nomenclature 

A Interaction parameter constant  

A System-dependent critical amplitudes  

a Sphere radius m 

AAD Average absolute deviations % 

AIC Akaike information criterion  

AIC Difference in Akaike information criterion  

B Bernstein polynomial   

B Interaction parameter constant  

B System-dependent critical amplitudes  

b Bernstein basis polynomial  

c Speed of light in a vacuum (299 792 458) m⋅s−1 

d Diameter of coexistence curve  

d Modified Eykman parameter   

df Degrees of freedom  

G Gibbs free energy J 

M Molar mass kg⋅mol−1 

m Adjustable constant for the phase envelope  

m Mass kg 

m Total number of components  

N Lorentz-Lorenz parameter of refractive index - 

AN  Avogadro’s number (6.022 140 76 × 1023) mol−1 

n Mole mol 

n Number of data points  

n Polynomial degree  

n Refractive index  

P Padé approximant  

P Polynomial  

P Pressure Pa 

p Physical property  

p Order of weighted power mean parameter  

q General composition variable (q-fraction)  

 
 
 



xiv 

 

gR  Universal gas constant (8.314) J⋅mol−1⋅K−1 

R Molar refraction m3⋅mol−1 

r Correlation coefficient  

r Modified refractive index variable  

s Standard deviation  

SSE Sum of the square errors  

T Temperature K 

V Molar volume m3⋅mol−1 

v Volume m3 

w Mass fraction - 

X Ratio of polymer to solvent molar volume   

x Mole fraction - 

z Composition variable  

Greek  

α Angle of light relative to normal line ° 

α Critical exponent   

α Mean molecular polarizability of nonpolar, 

nonmagnetic materials 

F⋅m2 

β Adjustable constant  

β Angle of refraction ° 

β Pure component property  

β Universal critical exponent (0.326)  

 Universal critical exponent (0.50)  

 Kronecker delta  

0  Vacuum permittivity (8.8541878128×10−12) F⋅m−1 

 Adjustable constant  

 Adjustable constant  

 Adjustable constant  

 Speed of light in a medium m⋅s−1 

ρ Density  kg⋅m−3 

 Adjustable constant  

 Reduced temperature  

 
 
 



xv 

 

 Specific volume m3⋅kg−1 

 Volume fraction - 

 Flory-Huggins interaction parameter  

 Adjustable constant  

Subscripts  

1, 2 Component 1, component 2  

c Critical  

i Component i  

i Internal  

k Index of term  

L Left branch of coexistence curve  

mix Mixture  

n Polynomial of degree n  

R Right branch of coexistence curve  

r Reflection  

 

 

  

 
 
 



xvi 

 

Abbreviations 

DEET N,N-diethyl-meta-toluamide 

L-L-N Lorentz-Lorenz N-mixing rule 

L-L-R Lorentz-Lorenz R-mixing rule 

PLLA Poly(L-lactic acid) 

RI Refractive index 

TIPS Temperature induced phase separation 

UCST Upper critical solution temperature 

  

  

 

 

 

 
 
 



1 

 

1 Introduction 

Recent research efforts in the Institute of Applied Materials have focused on malaria vector 

control. This included the invention of socks (made in part with bicomponent fibres) (Sibanda 

et al, 2018), bracelets, anklets (Mapossa et al, 2019), and strands (Sitoe et al, 2020) for the 

controlled release of mosquito repellents. The latter research effort entailed creating 

microporous polyethylene strands containing N,N-diethyl-meta-toluamide (DEET) by 

temperature induced phase separation (TIPS) known as spinodal decomposition. The question 

arose as to whether this was accomplished via liquid-liquid phase separation or by 

crystallisation-induced solid-liquid phase separation, the latter of which was the case for the 

poly(lactic acid) (PLLA)-DEET system (Sungkapreecha et al, 2020). Initial attempts were 

made to determine the phase boundary by differential scanning calorimetry (DSC) of mixtures 

of DEET and n-alkanes of increasing chain length (which extrapolates towards polyethylene at 

infinite molar mass). However, this proved to be unsuccessful due to the negligible enthalpy 

of demixing (Sitoe et al, 2021).  

Therefore, it was decided to explore the use of refractometry for this analysis. It is known that 

the refractive index of a pure component or mixture of fixed composition varies linearly with 

temperature (Riazi et al, 1999). Therefore, when scanning the temperature, a sudden deviation 

from the linear trend could indicate a change in composition at that temperature, i.e., that phase 

separation occurred (Sitoe et al, 2021). This study then originated as supporting work for 

understanding how to correlate physical property data, specifically refractive index, with 

temperature and composition. 

Firstly, a review was conducted on binary theoretical and empirical models which are used to 

express refractive index as a function of composition. Secondly, this concept was applied to 

establish the approximate phase boundaries for a homogenous series of DEET and alkane 

mixtures. This is because the melting temperature of polyethylene was far above the maximum 

temperature which the refractometer could reach (viz., 100 °C). A novel technique was then 

applied to fit the phase boundary data near the critical temperature through enabling asymmetry 

of the coexistence curve (Damay and Leclercq, 1991). By extrapolation, the likely behaviour 

of polyethylene was estimated (Sitoe et al, 2021).  
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When this investigation was completed, another student in the research group, namely Pethile 

Dzingae, needed assistance with examining models for expressing surface tension as a function 

of composition and temperature. In assisting with resolving this issue, it was found that most 

of the theoretical and empirical models for the surface tension of binary mixtures could be 

recast in the form of Padé approximants. Excellent data fits were achieved with these models 

(Dzingai et al, 2024). This posed the question whether a similar approach could work for the 

refractive index. This proved to be the case. It was found that literature data for the refractive 

index of ternary systems, measured over certain temperature ranges could be fitted with a single 

expression using Padé approximants of order (2, 2) (Pretorius et al, 2024).  

In summary, this dissertation traces a journey that started out as a comprehensive literature 

survey on the mixture models for the refractive index of binary mixtures, the application of one 

of those models to the establishment of liquid-liquid phase diagrams for alkane-DEET mixtures 

and, ultimately, culminating in the development of novel mixture models suitable for 

correlating multicomponent data over a range of temperatures. 
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2 Literature 

2.1 Liquid mixture properties 

In order to correlate any physical property of a liquid mixture, it is necessary to define the 

mixture composition. A mixture is a “portion of matter consisting of two or more chemical 

substances called constituents” (IUPAC, 2006) which are not chemically bonded. A 

homogenous mixture is a mixture of a single phase with uniform composition.  

Several composition variables are typically used to describe the ratio of one compound to the 

total number of compounds (m) in the mixture. When expressed as fractions, they must sum to 

unity. This is known as the simplex constraint. 

Firstly, on a mass basis, the mass fraction is defined as the mass of component i relative to the 

total mass of the mixture, mmix 

 

1

i i
i m

mix ii

m m
w

m m
=

 =


(1) 

Secondly, when the mass of a component is divided by its molar mass, Mi, the mole amount of 

component i, ni is obtained. Similar to the mass fraction, the mole fraction is defined relative 

to the total number of moles in the mixture 

 
i

i

mix

n
x

n
  (2) 

The mass fraction can also be calculated from the mole fractions as 

 

1

i i
i

i i

m

i

M x
w

M x
=

=


 (3) 

Thirdly, the volume of a component, vi, relative to the total volume of the mixture, vmix, can be 

used to define the volume fraction 

 
i

i

mix

v

v
   (4) 

The volume fraction can also be calculated from the mole fractions and molar volumes as 
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1

i i

i

m

i

i

i

V x

V x


=

=


 (5) 

The volume fraction is challenging to apply in practise as many mixtures exhibit nonideal 

mixing. In other words, the true sum of the constituent volumes does not equate to the measured 

mixture volume.  

Wohl (1946) defined a general composition variable in terms of q-fractions as 

 

1

i i
i

i i

m

i

x
q

x




=

=


 (6) 

Here, the βi coefficients are a suitable pure component property. For instance, if βi = Mi the q-

fraction becomes the mass fraction as per Equation (3). If βi = Vi, the q-fraction becomes the 

volume fraction as per Equation (5). If these coefficients are just treated as adjustable 

parameters, they cannot be determined uniquely, because they can be multiplied by any 

constant without affecting the value of the q-fraction. This problem can be overcome by 

imposing a restriction on the value of one of the βi values or by restricting their sum to unity.  

In addition to composition, mixture properties are functions of temperature and pressure. For 

many liquid properties, temperature is important, but the pressure dependence is often quite 

weak so that it can be neglected. This is especially the case for refractive index of liquid 

mixtures, which has found extensive use for compositional analysis. 

2.2 Refractometry 

Refractive index (RI) measurements are commonly used for liquid mixture composition 

analysis (Martens et al, 2020). For example, this includes sugar, salt and alcohol content 

determination (Shehadeh et al, 2020). This technique operates by the principle of refraction.  

The index of refraction, n, is given by 

 c
n


=  (7) 

where c is the speed of light, and v is the speed of light in a material (Gallegos and Stokkermans, 

2023). Temperature also affects the refractive index as increasing the temperature usually leads 
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to decreased density of the substrate. The resultant refractive index decreases because light 

travels faster in a less dense medium (Waxler and Cleek, 1973). 

A light beam incident on the interface between two media of different optical density will 

refract, i.e., change its direction, as shown in Figure 1. Depending on the angle of incidence, 

αi, this results in splitting of the beam in a refracted portion, i.e., the part that proceeds in 

another medium, and in a reflected portion. Total internal reflection only takes place when two 

conditions are met, namely, that the light is in the denser medium and approaching the less 

dense medium, and that the angle of incidence is greater than the critical angle αc. The critical 

angle is specific to a boundary system, i.e., the refractive indices of the two media.  

 

Figure 1: Reflection and refraction of light (Korotchenkov, 2011: 317). 

At αc the angle of refraction (β) is 90°. Refraction is described by Snell’s law (Korotchenkov, 

2011: 317): 

 
1 2sin sinin n =  (8) 

where n1 describes the refractive index of the optically denser medium and n2 is the refractive 

index of the optically less dense medium. Note that light is bent away from the normal when 

traveling into a material with a lower refractive index. The refraction angle is measured by 

instruments known as refractometers. 

Modern refractometers are digital and use an LED to illuminate a sample placed on the prism, 

typically with the spectral D-lines of sodium, nD = 589.3 nm (Wypych, 2017). The refracted 

light is then measured with a sensor that determines the refraction angle, and the temperature 

is also recorded (Rodrigues, 2023). This value is then converted by algorithms into a refractive 

index. Benchtop refractometers are more accurate compared to analogue and digital 

refractometers; however, they are more expensive (Jaywant et al, 2022). 
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The history of the first refractometer is difficult to determine. Ernst Abbé developed his first 

refractometer in 1869 for Carl Zeiss in order to produce optical glass. Its first use beyond this 

was by Harvey Wiley in 1888 to distinguish butter from a beef-based alternative 

oleomargarine. Zeiss noted in 1893 that refractometers could be used “to distinguish many 

substances and to ascertain their degree of purity (adulteration of victuals), or to determine the 

percentage or concentration of many solutions and mixtures” (Warner, 2010). It has since found 

applications in the analysis of fats, oils, waxes, sugars, syrups, essential oils, glue, gelatine, 

petroleum, paint, varnish, gas, alcohol, and drugs (Warner, 2010). 

In order to analyse the composition of a mixture, a calibration curve for refractive index (n) vs. 

composition should be available and should be a monotonic function of mole fraction or mass 

fraction of one of the components. Such a calibration curve would usually only be available at 

a fixed temperature.  

Many different functions for the compositional variance in binary liquid mixtures have been 

developed over the years.  

2.3 Mixing rules for the refractive index 

This Section reflects work presented in the first article dealing with the subject at hand 

(Pretorius et al, 2021). 

2.3.1 Pure components 

The molar refraction (R) for nonpolar, nonmagnetic materials is defined (Prausnitz et al, 1999) 

as 

 (3 )A oR N =  (9) 

where  is the mean molecular polarisability; NA is Avogadro’s number; and o is the 

permittivity of free space. For a fluid of hard-core spheres of uniform size, the polarisability is 

given by 

 34 oa =  (10) 

where a represents the sphere radius. Substitution of Equation (10) into Equation (9) results in 

 34

3
AR N a


=  (11) 
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For such a hypothetical fluid, the molar refraction can be interpreted as the hard core volume 

of one mole of spherical molecules of radius a (Prausnitz et al, 1999). These expressions have 

found applications for real organic liquids and their mixtures despite their simple, theoretical 

origins.  

A much more prevalent model is the Lorentz–Lorenz relationship. It was established 

independently, first in 1869 by L. V. Lorenz (in the field of optics) and subsequently in 1878 

by H. A. Lorentz (from electromagnetism) (Kragh, 2018). This equation links the molar 

refraction with the refractive index and the molar volume (Heller, 1965): 

 2

2

1

2

n
R V

n

−
=

+
 (12) 

where the molar volume V is defined by the ratio of the molar mass (M) to the density () of 

the compound 

 M
V


=  (13) 

Experimental evidence indicates that the molar refraction of a pure compound is approximately 

temperature invariant (Vargas and Chapman, 2010). Furthermore, for hydrocarbons, including 

alkanes, the so-called “one third rule” applies which states (Vargas and Chapman, 2010): 

 2

2

1 1 1

2 3

R n

M n

 −
=  

+ 
 (14) 

2.3.2 Binary mixtures 

An ideal binary solution would follow the linear blending rule for molar volume (Brocos et al, 

2003): 

 
1 1 2 2V V x V x= +  (15) 

When the mixture density data are known, the molar volume behaves as for an ideal solution, 

and since x1+x2 = 1, Equation (15) and Equation (13) allow the composition to be calculated 

from 

 ( )

( )
2 1 1

1 1 2 2

1
1

M

x M

  

  

−
= −

−
 

(16) 
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See Appendix A.1 Case A for the derivation of Equation (16). Theoretical considerations 

(Brocos et al, 2003) suggest that the molar refraction of an ideal binary liquid mixture is also 

additive on a mole fraction basis 

 
1 1 2 2R R x R x= +  (17) 

Substitution of R from Equation (12) in Equation (17) yields the Lorentz-Lorenz R-mixing (L-

L-R) rule 

 2 2 2

1 2
1 1 2 22 2 2

1 2

1 1 1

2 2 2

mix

mix

n n n
V V x V x

n n n

− − −
= +

+ + +
 (18a) 

or, expressed in a more general form: 

 
1 1 1 2 2 2R VN xV N x V N= = +  (18b) 

where the following definitions were applied 

 ( ) ( )2 21 2mix mixN n n= − +  and ( ) ( )2 21 2i i iN n n= − +  (19) 

The calculation of the molar refraction R of a mixture requires information about the density 

and the refractive index. When both are available, the composition of the mixture can be 

established directly in terms of the mole fraction of component 1 

 ( )

( )
2 1 1 1

1 1 2 2 2

1
1

M N N

x M N N

  

  

−
= −

−
 

(20) 

See Appendix A.1 Case B for the derivation of Equation (20). Density data for the pure 

components, at the mixture temperature, are required when applying Equation (20). However, 

this is not essential. If the molar refractions R1 and R2 are known and if they are temperature-

invariant, then Ri = MiNi/i. Thus, the composition can also be estimated with a different 

expression 

 
1 1

1 2 2

1
1

NM R

x NM R





−
= −

−
 

(21) 

See Appendix A.1 Case C for the derivation of Equation (21). Its application allows direct 

calculation of the component mole fractions from simultaneous measurements of just the 

density and the refractive index of the mixture. In other words, it is not necessary to know the 

temperature. 

 
 
 



9 

 

When there is no information available for the mixture density, another approach must be 

followed. The required relationship is labelled the Lorentz-Lorenz N-mixing rule (L-L-N) 

which is established by combining Equation (15) and Equation (18). This gives 

 2 2 2

1 2
1 22 2 2

1 2

1 1 1

2 2 2

mix

mix

n n n

n n n
 

− − −
= +

+ + +
 (22a) 

or 

 
1 1 2 2N N N = +  (22b) 

where the volume fraction, at the mixture temperature, is defined in terms of the pure 

component molar volumes (Vi) as follows 

 ( )1 1 2 2i i iV x V x V x  +  (23) 

Numerous studies found that, for many real mixtures, predictions of mixture refractive indices 

according to the modified Lorentz-Lorenz relationship, i.e. the L-L-N mixing rule of Equation 

(22), agree reasonably well with experimental results (Heller, 1965; Iglesias-Otero et al, 2008; 

Krishnaswamy and Janzen, 2005; Tasic et al, 1992). Equation (22) allows direct estimation of 

the volume fraction of an equilibrium phase from refractive index measurements, expressed in 

terms of N-values as follows 

 ( ) ( )1 2 1 2N N N N = − −
 (24) 

The ni values must be known at the mixture temperature in order to calculate the Ni. The mole 

fraction and mass fraction can then be established from the following relationships 

 ( )

( )
2 1 1

1 1 2 2

1
1

N R N N

x N R N N

−
= −

−
 

(25) 

and (from Equation (3)) 

 ( )1 1 1 1 1 2 2w M x M x M x= +  (26) 

See Appendix A.1 Case D for the derivation of Equation (25). Equation (25) shows that the 

mole fraction of component 1 can be calculated directly using the measured value for the 

refractive index of the mixture. However, knowledge of the pure component values at the 

system temperature are required. 

It is important to note the basic assumptions that underlie the key expressions developed for 

estimating the composition of binary mixtures. Equation (20), Equation (21) and Equation (25) 
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assume that the molar refraction corresponds to the expectations for an ideal solution as 

expressed by Equation (17). Use of Equation (20) also requires knowledge of the mixture and 

component densities in addition to refractive index data. In contrast, Equation (25) does not 

require density data for the mixture for its application. However, it relies on an additional 

assumption, i.e., that the molar volume follows the expression applicable to an ideal solution 

as stated in Equation (15). Furthermore, if both properties conform to the expectations for an 

ideal solution, it can be shown by combining Equations (13), (15), and (18b) that the following 

expression holds 

 
2 1 1 1 1 2 2 2

2 1 1 1 2 2

M N x M N x
N

M x M x

 

 

+
=

+
 (27) 

Equation (27) represents the simplest mixing rule for ideal solutions. It indicates that the 

mixture refractive index is fully defined by knowledge of the densities, molar masses, and 

refractive indices of the pure components. 

Table 1 summarises the relationships derived for four different measurement cases. Note that, 

in some cases, it is assumed that the system temperature is also known and that correlations 

exist for calculating the required pure component properties. 

Table 1: Different measurement combinations for temperature (T), density () and 

refractive index (n) 

Case T  n Assumptions Known Measured Expression for x1 

A ✓ ✓  V = V1x1+V2x2 
M1, M2,  

1, 2 
 

1

2 1 1

1 2 2

1
M

M

  

  

−

  −
−  

−  
 

B ✓ ✓ ✓ R = R1x1+R2x2 

M1, M2,  

1, 2,  

n1, n2 

, n 
( )

( )

1

2 1 1 1

1 2 2 2

1
M N N

M N N

  

  

−

 −
− 

− 
 

C  ✓ ✓ 
R = R1x1+R2x2 

Ri  f(T) 

M1, M2,  

R1, R2 
, n 

1

1 1

2 2

1
NM R

NM R





−

 −
− 

− 
 

D ✓  ✓ 
V = V1x1+V2x2 

R = R1x1+R2x2 

R1, R2,  

n1, n2 
n 

( )

( )

1

2 1 1

1 2 2

1
N R N N

N R N N

−

 −
− 

− 
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2.3.3 Alternative mixing rules 

Numerous other mixing rules have been proposed with the hope to improve the Lorentz-Lorenz 

approach detailed above. Eyring and John (1969) and Lichtenecker (Heller, 1945) proposed 

nonlinear mixing rules for the refractive index (n). However, as shown below, their proposals 

can be recast in linear forms. 

Eyring and John (1969): 

 
( )

2

1 1 2 2n n n = +  (28a) 

 
1 1 2 2n n n = +  

(28b) 

Lichtenecker: 

 1 2

1 2n n n
 

=  (29a) 

 
1 1 2 2ln ln lnn n n = +  (29b) 

This means that most proposals introduced changes to the expression used for N but retained 

the linear composition dependence on the volume fraction as defined by Equation (22b). 

Comparison of the linear forms of the Eyring and John (1969) and Lichtenecker, as well as 

numerous other mixture rule proposals, reveals that they correspond to the same family of 

volume-fraction-weighted power means of order p defined by 

 ( )
1

1 1 2 2

p
p p

pn n n = +  (30) 

This expression includes the geometric mixing rule defined by Lichtenecker, as it corresponds 

to the limiting case where the power index approaches zero from above (p → 0+).  

Table 2 summarises the mixing rules reported in the literature for the refractive index of binary 

mixtures. More complex models include the proposals by Heller (1945) and Wiener (1910). 

The Heller model is limited to low concentrations of the dispersed phase, i.e.  , while the 

Wiener (1910) equation is valid over the full composition range. It can be shown that Wiener’s 

proposal is equivalent to the following Padé-type mixing rule (see Section 2.5) 

 

( ) ( )

4 2 2 4
2 1 1 1 2 2 2

2 2

1 1 2 2

2

2 2

n n n n
n

n n

 

 

+ +
=

− + −
 (31) 
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Several studies compared the relative performance of some of the mixture models listed in 

Table 2 (Pandey et al, 2007; Sirbu et al, 2019; Tasic et al, 1992; Vuksanović et al, 2014). It 

was mentioned that the Arago–Biot mixing rule offered the worst experimental data fit 

(Radović et al, 2008; Vuksanović et al, 2014). Most studies concluded that the Lorentz-Lorenz 

relations gave the best correlation for all systems investigated (Heller, 1965; Iglesias-Otero et 

al, 2008; Krishnaswamy and Janzen, 2005; Mehra, 2003; Tasic et al, 1992). However, no-one 

considered the Looyenga (1965) model. 

Table 2: Summary of the mixing rules proposed in the literature including possible 

definitions for the variable N in Equation (18b) or in Equation (22b) 

Model type Model Expression Reference 

VN = V1N1x1 + V2N2x2 

with 

N = (n2 − 1)/(n2 + d) 

Lorentz-Lorenz 

Eykman 

Modified 

Eykman 

d = 2 

d = 0.4 

variable d 

(Eykman and 

Holleman, 1919; 

Piñeiro et al, 

1999) 

VN = V1N1x1 + V2N2x2 

with revised  

expressions  

for N 

Oster N = (n2−1)(2n2 +1)/n2 (Oster, 1948) 

Looyenga N = n2/3 − 1 (Looyenga, 

1965) 

Arago-Biot N = n (Arago and Biot, 

1806) 

Dale-Gladstone N = n − 1 (Dale and 

Gladstone, 1858) 

Newton N = n2 − 1 (Kurtz and Ward, 

1936) 

Volume fraction  

weighted  

power mean 

of order p: 

( )
1

1 1 2 2

p
p pn n n = +  

Lichtenecker p = 0 (Heller, 1945) 

Eyring p = 1/2 (Eyring and 

John, 1969) 

Looyenga p = 2/3 (Looyenga, 

1965) 

Arago-Biot & 

Dale-Glastone 

p = 1 (Arago and Biot, 

1806; Dale and 

Gladstone, 1858) 

Newton p = 2 (Kurtz and Ward, 

1936) 

  p variable This work 

Complex models  Heller (valid for 

low values of 2) 
( )

( )

2 2

1 2 1

2 2 2

1 2 1

2 2

3

n n n n

n n n


 − + =
−

 
(Heller, 1945) 

Wiener 2 2 2 2

1 2 1
2 2 2 2 2

2 1 1

2

2

n n n n

n n n n


  − +
=   

− +  
 

(Heller, 1945) 

(Wiener, 1910) 
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2.4 Polymer-solution phase equilibrium 

Polymer solutions are mixtures which consist of a polymer (a component with long 

macromolecular chains), and a solvent (small molecules) (Grosberg et al, 1998). This mixture 

may exist as a liquid or as a solid. These mixtures are used to manufacture composites such as 

fibres, films, glues, paints, light-emitting devices (Chang et al, 1999), and, as mentioned 

previously, long-life personal protective wear against mosquitoes. The manufacturing process 

for microporous structures relies on temperature induced phase separation (TIPS) (Castro, 

1981; Lloyd et al, 1990; Ulbricht, 2006) to create a microporous polymer structure that traps a 

large quantity of the liquid repellent (Mapossa et al, 2020). Firstly, a fully homogeneous 

solution of the repellent in the polymer melt is created above the upper critical solution 

temperature (UCST). Phase separation is then induced by rapidly cooling it into the spinodal 

region. This means that the polymer processing temperature should exceed the UCST before 

the forced rapid cooling step commences. 

If a crystallisable polymer is present, it is not always clear whether the phase separation initiates 

via liquid-liquid phase separation or via polymer crystallisation. These mechanisms differ with 

respect to both the transformation kinetics and the resulting microstructure which ultimately 

controls the repellent release characteristics. Specifically, the DEET-polyethylene system is 

considered here. 

Thermodynamic models have been used to model polymer solutions. In the most basic sense, 

ideal solutions can be considered as lattices of molecules that are firstly identical in size, and 

secondly, exhibit equal energies for like and unlike molecular interactions (Young and Lovell, 

2011: 238). However, both of these assumptions are untrue in the case of polymer-solvent 

systems.  

2.4.1 Flory-Huggins theory 

Flory (1941) and Huggins (1941) independently derived a modified lattice theory which is still 

commonly used today. The Flory-Huggins solution theory is based on the following 

simplifying assumptions (Danner and High, 1993): 

• No change in volume upon mixing (i.e., it is a strict lattice model with ideal chains) 

• The composition of each polymer is not treated individually 

• The interaction parameter is independent of composition 
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• The only contribution to possible states is translational configurations 

• Molecules of a given type are indistinguishable and mix randomly 

Akhtar and Focke (2015) established the coexistence curves for the citronellal-polyethylene 

system using hot-stage microscopy in the cooling mode. However, difficulties were 

experienced with such measurements of the cloud points for mixtures of polyethylene with the 

mosquito repellent DEET. Therefore, the Flory-Huggins theory was applied. Assuming that 

each solvent molecule and polymer segment occupy exactly one lattice site, one obtains 

(Young and Lovell, 2011: 244): 

 
2

1 2 1 1 2ln lnmix

g

G

R T X


   

  
= + +  

 
 (32) 

where Gmix is the molar Gibbs free energy of mixing per mole of lattice sites; 1 and 2 are 

the volume fractions of solvent and polymer respectively;  is the Flory-Huggins interaction 

parameter; Rg is the universal gas constant; T is the absolute temperature; and X is the ratio of 

the polymer molar volume to that of the solvent 

 ( ) ( )2 2 1 1X M M =
 

(33) 

UCST phase behaviour is well accounted for by the Flory-Huggins theory with the interaction 

parameter χ exhibiting the following temperature dependence (McGuire et al, 1994): 

 A B T = +  (34) 

where A and B are adjustable constants. The Flory-Huggins theory predicts the following for 

the critical value of the interaction parameter 

 ( )
2

0.5 1 1c X = +
 

(35) 

The point where the binodal and spinodal curves intersect is determined by 

 
2,

1

1
c

X
 =

+
 (36) 

Unfortunately, the Flory-Huggins theory is unable to represent the phase envelopes in the 

vicinity of the critical temperature. However, Diekmann et al (2020) indicated that this theory 

does show the correct trends for the variation of the critical temperature with the molar mass 

of alkanes. Thus, another approach was considered. 
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2.4.2 Modelling the critical point 

This Section reflects the discussion presented in Sitoe et al (2021).The Ising model was 

invented in 1920 as a mathematical model of ferromagnetism. The two-dimensional square-

lattice Ising model is one of the simplest statistical models to show a phase transition 

(Gallavotti, 1999). 

However, liquid-liquid phase separation of organic compounds shows characteristic features 

reminiscent of the 3D-Ising model (Domb, 1996). This is surprising, considering the simplicity 

of the Ising model which just considers entities located on a rigid three-dimensional lattice 

(Vale et al, 2010). These can assume one of two possible states and their interactions are limited 

to nearest neighbors. Such a system is capable of a phase transition, where the two phases differ 

with respect to the relative occupation of the two states. These are described by one single order 

parameter that distinguishes the different phases by assuming non-zero values for ordered 

states and vanishes when passing through a continuous phase transition. 

When applied to liquid-liquid phase separation, the relative occupation of the two states in the 

Ising model is identified with a suitable composition variable, for example the volume- or the 

mole fraction. Near the UCST, Tc, the differences in the compositions of the coexisting phases 

can be represented by a power series in the reduced temperature (Schröer and Vale, 2009): 

 τ = T − Tc/Tc (37) 

Renormalisation group theory led to the following expression for the shape of the coexistence 

curve (Aizpiri et al, 1992): 

 2

1 2 ...R Lz z B B B    + + − = + + +  (38) 

where  = 0.326 and  = 0.50 are universal critical exponents (Kumar et al, 1983); the Bi are 

system-dependent critical amplitudes; zc, is the critical value of the composition variable z that 

defines the order parameter zR – zL, and the subscripts R and L refer to the right and left branches 

of the coexistence curve, respectively. 

Singh and Pitzer (1989) suggested that the amplitude of the first correction-to-scaling term in 

Equation (38) universally assumes the value B1  0 in fluid mixtures. Therefore, it is common 
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practice to only retain the leading term in Equation (38), with the others considered negligible 

(Vale et al, 2010): 

 
R Lz z B − =  (39) 

There is a noticeable discrepancy between the Ising phase diagram and those for real binary 

liquid-liquid systems. Unlike the phase diagrams predicted by the former, those for real fluids 

are generally asymmetric. The average composition of the two phases, termed the diameter, is 

not constant but varies with temperature. Mean field models, e.g., the van der Waals equation, 

predict that the diameter of the phase diagram varies linearly with the temperature near the 

critical point (Domb, 1996). This is known as the Cailletet-Mathias rectilinear diameter rule 

(Reif-Acherman, 2010). However, recent theoretical work (Cerdeiriña et al, 2006) led to the 

conclusion that the diameter of the coexistence curve, in general, is a sum of a linear term and 

nonanalytical terms with critical exponents of 1 –  and 2, respectively, i.e. 

 ( ) 1 2

12 ...L R c od z z z A A  −= + = + + +  (40) 

where  = 0.110 is a universal critical exponent and the Ai, are system dependent critical 

amplitudes (Aizpiri et al, 1992). 

It is not very clear which composition variable for binary liquid systems is preferred, i.e., mole 

fraction, mass fraction or volume fraction (Kumar et al, 1983). However, Vale et al (2010) 

pointed out that for different choices of the concentration descriptors, e.g., mole fraction or 

volume fraction, the relative importance of the terms in Equation (40) varies. Depending on 

the choice, it may even lead to apparent cancellation of the nonanalytic terms, so that the linear 

approximation would work well in many instances. Damay and Leclercq (1991) noted that the 

asymmetry of the coexistence curve in binary systems is primarily due to a difference in size 

between the components. Damay and Leclercq (1991) therefore proposed the rescaling of the 

concentration descriptor in order to achieve a symmetric shape for the phase envelope. If this 

is possible, it will allow use of Equation (39) only, i.e., it becomes unnecessary to correct for 

the asymmetry. This proved possible by applying the q-fractions concept from Equation (6). 

Consider the q-fraction for a binary mixture described by volume fractions 

 

2

1 1
1

1 1 2

q
 

   
=

+
(41) 
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A revised composition variable can then be defined by factoring the coefficients as follows 

 
1

1

1 2

z
m



 
=

+
; and 

2
2

1 2

m
z

m



 
=

+
 (42) 

where m is an adjustable constant chosen such that the phase envelope, when plotted against 

z1, is symmetric and defined by 

 

1
2

c
c

c

T TB
z z

T


 −

=   
 

 (43) 

This proposal put forward by Damay and Leclercq (1991), embodied in Equation (43) was 

implemented for the DEET-alkane mixtures reported presently. 

2.5 Polynomial expressions for physical property data 

2.5.1 Scheffé and Bernstein polynomials 

As mentioned, it was found that theoretical and empirical mixture models for surface tension 

models featured a common Padé-like structure (Dzingai et al, 2024). This opened a new 

window which suggested that, perhaps rational polynomial expressions would also apply to fit 

other mixture property data. 

The classic way to approximate functions is via Taylor polynomials which were introduced in 

1715 by Brook Taylor. They are generated by truncating the Taylor series expansion of a 

function f(x) around point a.  

 ( )

0

( )
( ) ( )

!

n
n

n

f x
f x x a

n



=

= −  (44) 

This can also be applied to multivariable functions, such as a binary mixture of x1 and x2. 

Consider a second order Taylor polynomial about the point (a, b):  

 
1 2 1 2

1 2

2 2 2
2 2

1 1 2 22 2

1 1 2 2

( , ) ( , ) ( ) ( , ) ( ) ( , )

1
( ) ( , ) 2( )( ) ( , ) ( ) ( , )

2!

f f
f x x f a b x a a b x b a b

x x

f f f
x a a b x a x b a b x b a b

x x x x

 
= + − + − +

 

   
− + − − + − 

    

 (45) 
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Obviously, this is a very tedious way of representing functions. Secondly, the approximation 

error of a Taylor expansion may increase rapidly further away from the approximation point. 

While these polynomials are generated for a function over x , they approach f(x) over a 

wider interval as n increases. Thirdly, it is not clear around which specific point this should be 

evaluated. The point (0, 0), which would define Equation (44) as a Maclaurin series, does not 

exist for a real mixture. In other words, it does not take the simplex constraint (mentioned in 

Section 2.1) into consideration. Consider for a binary mixture, a convenient starting point, e.g., 

(0.5, 0.5) where the function and its partial derivatives have a constant value. By gathering the 

similar terms in Equation (45), coefficients can be reassigned as  

 
1

2 2

1 2 1 10 1 11 2 2 1 2 22 22( , )f x x x x x x x x     = + + + + +  (46) 

It was noted that the 𝛽0  term could be multiplied by (x1 + x2), which is equal to unity. 

Reassignment of the coefficients then gives  

 2

1 21

2

1 2 1 1 22 2 1 1 2 21 2( , )f x x x x x x x x    = + + + +  (47) 

If the quadratic terms are expanded using 2 (1 )i i j i i jx x x x x x= − = − , the second order Scheffé 

S-polynomial for a binary system is obtained, again with reassigned coefficients 

 
22 121 1 2 1 2(2)S x x x x  = + +  (48) 

For experimental design, it is standard to apply Scheffé S-polynomials. The canonical model 

forms for q components in a mixture of orders (degrees) one, two and three are, respectively 

(Focke and Du Plessis, 2004; Scheffé, 1958):  

 

1

(1) i

q

q i

i

S x
=

=  (49) 

 

1

(2)
q q

q i i ij i

i j

j

i

S x x x 
= 

= +   (50) 

 

1

(2)

( )

q i i ij i j ijk i j

j

q q q

i

i i j i j k

q

ij

j

i j

i

kS x x x x x x

x x x x

  



=   



= + +

+ −

   



 (51) 
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An alternative but equivalent representation to these is the Scheffé K-polynomials (Draper and 

Pukelsheim, 1998). The second order Scheffé K-polynomial for a binary system, as analogue 

to Equation (47) is 

 
111 2

2 2

2 22 1 12 2(2) 2K c x c x x c x= + +  (52) 

In general, the nomenclature for the K-polynomials is given by Kq(n), where q is the order of 

the homogenous polynomial and m indicates the number of components in the mixture. One 

very attractive property of K-polynomials is that they are readily extended to ternary and higher 

multicomponent mixtures. They were originally established by Kronecker algebra of vectors 

and matrices, but here a new way to generate them is laid out using Bernstein basis 

polynomials. 

Sergei Bernstein developed Bernstein basis polynomials, as they are now called (Bernstein, 

1912). They were developed as part of his proof of the Weierstrass Approximation Theory, 

which states (Duren, 2012: 151; Weierstrass, 1885): 

If a function f(x) is continuous on a closed bounded interval [a, b], then for each ε > 0 

there exists a polynomial P(x) such that |f(x) – P(x)| < ε for all x in [a, b]. 

In other words, every continuous function can be approximated uniformly by polynomials. The 

Bernstein basis polynomials of degree n form a complete basis over the interval [0,1] and the 

bases are defined by (Bernstein, 1912; Duren, 2012: 157): 

 
, (1 )k n k

k n

n
b x x

k

− 
= − 
 

 (53) 

Here, the binomial coefficient is defined by 

 

( )
!

! !

n n

k k n k

 
= 

− 
 (54) 

and 0! = 1. Furthermore, if ƒ is a continuous function on the interval [0, 1], then the Bernstein 

polynomial 

 
,

0

( )( ) ( )
n

k n

k

n

k
B f x f b x

n=

 
=  

 
  (55) 
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will converge uniformly on [0, 1] as n → ∞; in other words (Lorentz, 1953): 

 lim ( )
n

nB f f
→

=  (56) 

Bernstein polynomials are a class of orthogonal polynomials. Orthogonal polynomials have the 

advantage that they can distribute the error over the interval of interest uniformly (Bellman, 

1968: 194). If there is a sequence of polynomials 0{ ( )}nnP x 

= , ( )nP x  of degree n, such that 

 
( , ) ( ) ( ) ( ) mm n n

b

n

a

m nP P P x P x w x dx c= =  (57) 

where w(x) is the weighting function and 
mn is the Kronecker delta (Weisstein, 2024): 

 0, for 

1, for 
nm

m n

m n



 

=
 (58) 

then  ( )nP x is an orthogonal polynomial sequence with respect to the weight function w on 

(a, b) (Chihara, 1978: 2). If cn = 1, then the polynomials are not only orthogonal, but 

orthonormal as well. Many other orthogonal polynomials exist and can be used to approximate 

functions, such as Legendre polynomials, Hermitic polynomials or Chebyshev polynomials 

(Weisstein, 2024). Function approximation using these polynomials is done by first choosing 

the highest order version and then using a linear combination of all those polynomials up to 

that order over an interval specific to that polynomial. However, Bernstein basis polynomials 

are different as they are defined in the interval [0, 1] which provides an alternative and elegant 

way of representing binary systems. Since x2 = 1 – x1, Equation (55) can be rewritten as 

 
1 2,

0
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=
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 
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where the k,n are adjustable constants. In the case of n = 1, i.e., a first order polynomial, this 

gives the linear blending rule 

 
1 11 1 201( )B x x x = +  (60) 

For n = 2, 

 
22 12

2 2

2 1 1 2 02 2( ) 2B x x x x x  = + +  (61) 

 
 
 



21 

 

And for n = 3, 

 3 2 2 3

23 33 1 23 1 2 113 03 2( ) 3 3B x x x x x x x   = + + +  (62) 

Comparison of Equation (52) to Equation (62) shows that for binary mixtures, the K-

polynomials and the Bernstein polynomials are identical. This also extends to the multivariate 

forms. The K-polynomials are homogeneous (i.e., all its terms have the same degree), and the 

corresponding information matrix is well-conditioned. Improvement of the conditioning of the 

information matrix generally reduces the variances of individual estimated regression 

coefficients, reduces the correlations between the variables, and makes the model less 

dependent on the precise location of the measurement data points (Prescott et al, 2002). The 

extension of the Bernstein basis polynomials to multicomponent mixtures is possible, but not 

part of this scope. Nevertheless, the quotient of two Scheffé K-polynomials creates Padé 

expressions that are useful for modelling mixture property data (Focke and Du Plessis, 2004). 

As mentioned previously, some of the binary models for refractive index are Padé-type 

expressions. The concept of Padé approximants was formulated at the end of the 19th century 

within the classical theory of continued fractions (Frobenius, 1881; Padé, 1892). A rational 

function is the ratio of two polynomials. A Padé approximation is simply the rational function 

analogue of the Taylor series. Formally, a Padé approximation of order (m, n) to a function  

at point  is defined as a rational function n mP Q such that for  near  
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n

m

f x P x
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Q x

−
= −  (63) 

with  as large as possible (Borowski and Borwein, 2005). In simpler terms, the (m, n) Padé 

approximation for a rational function is: 
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or more explicitly (Andrianov and Shatrov, 2021): 
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where the i’s and i’s are the regression coefficients of the polynomials. These types of 

functions have many applications in control theory (Seborg et al, 2011). It is not clear how 

Equation (65) can be extended to multicomponent systems. However, this dilemma is resolved 

by using the ratio of two Scheffé K-polynomials (Focke and Du Plessis, 2004): 

 ( , ) ( ) / ( )q qP m n K m K n=  (66) 

However, this functional form is also useful and prevalent for describing compositional 

variance in chemical properties such as surface tension (Dzingai et al, 2024), excess Gibbs free 

energy (Focke and Du Plessis, 2004), density, and viscosity. Another advantage is that if data 

for only two of the three binaries of a ternary system are available, this suffices to fit all the 

parameters of the P(1,1) Padé model. This derivation is shown in Appendix A.2. 

2.5.2 Projection functions leading to Scheffé polynomials 

This Section reflects the contents of an article submitted for review by Pretorius et al (2024). 

It describes a novel extension of the Scheffé- and Padé-type expressions in the context of 

projections of pure component behaviour onto the simplex region. 

Consider a single-phase liquid mixture of m different compounds at equilibrium at temperature 

T. The composition of a mixture is described by the vector of mole fractions: xT = (x1, x2, …,  

xn). It is postulated that the value which the physical property ( ) of this multicomponent 

mixture assumes, is determined by a weighted average over the pure component property 

values ( ), such as 

 ( ) ( )i ip f p=x x  (67) 

The weighting function fi(x1, x2, …, xn) corresponds to a projection of the property values of 

pure component i, onto the simplex region. The projection function must satisfy the following 

mathematical consistency requirements 
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In other words, when a component is absent, it should not contribute to the mixture property at 

all. Additionally, when only one component is present, it must match some unique 

characteristic of the pure component, termed i.  

An assumption of the proposed formulation is that the parameters embedded in the weighting 

function f(x) are temperature and pressure independent. Here, an ansatz is introduced that the 

projection function has the form of a Padé-type approximant. Consider the following P(3,3) 

Padé approximant defined by the ratio of two cubic polynomials as the most general Padé 

approximant for a multicomponent mixture 

 

i i i ij j ik k i i ij j ik k

i j k i j k

x x x x x x       
       

=        
        

       (70) 

Here  and i represent the material property (in this case, surface tension) of the mixture and 

of pure component i respectively; while the ij, ik, ij and ik are adjustable binary parameters. 

Unfortunately, Equation (70) is excessively parameter rich. There is one parameter for each 

pure component and eight per binary in the mixture. Also, the pure component characteristics, 

i’s, are ill-defined. It would be advantageous if they could be associated with readily 

measurable quantities representative of the individual pure components. 

Parameter reduction is possible by considering the constraints on the adjustable parameters. 

The second order and third order Scheffé polynomials are considered now.  

A special form of the quadratic Scheffé model (cf. Equation (52) which is equivalent to 

Equation (61)) is obtained with a projection function defined by 

 ( )i i ij jf x x= x with ii = 1  i (71) 

For a ternary mixture the corresponding expression for the mixture model is 

 ( ) ( ) ( )1 1 1 12 2 13 3 2 2 21 1 2 23 3 3 3 31 1 32 2 3p x p x x x x p x x x x p x x x     = + + + + + + + +  (72) 

In Equations (71) and (72), there are two independently adjustable parameters per binary, i.e., 

ij and ji. This contrasts with the conventional second order Scheffé polynomial as it features 

only one adjustable parameter per binary (Draper and Pukelsheim, 1998). A parameter 

reduction can be achieved if links between the ij and the ji can be established. Consider the 
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postulate that the property values of a ternary mixture can be described by a quadratic 

expression defined by the product of two linear polynomials, i.e. 

 ( )( )1 1 2 2 3 3 1 1 2 2 3 3p a x a x a x b x b x b x= + + + +  (73) 

This expression can be expanded as  

3 32 1 1 2
1 1 1 1 2 3 2 2 2 1 2 3 3 3 3 1 2 3

1 1 2 2 3 3

b bb b b b
p a b x x x x a b x x x x a b x x x x

b b b b b b

    
= + + + + + + + +    

     
 (74) 

Comparing Equation (74) with Equation (72)(87) reveals that the pure component property 

corresponds to the product pi = aibi. Additionally, note that the model parameters are now 

linked via the relation ji = 1/ij. Furthermore, it is clear that the specification ii = 1 arises 

naturally. Applying these conditions to Equation (84) yields a quadratic Scheffé polynomial 

with just one adjustable parameter per constituent binary. 

A special form of the cubic Scheffé model is obtained by defining the projection function as  

 ( )i i ij j ij jf x x x =  x  (75) 

Again, links between the parameters of this equation can be established by postulating that the 

property of the mixture is defined by the product of three linear polynomials. Consider again a 

ternary mixture as the illustrating example 

 ( )( )( )1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3p a x a x a x b x b x b x c x c x c x= + + + + + +  (76) 

This expression can be expanded as 
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 (77) 

In this case, the pure component properties are defined by the product pi = aibici and it also 

holds that 

 ji = 1/ij; ji = 1/ij and ii = ii =1 (78) 

 
 
 



25 

 

Applying these relationships to the weighting function of Equation (75) generates a special 

form of the cubic Scheffé polynomial with just two adjustable binary coefficients. In addition, 

unlike the conventional cubic Scheffé polynomials, the ternary constants that arises in 

multicomponent mixtures are fully determined in terms of the binary parameters. This is a very 

useful property since model parameters can then be fixed, at least in principle, from knowledge 

of binary mixture behaviour. In other words, it will not be necessary to measure properties for 

ternary mixtures. 

2.5.3 Padé approximants for physical properties 

This idea of Padé approximants based on Scheffé polynomials can be applied to refractive 

indices. In an ideal solution, both the molar refraction R and the molar volume V, follow the 

linear blending rule with mole fractions as the composition descriptors, as elaborated in Section 

2.3.2. This means that, for an ideal binary solution the following expression holds 

 
1 1 2 2 1 1 1 2 2 2

1 1 2 2 1 1 2 2

R x R x V x N V x NR
N

V V x V x V x V x

+ +
= = =

+ +
 (79) 

Equation (79) suggests that, for the physical property N, the i’s can be associated with the 

molar volumes (Vi) of the pure components at the temperature of the solution. The refractive 

index is subsequently recovered from the Lorentz-Lorenz parameter N via the expression 

 1 2

1

N
n

N

+
=

−
 (80) 

Alternatively, the refractive index of an ideal solution can be modelled via a P(1,1) Padé 

approximant in which mass fractions serve as the composition descriptors. If this is done, an 

expression is obtained in which the molar mass Mi serves as a temperature-independent i 

surrogate. To achieve this, first define a new property 

 r N R M =  (81) 

The molar mass of the mixture is given by a linear combination of the molar masses of the 

components. For ideal solutions this also holds for the molar refraction. Therefore 

 ( ) ( )1 1 1 1 2 2 2 21 1 2 2 1 1 1 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2

M x N M x NR x R x M x r M x r
r

M x M x M x M x M x M x

 ++ +
= = =

+ + +
 (82) 
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In other words, for ideal solutions, it holds that the parameter r is a mass fraction weighted 

average over the pure component values 

 
1 1 2 2 3 3r rw r w r w= + +  (83) 

Equation (79) and Equation (82) are equivalent forms, but they use different data during the 

regression analysis. Therefore, there will be differences in the prediction errors. Conveniently, 

Equation (82) offers the advantage that all the parameters are temperature independent. 

However, the actual mixture density must be known in order to determine the value of the 

refractive index using 

 1 2

1

r
n

r





+
=

−
 (84) 

When using Equation (79) instead, it is only necessary to know the molar masses and the 

densities of the pure components as a function of temperature. Hence, it was chosen for this 

analysis. 

2.6 Summary 

Refractive indices provide a simple, temperature-dependent way to correlate compositional 

data, if a calibration curve is available. However, it is uncertain which type of composition 

variable to use. The phase equilibrium behaviour of polymer-solvent systems can be expressed 

by the Flory-Huggins model but requires a new type of composition variable for modelling the 

critical point. For mixtures, many of the mixing rules available can be seen as Padé-type 

expressions (ratios of polynomials). Yet it is unclear which set of regression coefficients and 

constraints would perform best. These unknowns are now addressed. 
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3 Materials and methods 

3.1 Materials 

In order to model the behaviour of polyethylene with DEET, a series of n-alkanes were used 

as short chain analogues to the polymer. Their details are given in Table 3. All the compounds 

were obtained from Merck and were used as received without further purification. 

Table 3: Chemical details 

Chemical CAS # Product code Code Purity, % 

DEET 134-62-3    

Dodecane (C12) 112-40-3 101987112 297879 > 99 

Hexadecane (C16) 544-76-3 101444299 296317 > 99 

Eicosane (C20) 112-95-8 1002515748 219274 99 

Tetracosane (C24) 641-31-1 1002801750 T8752 99 

Octacosane (C28) 630-02-4 102200614 O504 99 

Dotriacontane (C32) 544-85-4 102181345 D223107 97 

3.2 Methods 

3.2.1 Evaluation of mixing rules 

Literature data for refractive index measurements on other alkanes and binary mixtures of these 

components with polar organic compounds were obtained. Table 4 lists the different systems 

considered together with their sources for the density and refractive index of pure components 

and binary mixtures. In a few cases, when the density of the pure component was not available, 

it was calculated using the correlation reported by Yaws and Pike (2009): 

 ( )1
n

T C
A B

− −
=  (85) 

where A, B, C, and n are empirical constants. 
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Table 4: List of data sources for density and refractive index for pure components and 

binary mixtures 

Pure compounds Temperature 

range, C 

References 

Dodecane 20–100 (Casás et al, 2002; Caudwell et al, 2004; Pardo et al, 

2001; Paredes et al, 2012) 

Hexadecane 20–60 (Queimada et al, 2005; Sirbu et al, 2019) 

Eicosane 40–100 (Dutour et al, 2001; Queimada et al, 2005) 

Tetracosane 60–100 (Queimada et al, 2005; Yaws and Pike, 2009)  

Octacosane 50–100 (Yaws and Pike, 2009) 

Dotriacontane 75–100 (Yaws and Pike, 2009) 

Binary systems Temperature 

range, C 

References 

Acetone-alkanes 15–35 (Acosta et al, 2001; Casás et al, 2002; Marino et al, 

2000; Marino et al, 2001) 

Anisole-alkanes 20–30 (Calvar et al, 2009) (Al-Jimaz et al, 2005) (Orge et al, 

2000) 

Benzene-alkanes 10–40 (Calvar et al, 2009; Diaz Peña and Nuñez Delgado, 

1975; Dymond and Young, 1981; González et al, 

2010; Lal et al, 2000; Letcher, 1984; Ridgway and 

Butler, 1967; Teja and Rice, 1976) 

Chlorobenzene-

alkanes 

25–35 (Gayol et al, 2010; Tourino et al, 2004) 

Cyclohexanone-

alkanes 

25–35 (Aralaguppi et al, 1999) 

Dioxane-alkanes 25–35 (Calvo et al, 1998; Nayak et al, 2003; Penas et al, 

2000) 

Ethanol-alkanes 15–45 (Blanco et al, 2013; Gayol et al, 2007; Jiménez et al, 

2000; Orge et al, 1997; Orge et al, 1999; Segade et al, 

2003) 

 

3.2.2 Refractometry 

Refractive index values were measured as a function of temperature using a Mettler Toledo R4 

refractometer. The calibration of the instrument was checked using double distilled and 

deionised water in both a heating and cooling run. These values were compared to those of 

water in the literature (Bashkatov and Genina, 2003; Thormählen et al, 1985) as shown in 

Figure 2. The instrument precision was  0.0001 and repeatability was  0.0002 refractive 

index units. 

Solid reagents were melted before being weighed out. All reagents were weighed on a Mettler 

Toledo analytical balance to four decimal places. The reagents were pipetted into small vials 

with screw tops and molecular sieves to entrap any atmospheric moisture. The vials and glass 
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pipettes were placed in the oven to ensure homogenous solutions right before measurements 

were taken. 

 

Figure 2: Water refractive index repeatability curve as compared to literature data 

(Bashkatov and Genina, 2003; Thormählen et al, 1985). 

The refractometer sample holder is conical with a prism located in the bottom. Therefore, the 

refractive index is measured for the densest layer of sample fluid (i.e., that which is in direct 

contact with the flat surface). Sample amounts varying between 0.15 g and 0.5 g were weighed 

out and directly pipetted into the instrument cell. The measurements were conducted in 

decreasing temperature increments with time delays programmed into the device to ensure 

equilibrium was reached. 

3.2.3 Determination of phase envelopes 

The pure component molar mass, density, and refractive index as a function of temperature 

were used to determine the pure component molar refractivity. These values were then used 

along with the mixture refractive index to calculate the volume fraction of a component present 

in the mixture. As it cools, the composition locus should either follow the phase boundary or 

form a jump discontinuity to the other side. The method was applied to mixtures of DEET with 

a range of linear alkanes of increasing chain length, to finally extrapolate to the phase behaviour 

of polyethylene-DEET mixtures. The number average molecular mass of the polyethylene 

considered for making the anklets was 50.4 kDa. 
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Firstly, the liquid sample was prepared by accurately weighing out suitable quantities of the 

two components into the measurement cell. Again, the temperature was set at a high value and 

sufficient time was allowed before measuring the refractive index so that equilibrium was 

reached. 

A check was done to justify the validity of the model. For this, the measured refractive index 

value was compared to the one predicted by Equation (19) by using Equation (80). 

In the homogenous state, if the predicted composition matched the set values, the 

aforementioned assumptions and models were considered justified. The temperature was 

lowered by a few degrees, and the procedure was repeated. The locus of the refractive index, 

for a homogeneous liquid, follows a straight line if plotted against temperature and, on the 

temperature-composition plot, it is a vertical line. Once the boundary of a two-phase region is 

traversed, the locus of the measured refractive index deviates from these straight lines because 

the composition changes. Once this happened, sufficient time was allowed to ensure that the 

system reached a true equilibrium state. This took several minutes, and, in a few cases, it took 

more than an hour. The molar volume of the alkanes being tested was estimated using the 

density correlations reported by Yaws and Pike (2009). The apparent composition of the 

mixture was then estimated from Equation (24) and 

 ( )1 1 2 1 2 2 1x V V V  = +  (86) 

The temperature was adjusted, and the process repeated. On further cooling, the composition 

locus should either follow a phase boundary curve or “jump” to the other branch of the phase 

envelope on the other side of the critical temperature.  

3.2.4 Padé expression fitting 

Data from the sources in Table 5 was extracted and used to fit Padé-type functions. System I 

(as designated by Pretorius et al (2024)) contained density but not refractive index 

measurements. Here a single temperature at which the analysis was done was chosen.  
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Table 5: Data sources of refractive index measurements of ternary systems 

# Ternary system T 

(C)# 

References 

II diisopropyl ether, ethanol, and 

methylcyclohexane 

25 (Ye and Tu, 2005) 

III acetone, ethanol, and  

2,2,4-trimethylpentane 

25 (Chen and Tu, 2005) 

IV ethanol, 2-methylpropan-2-ol, and  

2,2,4-trimethylpentane 

25 (Wang et al, 2005) 

V diisopropyl ether, ethanol, and  

2,2,4-trimethylpentane 

25 (Chen and Tu, 2006) 

VI tetrahydofuran, 2-propanol, and  

2,2,4-trimethylpentane 

25 (Ku et al, 2008) 

VII 2-propanol, benzyl alcohol, and  

2-phenylethanol 

35 (Huang et al, 2008; Yeh and 

Tu, 2007) 

VIII 1,3-dioxolane, 2-propanol, and  

2,2,4-trimethylpentane 

25 (Ku et al, 2009) 

IX 2-propanol, tetrahydropyran, and  

2,2,4-trimethylpentane 

30 (Kao and Tu, 2011) 

X ethanol, benzyl acetate, and  

benzyl alcohol 

30 (Chen et al, 2012) 

As mentioned in Section 2.5.3, constraints on the parameters are preferred. The denominator 

polynomial must always exceed zero. Otherwise, negative values may be generated, and an 

undefined property value will arise. Further constraints can also be imposed to reduce the 

number of parameters to fit, and this concept was explored in depth in the article (Pretorius et 

al, 2024). Table 6 shows the different variations of the Padé projection models for ternary 

mixtures that were considered in the analysis. This includes the P(2,2) model 

 ( ) ( ) ( )

( ) ( ) ( )
1 1 1 1 12 2 13 23 2 2 2 21 1 2 23 3 3 3 3 31 1 32 2 3

1 1 1 12 2 13 23 2 2 21 1 2 23 3 3 3 31 1 32 2 3

x p x x x x p x x x x p x x x
p

x x x x x x x x x x x x

        

        

+ + + + + + + +
=

+ + + + + + + +
 (87) 

and the P(3,1) model 

 
i i ij j ik j l l

i j k l

p x x x x   =     (88) 

Note that the specific volume is given by i = 1/i. 

  

 
 
 



32 

 

Table 6: Padé-type projection model variants (based on parameter constraints) 

P(2,2) model: 

Binary parameters 

Model variant code Parameter constraints # Parameters* 

Ideal ij = ij = 1  0 

A ij = ij  & ji = 1/ij 1 

B ij = ij 2 

C ji = 1/ij & ji = 1/ij 2 

D None 4 

P(3,1) model:  

Binary parameters 

Model variant code 

 

Parameter constraints  

 

# Parameters* 

E ji = 1/ij & ji = 1/ij 2 

F None 4 

Pure component descriptors 

Physical property pi for i  Vi pi for i  Mi 

Refractive index ( ) ( )2 21 2i i iN n n= − +  ( ) ( )2 21 2ii i iN n n= − +  

*The number of adjustable parameters per binary in the mixture 

The parameter values were fixed using least squares regression analysis executed in MS Excel. 

Results obtained using only the binary data for this purpose, and also when the full data sets 

were considered, are reported. The Akaike information criterion (AIC) (Akaike, 1983) was 

used to rank the relative performance of the models. The governing equation is 

 AIC ln ( ) 2n SSE df= +  (89) 

where n is the number of data points, SSE is the sum of the square errors, and df is the degrees 

of freedom, i.e. the number of parameters that were fitted. To compare models, it is only the 

difference between the AIC values that matters. On taking differences, the units cancel out and 

the result is unitless 

 
ref modelAIC ln ( ) 2n SSE SSE df = +   (90) 

The cases employing i = Vi and i = Mi were considered separately. For each mixture property, 

the corresponding P(1,1) Padé “ideal solution” expression served as the reference model. The 

obtained AIC values were normalised by taking the ratio with respect to the largest value 

recorded. The normalised AIC values, obtained when regressing just the binary data, were 

compared to the values obtained when the full data set were used instead.  
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4 Results and discussion 

4.1 Refractometry mixing rules 

4.1.1 Single compounds 

The measured refractive indices of the pure n-alkanes considered are plotted in Figure 3. For 

any fixed temperature, the refractive index increases with alkane chain length. The temperature 

dependence was perfectly linear over the full measurement range, i.e., it could be represented 

by 

 ( )( ) o on T n m T T= + −  (91) 

where n is the refractive index of the compound at the reference temperature T and m is the 

slope of the refractive index line when plotted against temperature. 

Figure 4(a) shows data plots of the molar refraction, R, calculated from Equation (12) with 

refractive index and density data extracted from the sources listed in Table 4. The scaled molar 

refraction R/M data are reported in Figure 4(b). The results substantiate the temperature-

independence of the molar refraction, and the molar mass scaled version as expressed by 

Equation (14), in the case of n-alkanes. The R/M values observed in Figure 4(b) are very close 

to one third. Nevertheless, the data trends suggest a very weak linear temperature dependence. 

In the temperature range displayed, the R/M values, as well as the temperature slope, decrease 

with alkane chain length. The slope is positive for dodecane, hexadecane and eicosane but 

negative for the longer alkane members. However, the variation with temperature, in the range 

considered, is negligible as it amounts to less than  0.2 %. For all practical purposes, the molar 

refraction values, R, may therefore be assumed to be constants.  
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Figure 3: Measured refractive index values for measured for selected linear n-alkanes: 

C12: Dodecane; C16 Hexadecane; C20 Eicosane; C24 Tetracosane; C28 Octacosane and 

C32 Dotriacontane.  

 

Figure 4: Data for (a) the molar refraction R, and (b) the molar-mass scaled form R/M 

for selected alkanes in the liquid state. The scale bar in (b) shows a  0.5 % deviation 

from one third. 

If this is the case, the Lorentz–Lorenz relationship of Equation (14) allows the calculation of 

the liquid density from refractive index measurements. 
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The applicability of this approach was tested on the n-alkanes together with data for some 

additional compounds. The results are summarised in Table 7. Experimental values for the 

densities and refractive indices over certain temperature ranges were obtained from the 

literature as per Table 4. These values were used to calculate the molar volume and molar 

refraction at each data point. The calculated values obtained were averaged over the whole 

temperature range. Subsequently, the mean value for R obtained for each component was used 

to calculate its density over the temperature range considered with Equation (92). Table 7 lists 

the R values and the mean and maximum absolute average deviations (AAD) for the density 

prediction errors obtained by applying Equation (92). Table 7 indicates that the molar refraction 

is less affected by the system temperature than the molar volume. The standard deviation (s), 

expressed as a relative percentage, averaged 0.14 % for R and 1.14 % for the molar volume 

over the temperature ranges considered. The variation in R is therefore almost order of 

magnitude smaller in value compared to V.  

The Looyenga and modified Eickman models were also investigated. This was done by 

replacing the expression for N, i.e. (n2-1)/(n2+2), in the Lorentz-Lorenz expression with either 

np− 1 or with (n2-1)/(n2+d), respectively. Setting p = 2/3 or d = 0.4 resulted in slightly larger 

standard deviations in the R values compared to the Lorentz-Lorenz approach. Only minor 

improvements were observed when allowing these adjustable parameters to vary. At best, the 

performance was the same as for the Lorentz-Lorenz equation. Surprisingly, the results were 

rather insensitive to the actual values assigned to the parameters d and p. Density predictions 

covered a wide range of values and agreed, on average, within 0.2 %, with a maximum 

deviation of less than 1 %. Subsequently, Equation (92) proves to be applicable for calculating 

pure component temperature-dependent density values in the absence of experimental data or 

correlations—provided that at least a single density point at a reference temperature is available 

to allow for the calculation of R. This is useful in correlations where pure component density 

data are required to predict the mixture composition and only refractive index measurements 

are available. 
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Table 7: Pure components: Average values of the molar volumes and molar refractions 

with the density predicted from R 

 
T-

range, 

Molar volume, 

cm3mol−1 

Lorentz-Lorenz molar 

refraction, cm3mol−1 

Density errors 

Compound °C V ± s s, % R ± s s, % 

Max 

% 

AAD 

% 

Benzene 8–50 89.9 ± 1.28 1.43 26.22 ± 0.04 0.16 0.28 0.15 

Acetone 20–45 74.3 ± 1.20 1.61 16.16 ± 0.04 0.23 0.43 0.15 

DMA 25–45 94.0 ± 0.94 1.00 24.34 ± 0.02 0.09 0.09 0.06 

Anisole 20–30 109.3 ± 0.52 0.47 32.93 ± 0.07 0.22 0.24 0.16 

Cyclo-

hexanone 25–35 104.7 ± 0.51 0.49 27.93 ± 0.01 0.05 0.05 0.03 

Dioxane 25–35 86.2 ± 0.48 0.56 21.69 ± 0.01 0.06 0.07 0.04 

Ethanol 15–45 59.1 ± 0.71 1.19 12.91 ± 0.01 0.05 0.08 0.04 

Dodecane 20–100 232.7 ± 5.88 2.53 57.86 ± 0.08 0.14 0.23 0.12 

Hexadecane 20–60 297.9 ± 3.73 1.25 76.43 ± 0.06 0.08 0.12 0.07 

Eicosane 40–100 373.1 ± 6.09 1.63 95.06 ± 0.04 0.04 0.06 0.03 

Tetracosane 60–100 442.1 ± 4.26 0.96 113.0 ± 0.33 0.29 0.58 0.21 

Octacosane 50–100 509.3 ± 5.21 1.02 131.4 ± 0.39 0.29 0.56 0.22 

Dotriacontane 75–100 580.4 ± 3.76 0.65 149.5 ± 0.14 0.09 0.12 0.07 

Average (max)     1.14    0.14 (0.58) 0.10 

 

4.1.2 Binary mixtures containing an n-alkane 

Figure 5 shows that all the binary mixtures of acetone with alkanes appear to behave like ideal 

mixtures with respect to both the molar refraction and the molar volume. This also holds for 

other compounds in mixtures with n-alkanes as demonstrated by Figure 6 to Figure 9. Note on 

Figure 7 the curvature of the V vs. x1 lines. The molar volume of benzene (as ) in 

mixtures with hexane and heptane deviates from that seen with the other n-alkanes, namely 

90 cm3⋅mol−1. Moreover, the other figures indicate that the molar volumes for n-hexane and n-

heptane are around 130 cm3⋅mol−1 and 148 cm3⋅mol−1 respectively. This indicates a useful 

feature of this approach, viz. to determine when reported measurements are likely faulty.  
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Figure 5: The Lorentz-Lorenz molar refraction R and molar volume at 25 C for binary 

mixtures of acetone with selected alkanes calculated using the data sources listed in 

Table 4. 

 

 

Figure 6: The Lorentz-Lorenz molar refraction R and molar volume V at 25 C for 

binary mixtures of anisole with selected alkanes calculated using the data sources listed 

in Table 4. 
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Figure 7: The Lorentz-Lorenz molar refraction R and molar volume V at 25 C for 

binary mixtures of benzene with selected alkanes calculated using the data sources 

listed in Table 4.  

 

Figure 8: The Lorentz-Lorenz molar refraction R and molar volume V at 25 C for 

binary mixtures of chlorobenzene with selected alkanes calculated using the data 

sources listed in Table 4. 
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Figure 9: The Lorentz-Lorenz molar refraction R and molar volume V at 25 C for 

binary mixtures of cyclohexanone with selected alkanes calculated using the data 

sources listed in Table 4. 

Figure 10 shows the temperature dependence of the molar refraction and the molar volume for 

mixtures of 1,4-dioxane with n-hexane. The R data for measurements conducted at 

temperatures of 25 C, 30 C and 35 C, all lie on the same straight line. However, the 

corresponding molar volume data values lie on three separate parallel lines. Similar 

observations were made for the other binary systems listed in Table 4. Figure 11 confirms this 

for ethanol mixtures with n-alkanes as well. This confirms the notion that the molar refraction 

can be interpreted as a temperature-invariant scaled molar volume. The results presented above 

appear to be generally valid for alkanes in binary combinations with aromatic and/or polar 

compounds such as benzene, chlorobenzene, ethanol, anisole, cyclohexanone, and 1,4-dioxane. 

The key conclusion from these results is that the molar refraction R varies linearly with 

composition expressed in terms of mole fractions and that it is, for practical purposes, 

temperature invariant. 
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Figure 10: The temperature dependence of the Lorentz-Lorenz molar refraction R and 

molar volume for binary mixtures of 1,4-dioxane with n-hexane 

 

Figure 11: The temperature dependence of the Lorentz-Lorenz molar refraction R and molar 

volume V for binary mixtures of ethanol with pentane or heptane or nonane. 

Next, the different mixing rules presented in Table 2 were compared. The models with a linear 

composition dependence fall in two groups corresponding to whether the mole fractions or the 

volume fractions are used as the composition descriptors, namely 

 
1 1 2 2( ) ( ) ( )g n g n x g n x= +  (93a) 

and 

 
1 1 2 2( ) ( ) ( )f n f n f n = +  (93b) 
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where g(ni) and f(ni) represent the functional dependence of the parameter N on refractive index 

suggested by the different investigators as listed in Table 2. These equations can be rearranged 

in a format that facilitates plotting all data from all systems on a single graph. This method also 

allows the complex Heller and Wiener mixture laws to be compared by 

 
1

2

2 1

( ) ( )

( ) ( )

g n g n
X x

g n g n

−
 =

−
 (94a) 

and 

 
 1

2

2 1

( ) ( )

( ) ( )

f n f n

f n f n


−
 =

−
 (94b) 

It should be noted that a volume fraction is an ill-defined concept because only nominal values 

based on the pure component properties are used. The true volume of the mixture differs 

slightly from the molar volume calculated using the linear mixing rule due to non-ideal mixing. 

Mole fractions are therefore preferred. If the model is able to represent the experimental data, 

the plots of  vs.   or of  vs.  should yield a straight line with slope of unity that passes 

through the origin. Figure 12(a) shows that this is indeed the case for Equation (15) and 

Equation (18a) on plots against the mole fraction. This means that the molar volume and the 

Lorentz-Lorenz molar refraction measured, for all the systems considered presently, do follow 

the linear mixing rule with mole fraction as the composition descriptor. 

Figure 12(b) shows the plots of the models that are based on linear expressions in the volume 

fractions. Interestingly, all of the mixture models return data pairs that are very close to each 

other. The differences were smaller than the size of the symbols used to denote them and lie 

on top of each other in the graph. Unfortunately, none of them are able to correlate the data 

from all systems. This is indicated by the considerable scatter of the data points at distances 

quite far away from the diagonal line. The plot of the data from the 1,4-dioxane-decane binary 

appears to represent the greatest deviations. These data points were calculated using the 

weighted power mean equation and they are highlighted in the red squares that are connected 

with a solid line. It is clear that this data set cannot be represented by any of the models tested 

in Figure 12(b). The calculations even yield   values that exceed unity. This is in stark contrast 

with the results shown in Figure 12(a) where the 1,4-dioxane-decane data fall precisely on the 

required straight line when the models based on mole fraction are used. Interestingly, it did not 

matter whether the Lorentz-Lorenz or Looyenga expression for N was used. The results were 

identical. 
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Figure 12: Testing the applicability of the linear mixture models using the binary data 

of all systems. (a) Equation (94a) applied to the molar volume (Equation (15)) and the 

Lorentz-Lorenz molar refraction (Equation (18a)). (b) Equation (94b) applied to the 

mixing rules that assume linear variation with volume fraction. 

In order to better understand the reasons for this failure, it is useful to consider actual plots of 

the refractive index vs. volume fraction. Figure 13 shows representative plots that reveal some 

of the data trends that were found in the systems studied. In this figure, the data are plotted and 

shown together with the predictions of the two Lorentz-Lorenz equations. The predictions of 

the L-L-R-mixing rules are indicated by the solid lines. It is clear that they represent the data 

trends quite well. However, the L-L-N mixing rule predictions, represented by dashed lines, 

fails to adequately describe two out of the three systems considered. While the refractive index 

data for the chlorobenzene-decane system varies almost linearly with the mole fraction, both 

the ethanol-octane and the 1,4-dioxane-decane system data deviate from linear behaviour. The 

L-L-N mixture model adequately corrects for the small deviations from linear behaviour for the 

chlorobenzene-decane system, but it underpredicts the refractive index values of the ethanol-

octane system and overpredicts the values for the 1,4 dioxane-decane system. 
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Figure 13: Refractive index data obtained at 25 C. The solid lines and dashed lines are 

predictions obtained by applying Equation (18) (the L-L-R-mixing rule) and Equation 

(22) (the L-L-N-mixing rule) respectively. The two lines for the chlorobenzene-decane 

system virtually coincide. 

Comparison of all the different proposals for defining revised expressions for the N variable 

show that they all are strictly increasing functions of the refractive index n. In addition, they 

all assume a linear variation of N with composition expressed in volume fractions. This means 

that none of these models can represent a minimum in a refractive index vs. composition plot—

as is in fact observed in the data of the 1,4-dioxane-decane system. This also explains the values 

of  that exceed unity in Figure 12. They arise from refractive index values in mixtures that 

are lower than those of both pure compounds. 

However, the L-L-R model represents the data for the dioxane-decane system, quite well. Both 

the molar refraction and the molar volume follow the linear mixing rule in mole fractions. 

Therefore, Equation (18) can be rearranged as follows: 

 ( )1 1 2 2N R x R x V= +  (95) 

Note that, for the mixture, the left-hand side is fully determined by the measured refractive 

values. Similarly, the right-hand side is fully determined by the density measurements that 

yield the molar volume of the mixture V. Figure 14 shows plots of these two quantities for 

binary mixtures of 1,4-dioxane with selected alkanes. The values coincide for all the systems. 

This implies that variations in the mixture density with temperature are corrected by 
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concomitant changes in the refractive index in such a way that molar refraction volume retains 

a linear composition dependence in the mole fractions.  

 

Figure 14: Plots illustrating the link between N = (n2−1)/(n2+2), which is the Lorentz-

Lorenz expression and the molar volume of binary mixtures of 1,4-dioxane with some 

alkanes. 

 

4.1.3 Mixture models requiring only refractive index information 

So far it has been shown that the L-L-R mixture model provides exceptional predictive power. 

Unfortunately, this model requires density data for the mixture. This is not always convenient 

to obtain. It is true that the L-L-N mixture model works adequately for some binary systems, 

e.g., the chlorobenzene-decane system (Figure 13). Therefore, it would be useful to determine 

whether better performance can be achieved for other systems (that are not adequately 

described by this model) where the refractive index of the mixture suffices for composition 

determination. In this regard, it is also conspicuous that the proposals for the power index p for 

the power mean-based mixture models, listed in Table 1, vary over such a considerable range, 

i.e., from zero to two. Such divergent values cannot simultaneously apply to all cases. 

However, these suggestions were previously supported by experimental results. This suggests 

that the nature of binary mixtures varies to such an extent that individual systems require unique 

power indices for proper data representation. Therefore, two approaches for the adjustment of 

the mixture models were investigated. Firstly, the power-mean mixture models were 

considered which treat the power index p as an adjustable constant. Secondly, the modified 
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Eykman expression (Piñeiro et al, 1999) which allows the parameter d to vary, was considered. 

Least squares regression was used to determine the best data fit for each possibility.  

This is shown in Figure 15 as a  vs. 2 plot. The values of the adjustable parameters and the 

-2 correlation coefficients (r) are listed in Table 8. It is clear that, except for the anisole-

dodecane system, better performance is possible with these approaches than is possible with 

the L-L-N mixture model. 

Table 8: -2 correlation coefficients and values for the adjustable parameters (p and d) 

for the modified Eyckman and volume fraction weighted power mean models  

System 
Lorentz-Lorenz-N Power mean Modified Eykman 

r p r d r 

Acetone-dodecane 0.99953 −4.174 0.99980 −0.682 0.99980 

Anisole-dodecane 0.99924 −4.082 0.99891 −0.738 0.99874 

Benzene-hexadecane 0.98809 −26.74 0.99921 −1.83 0.99919 

Chlorobenzene-decane 0.99990 −0.790 0.99995 0.927 0.99995 

Cyclohexanone-

dodecane 
0.99577 −34.09 0.99963 −1.82 0.99961 

Ethanol-octane 0.99823 −16.82 0.99929 −1.50 0.99928 

 

Figure 15: Performance of the Modified Eykman and volume fraction weighted power 

mean model for correlating the data for the binary systems listed in Table 8. 
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4.2 DEET phase envelopes 

The Flory-Huggins theory is unable to represent the phase envelopes in the vicinity of the 

critical temperature. However, Diekmann et al (2020) indicated that this theory does show the 

correct trends for the variation of the critical temperature with the molar mass of alkanes.  

Figure 3 previously showed that the refractive index of the alkanes was perfectly linear with 

temperature. This was also the case for DEET. If no phase separation occurs, one would expect 

that a mixture of DEET and these alkanes would also have a linear refractive index trend with 

slopes intermediate in magnitude to those of the two pure components. For DEET and 

octacosane, Figure 16(a) illustrates that starting at 90 °C, this was indeed the case. Equation 

(24) was applied to transform the n-temperature data to the temperature-composition data in 

Figure 16(b). Thus, the linear sections at high temperature appear as vertical lines in Figure 

16(b) because they correspond to homogenous mixtures (fixed compositions). 

However, below a characteristic temperature, each refractive index trajectory shows a sudden 

deviation from linearity. This is indicative of a change in composition in the liquid being 

sampled and it is indicative of phase separation.  

Several additional temperature scans were used with samples consisting of different starting 

compositions to establish these phase boundaries. The same type of behaviour was seen for all 

the DEET-alkane mixtures. These lines divide the plane into three separate regions. The phase 

present in Region I corresponds to the homogeneous liquid state (e.g., Figure 17). Region II is 

a two-phase zone as the solution has separated into separate liquid phases (e.g., Figure 18). 

Region III corresponds to solid-liquid equilibrium (e.g., Figure 19). Here the phase boundary 

line defines the composition of the liquid in equilibrium with solid alkane crystals. 
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Figure 16: Data for three different mixtures of DEET with octacosane, init ially 

equilibrated as homogeneous solutions at 90 C. (a) Measured refractive indices as the 

samples were cooled. Pure DEET and octacosane are indicated as solid black lines at 

the top and bottom of the plot. (b) Outline of the phase envelopes. The red square shows 

the critical temperature at the critical volume fraction. 

 

 

Figure 17: Homogenous dodecane-DEET mixtures in the oven. 
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Figure 18: Heterogenous dodecane-DEET mixtures after cooling with two liquid layers. 

 

Figure 19: Solid eicosane or octacosane on top of a liquid DEET layer at room 

temperature. 

As mentioned, the cooling trajectories in Region I of Figure 16(b) should correspond to vertical 

lines as the composition of the mixture remains constant. However, once a phase boundary is 

traversed, a deviation in this trend is observed for the refractive index. This is caused by a 

change in the composition of the liquid in contact with- and detected by the sensor. If sufficient 

time is allowed for equilibration, the measured compositions will in fact trace out the location 

of the phase boundaries in Figure 16(b). This happened, for example, for the sample (iii) that 

contained only a small amount of DEET. It traced out the solid-liquid phase boundary in the 

region where the octacosane crystallised, i.e., it defined the melting point depression curve. 

The composition locus for sample (i) traced out the left part of the liquid-liquid phase boundary. 

Sample (ii) showed a sudden jump from the initial composition to one of a much lower 

octacosane concentration. Both of these effects are due to gravity. It causes the denser phase to 

accumulate at the bottom of the cell where the measurement window of the instrument is 

located. 
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The phase envelopes for the all the DEET-alkane combinations were determined using the 

procedure described above. The final results are presented in Figure 20.  

Estimates for the possible values of the UCST for a DEET-polyethylene mixture were then 

obtained. The results are presented in Table 9 and in Figure 21. Diekmann et al (2020) assumed 

a linear variation in Tc, yet both their approach and that of Flory-Huggins provided similar 

UCST estimates. 

Table 9: Projected Tc (UCST) values for the DEET-polyethylene system. 

Approach/ Equation Coefficients Correlation UCST 95 % confidence 

interval 

Flory-Huggins: A B r C C 

c cA B T = +  −1.8958 1.1131 0.9902 183.4 148.0–217.1 

Diekmann et al (2020): a b r C C 

Tc = a + bTcrit 117.1 0.2762 0.9946 180.1 162.1–198.2 

Figure 21(a) shows that the values for octane to tetradecane lie on a straight line (with B fit by 

setting 1000/Tc as the x-value for the straight line). The correlation coefficient is equal to 

0.9902. The limiting value for the UCST for polyethylene is determined from its c value as 

183.4 C. Figure 21(b) also shows that the values for octane to tetradecane lie on a straight line 

with a correlation coefficient equal to 0.9946. The limiting value for the UCST for polyethylene 

is determined from the estimated theoretical Tcrit value at infinite molar mass as 180.1 C. Both 

approaches yielded estimates for the UCST that are well above the melting point range of the 

polyethylene (ca. 126°C) that was used by Mapossa et al (2019) to prepare mosquito-repellent 

anklets. The implication is that they were correct in assuming that the microporous 

microstructure resulted from an initial liquid-liquid phase separation. 
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Figure 20: Phase diagram derived from refractive index temperature scans for binary 

mixtures of DEET with the series of alkanes listed in Table 3. The temperature is 

plotted against the volume fraction alkane in the mixture. 

 

Figure 21: (a) Variation of c vs. the UCST (Tc) for mixtures of DEET with a series of 

alkanes. (b) Variation of the UCST (Tc) with the critical temperature of the alkane (Tcrit) 

in the mixture with DEET. 

4.3 Padé approximants 

The normalised AIC values are shown in Figure 22, separated based on whether the adjustable 

pure component property (i) was based on molar volume or molar mass. The normalised AIC 

values varied from zero for the P(1,1) Padé reference equation (expected for ideal solutions), 

to unity for the best performing model variant. Both model D and F performed well considering 

that they use the most adjustable parameters and allowed them to vary freely. However, model 

F performed poorly when the regression was limited to the binary data by applying molar 
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masses. This may be due to overfitting of the binary data because model E, with fewer 

adjustable coefficients, performed better than model F. 

Intermediate values provide relative measures of model performance. When negative values 

were obtained for a particular model, it indicates that it performed worse than the fully 

predictive “ideal” solution expression. Often, the value obtained with the binaries was only 

slightly less than what was achieved with the ternaries. This indicates that the ternary response 

can reliably be predicted from knowledge of binary data.  

 

Figure 22: Scaled AIC values for the six model variants averaged over the nine ternary 

systems (listed in Table 5) for the mixture refractive index. 

The AIC values are based on a statistic affected by the sum of the square errors. In contrast, 

AAD values represent absolute deviations between predictions and actual measurements. Both 

measures need to be considered to form an accurate view of the model utility. Figure 23 shows 

that, on average, all model variants performed better than the fully predictive “ideal” solution 

expressions. The exception is model F where regression of binary data resulted in worse AAD 

values. Overall, better fits were obtained when all data sets were considered, as opposed to just 

using the binaries. 
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Figure 23: Average absolute deviation (AAD) values achieved with the six model 

variants for refractive index for the nine ternary systems listed in Table 5. 

The goodness of fit can also be visually ascertained. Figure 24 to Figure 32 show the 

experimental literature refractive index measurements along with the ternary surface plot in 

OriginLab. The fit was determined by model F and i = Vi. In other words, 
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1 1 1 12 2 3
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This approach also allows measurement errors to be readily seen. Consider the outlier at (0.1, 

0.85, 0.05) in Figure 28. This underscores the suitability of Padé expressions to interpolate 

certain physical property data where measurements may be sparse. 
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Figure 24: Ternary surface plot of System II at 25 °C with source listed in Table 5. 

 

Figure 25: Ternary surface plot of System III at 25 °C with source listed in Table 5. 
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Figure 26: Ternary surface plot of System IV at 25 °C with source listed in Table 5. 

 

Figure 27: Ternary surface plot of System V at 25 °C with source listed in Table 5. 
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Figure 28: Ternary surface plot of System VI at 25 °C with source listed in Table 5 

(note the outlier clearly indicated). 

 

Figure 29: Ternary surface plot of System VII at 35 °C with source listed in Table 5. 
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Figure 30: Ternary surface plot of System VIII at 25 °C with source listed in Table 5. 

 

Figure 31: Ternary surface plot of System IX at 30°C with source listed in Table 5. 
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Figure 32: Ternary surface plot of System X at 30°C with source listed in Table 5. 
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5 Conclusions and recommendations 

The importance of determining composition from refractive index and density measurements 

was emphasised. Among other applications, this can be used in polymer-solvent composite 

analysis and process simulation.  

Several binary mixing rules were reviewed, and it was shown that they can be cast in forms 

which are linear in mole fraction (dubbed the L-L-R mixing rule) or volume fraction. (dubbed 

the L-L-N mixing rule). For pure n-alkanes it was shown that the refractive index increases 

with increased molar mass. Furthermore, the “one-third rule” was shown to apply as well. 

Binary mixtures of alkanes with aromatic and/or polar compounds showed that the molar 

refraction is a scaled version of the molar volume, but conveniently temperature invariant. The 

insight is that the temperature-based changes to the density and refractive index concurrently 

cancel each other out. Mole fractions are the recommended composition descriptor, as volume 

fractions are ill-defined. Thus, the L-L-R mixing rule is preferred; however, this requires 

measurements of the mixture density. When these values are not available, the power mean 

and modified Eyckman relations can be used in terms of volume fraction by regressing their 

adjustable constants. These were shown to be Padé-type expressions. 

The refractive indices of polymer-solvent composites can be used to establish the phase 

equilibrium boundaries when these mixtures exhibit liquid-liquid or solid-liquid phase 

separation. Mixtures of DEET and n-alkanes were used as analogues for microporous 

polyethylene products that are used as mosquito repellents. Since the pure components exhibit 

a linear relationship between refractive index and temperature, the homogenous mixtures at 

high temperatures also exhibit linear slopes which are intermediate in magnitude to those of 

the two pure components. However, below a characteristic temperature, a jump discontinuity 

is observed which corresponds to the onset of liquid-liquid phase separation. A third region is 

also observed which corresponds to solid-liquid equilibrium. This data was then used to 

extrapolate towards a straight-chain alkane of infinite molar mass (i.e., polyethylene). The 

critical Flory-Huggins interaction parameter was then used to estimate the upper critical 

solution temperature of the DEET-polyethylene system to be ca. 181 °C. This proved to be 

well above the melting temperature of polyethylene, indicating that liquid-liquid phase 

separation is the mechanism whereby the microporous structure was formed. 
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Finally, the idea of extending binary refractive index measurements to ternary systems through 

Padé approximants was explored. A Padé approximant is a rational function analogue of the 

Taylor polynomials and can be readily extended to multicomponent mixtures. A parameter-

sparse nested polynomial formulation was developed in which the temperature dependence is 

contained in a pure component property, either molar volume or molar mass. Six different sets 

of parameter constraint were compared on nine systems of ternary literature data. The 

difference in Akaike information criterion and average absolute deviation were applied for each 

case and normalised in comparison to the “ideal” system. Firstly, it was determined that models 

with the most freely varying adjustable parameters performed the best. Secondly, better fits 

were obtained when all data sets were considered, as opposed to just using the binaries. Thirdly, 

the molar volume proved to be a better pure component property than molar mass for scaling 

to the mixture property. This approach visually highlights outliers as a result of measurement 

errors. 
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Appendix A Derivations 

A.1 Composition in binary mixtures from density and refractive index 

measurements 

The derivations for the composition of a component in a binary mixture (Section 2.3.2) are 

given here. 

Case A: Calculating composition from density measurements. 

Assume:     
1 1 2 2V V x V x= +  

1 1 2 2 1 1 2 2

1 2

M x M x M x M x
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+
= +  
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1 1 1 1
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Case B: Calculating composition from both density and refractive index measurements.  

Assume:    
1 1 1 2 2 2VN xV N x V N= +  

1 1 2 2 1 1 1 2 2 2
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Case C: Calculating composition from both density and refractive index measurements when 

the individual molar refractions are temperature invariant. 

Assume:    
1 1 2 2

1 1 2 2

M x M x
VN x R x R N
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= + =
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Case D: Calculating composition from refractive index measurements of the mixture and pure 

components using the Lorentz-Lorenz N-mixing rule when the mixture density is unavailable. 

Assume: Both V and R follow the linear blending rule 

1 1 1 2 2 2VN xV N x V N= +  
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A.2 Extension of two binary data sets to the other in a ternary system 

It is shown that if data for only two of the three binaries of a ternary system are available, this 

suffices to fit all the parameters of the P(1,1) Padé model. The model for the ternary system is: 

1 1 1 2 2 2 3 3 3

1 1 2 2 3 3

x p x p x p
p

x x x

  

  

+ +
=

+ +
 

Assume that binary data is available for mixtures of component (1) + component (2) and for 

mixtures of component (1) + component (3). No experimental data is available for the 

remaining binary, i.e. for mixtures of component (2) + component (3). This means that 

component (1) is common to the two binaries for which data are available. Due to the rational 

nature of this expression, the parameters are not uniquely defined. Multiplying each of them 

by an arbitrary constant does not change the predictions. One way to enforce uniqueness is 

accomplished by dividing throughout with 1. The full model applicable to the ternary system 

now reads: 

( ) ( )

( ) ( )
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1 2 1 2 3 1 3

x p x p x p
p

x x x
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=
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The model for binary component (1) + component (2) is: 
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( )
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1 2 1 2
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+
=

+
 

The value of 2/1 is found by regressing the available binary data. Similarly, the model for 

mixtures of component (1) + component (3) is given by: 

( )

( )
1 1 3 1 3 3

1 3 1 3

x p x p
p

x x

 

 

+
=

+
 

The value of 3/1 is found by regressing the available binary data for this system. Clearly, 

when these two parameters are known, the ternary behaviour can be predicted. This is also true 

for the binary component (2) + component (3). The model for this binary is: 

( ) ( )

( ) ( )
2 1 2 2 3 1 3 3

2 1 2 3 1 3

x p x p
p

x x

   

   

+
=

+
 

In other words, only one value ( ) is unknown, since . Multiplying top and bottom 

with 1/2 yields: 

( )

( )
2 2 3 2 3 3

2 3 2 3

x p x p
p

x x

 

 

+
=

+
 

Therefore, 3/2  can be predicted from less experimental data than other models. 

 

 
 
 


