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Abstract

For each positive integer n, if the sum of the factors of n is divided by n, then the result is called
he abundancy index of n. If the abundancy index of some positive integer m equals the abundancy
ndex of n but m is not equal to n, then m and n are called friends. A positive integer with no friends
s called solitary. The smallest positive integer that is not known to have a friend and is not known to
e solitary is 10.

It is not known if the number 6 has odd friends, that is, if odd perfect numbers exist. In a 2007
rticle, Nielsen proved that the number of nonidentical prime factors in any odd perfect number is at
east 9. A 2015 article by Nielsen, which was more complicated and used a computer program that took

onths to complete, increased the lower bound from 9 to 10.
This work applies methods from Nielsen’s 2007 article to show that each friend of 10 has at least

0 nonidentical prime factors.
This is a formal write-up of results presented at the Southern Africa Mathematical Sciences

ssociation Conference 2023 at the University of Pretoria.
2024 The Author. Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG). This

s an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

For each positive integer n, let σ (n) be the sum of the factors of n, and define the abundancy
ndex of n to be σ−1(n) = σ (n)/n; for example, σ−1(10) = (1 + 2 + 5 + 10)/10 = 9/5.

If m and n are positive integers, then m is called a friend of n if m ̸= n and σ−1(m) = σ−1(n);
positive integer n is called solitary if no friend of n exists. This terminology appeared in
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a problem in the American Mathematical Monthly, where it was conjectured that the set of
solitary numbers has density zero [1]. The smallest positive integer that is not known to have
a friend and is not known to be solitary is 10; it seems, although it has not been proved, that
for every prime p that is at least 5, the number 2p is solitary (see [9]).

It is not known if the number 6 has odd friends, that is, if odd perfect numbers exist. In
2007 article [7], Nielsen proved that the number of nonidentical prime factors in any odd

erfect number is at least 9. A 2015 article by Nielsen [8], which was more complicated and
sed a computer program that took months to complete, increased the lower bound from 9 to
0.

This work applies methods from Nielsen’s 2007 article [7] to show that each friend of 10
as at least 10 nonidentical prime factors.

This is a formal write-up of results presented in a talk at the Southern Africa Mathematical
ciences Association Conference 2023, held at the University of Pretoria, Pretoria, South
frica, in November 2023.

. Theory

The following definitions are used for positive integers m, positive integers n, and primes
p: the notation m | n means “m divides n”, the notation m ̸ | n means “m does not divide n”,
the number vp(n) is the largest nonnegative integer v such that pv

| n, the integer vp(m/n) is
p(m) − vp(n), and the number ω(n) is the number of nonidentical prime factors of n.

Some well-known facts about σ−1 are recalled.

emma 1. Let p and q be primes, and let a, b, m, and n be positive integers.

(a) If a < b, then (p + 1)/p ≤ σ−1(pa) < σ−1(pb) < p/(p − 1) =: σ−1(p∞).
(b) If p > q, then σ−1(pa) < σ−1(qb).
(c) If m and n are relatively prime, then σ−1(mn) = σ−1(m)σ−1(n).
(d) If m | n, then σ−1(m) ≤ σ−1(n).
(e) If m | n and σ−1(m) = σ−1(n), then m = n. □

The following foundational result underpins the later conclusions of this paper.

roposition 2. Let n be a friend of 10.

(a) The number n is a square, n is divisible by 5, and n is coprime to 6.
(b) The number n has at least five nonidentical prime factors.

roof. The number n is a friend of 10, so σ (n)/n = 9/5, so 9n = 5σ (n), so 5 | 9n, so 5 | n.
f 2 | n, then 10 | n and σ−1(n) = σ−1(10), so n = 10, which is impossible according to the
efinition of “friend”; therefore, n is odd.

Let n =
∏k

j=1 p
a j
j where the numbers p j are different primes, the numbers a j are positive

ntegers, and p1 < p2 < · · · < pk .
Now 9n = 5σ (n) and n is odd, so σ (n) is also odd. However,

σ (n) =
∏k

j=1(1 + p j + p2
j + · · · + p

a j
j ) ≡

∏k
j=1(a j + 1) (mod 2),

o every number a j is even, so n is a square.
For a contradiction, suppose 3 | n. It follows that p1 = 3, p2 = 5, and a2 ≥ 2. If a2 ≥ 4,

2 4
hen σ−1(n) ≥ σ−1(3 )σ−1(5 ) > 9/5, which is impossible; therefore, a2 = 2. If a1 ≥ 4,

596



H.R. Thackeray Indagationes Mathematicae 35 (2024) 595–607

s

w

R
s

(

a

a

then σ−1(n) ≥ σ−1(34)σ−1(52) > 9/5, which is impossible; therefore, a1 = a2 = 2. Let
m = n/(3252). Now 32, 52, and m are pairwise relatively prime, so

σ (m)
m

= σ−1(m) =
σ−1(n)

σ−1(32)σ−1(52)
=

9/5
(13/9)(31/25)

=
405
403

,

o 13 × 31 = 403 | m, so σ−1(m) ≥ σ−1(403) > 405/403, which is impossible. Therefore, n
is not a multiple of 3.

If n has at most four nonidentical prime factors, then

σ−1(n) < σ−1(5∞)σ−1(7∞)σ−1(11∞)σ−1(13∞) =
5
4

·
7
6

·
11
10

·
13
12

<
9
5
,

hich is impossible. Therefore, n has at least five nonidentical prime factors. □

emarks. For odd perfect numbers n (that is, odd positive integers n such that σ−1(n) = 2),
imilar arguments yield the following conclusions: (a) n is of the so-called Eulerian form pam2

where m and a are positive integers, p is prime, p does not divide m, and p ≡ a ≡ 1
mod 4); and (b) n has at least three nonidentical prime factors (because (3/2)(5/4) < 2 <

(3/2)(5/4)(7/6)).
If p is a given prime such that p ≥ 7, then for friends n of 2p (that is, positive integers

n such that σ−1(n) = (3/2)(p + 1)/p), similar arguments yield the following more trivial
conclusions: (a) n is odd and divisible by p, and (b) n has at least two nonidentical prime
factors (because 3/2 < (3/2)(p+1)/p < (3/2)(5/4)). Imposing the additional condition p ≡ 1
(mod 4) yields the result that n is a square, but does not improve the conclusion about ω(n).

The reason why the arguments above easily restrict ω(n) for friends of 10 but not for friends
of 2p where p ̸= 5 is: in the case of friends of 10, but apparently not in other cases, it can
easily be proved that 3 does not divide n. Thus, the friends-of-10 problem seems suited to
computer search to an extent that other similar problems are not. □

The following result will be applied in computer calculations; to obtain it, a well-known
argument (see [5, section 2] and [7, section 6]) is adapted to find bounds on an unknown
prime factor of n, where σ−1(n) is known exactly or known to be in some given interval.

Proposition 3 (Bounds on the Smallest Unknown Prime). Let ℓ1, k1, and k be integers such that
0 ≤ ℓ1 ≤ k1 < k. Let the positive integer n have the prime factorization n =

∏k
j=1 p

a j
j , where

the numbers p j are nonidentical prime numbers and the numbers a j are positive integers.
Suppose that pk1+1 < pk1+2 < · · · < pk . Suppose that the integers bℓ1+1, bℓ1+2, . . . , bk1 satisfy

j ≥ b j for j ∈ {ℓ1 + 1, ℓ1 + 2, . . . , k1}.
(In applications, the primes p1 through pk1 are known, the exponents a1 through aℓ1 are

known, but the other primes p j and the other exponents a j are not known; however, the lower
bounds b j are known.)

Suppose that the positive real numbers tmin and tmax satisfy tmin ≤ σ−1(n) ≤ tmax. Let

m =
tmin(∏ℓ1

j=1 σ−1(p
a j
j )
) (∏k1

j=ℓ1+1 σ−1(p∞

j )
)

nd

M =
tmax(∏ℓ1

j=1 σ−1(p
a j
j )
) (∏k1

j=ℓ1+1 σ−1(p
b j
j )
) .

It follows that
597
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(a) M > 1 and 1/(M − 1) ≤ pk1+1;
(b) If ak1+1 ≥ 2 then

Blow :=
1

M − 1
·

8
(2 − M)2 + 7

< pk1+1;

(c) If m > 1 then

Bhigh := 1 +
k − k1

m − 1
> pk1+1;

and
(d) If k1 + 2 ≤ k, ak1+1 ≥ 2, and A is a real number such that 1 < A ≤ pk1+1 and

m(A − 1)/A > 1, then

g(A) := 1 +
k − k1 − 1

m(A − 1)
A

− 1
> pk1+2.

roof (a). Since k1 < k, the hypotheses imply

1 <
σ−1(n)(∏ℓ1

j=1 σ−1(p
a j
j )
) (∏k1

j=ℓ1+1 σ−1(p
b j
j )
)

≤
tmax(∏ℓ1

j=1 σ−1(p
a j
j )
) (∏k1

j=ℓ1+1 σ−1(p
b j
j )
) = M

and

M ≥
M

tmax
σ−1(n) ≥

M
tmax

⎛⎝ ℓ1∏
j=1

σ−1(p
a j
j )

⎞⎠⎛⎝ k1∏
j=ℓ1+1

σ−1(p
b j
j )

⎞⎠ σ−1(p1
k1+1)

= σ−1(p1
k1+1) = 1 +

1
pk1+1

,

o 1/(M − 1) ≤ pk1+1.
(b) Note that if a real number x satisfies x ≥ −1, then

√
1 + x ≤ 1 + x/2 − x2/8 + x3/16,

ecause

1 + x ≤ 1 + x +

( x
4

)4
(16 + (2 − x)2) =

(
1 +

x
2

−
x2

8
+

x3

16

)2

nd

1 +
x
2

−
x2

8
+

x3

16
=

5
16

+
(1 + x)(35 + (3 − 2x)2)

64
≥

5
16

> 0.

If ak1+1 ≥ 2, then since k1 < k, the hypotheses imply

M ≥
M

tmax
σ−1(n) ≥

M
tmax

⎛⎝ ℓ1∏
j=1

σ−1(p
a j
j )

⎞⎠⎛⎝ k1∏
j=ℓ1+1

σ−1(p
b j
j )

⎞⎠ σ−1(p2
k1+1)

= σ−1(p2
k1+1) = 1 +

1
+

1
2 >

(
1 +

1
)2

,

pk1+1 pk1+1 2pk1+1
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1 +
1

2pk1+1
<

√
M =

√
1 + (M − 1) ≤ 1 +

M − 1
2

−
(M − 1)2

8
+

(M − 1)3

16
,

o

pk1+1 >
1/2

(M − 1)/2 − (M − 1)2/8 + (M − 1)3/16
=

1
M − 1

·
8

(2 − M)2 + 7
.

he result with this rational function of M is used instead of the result pk1+1 > 1/(2
√

M − 2)
n order to maintain exact arithmetic when performing computer calculations. In practice, the
revious result 1/(M − 1) ≤ pk1+1 is improved by the additional factor of 8/((2 − M)2

+ 7),
ince that factor is larger than 1 in the case where 1 < M < 3.

(c) If m > 1, then since k1 < k and pk1+ j ≥ pk1+1 + j − 1 for each j ∈ {1, . . . , k − k1},
the hypotheses imply

m ≤
m

tmin
σ−1(n) <

m
tmin

⎛⎝ ℓ1∏
j=1

σ−1(p
a j
j )

⎞⎠⎛⎝ k1∏
j=ℓ1+1

σ−1(p∞

j )

⎞⎠ k−k1∏
j=1

(
1 +

1
pk1+ j − 1

)

≤

k−k1∏
j=1

(
1 +

1
pk1+1 + j − 2

)
=

k−k1∏
j=1

pk1+1 + j − 1
pk1+1 + j − 2

=
pk1+1 + k − k1 − 1

pk1+1 − 1
,

o m − 1 < (k − k1)/(pk1+1 − 1), from which the last required inequality follows since m > 1.
(d) Use part (c) and then part (b) to obtain

pk1+2 < 1 +
k − (k1 + 1)

m
σ−1(p∞

k1+1)
− 1

≤ 1 +
k − k1 − 1

m
A/(A − 1)

− 1
. □

For positive integers m and n such that gcd(m, n) = 1, let on(m) be the order of m modulo
, that is, the smallest positive integer c such that mc

≡ 1 mod n. Each of the following two
ropositions is similar to a proposition in the 2007 paper of Nielsen [7, section 3]; to make
he current article as self-contained as possible, brief proofs are given here.

roposition 4. Let a be a positive integer, let p be an odd prime, and let x be an integer
uch that x > 1 and p ̸ | x.

(a) If p | x − 1, then vp((xa+1
− 1)/(x − 1)) = vp(a + 1).

(b) If p ̸ | x − 1 and op(x) | a + 1, then

vp((xa+1
− 1)/(x − 1)) = vp(xop(x)

− 1) + vp(a + 1).

(c) If op(x) ̸ | a + 1, then (xa+1
− 1)/(x − 1) is a nonmultiple of p. In particular, if a is even

and p = 5 ̸ | x − 1, then (xa+1
− 1)/(x − 1) is a nonmultiple of p.

Proof. If m is an integer such that m > 1 and p | m − 1, then vp(m p
− 1) = vp(m − 1) + 1,

because p is odd and by the binomial theorem,

m p
− 1 = (1 + (m − 1))p

− 1 = (m − 1)p + (m − 1)2 p
p − 1

2
+

(
some multiple

of (m − 1)3

)
.

f m is an integer such that m > 1 and p | m − 1, and the positive integer r is a nonmultiple
f p, then vp(mr

− 1) = vp(m − 1), because by the binomial theorem,

mr
− 1 = (1 + (m − 1))r

− 1 = (m − 1)r + (some multiple of (m − 1)2).
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The results of the last two sentences imply that if m is an integer such that m > 1 and p | m−1,
nd r is a positive integer, then vp(mr

− 1) = vp(m − 1) + vp(r ). Each part of the result now
follows from the fact that

vp((xa+1
− 1)/(x − 1)) = vp(xa+1

− 1) − vp(x − 1).

(For part (a), take m = x ; for part (b), take m = xop(x) and note that op(x), being a factor of
p − 1, is a nonmultiple of p.) □

Proposition 5. Let p be an odd prime, and let a be an even positive integer. It follows that
for each factor d of a + 1 such that d > 1, the number σ (pa) has a prime factor qd such that
oqd (p) = d.

Proof. Note that (xa+1
−1)/(x−1) =

∏
d:d>1 and d|a+1 Φd (x), where Φd (x) is the dth cyclotomic

olynomial. By a result of Bang [2], for each integer d > 1 and each prime p, the number
d (p) has a prime factor q such that the order of p modulo q is d, except if (d, p) = (1, 2),

d, p) = (6, 2), or (d = 2 and p + 1 is a power of 2); none of the three exceptions occurs if
both d and p are odd. □

To the author’s knowledge, the following two corollaries are new.

Corollary 6. Let n be some odd square such that ω(n) = k > 1. Let r be some prime factor
f gcd(n, σ (n)). Let c be a nonnegative integer such that∑

q prime:q|n,gcd(r,q(q−1))=1,or (q)|vq (n)+1

vr (qor (q)
− 1) ≤ c.

uppose that each prime factor q of n such that q > r satisfies vq (σ−1(n)) = 0. It follows that
r (n) ≤ (k − 1)2

+ c − vr (σ−1(n)).

roof. Let a = vr (n), a−1 = vr (σ−1(n)), and b = ⌈(a + a−1 − c)/(k − 1)⌉. If b ≤ 0, then
≤ c − a−1 ≤ (k − 1)2

+ c − a−1; from now on, suppose b ≥ 1.
Note that a + a−1 = vr (σ (n)), so by Proposition 4,

a + a−1 = vr (σ (n/ra))
=

∑
q prime:q|n,q ̸=r vr (σ (qvq (n)))

=
∑

q prime:q|n,r |q−1 vr (σ (qvq (n)))

+
∑

q prime:q|n,gcd(r,q(q−1))=1,or (q)|vq (n)+1 vr (σ (qvq (n)))

=
∑

q prime:q|n,q ̸=r,or (q)|vq (n)+1 vr (vq (n) + 1)

+
∑

q prime:q|n,gcd(r,q(q−1))=1,or (q)|vq (n)+1 vr (qor (q)
− 1)

≤ c +
∑

q prime:q|n,q ̸=r,or (q)|vq (n)+1 vr (vq (n) + 1).

et f be the number of prime factors q of n such that q ̸= r and or (q) | vq (n)+1. (This includes
he prime factors q of n such that r | q − 1.) By Proposition 4, f ≥ 1 since vr (σ (n)) ≥ 1. By
he generalized pigeonhole principle, there is some prime factor q of n other than r such that
r (q) | vq (n) + 1 and

vr (vq (n) + 1) ≥
a + a−1 − c

≥
a + a−1 − c

,

f k − 1

600



H.R. Thackeray Indagationes Mathematicae 35 (2024) 595–607

s
f
v

d

s

C

P
(

t
r

L
t
s

P∏

n
t
f
t

P

I

3

i
v

w
e
v

so vr (vq (n) + 1) ≥ b. Now b ≥ 1, so the numbers r , r2, r3, . . . , rb are factors of vq (n) + 1,
o by Proposition 5, σ (qvq (n)) has at least b different prime factors qr , qr2 , . . . , qrb such that
or each i ∈ {1, . . . , b}, the following results hold: oqri (q) = r i , so r i

| qr i − 1, so qr i > r , so
qri (n) = vqri (σ (n)) > 0. Therefore, b ≤ k − 1 (the b different primes qr i are among the k − 1
ifferent prime factors of n that are not r ). It follows that

a + a−1 − c
k − 1

≤

⌈
a + a1 − c

k − 1

⌉
≤ k − 1,

o a ≤ (k − 1)2
+ c − a−1. □

orollary 7. For every friend n of 10, if k = ω(n) then v5(n) ≤ (k − 1)2
+ 1.

roof. Apply Corollary 6 with r = 5 and c = 0; note that v5(σ−1(n)) = −1 and v5(n) ≥ 2
since 5 | n and n is a square), so v5(σ (n)) = v5(σ−1(n)) + v5(n) ≥ 1. □

This section ends with a proposition that will be used to speed up a computer program in
wo situations where, apparently, the run time would otherwise be prohibitively long. First,
ecall the following well-known lemma (which is equivalent to [7, Lemma 11]).

emma 8. Let p be an odd prime, let a be a positive integer, and let y be an integer coprime
o p. The equation z p−1

≡ 1 mod pa has exactly one solution z such that z ≡ y mod p. That
olution satisfies z ≡ y pa−1

mod pa .

roof. For the existence and uniqueness of z, apply Hensel’s lemma to X p−1
− 1 ≡

p−1
ỹ=1 (X − ỹ) mod p. Now (zy−1)pa−1

≡ 1 mod pa (applying Proposition 4(a) if a > 1), so
y pa−1

≡ z pa−1
≡ z mod pa . □

For a given odd prime p and a given positive integer a, it follows that to search for integers
x coprime to p such that pa−1 < x ≤ pa and vp(x p−1

− 1) ≥ a, it is enough to check the
umbers y pa−1

mod pa for y ∈ {2, . . . , p − 1}. (Note that 1pa−1
≡ 1 mod pa .) Carrying out

hat check by computer for the case p = 31, a ≤ 15 and the case p = 19531, a ≤ 7 yields the
ollowing result, which is a slight improvement of [7, Lemma 12] applicable to fewer cases
han that lemma.

roposition 9. If some integer x is coprime to 31 and satisfies 1 < x ≤ 3114, then

v31(xo31(x)
− 1) ≤ v31(x30

− 1) ≤ ⌈log31 x⌉ + 1.

f some integer x is coprime to 19531 and satisfies 1 < x ≤ 195316, then

v19531(xo19531(x)
− 1) ≤ v19531(x19530

− 1) ≤ ⌈log19531 x⌉ + 1.

. Computer program

The factor-chain-search scheme used by Nielsen [7] is adapted. The core idea is: for positive
ntegers n and primes p, if vp(n) = a > 0, then for each prime factor q of σ (pa), if
q (σ−1(n)) ≤ 0 then vq (n) ≥ vq (σ (n)) > 0, so q | n. In this way, a prime factor p of n, together
ith a known exponent a, can generate other prime factors q of n under mild conditions. For

xample, for a friend n of 10, if v5(n) = 2 then v31(n) = v31(σ (n)) > 0, and if v5(n) = 6 then
(n) = v (σ (n)) > 0.
19531 19531
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A SageMath computer program was implemented; the program code and output files are
ncluded as supplemental files attached to this paper.1 A detailed description of the program
ollows.

The program finds candidate partial prime factorizations for all positive integers n such that

• tmin ≤ σ−1(n) ≤ tmax,
• ω(n) = k, and
• Every prime p that satisfies vp(σ−1(n)) > 0 is in Signore,

here tmin and tmax are user-specified rational numbers greater than 1, where k is a user-
pecified positive integer, and where Signore is a user-specified finite list of primes which this
aper calls ignored primes. The user specifies a bound B, which is a cutoff value above which
owers of primes are considered to be “large”.

The program performs a depth-first search of a tree of cases. At the start of each branch of
he tree:

• There is a known on sequence Son, which consists of finitely many known distinct prime
factors of n, which are called the on primes;

• For each prime q in Son, it is known that vq (n) = aq or it is known that vq (n) ≥ bq ,
where aq or bq respectively is a known positive integer;

• There is a known off sequence Soff, which consists of finitely many known distinct prime
factors of n, each of which is not in Son; the primes in Soff are called the off primes;

• For each prime q in Soff, it is known that vq (n) ≥ bq , where bq is a known positive
integer; and

• A number P is known such that for every prime factor q of n, if q is neither in Son nor
in Soff, then q > P .

The values of Son, Soff, the corresponding exponents aq and bq , and P at the start of the program
– that is, at the root of the tree – are specified by the user. The on and off primes (respectively,
their exact exponents or minimum exponents) are some prime factors (respectively, their exact
exponents or nonstrict lower bounds for their exponents) in a potential number n. The (exact
or minimum) exponents of the on primes have been finalized; the exponents of the off primes
have not yet been finalized. Each time the program moves from one level of the tree to the
next level, the number of on primes increases by exactly 1, and the number of off primes may
change. The off primes are thought of as being a by-product of the on primes.

The user may choose to specify, or not to specify, a special prime r such that vr (σ−1(n)) = 0;
hat prime, if specified, is available for the program to use in applications of Corollary 6.
pecifying r is a time-saving maneuver: it is intended to eliminate large parts of the last two

evels of the tree – that is, the two levels furthest from the root – for good choices of B. (The
uthor specified r in two cases that would otherwise, apparently, take a prohibitively long time
o be completed by the program.) If r is specified, then

• At the start of the program, r is an on prime;
• At the start of the program, numbers L and δ are specified by the user such that for each

integer x , if x is coprime to r and satisfies 1 < x ≤ L , then vr (xor (x)
− 1) ≤ ⌈logr x⌉+ δ;

and

1 SageMath version 10.0 (release date May 20, 2023, using Python 3.11.4) was run on Conda in Mambaforge
using the Windows Subsystem for Linux on Windows 11, on a laptop with a 12th Gen Intel(R) Core(TM) i5-1235U
CPU (“base speed” 1,30 GHz with many cores; in the run with ω(n) = 9, v5(n) = 2, and v31(n) ≤ 94, Windows

ask Manager showed a speed of about 3,5 GHz).
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• Each time a new prime q appears in Son ∪ Soff, the number

fr (q) :=

{
vr (qor (q)

− 1) if gcd(r, q(q − 1)) = 1
0 otherwise

}
is calculated and stored; for each prime q that is in Son ∪ Soff at the start of the program,
the value of fr (q) is specified by the user at the start.

In each branch of the tree, the program proceeds as follows. The function g and the numbers
M , m, Blow, and Bhigh are as in Proposition 3, where the primes p1, . . . , pℓ1 are the on primes

such that it is known that vq (n) = aq , and the primes pℓ1+1, . . . , pk1 are the other on primes
nd the off primes.

• If |Son| + |Soff| > k, then do not proceed further along this branch of the tree (there are
too many different prime factors).

• If M < 1, then do not proceed further along this branch of the tree (σ−1(n) is too large).
• If M = 1, then show that a solution to σ−1(n) = tmax has been reached and do not proceed

further along this branch of the tree.
• If r is not specified and |Son| = k, then do the following: if m > 1, then do not proceed

further along this branch of the tree (σ−1(n) is too small); otherwise, print the current data
as a candidate partial prime factorization and do not proceed further along this branch of
the tree.

• If r is specified and |Son| + |Soff| = k, then do the following.

– Calculate s =
∑

q∈Son∪Soff
fr (q).

– If ar or br is strictly larger than (k − 1)2
+ s, then do not proceed further along this

branch of the tree (Corollary 6 is violated); otherwise, print the current data as a
candidate partial prime factorization and do not proceed further along this branch
of the tree.

• If r is specified, |Son| + |Soff| = k − 1, and m > 1, then do the following.

– If Bhigh > L , then print the current data as a candidate partial prime factorization
and do not proceed further along this branch of the tree.

– Calculate s = (
∑

q∈Son∪Soff
fr (q)) + ⌈logr Bhigh⌉ + δ.

– If ar or br is strictly larger than (k − 1)2
+ s, then do not proceed further along this

branch of the tree (Corollary 6 is violated); otherwise, print the current data as a
candidate partial prime factorization and do not proceed further along this branch
of the tree.

• If no “do not proceed further” instruction has been encountered in this iteration of the
program and |Soff| ≥ 1, then do the following.

– Find the smallest off prime p and its minimum exponent bp.
– Let a be the smallest even positive integer such that a ≥ bp.
– While pa

≤ B, do the following.

∗ Find the prime factorization of σ (pa).
∗ If every prime factor of σ (pa) is greater than P or in Signore or in Son or in Soff,

then start a new branch of the tree with the data obtained from the old branch’s
data as follows: move p from Soff to Son, let p have the exact exponent ap = a,
and for every prime factor q of σ (pa) that is neither in S nor in S , do
ignore on
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the following: if q is in Soff, then increase the minimum exponent bq of q by
vq (σ (pa)); otherwise, append q to the end of Soff and let it have minimum
exponent bq = vq (σ (pa)).

∗ Increase a by 2.

– Start a new branch of the tree with the data obtained from the old branch’s data by
moving p from Soff to Son and letting p have the minimum exponent bp = a.

• Otherwise, if no “do not proceed further” instruction has been encountered in this iteration
of the program, then do the following.

– If m ≤ 1, then indicate that there is no upper bound for the next prime and do not
proceed further along this branch of the tree.

– For each prime p in the interval I = (max{P, Blow}, Bhigh) (going through those
primes p in ascending order), if p is not in Son then do the following. (If there are
no primes in I , then do not proceed further along this branch of the tree.)

∗ If r is specified, |Son| + |Soff| = k − 2, Bhigh ≤ L , m(p − 1)/p > 1, g(p) ≤ L ,
and ar or br is strictly larger than

(k − 1)2
+

(∑
q∈Son∪Soff

fr (q)
)

+ ⌈logr Bhigh⌉ + ⌈logr g(p)⌉ + 2δ,

then break out of the p for loop (Corollary 6 is violated for all primes p yet
to be checked in this loop: g is strictly decreasing and the loop goes through
the primes p in ascending order).

∗ Let a = 2.
∗ While pa

≤ B, do the following.

· Find the prime factorization of σ (pa).
· If every prime factor of σ (pa) is greater than P or in Signore or in Son,

then start a new branch of the tree with the data obtained from the old
branch’s data as follows: append p to the end of Son, let p have the exact
exponent ap = a, let the new value of P be p, and for every prime
factor q of σ (pa) that is neither in Signore nor in Son, do the following: if
q is in Soff, then increase the minimum exponent bq of q by vq (σ (pa));
otherwise, append q to the end of Soff and let it have minimum exponent
bq = vq (σ (pa)).

· Increase a by 2.

∗ Start a new branch of the tree with the data obtained from the old branch’s
data by appending p to the end of Son, letting p have the minimum exponent
bp = a, and letting the new value of P be p.

The SageMath program was run repeatedly, according to the specifications in Table 1.
ach line of the table that includes a CPU time refers to one run or to multiple runs of the
ageMath program. The second and third columns of the table indicate the value of Son and

he corresponding exponents at the start of each run.

• If a line of the table imposes a condition on the value of the variable a, where some
on prime p is listed as having exponent ap = a, then one run was done for each even-
positive-integer value of a satisfying the given conditions, and the CPU time in that line
refers to all of those runs combined. At the start of each of those runs, S was taken to
off
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Table 1
Input-related values and CPU times in computer searches for friends n of 10.

k Son aq and bq for q in Son B (r, logr L , δ) (CPU time)/s

5 Empty 103 < 1

6 Empty 107 < 1

7 Empty 1014 < 1

8 (5) a5 = a ≤ 50 ∗ 4

9 (5, 31) a5 = 2, a31 = a ≤ 94 ∗ 7105

9 (5, 31) a5 = 2, b31 = 96 1016 (31, 14, 1) 3

9 (5, 19531) a5 = 6, a19531 = a ≤ 86 ∗ 452

9 (5, 19531) a5 = 6, b19531 = 88 1017 (19531, 6, 1) 61

9 (5) a5 = a:
a = 4 1018 23
a = 8 1011 < 1
a = 10 1029 26 721
a = 12 1029 27 642
a = 46 1029 27 913
14 ≤ a ≤ 64, a ̸= 46 ∗ 3

be the increasing sequence consisting of the different prime factors q of σ (pa) such that
q > 5, with the following exceptions.2

– In the runs where k = 9, Son = (5, 19531), a5 = 6, a19531 = a, 30 ≤ a ≤ 86, and
a /∈ {58, 72}: instead of laboriously factoring σ (19531a) completely, trial division
was used to express σ (19531a) as a product

∏m
j=1 p

c j
j where the primes p j satisfy

p1 < p2 < · · · < pm < 231, or as a product (
∏m

j=1 p
c j
j )c where the primes p j and

the positive integer c satisfy p1 < p2 < · · · < pm < 231 < c; in both cases, the
numbers c j are positive integers. The sequence Soff was taken to be the sequence
obtained from (p1, . . . , pm) by removing all terms p j such that p j ≤ 5.

– In the two runs where k = 9, Son = (5, 19531), a5 = 6, and a19531 = a ∈ {58, 72}:
Soff was taken to be the singleton sequence (q), where the query 19531^n-1 in the
FactorDB database [6] provided the 15-digit smallest prime factor

q = 316636168836007

of σ (1953158) = (1953159
− 1)/19530 for the case a = 58, as well as the 26-digit

smallest prime factor

q = 57276919728938572349117407

of σ (1953172) = (1953173
− 1)/19530 for the case a = 72.

In all cases (including the exceptions above, where trial division or FactorDB was used),
at the start of the run, for each off prime q, the exponent bq was taken to be vq (σ (pa)).

• If a line of the table does not mention a variable a, then the line refers to a single run
and, at the start of that run, Soff was taken to be empty.

2 If p = 5, then gcd(σ (pa), 30) = 1 since a is even, so S includes every prime factor of σ (pa).
off
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• If a line of the table has a blank space in the (r, logr L , δ) column, then the run(s) used
no special prime.

The numbers tmin and tmax were taken to be 9/5. The sequence Signore was taken to be the
singleton sequence (3). The number P was taken to be 4 for k ≤ 7 and 5 for k ≥ 8.

The values of the bound B were chosen by experimentation; that process of trial and error
initially used a Magma version of the program on the online Magma calculator [3], which
apparently limits computation time to 60 s per run. Where “∗” appears in Table 1, the values
of B were as follows.

• k = 8, a5 = a ≤ 50: For the cases a = 2, a = 4, a = 6, or a = 8, the bound B was taken
to be 1016, 1011, 1017, or 106 respectively. For other values of a, the bound B was taken
to be 103, 107, or 1014 if the initial value of |Soff| was at least 3, exactly 2, or exactly 1
respectively.

• k = 9, ((a5, a31) = (2, a) or (a5, a19531) = (6, a)): The bound B was taken to be 105,
1011, or 1018 if the initial value of |Soff| was at least 3, exactly 2, or exactly 1 respectively.

• k = 9, a5 = a ∈ [14, 64], a ̸= 46: The bound B was taken to be 104, 107, or 1014 if the
initial value of |Soff| was at least 4, exactly 3, or exactly 2 respectively.

4. Results

Each run of the program terminated without errors and found no candidate partial prime
factorizations. The runs with 5 ≤ k ≤ 7 rule out friends n of 10 such that 5 ≤ ω(n) ≤ 7. By
Corollaries 6 and 7, the runs with 8 ≤ k ≤ 9 rule out friends n of 10 such that 8 ≤ ω(n) ≤ 9.

herefore, the main theorem of this paper is proved:

heorem 10. Each friend of 10 has at least 10 nonidentical prime factors.

. Remarks concerning run time

Apparently, Corollary 7 is very important for the proof, because the Corollary is needed to
nsure that the runs for k = 9 finish in a reasonable amount of time. The runs for 5 ≤ k ≤ 7
id not use Corollary 7, and each of those runs took less than a second. However, although
run that tackled k = 8 in the same way as 5 ≤ k ≤ 7 (using Son = ∅, using B = 1029,

using P = 4, using no special prime, and without using Corollary 7) was successful, it took
28 500 s to complete. The author believes that it is futile to try doing k = 9 like this. Indeed,
in two cases with k = 9, Corollary 7 was not enough to reduce the run time to a manageable
duration, and the results regarding special primes also needed to be used. (Many thanks to an
anonymous referee for inquiring about the importance of Corollary 7.)

The Cunningham Project tables [4] confirm that for even positive integers a ≤ 124, the
number σ (5a) has at least two different prime factors, except if a ∈ {2, 6, 10, 12, 46}, in which
case σ (5a) is prime. As Table 1 illustrates, each of the five cases

(ω(n), v5(n)) ∈ {(9, 2), (9, 6), (9, 10), (9, 12), (9, 46)}

takes several hours or uses the time-saving special prime r , whereas all other runs com-
bined take less than a minute without using the special prime r . The five cases v5(n) ∈

{2, 6, 10, 12, 46} would most likely be the bottlenecks for any potential attempt, using this
approach, to investigate friends n of 10 such that 10 ≤ ω(n) ≤ 12. (In order to use the 33-digit

46
number σ (5 ) as the special prime r in the case v5(n) = 46, a version of Proposition 9 would
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be needed. To prove such a statement, a direct check of all possible remainders modulo σ (546)
would not be feasible.)

As an anonymous referee kindly pointed out, the analogous run times for the three runs with
(ω(n), v5(n)) ∈ {(9, 10), (9, 12), (9, 46)} indicate that many calculations could be common to
the three runs. This is indeed true: the large prime σ (5v5(n)) contributes little to σ (n) in all three
uns, so significant sections of the trees of cases are the same in all three runs apart from the
alue of that prime. (For example, consider the first few levels within the branch of the tree
here σ (5v5(n)) is moved from Soff to Son at the first step.) However, the three runs are not

ompletely identical (so simply exchanging the three runs for one run representing v5(n) ≥ 10
s not possible), and they were sufficiently fast for the purposes of this paper. In general, as
he referee also kindly pointed out, the program takes advantage of being able to use a specific
alue of σ (5v5(n)) to generate tree branches.

In the runs with (k, a5) = (9, 2) where a31 = a ≤ 94, it appears that most of the time
as used to factorize σ (31a), which is why trial division was used to avoid having to factorize
(19531a) completely in the runs with (k, a5) = (9, 6) where a19531 = a ∈ [30, 86] and
/∈ {58, 72}. The numbers σ (1953158) and σ (1953172) are composite but have no prime factors

ess than 231 (the largest allowed finite upper limit in the factor_trial_division routine
n SageMath), which is why FactorDB was used to find the smallest prime factor of each of
hese two numbers.
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