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A B S T R A C T

Low-light image enhancement (LLIE) techniques attempt to increase the visibility of images captured in low-
light scenarios. However, as a result of enhancement, a variety of image degradations such as noise and
color bias are revealed. Furthermore, each particular LLIE approach may introduce a different form of flaw
within its enhanced results. To combat these image degradations, post-processing denoisers have widely been
used, which often yield oversmoothed results lacking detail. We propose using a diffusion model as a post-
processing approach, and we introduce Low-light Post-processing Diffusion Model (LPDM) in order to model
the conditional distribution between under-exposed and normally-exposed images. We apply LPDM in a manner
which avoids the computationally expensive generative reverse process of typical diffusion models, and post-
process images in one pass through LPDM. Extensive experiments demonstrate that our approach outperforms
competing post-processing denoisers by increasing the perceptual quality of enhanced low-light images on a
variety of challenging low-light datasets. Source code is available at https://github.com/savvaki/LPDM.
1. Introduction

The task of low-light image enhancement (LLIE) aims to improve
the visibility of images which are captured under low-light conditions.
Images which are under-exposed to light are often degraded in a variety
of ways in addition to their lack of visibility. Notably, low-light regions
of an image typically contain degraded color information, a lack of
detail as well as intensive noise. LLIE techniques aim to brighten
low-light regions of an image while maintaining color accuracy and
minimizing noise. The demand for brightening and enhancing low-
light images often arises due to many downstream algorithms only
being performant on images with high visibility [1]. Some of these
downstream tasks include object detection [2], facial recognition [3],
surveillance [4] and semantic segmentation [5].

Simply adjusting the contrast of low-light images using a technique
such as histogram equalization [6] is often insufficient due to the
amplification of noise [1,7]. Learning-based methods have emerged
which significantly outperform traditional methods. However, even the
state-of-the-art deep learning (DL) techniques still introduce a variety
of artifacts in different scenarios [8].

Existing denoising techniques can be applied to denoise low-light
images either before or after contrast enhancement [9,10]. These de-
noising techniques range from low-pass filters and algorithms such as
block matching and 3D filtering (BM3D) [11], to state-of-the-art DL
denoisers [9,12,13]. Despite existing denoisers significantly reducing
noise, they often oversmooth the output. As a result, removing the

∗ Corresponding author.
E-mail addresses: u17215286@tuks.co.za (S. Panagiotou), anna.bosman@up.ac.za (A.S. Bosman).

amplified noise in a brightened low-light image comes at the cost of
removing detail, especially in high-frequency regions of the image.

Recently, diffusion models (DMs) have emerged as a class of gen-
erative models with the ability to model complex conditional data
distributions [14,15]. DMs are typically used to generate high-quality
samples from a learned distribution by iteratively refining a random
noise sample using the reverse diffusion process. DMs outperform other
generative modeling paradigms in terms of their produced sample
quality [16]. Therefore, considering that alternative generative models
have been proven to be effective for LLIE in past research [17,18], the
application of DMs in the LLIE domain presents a promising avenue for
further investigation.

In this work, we propose a post-processing conditional DM [15]
with the capability of removing unwanted noise and other distortions in
brightened low-light images. We name our conditional model Low-light
Post-processing Diffusion Model (LPDM). The effect of post-processing
using LPDM is displayed in Fig. 1. LPDM learns the conditional dis-
tribution between low-light and normally-exposed images. Thereafter,
LPDM is applied as a post-processing step to remove noise and improve
the sharpness and color accuracy of the enhanced low-light image. We
introduce a novel approach of applying LPDM which allows the model
to avoid the computationally expensive reverse diffusion process of
typical DMs, and denoise a given image in one pass through the model.
In summary, our contributions are as follows:
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Fig. 1. Qualitative results of the proposed approach. Each respective column represents 𝒄, 𝒙𝜂
0 and 𝒙𝐷𝑀

0 .
1. We introduce a novel method of applying DMs as a post-
processing technique in the LLIE pipeline. Our framework is able
to circumvent the computationally expensive iterative reverse
process of DMs and denoise images in one pass through the
model without iteration.

2. We demonstrate that our DM improves existing state-of-the-art
LLIE techniques on popular low-light datasets including chal-
lenging unpaired test sets.

3. In addition to simple denoising, we demonstrate that our method
is able to cope with a variety of different artifacts and color
2

distortions, yielding superior results to existing post-processing
denoisers for LLIE.

The remainder of this paper is structured as follows: Section 2
provides background information on LLIE; Section 3 describes exist-
ing post-processing denoisers and their limitations; Section 4 provides
background information on DMs; Section 5 outlines preliminary math-
ematical notation and describes the proposed framework in detail;
Section 6 contains the experimental setup and results for this work,
including an ablation study; finally, conclusions are drawn in Section 7.
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2. Low-light image enhancement

LLIE techniques have existed for many decades and can be divided
into non-learning-based methods and learning-based methods. Popu-
lar examples of traditional techniques which do not require learning
from data include variants of histogram equalization (HE) [6,19] and
gamma correction (GC) [20]. HE adjusts the global contrast of an
image via a single transformation function. However, low-light images
often require contrast enhancements that vary dynamically depending
on local regions of the image. Thus, techniques such as GC adjust an
image via a non-linear per-pixel transform to brighten dark regions
while leaving bright regions relatively unaffected. Despite achieving
reasonable results, the abovementioned traditional methods often re-
quire post-processing techniques in order to deal with amplified noise
after enhancement, and struggle to perform well across diverse scenes.

Another paradigm of LLIE makes use of Retinex theory [21], where
the assumption is that a color image can be separated into reflectance
and illumination, such that 𝐋 = 𝐑◦𝐓, where 𝐋 represents the source
ow-light image, 𝐑 represents the desired recovery image (reflectance),

represents the illumination and ◦ represents element-wise multipli-
ation. Non-learning Retinex-based methods such as Low-light Image
nhancement via Illumination Map Estimation (LIME) [1] provide an
ffective image enhancement approach by estimating 𝐓, which is then
sed to determine 𝐑 given 𝐋; however, post-processing denoising is
ypically still necessary using algorithms such as BM3D [11] which
ften blurs high-frequency details. Alternative Retinex-based methods
eformulate the traditional Retinex model to incorporate an added
oise term in order to cater for noise [22].

DL methods have recently achieved state-of-the-art LLIE perfor-
ance. Some complexities of catering for a large variety of realistic

ow-light scenes are abstracted away by a data-driven approach. Most
L architectures are based on Convolutional Neural Networks (CNNs)
nd more recently, CNNs have been hybridized with transformer net-
orks [23]. DL methods either opt for incorporating denoising into a

ingle model, or apply denoising as a post-processing step. S-LLNet [4]
akes use of a learned denoiser which operates sequentially after con-

rast enhancement. Retinex-net [24] incorporates Retinex theory into a
L model with an optional illumination-varying BM3D denoiser used as
ost-processing. Raw sensor data are enhanced and denoised via CNN
n [7]. DCC-Net [25] aims at enhancing illumination whilst preserving
olor information. MSINet [26] enhances low-light stereo image pairs.

variety of loss functions have also been proposed (in addition to
he typical 𝑙1 and 𝑙2 losses) which further penalize networks based
n color, smoothness, brightness and perceptual interpretation [27].
nsupervised Generative Adversarial Networks (GANs) have also been
roposed for LLIE [17]. Recently, transformer architectures have gained
opularity for LLIE which exploit spatial and channel-wise attention
echanisms [28,29].

Two more relevant state-of-the-art approaches with respect to this
ork are the DL models LLFlow [18] and GSAD [30]. The LLFlow

ramework learns the conditional distribution between low-light and
ormally-exposed images via the generative paradigm of normalizing
low [31]. GSAD [30] applies diffusion models in order to enhance
ow-light images iteratively via conditioning on the low-light image.

LPDM proposed in this study also models the conditional distribu-
ion between low-light and normally-exposed images using the diffu-
ion paradigm. Employing a DM allows our technique to learn non-
inear complexities of the conditional distribution that may elude alter-
ative models. Furthermore, in our novel approach, we repurpose the
unction of a DM to be used as a noise extractor rather than a generative
mage sampler. Therefore, LPDM provides a subtractable estimation of
he noise in an image which can further enhance the image without
teration. In contrast to LLFlow and GSAD, LPDM is used as a post-
rocessing step which can be applied regardless of the enhancing step
hat precedes LPDM. To the best of the authors’ knowledge, LPDM is
he first application of denoising DMs in the field of post-processing
LIE.
3

d

. Post-processing denoising

The task of LLIE can partially be considered a denoising problem,
ince brightening the image is only one component of the task, with
he other component being noise suppression. Existing LLIE methods
ften fail to suppress degradations in their output [27]. Therefore, post-
rocessing denoising approaches have been used to handle noise after
nhancement. In this work, the denoising performance of LPDM is com-
ared with that of the BM3D algorithm [11], and two state-of-the-art
L denoisers: NAFNet [12] and MIRNet* [13].

BM3D is a popular choice of post-processing denoiser in the LLIE
ield, which has been used by RetinexNet and LIME. Naively applying
M3D evenly over the entire image results in bright regions being
versmoothed, since noise is often present at higher levels in dark
egions. Therefore, previous LLIE works have adapted BM3D to operate
nevenly based on the illumination of the recovered image [1,24]. In
articular, we compare our approach to the BM3D denoising approach
sed in LIME [1].

Secondly, we compare our approach to NAFNet, which is a state-
f-the-art supervised U-Net model that avoids the use of non-linear
ctivation functions [12,32]. NAFNet is trained on the smartphone
mage denoising dataset (SIDD) [33]. SIDD contains pairs of clean and
oisy images captured under multiple lighting conditions. Therefore,
AFNet is well-suited to denoise enhanced images of a variety of
rightness levels. Finally, we compare our LPDM to another state-
f-the-art denoiser MIRNet*, which is a MIRNet model [34] that is
ine-tuned using realistic noise generated by PNGAN [13]. MIRNet* is
rained on the SIDD dataset, as well as additional datasets that have
ynthetic noise added by PNGAN.

. Diffusion models

A DM is a form of generative model which has recently been
hown to generate high-quality samples, outperforming GANs [14–
6,35]. DMs iteratively remove small perturbations of noise, typically
tarting with a sample from an isotropic Gaussian distribution, until
hey generate a clean data sample. In this way, the unconditional
iffusion process connects a complex data distribution 𝑞(𝒙0) to a sim-
ler, analytically tractable distribution via a Markov chain consisting
f a finite number of timesteps 𝑇 [14]. The subscript of a sample
ndicates a timestep in the Markov chain, with 0 being a clean sample
nd 𝑇 being a sample with the maximum amount of noise added.
Ms have been successfully used to model both unconditional and
onditional distributions [35,36]. In spite of the impressive results of
Ms, the speed of generating samples has always been a drawback due

o their iterative reverse process. Attempts have been made to increase
ample speed by making the sampling process non-Markovian, as well
s moving DMs to the latent space [37,38].

We avoid using a DM for sampling normally-exposed images owing
o the expensive generative reverse process. Instead, we exploit the
bility of DMs to capture complex conditional data distributions. In par-
icular, we use a DM to capture the relationship between under-exposed
nd normally-exposed images. Other work has shown that DMs may
e used as backbone feature extractors which predict features based
n noisy inputs [39,40]. Similarly, our work exploits a DM’s ability
o identify anomalies which are outside the conditional distribution
etween normally-exposed and under-exposed images. The applications
f using DMs in the field of LLIE are relatively unexplored, especially
onsidering that LLIE can be posed as a denoising problem.

. Methodology

In this work, we propose a technique where a conditional DM is
sed to remove noise from images which have undergone LLIE. The
emainder of this section is structured as follows: in Section 5.1, the
ackground information about DMs is outlined; the architecture used
or LPDM is described in Section 5.2; finally, in Section 5.3, we provide
etail of our proposed framework.
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5.1. Preliminaries

DMs make use of a forward process which adds noise to a sample
and a reverse process which removes noise. The objective is to model
the conditional data distribution 𝒙0 ∼ 𝑞(𝒙0|𝒄), where 𝒄 is a conditioning
mage and 𝒙0 is a target image. The forward diffusion process is defined
s follows [15]:

(𝒙1∶𝑇 |𝒙0) ∶=
𝑇
∏

𝑡=1
𝑞(𝒙𝑡|𝒙𝑡−1),

𝑞(𝒙𝑡|𝒙𝑡−1) ∶=  (𝒙𝑡;
√

1 − 𝛽𝑡𝒙𝑡−1, 𝛽𝑡𝐈),

(1)

where 𝛽𝑡 ∈ (0, 1) defines a variance to be used at timestep 𝑡. As seen
by the Markov chain in Eq. (1), obtaining a more noisy sample 𝒙𝑡 is
dependent on the previous less-noisy sample 𝒙𝑡−1. Extra notation is
defined such that 𝛼𝑡 ∶= 1−𝛽𝑡 and �̄�𝑡 ∶=

∏𝑡
𝑠=1 𝛼𝑠, which allows for Eq. (1)

to be reformulated to be conditioned on the original clean data sample
𝒙0 [15]:

𝑞(𝒙𝑡|𝒙0) ∶=  (𝒙𝑡;
√

�̄�𝑡𝒙0, (1 − �̄�𝑡)𝐈). (2)

The efficient sampling of an arbitrary 𝒙𝑡 at any timestep in the
Markov chain is possible given 𝒙0:

𝑡 =
√

�̄�𝑡𝒙0 +
√

1 − �̄�𝑡𝝐, (3)

where 𝝐 ∼  (0, 1) is a random source. The variance schedule is
esigned such that 𝒙𝑇 ≈  (0, 1). Conditional DMs model the reverse
rocess 𝑝𝜃(𝒙𝑡−1|𝒙𝑡, 𝒄) where 𝜃 indicates that the DM is modeled by
neural network parameterized by 𝜃. The conditional DM attempts

to maximize the likelihood 𝑝𝜃(𝒙0|𝒄). The reverse diffusion process is
defined by parameterized Gaussian transitions [15]:

𝑝𝜃(𝒙0∶𝑇 |𝒄) ∶= 𝑝(𝒙𝑇 )
𝑇
∏

𝑡=1
𝑝𝜃(𝒙𝑡−1|𝒙𝑡, 𝒄),

𝑝𝜃(𝒙𝑡−1|𝒙𝑡, 𝒄) ∶=  (𝒙𝑡−1;𝝁𝜃(𝒙𝑡, 𝑡, 𝒄),𝜮𝜃(𝒙𝑡, 𝑡, 𝒄)).

(4)

In order to avoid learning the variance, let 𝜮𝜃(𝒙𝑡, 𝑡, 𝒄) = 𝜎2𝑡 𝐈, where
𝜎2𝑡 = 1−�̄�𝑡−1

1−�̄�𝑡
𝛽𝑡 is a time-dependent constant [15]. Therefore, the only

learnable component is 𝝁𝜃 . Instead of directly predicting 𝝁𝜃 , the DM
is parameterized in terms of a denoising autoencoder 𝝐𝜃(𝒙𝑡, 𝑡, 𝒄) where
𝑡 = 1,… , 𝑇 . The number of timesteps 𝑇 is set to a large number (such
as 𝑇 = 1000) in order for the reverse process to better-approximate a
Gaussian distribution [37]. The corresponding simplified objective is as
follows [15]:

𝐿𝐷𝑀 = E𝒙0 ,𝒄,𝝐,𝑡[‖𝝐 − 𝝐𝜃(
√

�̄�𝑡𝒙0 +
√

1 − �̄�𝑡𝝐), 𝑡, 𝒄‖2], (5)

where 𝑡 is uniformly sampled from {1,… , 𝑇 } and 𝝐 ∼  (0, 1). In
simplified terms, 𝐿𝐷𝑀 guides the DM to predict the underlying 𝝐 that
was involved in sampling 𝒙𝑡. Given 𝒙𝑡 and a prediction for 𝝐 using 𝝐𝜃 ,
we can calculate an estimate of 𝒙0 [15]:

𝒙0 ≈ �̂�0 =
1

√

�̄�𝑡
𝒙𝑡 −

(√

1
�̄�𝑡

− 1

)

𝝐𝜃(𝒙𝑡, 𝑡, 𝒄). (6)

Further information about the DM sampling process is omitted since it
is not used in this work.

5.2. Diffusion model architecture

The DM architecture 𝝐𝜃 used for modeling the diffusion process is
ypically a form of modified U-Net [15,32]. For the purpose of creat-
ng a noise-prediction model, the original U-Net has been improved
ince its inception. The popularized DM architecture is based on a
ixelCNN++ backbone which incorporates residual blocks into the U-
et [15,41]. Furthermore, the DM operates across all timesteps in the
arkov chain using the same parameters. This is made possible by
odifying the original U-Net to condition on timestep information. The

nteger timestep 𝑡 is converted to a continuous vector embedding using
a sinusoidal positional embedding strategy [23]. The residual blocks
within the U-Net therefore accept timestep embedding input in addition
4

Fig. 2. Residual block used throughout the DM architecture consisting of a combination
of group normalization layers, SiLU activations, convolution layers and addition
operations. Both 𝑐𝑖𝑛 and 𝑡 are inputs to the residual block and represent the channel
and timestep-embedded input respectively. Note that 𝑡 is already in embedded form
when it enters the residual block. The output of the residual block is represented by
𝑐𝑜𝑢𝑡.

to the input feature maps, and thus each residual block has context as
to what level of noise should be present in the input features.

Other notable modifications from the original U-Net are the use of
attention mechanisms at different spatial resolutions as well as the use
of group normalization [42] within the residual blocks. As shown in
Fig. 2, the residual blocks of the DM are composed of a combination
of group normalization layers, SiLU activations [43], convolutional
layers and addition operators. A variety of attention mechanisms may
be applied at different spatial resolutions, such as scaled dot-product
attention, for example [23].

5.3. Proposed framework

In order to address possible degradations which occur after LLIE, we
propose LPDM, represented by 𝝐𝜃 . The LPDM model is given (𝒙𝑡⊕𝒄, 𝑡) as
input and tasked with predicting 𝝐, where 𝒙𝑡 ∼ 𝑞(𝒙𝑡|𝒙0) is a normally-
exposed image with noise 𝝐 ∼  (0, 1) added at a timestep 𝑡, 𝒄 is
he corresponding under-exposed image and ⊕ is the concatenation
perator. During training, LPDM is exposed to batches of (𝒙𝑡⊕𝒄, 𝑡) with
andomly sampled 𝑡 for each sample in a batch. A visualization of the
raining process is depicted in the left half of Fig. 3.

After LPDM has been trained, LPDM is applied in a novel manner
ifferent to that of conventional DMs. Current DMs generate samples by
pplying the DM iteratively to make noise predictions for each timestep
depending on the sampling strategy), as shown in the top half of Fig. 4.
he maximum number of iterations required is 𝑇 , which is often set
o 1000, making the sampling process prohibitively slow. In contrast,
ur approach only requires one prediction from LPDM, shown in the
ottom half of Fig. 4, which makes our approach more computationally
fficient than the conventional iterative sampling approach. In order to
chieve this ability, LPDM assumes that its input is already somewhat
nhanced. Then, LPDM compares the enhanced image to the low-light
mage conditioning and predicts flaws in the enhanced image as noise.
his noise prediction is then subtracted from the enhanced image to
epair it without iteratively using LPDM. The proposed approach is
escribed in detail below.

Let 𝜂 be any low-light image enhancer and let �̂�𝜂0 be an enhanced
mage such that �̂�𝜂0 = 𝜂(𝒄). LPDM is used to obtain an estimate of the
oise present in �̂�𝜂0:

𝜙 = 𝝐𝜃(�̂�
𝜂
0, 𝜙, 𝒄), (7)

here 𝜙 < 𝑇 is a timestep at which we wish to detect noise in �̂�𝜂0.
n important property of Eq. (7) is that noise is not added to �̂�𝜂0;
ather, the model is tasked with finding the noise present in �̂�𝜂0 as

result of enhancement, based on the conditioning 𝒄 and timestep
. Additionally, the value of 𝜙 is selected at a level such that the
nderlying structure of the image would be preserved if noise were
ypothetically to be added. Thus, a suitable value for 𝜙 is related to the
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Fig. 3. Diagram presenting the training phase and inference phase of LPDM, displayed on the left and right half of the diagram respectively.
Fig. 4. Comparison between the typical diffusion sampling process and the proposed approach which does not require iteration.
selected variance schedule. Fig. 5 provides visual examples of applying
our proposed approach for an example set of 𝒙0, 𝒄 and �̂�𝜂0. Row 2 of
Fig. 5 demonstrates the effect of selecting different values of 𝑡 in Eq. (2)
in order to sample a noisy image during the training process. The noise
schedule closer to 0 corresponds to less added noise in the image.
Therefore, it is reasonable to detect noise in �̂�𝜂0 at lower levels of 𝜙
since we do not expect �̂�𝜂0 to be pure noise.

Row 3 of Fig. 5 demonstrates the effect of different values of 𝜙.
For values of 𝜙 that are too low, the model overestimates the noise
present in �̂�𝜂0. For large values of 𝜙, the model becomes similar to
an autoencoder and attempts to predict the input. The reason for the
behavior of different levels of 𝜙 can be explained by how LPDM is
trained. For values of 𝜙 close to 𝑇 , LPDM expects the input to be purely
noise, and thus a suitable prediction for 𝝐 would simply be to predict
the input. For low values of 𝜙, the model expects almost zero noise
in the input. Therefore, the model produces an imperceptible granular
estimation of the noise; however, this fails to consider the enhanced
image distortions as noise. We find a good balance to be values of
𝜙 where the background structure of the image is not completely
destroyed such as 𝜙 = 300 which corresponds to 𝒙300 in row 2 of Fig. 5.

Once we obtain the estimation of the noise 𝒏𝜙, we subtract the noise
from �̂�𝜂0 using a modification of Eq. (6):

�̂�𝐷𝑀
0 = 𝜉(�̂�𝜂0,𝒏𝜙, 𝑠) ∶=

1
√

�̄�𝑠
�̂�𝜂0 −

(√

1
�̄�𝑠

− 1

)

𝒏𝜙, (8)

where 𝑠 is a timestep which selects the coefficients according to the
variance schedule, and thus balances the degree to which noise is
subtracted from �̂�𝜂0. The final result after LPDM post-processing is
represented by �̂�𝐷𝑀

0 . Notably, we find that 𝑠 should be significantly
less than 𝜙 in order to subtract the correct amount of noise. As 𝑠 → 𝜙,
more of the noise 𝒏𝜙 is subtracted from �̂�𝜂0, leading to overcorrections
and perhaps further degrading the result. As seen in row 4 of Fig. 5,
the value of 𝑠 impacts how much correction should be applied. Our
5

technique is able to reduce noise, correct color and improve sharpness
as seen when comparing �̂�𝜂0 to 𝜉(�̂�𝜂0,𝒏300, 100) in Fig. 5.

Denoising techniques may be classified as being either blind or non-
blind. Blind denoisers do not require the user to specify the level of
noise in the input image, whereas non-blind denoisers require the user
to specify the noise level. The popular BM3D algorithm is a non-blind
approach. Similarly, our approach requires a selection of 𝑠 to determine
to what extent noise should be subtracted, however we find low values
of 𝑠 to be applicable to a wide variety of scenarios. Heuristics for
determining optimal values of 𝑠 have been left for future research.

In summary, our approach requires the specification of a parameter
𝑠 during application, where 𝜙 may be fixed empirically. We find 𝜙 =
300 to be a reasonable choice, and we use this value for all experiments.
As 𝑠 → 0, the amount of correction lessens. The right half of Fig. 3
summarizes the inference process described above and shows that
LPDM predicts �̂� during training and 𝒏𝜙 during inference.

6. Experiments

The following subsections outline the experimental setup: Sec-
tion 6.1 describes the datasets used in this study; Section 6.2 defines
the configuration of LPDM and the training parameters used for all
experiments; Section 6.3 provides detail on the LLIE models selected
for comparison with LPDM; in order to achieve a fair comparison,
we compare our approach to alternative denoising methods described
in Section 6.4; the interpretation of all the results is presented in
Section 6.5; finally, an ablation study is conducted in Section 6.6.

6.1. Evaluation datasets

Paired low-light datasets are challenging to collect due to the re-
quirement of having the scene remain unchanged while camera ISO
is adjusted [24]. Accordingly, many methods resort to augmenting
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Fig. 5. Visualization of different components within the diffusion process and LPDM pipeline. The first row displays a normally-exposed image, under-exposed image and image
which has undergone LLIE. The second row demonstrates how noise is added to 𝒙0 using a linear variance schedule during the training process, with 𝑇 = 1000. The third row
demonstrates the effect of different values of 𝜙 in Eq. (7). The fourth row demonstrates the effect of applying Eq. (8) with different values of 𝑠 in order to enhance �̂�𝜂

0.
datasets with synthetic data. Synthetic datasets are typically gener-
ated by adjusting the gamma of normally-exposed images and adding
simulated noise. We avoid training LPDM on synthetic datasets in
order to ensure that we correctly model the conditional distribution
between under-exposed and normally-exposed images. We train on the
original paired LOL dataset [24], which contains 485 training images
and 15 test images. Alternative versions of LOL exist, however these
only add synthetic data such as the extended version of LOL [52]
and VE-LOL [3]. We evaluate our model on the widely-adopted real
unpaired test sets LIME1 (10 images) [1], DICM (64 images) [49],
MEF (17 images) [50], NPE (7 images) [51]. We specify the number
of images explicitly as previous works use varying subsets of the test
sets. The full-reference metrics we adopt are structural similarity index

1 LIME [1] is both an LLIE technique and an unpaired test dataset, both of
which are proposed in the same paper.
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measure (SSIM), peak signal-to-noise ratio (PSNR), mean absolute error
(MAE), Spatial-CIELAB (𝛥E𝑠) [53] and learned perceptual image patch
similarity (LPIPS) [54]. For the unpaired test data we adopt the follow-
ing no-reference metrics: natural image quality evaluator (NIQE) [55],
blind/referenceless image spatial quality evaluator (BRISQUE) [56] and
the MUSIQ transformer [57] trained on the smartphone photography
attribute and quality (SPAQ) database [58]. All metrics are calculated
in the RGB color space unless otherwise stated. The metric 𝛥E𝑠 specif-
ically measures perceptual color difference between two images. The
output of the 𝛥E𝑠 calculation is a spatial color error map, and the
average of the color error map is reported.

6.2. Implementation details

A linear variance schedule is used in the range [0.00085, 0.012] for
the diffusion process. The value of 𝑇 is fixed to 1000 for all experiments.
LPDM is trained on the LOL training set for 6000 training steps using
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Table 1
Results on the LOL test set for different LLIE methods (𝜂), with and without post-processing. The results for LPDM are averaged over 5 runs.

Methods SSIM ↑ PSNR ↑ MAE ↓ 𝛥𝐸𝑠 ↓ LPIPS ↓

LIME [1] 0.484 17.181 0.124 17.159 0.372
LIME + BM3D5 0.521 17.163 0.126 17.373 0.285
LIME + BM3D15 0.543 17.338 0.125 17.405 0.218
LIME + NAFNet 0.753 18.109 0.113 17.194 0.249
LIME + MIRNet* 0.764 18.107 0.113 17.270 0.257
LIME + LPDM15 0.688 17.628 0.121 17.213 0.198
LIME + LPDM30 0.744 17.621 0.122 17.264 0.172

BIMEF [44] 0.595 13.875 0.206 29.698 0.326
BIMEF + BM3D5 0.611 13.653 0.212 30.470 0.226
BIMEF + BM3D15 0.588 13.619 0.212 30.557 0.285
BIMEF + NAFNet 0.662 13.917 0.203 30.024 0.309
BIMEF + MIRNet* 0.669 13.946 0.204 29.916 0.313
BIMEF + LPDM15 0.692 13.894 0.210 29.911 0.190
BIMEF + LPDM30 0.684 13.844 0.212 29.964 0.197

RetinexNet [24] 0.425 16.774 0.126 20.368 0.474
RetinexNet + BM3D5 0.456 16.794 0.126 20.404 0.409
RetinexNet + BM3D15 0.482 17.065 0.123 19.913 0.278
RetinexNet + NAFNet 0.724 17.636 0.118 20.067 0.312
RetinexNet + MIRNet* 0.741 17.634 0.117 21.389 0.317
RetinexNet + LPDM15 0.648 17.811 0.115 19.747 0.268
RetinexNet + LPDM30 0.760 18.034 0.112 19.590 0.198

EnlightenGAN [17] 0.652 17.483 0.135 20.009 0.322
EnlightenGAN + BM3D5 0.715 17.332 0.139 20.558 0.220
EnlightenGAN + BM3D15 0.721 17.358 0.139 20.629 0.247
EnlightenGAN + NAFNet 0.741 17.618 0.133 20.083 0.242
EnlightenGAN + MIRNet* 0.760 17.774 0.132 20.026 0.232
EnlightenGAN + LPDM15 0.761 17.574 0.136 19.975 0.173
EnlightenGAN + LPDM30 0.759 17.505 0.137 19.994 0.180

KinD [45] 0.771 17.648 0.123 18.031 0.175
KinD + BM3D5 0.771 17.497 0.125 18.292 0.193
KinD + BM3D15 0.761 17.482 0.126 18.310 0.233
KinD + NAFNet 0.761 17.570 0.124 18.088 0.252
KinD + MIRNet* 0.770 17.605 0.124 18.066 0.240
KinD + LPDM15 0.792 17.676 0.124 17.744 0.151
KinD + LPDM30 0.785 17.629 0.124 17.696 0.160

KinD++ [8] 0.758 17.752 0.113 17.773 0.198
KinD++ + BM3D5 0.768 17.714 0.113 17.799 0.203
KinD++ + BM3D15 0.769 17.740 0.113 17.773 0.224
KinD++ + NAFNet 0.765 17.768 0.114 17.647 0.245
KinD++ + MIRNet* 0.776 17.816 0.113 17.780 0.237
KinD++ + LPDM15 0.794 17.867 0.112 17.528 0.165
KinD++ + LPDM30 0.792 17.846 0.112 17.550 0.172

Methods SSIM ↑ PSNR ↑ MAE ↓ 𝛥𝐸𝑠 ↓ LPIPS ↓

ZeroDCE [46] 0.562 14.861 0.185 24.902 0.335
ZeroDCE + BM3D5 0.593 14.656 0.190 25.635 0.220
ZeroDCE + BM3D15 0.580 14.649 0.190 25.720 0.256
ZeroDCE + NAFNet 0.689 15.077 0.180 25.313 0.287
ZeroDCE + MIRNet* 0.697 15.145 0.179 24.972 0.288
ZeroDCE + LPDM15 0.696 14.917 0.187 25.261 0.191
ZeroDCE + LPDM30 0.695 14.862 0.189 25.328 0.191

ZeroDCE++ [47] 0.573 15.357 0.176 25.875 0.335
ZeroDCE++ + BM3D5 0.605 15.169 0.182 26.265 0.214
ZeroDCE++ + BM3D15 0.592 15.167 0.182 26.375 0.250
ZeroDCE++ + NAFNet 0.704 15.628 0.172 26.207 0.288
ZeroDCE++ + MIRNet* 0.707 15.630 0.172 26.245 0.297
ZeroDCE++ + LPDM15 0.707 15.455 0.179 25.716 0.188
ZeroDCE++ + LPDM30 0.706 15.384 0.180 25.640 0.190

LLFlow [18] 0.852 21.133 0.084 13.125 0.119
LLFlow + BM3D5 0.845 21.011 0.085 13.292 0.144
LLFlow + BM3D15 0.830 20.937 0.086 13.314 0.189
LLFlow + NAFNet 0.808 20.700 0.087 13.309 0.214
LLFlow + MIRNet* 0.821 20.887 0.086 13.181 0.194
LLFlow + LPDM15 0.843 21.142 0.084 12.966 0.122
LLFlow + LPDM30 0.828 21.038 0.084 12.976 0.137

URetinex-Net [48] 0.824 19.842 0.099 15.298 0.128
URetinex-Net + BM3D5 0.824 19.784 0.099 15.281 0.156
URetinex-Net + BM3D15 0.806 19.727 0.099 15.296 0.206
URetinex-Net + NAFNet 0.791 19.487 0.101 15.489 0.216
URetinex-Net + MIRNet* 0.803 19.667 0.100 15.340 0.197
URetinex-Net + LPDM15 0.827 20.017 0.097 14.859 0.137
URetinex-Net + LPDM30 0.819 20.043 0.097 14.734 0.148

LLFormer [29] 0.819 23.346 0.067 11.221 0.168
LLFormer + BM3D5 0.832 23.110 0.068 11.451 0.178
LLFormer + BM3D15 0.816 22.962 0.069 11.492 0.228
LLFormer + NAFNet 0.807 22.799 0.069 11.387 0.234
LLFormer + MIRNet* 0.818 22.956 0.068 11.298 0.234
LLFormer + LPDM15 0.855 23.661 0.066 10.965 0.116
LLFormer + LPDM30 0.849 23.477 0.067 10.973 0.127

GSAD [30] 0.851 22.728 0.075 12.191 0.134
GSAD + BM3D5 0.847 22.427 0.077 12.639 0.156
GSAD + BM3D15 0.833 22.329 0.077 12.666 0.194
GSAD + NAFNet 0.812 22.148 0.078 12.278 0.212
GSAD + MIRNet* 0.828 22.418 0.077 12.318 0.192
GSAD + LPDM15 0.851 22.755 0.075 12.113 0.120
GSAD + LPDM30 0.838 22.615 0.076 12.154 0.128
the AdamW optimizer [59] with a learning rate of 1 × 10−6 and with
the AdamW parameters 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜆 = 0.01. The loss
function is defined in Eq. (5). We use the RGB color space for both
low-light and normally-exposed images, and images are converted into
the range [−1, 1]. We train on 256 × 256 random crops with random
horizontal flipping. A batch size of 4 is used with an accumulation of
gradients for 8 batches in order to simulate a batch size of 32.

The U-Net of LPDM consists of 4 downsampling stages (encoder)
and 4 upsampling stages (decoder), with 2 residual blocks per stage.
Between the encoder and the decoder is a middle block which processes
the latent encoding. The middle block contains 2 residual blocks which
surround a scaled dot-product attention layer using 8 attention heads.
We avoid using attention mechanisms at higher resolutions than the
final latent encoding in order to conserve memory. A visualization
presenting more details of the LPDM architecture can be found in the
supplementary materials. The implementation of the LPDM method is
available online at https://github.com/savvaki/LPDM.

6.3. Benchmark study for LPDM

The following state-of-the-art LLIE approaches are selected for com-
parison: LIME [1], BIMEF [44], RetinexNet [24], EnlightenGAN [17],
KinD [45], KinD++ [8], ZeroDCE [46], ZeroDCE++ [47], URetinex-
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Net [48], LLFlow [18], LLFormer [29] and GSAD [30]. BIMEF and LIME
are non-learning-based methods and the remaining methods are all
learning-based. GSAD is a state-of-the-art diffusion-based approach for
LLIE [30]. The GSAD, LLFlow, LLFormer, URetinex-Net and RetinexNet
methods are trained on the LOL dataset only. The KinD and KinD++
models are trained on LOL with additional custom synthetic data
added [8]. The ZeroDCE and ZeroDCE++ models are trained on multi-
exposure image sets from the SICE [60] dataset. EnlightenGAN is
trained with unpaired groups of low-light and normal-exposure images
using data from LOL as well as additional datasets.

Several methods such as KinD, KinD++, URetinex-Net, LLFlow and
GSAD scale their model outputs based on an illumination ratio which
involves the ground truth label. In order to achieve a fair comparison,
we do not use the ground truths to scale these model outputs. Instead,
we treat the LOL test set as unpaired data as would be the case in real-
life scenarios. Similar to previous approaches, we fix the parameters of
the LIME algorithm to 𝛼 = 0.15 and 𝜎 = 2 and 𝛾 = 0.8.

We compare the abovementioned LLIE approaches with and without
our proposed LPDM. For the remainder of this work, LPDM𝑠 represents
the LPDM approach applied with parameter 𝑠, defined in Section 5.3.
All LPDM results fix 𝜙 = 300, and we report two values of 𝑠 which are
15 and 30. Table 1 contains results with and without LPDM on the LOL
test set represented as 𝜂 + LPDM𝑠. The LPDM results are averaged over
5 runs with different seeds. In addition to the LOL dataset evaluation,
we provide qualitative and quantitative results on the abovementioned

unpaired test sets. The unpaired test metrics can be found in Table 2.

https://github.com/savvaki/LPDM
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Table 2
Results on unpaired test sets for different LLIE methods (𝜂), with and without the proposed LPDM. The results for LPDM are averaged over 5 runs.

Method LIME [1] DICM [49] MEF [50] NPE [51]

NIQE ↓ BRISQUE ↓ SPAQ ↑ NIQE ↓ BRISQUE ↓ SPAQ ↑ NIQE ↓ BRISQUE ↓ SPAQ ↑ NIQE ↓ BRISQUE ↓ SPAQ ↑

LIME [1] 4.083 18.977 64.485 3.812 23.356 63.301 3.558 16.337 70.911 4.196 17.296 73.505
LIME + LPDM15 4.263 17.247 68.246 3.722 22.378 66.071 3.624 17.853 71.718 4.196 15.971 74.256
LIME + LPDM30 4.433 21.186 69.891 3.910 22.255 67.064 4.156 23.504 71.455 4.474 19.348 74.467

BIMEF [44] 3.859 17.714 65.121 3.827 23.588 64.375 3.330 15.262 67.352 4.135 14.928 72.622
BIMEF + LPDM15 4.199 17.452 68.349 3.812 20.587 68.164 3.731 18.245 68.789 4.164 15.461 74.402
BIMEF + LPDM30 4.330 20.875 69.098 4.004 21.329 69.120 4.345 21.830 68.677 4.421 17.775 75.008

RetinexNet [24] 4.598 26.341 70.370 4.451 29.339 68.805 4.416 20.068 74.386 4.595 22.579 74.910
RetinexNet + LPDM15 4.520 22.443 69.949 4.141 22.946 69.712 3.689 14.995 73.579 4.387 19.330 74.631
RetinexNet + LPDM30 4.594 24.306 70.031 4.046 22.903 70.167 4.112 23.055 72.502 4.573 22.422 74.958

EnlightenGAN [17] 3.657 14.879 64.208 3.561 18.808 63.124 3.221 14.332 68.701 4.116 15.344 73.552
EnlightenGAN + LPDM15 4.129 17.069 68.422 3.756 19.137 66.464 3.663 18.282 71.214 4.143 16.630 74.816
EnlightenGAN + LPDM30 4.226 20.419 69.574 3.975 22.096 67.274 4.234 22.501 71.280 4.366 18.004 74.999

KinD [45] 4.762 25.208 64.511 4.139 29.116 65.324 3.875 27.500 66.879 4.167 18.092 74.067
KinD + LPDM15 4.172 19.864 68.099 3.988 24.931 68.395 4.031 23.964 69.678 4.185 16.688 74.088
KinD + LPDM30 4.223 19.282 68.831 3.971 24.288 68.821 4.136 23.235 69.833 4.326 17.557 74.059

KinD++ [8] 4.726 23.298 65.992 3.786 26.314 68.086 3.737 28.635 70.250 4.384 20.970 75.817
KinD++ + LPDM15 4.221 21.624 67.907 3.835 24.673 68.936 3.870 26.107 70.190 4.270 18.694 74.966
KinD++ + LPDM30 4.300 21.062 68.705 3.868 24.516 68.913 4.076 25.285 69.890 4.369 20.192 74.495

ZeroDCE [46] 3.773 18.480 64.883 3.723 23.519 64.769 3.283 16.632 70.906 3.946 15.739 74.399
ZeroDCE + LPDM15 4.167 18.009 68.342 3.733 19.091 68.175 3.596 17.879 70.904 4.004 15.987 74.645
ZeroDCE + LPDM30 4.321 22.128 69.375 3.988 23.075 68.884 4.295 23.243 70.365 4.288 18.245 74.751

ZeroDCE++ [47] 3.965 17.217 64.956 3.824 21.368 64.470 3.400 13.602 70.291 4.021 12.941 73.658
ZeroDCE++ + LPDM15 4.240 17.585 68.727 3.799 18.738 68.024 3.686 17.642 70.663 4.106 15.305 74.685
ZeroDCE++ + LPDM30 4.347 21.639 69.725 3.983 22.877 68.790 4.291 22.986 70.240 4.351 17.971 74.825

LLFlow [18] 5.071 26.596 68.282 3.831 24.895 67.698 3.924 26.973 72.368 4.203 19.680 73.812
LLFlow + LPDM15 4.485 21.517 69.766 3.875 21.675 68.947 3.935 23.632 70.841 4.273 17.295 74.052
LLFlow + LPDM30 4.345 19.364 70.372 3.921 20.001 69.308 4.076 21.803 70.232 4.368 16.105 74.168

URetinex-Net [48] 4.353 23.906 68.232 4.152 24.261 66.239 3.790 21.478 72.005 4.688 24.384 74.462
URetinex-Net + LPDM15 4.393 22.362 69.126 3.932 23.294 66.965 3.942 22.381 70.986 4.498 22.040 74.472
URetinex-Net + LPDM30 4.316 20.732 69.086 3.951 23.323 66.887 4.041 21.079 70.219 4.484 22.013 74.349

LLFormer [29] 4.145 14.664 61.821 3.850 14.610 63.080 3.682 17.043 63.139 3.962 12.440 71.975
LLFormer + LPDM15 4.114 17.601 66.030 3.844 18.704 68.043 3.880 19.968 69.661 4.071 13.974 74.829
LLFormer + LPDM30 4.128 18.226 67.131 3.871 17.316 68.935 4.014 18.554 70.471 4.214 12.997 75.138

GSAD [30] 4.411 24.817 62.190 4.290 23.215 67.959 4.434 27.567 67.750 4.829 23.543 72.206
GSAD + LPDM15 4.216 22.000 65.801 4.104 25.511 67.006 4.244 27.550 68.536 4.296 21.203 73.487
GSAD + LPDM30 4.144 20.087 66.629 4.029 23.454 66.479 4.199 25.337 68.403 4.346 18.690 73.556
6.4. Comparison with alternative denoisers

As mentioned in Section 3, we compare the LPDM denoising perfor-
mance with the popular BM3D [11] algorithm as well as the state-of-
the-art DL denoisers NAFNet [12] and MIRNet* [13]. For the BM3D
algorithm, we follow the denoising strategy used by LIME [1]. For
all figures and tables, BM3D𝜎 represents the application of the BM3D
lgorithm where 𝜎 is the standard deviation parameter of BM3D. The
esults are reported in Table 1 as 𝜂 + BM3D𝜎 .

NAFNet and MIRNet* are each evaluated as a post-processing step
fter LLIE. Both NAFNet and MIRNet* are used to denoise enhanced
mages �̂�𝜂0, and the outputs are captured for each 𝜂 over each test image.
he results of NAFNet denoising can be found in Table 1 represented as
+NAFNet. Similarly, results for MIRNet* are reported as 𝜂+MIRNet*.

Finally, we measure the latency of LPDM, NAFNet and BM3D on a
compute node with an NVIDIA V100 GPU and 10 CPU cores. Random
input is use at resolution 600 × 400 which is the size of a LOL test
image. We were unable to calculate the latency of MIRNet* since the
model uses more than 32 GB of GPU memory during inference.

6.5. Interpretation of results

The full-reference and no-reference metrics are reported in Tables 1
and 2, respectively. Metrics marked in bold indicate that they are the
best for a particular method (ties are also marked in bold). The LOL
test set results in Table 1 show that our LPDM is able to improve
the SSIM of all baseline LLIE methods except LLFlow and GSAD on
the LOL dataset. The GSAD SSIM remains the same, however the
8

perceptual quality improved, which demonstrates that even existing
diffusion approaches can be improved by LPDM. In all cases, LPDM
improves the PSNR compared to each baseline. In many cases, the
SSIM is greatly improved by adding LPDM. Adding LPDM to LIME,
RetinexNet, EnlightenGAN, ZeroDCE, ZeroDCE++ and LLFormer boasts
up to a 53%, 78%, 16%, 23%, 23%, 4% SSIM improvement, respec-
tively. LLFormer yields new state-of-the-art SSIM results on the LOL
dataset when LPDM post-processing is added.

Importantly, LPDM outperforms the alternative post-processing de-
noisers on the perceptual LPIPS metric in all cases. We emphasize LPIPS
since it correlates more with human perceptual quality than the other
quantitative metrics chosen [54]. This is further confirmed by the color
error 𝛥E𝑠, which shows that LPDM is able to improve the accuracy of
color information of most DL methods. LPDM is able to improve the
baseline PSNR for all methods, and mostly outperforms the competing
denoisers on the PSNR metric. In some cases, NAFNet and MIRNet* are
able to improve PSNR and MAE more than our LPDM; however, upon
further inspection, this is as a result of aggressive denoising and thus
oversmoothing. PSNR and MAE favor the smooth solutions predicted
by the alternative denoisers since these metrics do not consider image
structure or perceptual quality [61]. Fig. 6 displays a comparison of
post-processing approaches. NAFNet and MIRNet* remove most typical
noises, however at the cost of removing detail. For example, consider
the first row of Fig. 6, where technically NAFNet and MIRNet* yield a
higher PSNR for �̂�LIME

0 , but the results are clearly blurred when com-
pared to LPDM which maintains the sharpness of the original image.
The behavior of NAFNet and MIRNet* manifests more accurately in the
LPIPS metric where the LPDM outperforms these models significantly
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Fig. 6. Qualitative comparison of the BM3D [11], NAFNet [12] and MIRNet* [13] post-processing denoising approaches to LPDM on the LOL test set. The first row displays
examples of enhanced low-light images (�̂�𝜂

0) for different LLIE approaches, and the remaining rows display the results of post-processing denoisers applied to each �̂�𝜂
0.
for all LLIE methods. Although the BM3D denoiser performs well, it is
unable to deal with color noises and other distortions as robustly as DL
methods.

The alternative post-processing approaches are unable to generalize
beyond the types of noise on which they are trained. In contrast,
our method models the conditional distribution between low-light and
normally-exposed images, allowing LPDM to handle a variety of differ-
ent artifacts and color distortions besides typical noise. An example of
a distortion which differs from typical Gaussian noise is the distortion
introduced by KinD++. Fig. 6 shows that our LPDM increases the sharp-
ness of �̂�KinD++

0 where the other denoisers yield oversmoothed results.
We emphasize this point because different LLIE methods introduce
a panoply of different distortions. Finally, note that post-processing
9

approaches generally run the risk of further degrading an image, espe-
cially if the input image is already well-enhanced. However, the metrics
in Table 1 suggest that LPDM is less susceptible to negatively impacting
the input image when compared with the alternative denoisers.

For the majority of methods and datasets in Table 2, LPDM is able
to improve the SPAQ score. The improvement of the NIQE score and
BRISQUE score fluctuates depending on the dataset and the method.
However, NIQE and BRISQUE are fickle metrics since their generaliza-
tion ability is limited by the scope of the natural data on which these
models are trained. SPAQ is a more reliable metric since it employs a
pretrained DL transformer, and has demonstrated state-of-the-art image
quality analysis performance [57]. Nonetheless, it still remains vital
to analyze the qualitative effects of LPDM on real test data. Several
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Table 3
Ablation study comparing LPDM to DLPDM and ULPDM on the LOL test set. The results for each model are averaged over 5 runs.

Methods SSIM (%) ↑ PSNR (%) ↑ MAE (%) ↑ 𝛥𝐸𝑠 (%) ↑ LPIPS (%) ↑

DLPDM 16.956 ± 26.46 1.9 ± 3.72 1.827 ± 5.17 2.8 ± 5.18 2.237 ± 31.14
ULPDM15 3.764 ± 26.2 −0.335 ± 2.3 −0.648 ± 3.06 −1.338 ± 1.27 −4.621 ± 33.98
ULPDM30 −13.224 ± 26.9 −1.935 ± 3.03 −2.476 ± 4.3 −2.47 ± 2.43 −35.305 ± 45.28
LPDM15 15.498 ± 17.46 1.139 ± 1.74 0.879 ± 2.79 0.945 ± 1.4 27.248 ± 20.03
LPDM30 17.964 ± 25.0 0.934 ± 2.23 0.554 ± 3.52 1.004 ± 1.72 25.099 ± 25.74
images from a variety of datasets are displayed in Fig. 1. The general
advantage of LPDM is its ability to strike a balance between smoothing
and maintaining sharpness. Due to the distribution of the noise output
of LPDM being zero-centered, our approach maintains the perceptual
quality of the underlying image and avoids oversmoothing when Eq. (8)
is applied. In many cases, LPDM is able to improve color quality and
sharpness. Upon close inspection, LPDM alters color shades to more
accurately represent reality, as seen for BIMEF, and LLFormer examples
in Fig. 1. More examples are included in the supplementary materials
due to space limitations.

In addition to the above conclusions, the choices of 𝑠 = 15 and
= 30 may not necessarily be the optimal values for each LLIE method.
herefore, there may be larger improvements for a different choice of 𝑠
hich can be determined empirically. We fix 𝑠 in order to demonstrate

he possibility of using LPDM as a blind denoiser.
Finally, we measure the latency of LPDM at 228 ms (ms) for inputs

f size 600 × 400. The latency of NAFNet and BM3D is measured
t 98 ms and 3132 ms, respectively. Although LPDM is somewhat
lower than NAFNet, the speed of LPDM is still viable, especially when
enoising performance is considered. In contrast, traditional iterative
M approaches would be infeasible due to their iterative nature. Fu-

ure optimization and compression of the LPDM framework may incur
ignificant speedups. BM3D is the slower algorithm of those compared;
owever, more optimized alternative versions of the BM3D algorithm
ay improve computational performance.

.6. Ablation study

An ablation study is necessary in order to demonstrate that the
mprovements of LPDM can be attributed specifically to our proposed
pproach and that the results are not arbitrary. In Section 6.6.1 we
xamine the effect of predicting 𝝐, and in Section 6.6.2 we compare
nconditional diffusion to LPDM. In order to conserve space, tables
or the ablation study results are summarized such that the percentage
mprovement for each metric is calculated for each 𝜂, and the mean
nd standard deviation percentage improvements are reported.

.6.1. The effect of predicting the noise
As seen in Eq. (5), DMs are trained to make predictions for 𝝐. We

examine the value of predicting 𝝐 by changing the model to predict 𝒙0
directly, and we name this model direct LPDM or DLPDM. The DLPDM
model directly denoises the input and does not require any further
steps such as Eq. (8). The DLPDM is identical to LPDM described in
Section 6.2 with two differences: the ground truth target of the model
is now 𝒙0 rather than 𝝐, and we remove timestep conditioning from
the model by setting 𝑡 = 0 as input to the model regardless of 𝒙𝑡.
Therefore, the model directly denoises its input with the same number
of parameters and without the requirement of specifying 𝜙 at inference
time, thus making the model a blind denoiser. In other terms, the
model is responsible for detecting the amount of noise present in 𝒙𝑡 and
predicting 𝒙0 without any additional parameters defined by the user.

The results of the DLPDM experiment are summarized in Table 3,
which includes the other ablation results from Section 6.6.2. Each
model is averaged over 5 runs with different seeds. Our proposed LPDM
approach performs better on SSIM and LPIPS and DLPDM performs
better on PSNR and MAE (although the variance of DLPDM is higher).
LPDM largely outperforms DLPDM on LPIPS which implies that LPDM
10
results are more perceptually similar to the ground truth. Both DLPDM
and LPDM improve 𝛥E𝑠 on average, however the standard deviation of
DLPDM is higher, making it less reliable for restoring color details. The
results are verified when examining the examples in Fig. 7 where LPDM
preserves the sharpness of 𝒙0𝜂 and maintains color accuracy.

6.6.2. The effect of conditioning
We explore the effect of appending 𝒄 to 𝒙𝑡 as visually depicted in

Fig. 3. We name this model unconditional LPDM or ULPDM. In many
cases, diffusion models may ignore the concatenated conditioning and
simply learn how to denoise. Therefore, it is important to explore
whether LPDM requires the use of conditioning to achieve the de-
sired results. ULPDM is an identical model to LPDM from Section 6.2,
however, we change the input layer to accept only 𝒙𝑡 as input, thus
changing the number of input channels from six to three. In other terms,
we compare conditional diffusion to unconditional diffusion.

The experimental results in Table 3 show that LPDM significantly
outperforms ULPDM across all metrics. Therefore, we conclude that
conditioning is necessary in order for LPDM to detect the wide variety
of artifacts that can be present in �̂�𝜂0. We provide visual results in
Fig. 8 which verify our conclusion: ULPDM is able to remove noise,
however results are oversmoothed and thus detail is lost due to lack of
conditioning.

7. Conclusion

In this paper, we present a framework for post-processing im-
ages which have undergone low-light image enhancement. The en-
hancement of low-light images often reveals a variety of degradations
which are hidden in the dark, and thus a need for post-processing is
introduced. Furthermore, each low-light enhancement technique can
possibly introduce a different form of degradation into its result. We
propose using a conditional diffusion model in order to model the distri-
bution between under-exposed and normally-exposed images. Further,
we introduce a method of applying our diffusion model as a non-
iterative post-processing technique, which is unlike existing diffusion
approaches. Our approach uses the diffusion model to estimate the
amount of noise present in an enhanced image in one pass through
the model, which can simply be subtracted from the enhanced image
to further enhance the image. The subtraction of the noise is parame-
terized via 𝑠 and 𝜙, and experiments show that 𝜙 may be fixed. The
parameter 𝑠 may be selected by the user, or fixed to a small value
for convenience as we have empirically demonstrated. Our approach is
unlike conventional diffusion generative sampling since it repurposes
the diffusion model for efficient non-iterative noise detection.

We compare our method to 3 alternative denoisers and apply our
post-processing approach to 12 state-of-the-art low-light image en-
hancement backbones. We show that our approach can improve the
output of state-of-the-art low-light image enhancers in terms of per-
ceptual quality. In contrast to existing denoisers, our approach is less
susceptible to oversmoothing and is capable of enhancing perceptual
quality while eliminating noise and other distortions. Our technique
can be used to repair enhanced low-light images given any arbitrary
low-light image enhancer backbone. In future work, we will investi-
gate whether the hyperparameters introduced by our approach may
be eliminated and determine if the model size can be reduced. The
applicability of our approach to other image restoration domains is a
promising avenue for future research.
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Fig. 7. Visual examples of the ablation study directly comparing predicting 𝒙0 to predicting 𝝐 using the DLPDM and LPDM models, respectively.
Fig. 8. Visual examples of the ablation study comparing unconditional and conditional diffusion using the ULPDM and LPDM models, respectively.
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