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ARTICLE INFO ABSTRACT

Keywords: The ability to offer long-range, high scalability, sustainability, and low-power wireless communication, are
Fingerprint localization the key factors driving the rapid adoption of the LoRaWAN technology in large-scale Internet of Things
LoRaWAN applications. This situation has created high demand to incorporate location estimation capabilities into large-
LPWAN

scale IoT applications to meaningfully interpret physical measurements collected from IoT devices. As a result,
research aimed at investigating node localization in LoRaWAN networks is on the rise. The poor localization
performance of classical range-based localization approaches in LoRaWAN networks is due to the long-range
nature of LoRaWAN and the rich scattering nature of outdoor environments, which affects signal transmission.
Because of the ability of fingerprint-based localization methods to effectively learn useful positional information
even from noisy RSSI data, this work proposes a fingerprinting-based branched convolutional neural network
(CNN) localization method enhanced with squeeze and excitation (SE) blocks to localize a node in LoRaWAN
using RSSI data. Results from the experiments conducted to evaluate the performance of the proposed method
using a publicly available LoRaWAN dataset prove its effectiveness and robustness in localizing a node with
satisfactory results even with a 30% reduction in both the principal component analysis (PCA) variances on the
training data and the size of the original sample. A localization accuracy of 284.57 m mean error on the test
area was achieved using the Powed data representation, which represents an 8.39% increase in localization
accuracy compared to the currently best-performing fingerprint method in the literature, evaluated using the
same LoRaWAN dataset.

Internet of Things
Wireless communications

1. Introduction

In wireless networks, localization is the estimation of nodes’ current
location by using the knowledge of the absolute positions of a few nodes
(anchor nodes) and inter-node measurements such as distance, angle
of arrival or time of arrival. LoRaWAN is a communication technology
which operates in unlicensed frequency bands, offering long-range and
low-cost communication capabilities.

The adoption of LoRaWAN technology in IoT applications is rapidly
increasing thanks to its high scalability, sustainability, and low-power
nature. Its ability to offer long-range wireless communication at rela-
tively lower costs is attributed to using inexpensive batteries that can
last for many years. These characteristics of LoRaWAN technology have
boosted its suitability in several long-range industrial applications rang-
ing from luggage tracking to precision farming to smart city projects,
to name a few [1].

Incorporation of location estimation capabilities into large-scale IoT
applications is crucial if people are to make use of physical measure-
ments gathered from the IoT devices deployed for different purposes.

* Corresponding author.

Establishing an IoT device’s location with minimal localization error
is crucial to its context awareness capability. It is an essential aspect
of IoT applications that refers to its ability to alter behaviour based
on the measurement it has conducted [2]. In Industrial Internet of
Things (IIoT) settings, where many smart objects are interconnected to
facilitate information management, the ability to precisely locate the
positions of industrial personnel helps increase operational efficiency
by giving out location-based progress of work processes [3]. It can also
boost safety-related measures by enabling proper and orderly access to
the machinery and management of evacuation of workers in case of
emergencies [3].

In outdoor scenarios, wireless technologies based on Global Posi-
tioning System (GPS) have been preferred technologies in many local-
ization applications [4]. However, the poor performance of GPS-based
localization solutions in indoor scenarios, rich-scattering environments
and urban canyons, where signal transmission is mainly in a non-line
of sight (NLOS) setting, resulting in multipath propagation, capped by
high cost and high-power consumption of GPS receivers, has limited
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adoption of GPS-based localization approaches in many large-scale IoT
applications. Short-range wireless technologies such as WiFi, Zigbee,
and Bluetooth, on the other hand, because of their short-range nature,
have been predominately adopted in indoor localization scenarios [5-
10]. Adopting these short-range wireless communication technologies
in large-scale outdoor localization solutions would necessitate the dense
deployment of access points, which is typically not economically feasi-
ble. These limitations of GPS-based and short-range based localization
solutions in the context of large-scale IoT applications have paved the
way for the adoption of LPWAN technologies, and in particular, the
LoRaWAN communication technology, thanks to its ability to offer
scalable, reliable, robust, and low power localization solutions [1].

In LoRaWAN networks, a node’s current location can be estimated
using either fingerprint or range-based localization methods [11,12].
Range-based localization approaches typically require establishing a
path loss model that best describes signal propagation characteristics of
a particular environment and adopts it to calculate the specific distance
to a particular gateway using its transmitted received signal strength
indicator (RSSI) value. The final step in range-based localization ap-
proaches is then to estimate the current location of a node by making
use of any available geometrical (e.g., trilateration, multilateration,
or min-max) or statistical (e.g., Bayesian and Maximum Likelihood)
techniques [11]. However, in LoRaWAN networks, the performance
of this localization approach can sometimes be challenging due to
frequency hopping phenomena which can cause degradation in the
localization accuracy [11]. On the other hand, fingerprinting-based lo-
calization approaches rely on a database of features, commonly known
as fingerprints, at some pre-determined physical locations to compute
the current location of a target node through feature matching.

As reported in [13], fingerprint-based localization approaches in
large urban areas in unlicensed LPWAN, particularly LoRaWAN, can
achieve lower position estimation errors than range-based counterparts.
Since the implementation of fingerprint-based localization approaches
is through the use of machine learning algorithms, by making use of
the algorithmic advancement made in machine learning and increased
computing power of computers, these localization methods can lead to
satisfactory localization accuracy. The high localization performance of
fingerprint-based methods over the range-based methods is due to their
ability to effectively learn useful positional information even from noisy
RSS data collected in NLOS environmental settings [4].

Most fingerprint-based localization solutions in LPWAN networks,
particularly LoRaWAN, use classical ‘shallow’ machine learning tech-
niques such as the k-nearest neighbours algorithm (and its variants
such as weighted kNN), support vector machines, random forests, and
decision trees, to design the localization models. Though these models
can sometimes give satisfactory localization results, their complexity
increases and their performance degrades with the increase in the
size of fingerprint datasets, which are necessary if a large outdoor
environment is to be covered for localization purposes [11]. Deep
learning, particularly CNNs, has proven very efficient in dealing with
large datasets without compromising performance.

The success brought by the CNNs models in solving different types
of computer vision tasks has led to strong interest from research com-
munities in adopting them in designing fingerprint-based localization
methods to achieve satisfactory localization performance [14-24]. In
the context of classification and regression tasks, these models have
proved in several tasks to be efficient in extracting useful information
from structured data [25].

Driven by the goal of improving localization performance in Lo-
RaWAN networks, this work proposes a fingerprint-based localization
approach using CNNs with squeeze and excitation blocks. The motiva-
tion to conduct this research is to develop a robust localization model
that will yield better localization results compared to the currently
available fingerprinting localization approaches. The following are the
contributions of this work: (i) A localization method using CNNs en-
hanced with squeeze and excitation blocks to infer the location of a
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node through fingerprinting in LoRaWAN networks is proposed. (ii)
The optimal data preprocessing approach to enhance the localization
performance is presented. (iii) The proposed method achieves an 8.39%
increase in localization accuracy when compared to the current finger-
printing methods in the literature [11,26-28], when evaluated on the
same LoRaWAN dataset [2].

The remaining sections of the paper are as follows: Section 2
presents Related works. Preliminaries are presented in Section 3, where
the LoRaWAN technology and fingerprint localization method are
briefly introduced. The proposed method is presented in Section 4.
Section 5 is dedicated to experimental settings and procedures. Exper-
imental results and discussion are reported in Section 6. Conclusive
remarks of the paper are presented in Section 7.

2. Related works

A location of a target node in LoRaWAN networks can be esti-
mated by adopting either fingerprinting-based approaches or range-
based approaches through analysis of RSSI, AoA, ToA, TDoA or, in some
cases, a combination of more than one parameter [11]. Geometrical
techniques such as triangulation and multilateration or statistical tech-
niques such as maximum likelihood and Bayesian filtering are usually
adopted in the implementation of range-based localization approaches
as in [29-35]. However, the need to install dedicated hardware, like
expensive antenna arrays [31,32], and the fact that some of the range-
based localization techniques require accurate clock synchronization
among anchor nodes [29,30,34] have made them less attractive to
researchers and practitioners. Another reason for the reduced adoption
of range-based localization approaches in LoRaWAN networks is the
RSSI fluctuations caused by shadowing and fading phenomena in mul-
tipath propagation, which can, in most cases, lead to poor localization
performance [36]. Additionally, the fact that successful implementation
of some range-based localization techniques, such as those that adopt
trilateration techniques as reported in [35], requires a message from
a LoRaWAN node to be received by at least three gateways for its
location to be determined is another major drawback. In [35], the
authors reported a promising localization accuracy of 256 m mean error
and 117 m median localization error on the same publicly available
LoRaWAN dataset as utilized in this paper. However, these results are
obtained for nodes whose messages are received by over three Lo-
RaWAN gateways since the approach is based on triangulation. Hence,
nodes which receive only one or two messages cannot be located.

Fingerprinting based localization approaches as reported in [1,3,
4,11,26-28,37-40], are increasingly being applied in locating target
nodes in LoRaWAN networks thanks to their robustness in challenging
environments with multipath and non-line-of-sight phenomena [41]
which enables them to learn useful positional information even from
noisy data [4], enabling them to be relatively more accurate than
range-based approaches.

In the literature, research in fingerprint-based localization in Lo-
RaWAN generally may take three different directions. Several works
focus on collecting location fingerprints at some designated locations
in larger measurement campaigns and building fingerprint databases
for node localization purposes, as in [2]. Others focus on finding better
data preprocessing techniques that can improve the generalization
capabilities of machine learning-based fingerprint localization methods,
as in [26,27], and [37]. However, most research in fingerprint-based lo-
calization in LoRaWAN networks focuses on improving the localization
performance of adopted machine learning algorithms, as in [1,4,11],
and [38].

Researchers in [2] participated in an extensive outdoor measure-
ment campaign to collect fingerprint datasets in LPWAN networks,
which are available in three subsets, namely, Sigfox rural, Sigfox urban,
and LoRaWAN urban datasets. These datasets are in version 1.1, col-
lected in 2018, and version 1.2, collected in 2019. With these LPWAN
datasets, researchers can quickly evaluate outdoor fingerprinting-based
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localization methods without the need to take part in measurement
campaigns to build fingerprint databases.

Currently, the predominate machine learning algorithms used to de-
velop fingerprint-based localization approaches in LoRaWAN networks
are the classical machine learning models such as support vector regres-
sion, random forests, k-nearest neighbours (kNN), decision trees, and
linear regression algorithms, with only a few of them using deep learn-
ing techniques. Authors in [2] implemented a basic kNN fingerprinting
localization algorithm and evaluated it using version 1.1 of their Lo-
RaWAN dataset, reporting a localization performance of 398.40 m
mean error on the test area. Researchers in [39] using the same dataset,
implemented and compared the localization performances of different
machine learning-based fingerprinting methods, namely a multilayer
perceptron neural network, kNN, and Extra Trees methods, reporting
mean and median localization errors of 357 m and 206 m, respec-
tively, for the multilayer perceptron method, which performed better
compared to the other methods. A work in [4] proposed interpolation-
aided fingerprinting-based localization approaches using three different
machine learning architectures, achieving localization performance of
191.53 m mean error with the long short-term memory (LSTM) method
using version 1.1 of the dataset reported in [2] which is slightly better
compared to the performance of the other two methods that used CNN
and artificial neural network (ANN).

Authors in [11,27,28], and [26] adopted version 1.2 of the publicly
available LoRaWAN dataset reported in [2] to evaluate their finger-
print localization methods. A work in [11] implemented several RSSI
fingerprint-based localization methods using support vector regression,
kNN, random forest and several linear regression algorithms, reporting
the best result of 340 m mean location error using random forest
ensemble technique. In [27], the authors first created a differential
fingerprint from the publicly available dataset and fused differences
in RSSI with the gateway information along with the differences in
arrival times (TDoA). Then two regressors, namely multilayer percep-
tron and random forest, were trained one after the other using the
new dataset, achieving the best result of 310 m mean error using the
multilayer perceptron regressor with chronological data split. Research
in [28] proposed a two-layer hierarchical clustering-based fingerprint
technique using RSSI measurements for urban vehicle fingerprinting
localization. They used the K-means algorithm for clustering and a
weighted kernel regressor to estimate the vehicle’s current location,
reporting a localization accuracy of 346 m mean error. A proposal
to use an ensemble learning-based outdoor positioning algorithm to
improve positioning accuracy using hybrid data was presented in [26].
The authors designed an ensemble algorithm incorporating kNN and
Random Forest Regressor (RFR), achieving a mean localization error of
332.63 m.

Research work in [40] evaluated the performance of LoRaWAN-
based RSSI fingerprinting localization approaches in a sandstorm en-
vironment using two different machine learning algorithms, namely,
Gaussian process regression and support vector regression (SVR). Among
the two methods, the SVR method achieved better overall localization
performance. Authors in [42] deployed a weighted kNN algorithm
to perform device localization using RSSI fingerprint. They evaluated
their method using data from M-Bus and LoRaWAN networks. The
authors also used knowledge transfer acquired from different radio
maps to simplify the learning process of their proposed method. In [38],
the authors propose an effective method of dealing with the issue of
fluctuations experienced in RSSI values due to fading phenomena that
may jeopardize the localization performance of fingerprinting-based lo-
calization methods in LoRaWAN networks. They propose using extreme
RSSI (ERSS), which improves boundary autocorrelation between data
points and enhances localization performance.

Authors in [1] proposed two methods to estimate node location in
LoRaWAN networks based on ANN. One method used a single-layer
perceptron neural network architecture, and another used a multi-layer
perceptron neural network architecture. In [3], the authors applied a
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k-NN fingerprinting localization method to estimate the location of a
node using two separate outdoor datasets collected using LoRaWAN
devices. An analysis was also conducted to determine if the number of
deployed gateways and the spacing between them impact the overall
localization performance.

Authors in [43] proposed fingerprinting and range-based approaches
to localize a target node in LoRaWAN networks using multiple features
of RSSI, SF, and signal-to-noise ratio (SNR). On their experimental
dataset collected in an area covering 30,000 square metres, their
proposed range-based localization approach incorporating distance
mapping using RF, kNN, SVM, gradient boosting (GB) and MLP with
trilateration technique achieved an average localization performance
of 43.97 m mean error while their fingerprinting localization approach
using RF achieved a localization performance of 89.22 m mean er-
ror. With the publicly available LoRaWAN dataset similar to the one
used in this paper, their range-based approach achieved a localization
performance of 735.37 m mean error.

Unlike most currently available fingerprinting localization approaches
in LoRaWAN that predominately adopt classical machine learning
techniques, this work proposes a convolutional network-based regressor
enhanced with SE blocks to localize a node in LoRaWAN networks.
Two reasons drive the choice of CNN regressor. The first reason is
the complexity of training classical machine learning-based localization
models experienced when relatively large datasets are used, which can
sometimes lead to degradation in localization performance. The second
reason is CNN models’ efficiency in learning useful position information
in structured data as reported in [25]. The joint use of CNN and SE
blocks is to improve channel-wise interdependencies.

3. Preliminaries
3.1. LoRaWAN technology

LoRaWAN technology is a communication protocol which uses LoRa
as its physical layer. It is a LoRa-Alliance standardized technology
which adopts Chirp Spread Spectrum (CSS) as its modulation technique.
In North America, it operates at 915 MHz, in Europe at 868 MHz,
and in Asia at 433 MHz bands, which are industrial, scientific and
medical (ISM) bands [44]. LoRa modulation is characterized by its
scalable bandwidth and frequency, relatively high immunity to fading
or multipath, resistance to doppler shift, and robustness to interference.

In LoRa-based systems, the variable nature of its data rate, which
can take values varying from 300 bps to 50 kbps, is strongly influenced
by the channel bandwidth and the spreading factor (SF) [44]. SF, which
can take values ranging from SF 7 to SF 12, is the value that indicates
how fast the frequency changes in a LoRa channel. In urban areas,
LoRa-based systems can offer a communication range of up to 5 km;
in rural areas, the communication range can reach 15 km [45]. Key to
this long-range communication is the high receiver sensitivity of LoRa
systems which results in a large communication link budget [46].

The network architecture deployed in a LoRaWAN network is a star-
of-stars topology consisting of gateways and end nodes/end devices (see
Fig. 1). Gateways relay messages between end devices and a central
server.

3.2. Fingerprinting localization method

The fingerprint (matching) localization technique [48-50] infers
the current position of a node in a wireless network through feature
matching by relying on a radio map built using signal features at pre-
determined locations. The implementation of this localization method
takes place in two steps. The first step involves the construction of
a database (radio map) that relates scene features (such as received
signal strength indicator (RSSI) and time of arrival (ToA)) from videos,
virtual images, or electromagnetic signals with positions of nodes in
pre-determined geographic locations.
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Fig. 1. LoRaWAN network architecture.
Source: Redrawn from [47].

In the second step of a fingerprint localization technique, the target
node’s real-time position is estimated by associating the measured data
from the target node at a particular location with the nearest fingerprint
location information stored in the created radio map. The localization
accuracy of this localization method depends heavily on the calibration
of the fingerprint database and the quality of the location-dependent
measurements collected in creating the database.

The implementation of fingerprint-based localization methods is
generally done by using machine learning techniques. Machine learning
techniques adopted in the fingerprint localization method are the k-NN
algorithm (and its variants, such as weighted k-NN), linear regression
algorithms, decision tree algorithms, random forests, support vector
regression, neural networks, and deep learning.

4. Proposed method

Inspired by an Inception module [51], we propose a three-branch
two-dimensional convolutional neural network (CNN) regressor with
six convolutional layers to perform fingerprinting localization. The use-
ful aspect of this branched CNN architecture is that it allows processing
information at various scales to extract features simultaneously at the
next stage after aggregation. This model structure, refer to Fig. 2, can
also prevent a blow-up in computational complexity even if the number
of processing units at each stage increases significantly [51]. The first
branch has a single convolutional layer, while the second and third
branches have two and three convolutional layers, respectively. Each
convolutional layer computes eight filters over its input with a 1 x 1
kernel size. The leaky ReLU activation function is used to activate the
convolutional layers with a 0.3 constant gradient, allowing for a small,
non-zero gradient when the unit is saturated and inactive. In order
to improve channel-wise interdependencies, after each convolutional
layer, a SE block with eight filters is connected. A SE block [52] is a
channel-wise attention mechanism widely used to improve the overall
performance of CNNs. It has been used to greater success in computer
vision tasks. The three branches of the convolutional layers are then
concatenated and connected to six fully connected layers. The first
five fully-connected (FC) layers are activated by the ReLU activation
function. The first FC layer has 512 units, the second has 256 units,
the third has 128 units, the fourth has 64 units, and the fifth has
32 units. The last FC layer with two units is activated by a linear
activation function for regression purposes. The decision to use five

fully-connected layers before the last two-unit fully-connected layer by
halving the number of units in each subsequent layer prevents informa-
tion loss and thus improves the localization performance. In order to
prevent overfitting and subsequently improve the model performance,
several hyperparameters necessary in the model’s training were tuned.
The optimal hyperparameters adopted in this work are a 0.15 drop-
out ratio and a 0.01 L1 kernel regularizer. At the compiling stage
of the model, the Adam optimizer with a dynamic learning rate is
used. The learning rate is first set at 0.001 and keeps decreasing by a
factor of 0.1 if the validation loss does not improve for ten consecutive
epochs. The adopted loss function is the mean absolute error (MAE).
The performance of the method reported in this work is evaluated using
location estimation error and R? score. Fig. 2 is the illustration of the
proposed localization approach.

5. Experimental settings and procedures

This work uses version 1.2 of the urban LoRaWAN dataset presented
in [2]. The measurement campaign to collect this dataset was con-
ducted in the city of Antwerp, Belgium, in 2019. This publicly available
dataset contains 130,430 messages from 72 LoRaWAN gateways. The
relevant metadata for fingerprinting localization from this dataset are
the RSSI values in dBm to all gateways, spreading factor and nanosec-
ond precise timestamps, with GPS coordinates in latitude and longitude
used as ground truth references. During the creation of this database,
if a gateway did not receive a message, its RSSI value was set to —200
dBm, indicating an out-of-reach RSSI value. For more details about the
measurement campaign and the creation of this dataset, readers can
refer to the referenced work in [2].

The proposed fingerprint localization approach uses Keras, Scikit-
Learn Python libraries to implement its machine learning models with
TensorFlow used as a backend. The experiments were run on Google
Colaboratory Jupyter Notebooks using 32 GB RAM Core i7 LG com-
puter. Since in the LoRaWAN dataset, the locations of nodes were given
in latitude and longitude coordinates, this work uses the Haversine
formula [53] to compute distances in the experiments conducted. The
Haversine formula is given by [53] as:

hav (§> = hav(A, — A|) + cos(A|)cos(Ay)hav(B, — B)), (€8]

where ‘hav’ represents the Haversine function, defined as:

hav(C) = sin* (%) = w, 2)
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Fig. 2. Proposed fingerprinting localization method.

Y and X represent the distance from one coordinate to the other
and the sphere’s radius, respectively, A, and A, represent latitudes of
coordinates 1 and 2, respectively, and B, and B, represent longitudes
of coordinates 1 and 2, respectively, all in radians.

In order to use the provided LoRaWAN dataset as input data, it has
to be preprocessed first and reshaped to tensors for it to successfully be
fed into the proposed CNN-based fingerprint localization model. Each
LoRaWAN gateway represents a single feature of the dataset, while
every received message is considered a single sample. In this work, the
RSSI values received by the base stations (gateways) are used along
with LoRa spreading factor to train the models. Though in the reported
LoRaWAN dataset, it is indicated that there were a total of 72 gateways;
among them, there were a total of 28 gateways that did not receive
at least a single transmitted message. Therefore, these gateways were
removed and remained with 44 gateways. Together with a spreading
factor column, the dataset becomes a 130,430 samples dataset with 45
features. The latitude and longitude columns were used as labels.

After identification of the number of samples and features of the
dataset to be used, the RSSI values are then transformed into four
commonly adopted RSSI data representations, namely, Positive, Nor-
malized, Exponential and Powed RSSI data representations [54-56].
The transformation is necessary to improve the RSSI-based finger-
printing method’s localization performance. According to [39] before
transforming RSSI data into these four data representation forms, the
minimum received RSSI value (‘min’) is identified first, and then all
out-of-reach RSSI values are set to ‘c = min — 1. The positive data
representation is then given by the following equation:

Positive;(x) = RSSI; —, 3)

where, i is the base station (gateway) identifier and RSSI; is the
received signal strength at gateway i. After this transformation, the
out-of-reach RSSI values are set to zero, and actual received RSSI
values have positive values from 1 and above. The Normalized data
representation is given as:

Positive;(x)

G

Normalized;(x) =
-7

The Exponential and Powed data representation were first proposed
in [56]. The Exponential data representation is defined as:

Positive; (x)
«

—_— %)

Exponential;(x) = ¢
e a

The Powed data representation, on the other hand, is defined as:

Positive;(x) )ﬂ ©)

-7

Powed;(x) = <

The « and f in Egs. (5) and (6) are parameters to be defined according
to how the RSSI values are distributed. The recommended values of
a and p according to [56] are 24 and e, respectively, where e is the
numerical constant. But because these values were adjusted using WiFi
signals in indoor experimental settings, authors in [39] re-adjusted
these values for LoRaWAN outdoor RSSI values and came up with
optimal values of « = 60 and = 1.1, which were adopted in this work.

Before feeding this newly transformed data into machine learn-
ing models, the training data is rescaled using StandardScaler of the
Sklearn package in Python. The labels are rescaled using MinMaxScaler.
The StandardScaler rescales the data to zero mean and unit standard
deviation, creating a zero mean and unit variance distribution. The
MinMaxScaler rescales the data to the range of [0, 1]. The rescaling
of the training data eases the learning process of the machine learning
models and subsequently enhances the performance of the machine
learning models.

6. Experimental results and discussion

The following experiments were conducted to validate the proposed
method’s performance and robustness. In each experiment, a proposed
fingerprint localization model is trained for 150 epochs in mini-batches
of 512 samples. Before splitting the dataset into training data, val-
idation data and test data, a random shuffling of the data values
using numpy.random.shuffle method with a fixed seed of 42 is first
conducted. Shuffling the training data helps prevent any bias during
the training, prevents the model from learning the training order, and
consequently improves the overall performance of the models.

6.1. Performance of the proposed method on different data representation
schemes

To evaluate the performance of the proposed method on different
data representations, the dataset is transformed first into the Powed
data representation scheme and then split into training data, validation
data and test data according to a 0.7/0.15/0.15 ratio. After the dataset
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Table 1
Performance of the proposed method on different data representation schemes (optimal
results are in bold).

Data split ratio Powed Exponential Positive Normalized
0.7/0.15/0.15 292.04 294.46 298.13 294.43
0.8/0.1/0.1 290.2 290.86 291.78 293.72
0.85/0.1/0.05 284.57 286.12 289 284.53

split, the localization model is trained using the training and validation
sets, followed by the prediction step using the test set. This experiment
is repeated for 0.8/0.1/0.1 and 0.85/0.1/0.05 data split ratios. The
reason for trying different data split ratios was to determine if the use
of different data split ratios has any impact on the overall localization
performance of the proposed method.

Furthermore, the dataset is also transformed into Exponential, Pos-
itive and Normalized data representations and all the experiments
conducted using the Powed data representation scheme are repeated.
Table 1 presents the performance of the proposed method for each
data representation scheme. From the results, it is clear that the Powed
data representation scheme slightly outperforms all the other three
data representation schemes over the three data split ratios, achiev-
ing mean localization errors (m) of 292.04, 290.2, and 284.57 on
the 0.7/0.15/0.15, 0.8/0.1/0.1 and 0.85/0.1/0.05 data split ratios,
respectively.

These results indicate that the more the test set size is reduced,
the better the localization results become. This outcome is because the
model is subjected to more training data. However, the ratio of the
testing data relative to training and validation data used to validate
the performance of machine learning models should not be too small
to prevent bias towards the obtained results. The experimental results
also reveal slightly better localization performance of the proposed
method trained using the dataset transformed according to a Powed
data representation scheme compared to the other data representation
schemes. Overall, the Positive data representation scheme achieved
poor localization results compared to the rest of the data representation
schemes. The better localization results obtained using Powed as well
as Exponential data representation schemes over the three different
data split ratios could be attributed to the non-linearity nature of
these two data representation schemes. Adopting one of these two data
representation schemes to similar machine learning-based localization
tasks using RSSI data will likely yield better results than the other data
representation schemes.

Since the Powed data representation scheme yielded the best results
for the proposed localization model, it is the adopted data repre-
sentation scheme for the remaining experiments. Additionally, unless
otherwise stated, a 0.7/0.15/0.15 ratio is adopted to split the dataset
into training data, validation data, and test data for the remaining
experiments. This data split ratio is the most adopted data split ratio
in the literature, so it is adopted in the rest of the experiments to have
a fair comparison of the localization performance with other works.

6.2. Performance of the proposed method for each retained percentages of
variances after applying PCA

In this section, PCA is performed on the training dataset, and a
series of experiments on different percentages of retained variances
are performed to validate the performance of the proposed localization
model. The experiments on 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100 percentages of retained PCA variances of the training dataset are
performed one by one to yield localization performance in terms of
mean errors as shown in Table 2 and Fig. 3. Table 2 presents the
performance of the proposed method on each percentage of retained
PCA variances as well as the trainable parameters as a result of the
reduction in variances. Fig. 3 shows full and zoomed versions of fig-
ures presenting cumulative distribution function (CDF) curves of test
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Table 2
Performance of the proposed method on different percentages
of retained variances.

Retained Mean Number of
variances localization trainable
(%) error (m) parameters
10 549.05 200,230
20 378.42 224,806
30 338.36 261,670
40 317.01 310,822
50 311.27 372,262
60 309.66 421,414
70 304.58 482,854
80 303.34 544,294
90 299.29 630,310
100 292.04 728,614

errors for each of the retained percentages of the variances. A training
dataset with only 10% of the retained PCA variance produced the
worst localization result of 549.05 m mean localization error; this is
expected given the large amount of information removed from the
training dataset. As the percentage of the retained PCA variances was
increased, the localization results also improved, reaching the highest
localization accuracy of 292.04 m mean localization error with 100%
retained PCA variance. The same trend is also seen regarding the
number of trainable parameters. The use of reduced percentages of
PCA variance of the training data reduces the computation burden
of the method because of the reduced number of training parameters
but at the expense of reduced localization accuracies. These results
show that the proposed localization model can achieve satisfactory
localization performance even with a 70% retained PCA variance of the
data used for training the proposed method, consequently reducing the
number of training parameters and, hence, the proposed method’s train-
ing duration. Performing PCA is necessary because, in the LoRaWAN
fingerprint databases, the number of messages received by different
gateways distributed in an area for localization purposes differs for all
gateways. Depending on the transmitter’s location, some gateways will
receive many messages, some will receive fewer, and some will fail
even to receive a single message. This situation necessitates performing
a PCA analysis on the dataset before using it to train the model to
remove any components that have very little influence on the data to
increase the model’s training speed without compromising the local-
ization performance. The proposed method’s satisfactory localization
performance, even with a 30% reduction in retained variances of the
training data, proves the effectiveness and suitability of the proposed
method to localize a node in LoRaWAN networks.

6.3. Performance of the proposed method for different sample sizes of
training data

This section presents experiments conducted to determine the im-
pact different sample sizes of training data have on the performance
of the proposed method. The procedure followed is that the portion
of the training sample size in different percentages (10%, 25%, 30%,
50%, 70%, 85%, 100%) is extracted first and then using a ratio of
0.7/0.15/0.15, the training, validation and test sets are extracted to
train and validate the method. This training procedure is carried out
to determine to what extent reduced sizes of the training samples
impact the overall localization performance of the proposed method.
Experiments for each of the sample sizes extracted are then performed,
yielding localization results as presented in Figs. 4 and 5, whereby in
Fig. 4, the histograms of the localization errors in terms of mean errors
(m) on the test area for each sample size are presented and in Fig. 5
full and zoomed CDF curves of test errors for each sample size are
presented. As indicated in Figs. 4 and 5, it is clear that these results
are in line with the general trend of machine learning algorithms of
exhibiting an improved performance when the size of the training set



A.S. Lutakamale et al.

CDFs of the Localization Error for Different Retained PCA Variances

1.00

0.75 A

100% of PCA variance retained
90% of PCA variance retained

Ad Hoc Networks 159 (2024) 103486

CDFs of the Localization Error for Different Retained PCA Variances

1.00 A

h /
— —— 100% of PCA variance retained

X 0.50 =" —— 90% of PCA variance retained
= ~—— 80% of PCA variance retained
70% of PCA variance retained
60% of PCA_variance retained
50% of PCA variance retained
40% of PCA variance retained
30% of PCA variance retained
20% of PCA variance retained
10% of PCA variance retained

L

0.25 A

0.00 -

260 280 300 320 340 360 380 400
Localization error [m]

(b) Zoomed CDF curves

Fig. 3. CDFs of localization errors (m) for different retained PCA variances.

302.17 300.69

291.54 292.04

10% of the 25% of the 30% of the 50% of the 70% of the 85% of the 100% of

< 0.50
w 80% of PCA variance retained
70% of PCA variance retained
—— 60% of PCA_variance retained
0.25 —— 50% of PCA variance retained
—— 40% of PCA variance retained
—— 30% of PCA variance retained
—— 20% of PCA variance retained
0.00 —— 10% of PCA variance retained
6 10‘00 20‘00 3060 40‘00 50‘00 60‘00
Localization error [m]
(a) Full CDF curves
340
331.16
330
319.27
’é‘ 320
—
0 307.52
£ 310
ud
o
[N}
< 300
©
[
= 290
280
270
Sample Sample Sample
Size Size Size

Sample
Size

Sample
Size

Sample
Size

the Sample
Size

Percentage of the Sample Size Used

Fig. 4. Performance of the proposed method on different percentages of training dataset.

is increased. The use of only 10% of the original dataset to train and
test the proposed method produced the worst localization accuracy of
331.16 m mean localization error; however, the performance improved
with the increase in sample sizes of the training data to 292.04 m
mean localization error when the original size of the dataset was used.
From these results, it is clear that the proposed method is able to yield
acceptable levels of localization performance when trained using at
least 70% of the size of the original dataset. The fact that the proposed
method can give satisfactory localization performance even with a 30%
reduction in the original sample size of the data used to train and test it
illustrates its potential to be applied in applications with even smaller
datasets.

6.4. Performance of the proposed approach for different sample sizes of
training data with fixed test set

In this section, unlike in Section 6.3, 15% of the original sample
size of the training dataset is extracted and fixed to be used to test the
proposed localization method’s performance. For the remaining 85%
of the sample size, a portion of the data in different percentages of 20,
40, 60, 80 and 100 are extracted to train and validate the proposed
localization method. For each extracted sample, a ratio of 0.8/0.2 is
adopted to split it into training and validation data. The localization

model is then trained on each sample size using the training and valida-
tion data. This data splitting and localization model training strategy is
adopted to determine how well the proposed method generalizes when
trained on reduced sizes of training and validation sets but tested on
the same test set. As a general trend, the generalization ability of a
machine learning algorithm is expected to improve with an increase in
the training dataset; however, a well-designed algorithm can generalize
well even with reduced sizes of the training samples. Fig. 6 shows
the histograms of localization performance in mean errors (m) for
each percentage of the remaining sample size. Fig. 7 shows the full
and zoomed CDF curves of test error lists for each percentage of the
remaining sample size. It is clear from the results that the reduced sizes
of the training and validation sets impact the generalization ability of
the proposed method. However, the fact that the proposed method was
able to obtain an accuracy of 299.79 m mean localization error when
trained using a training sample size of as little as 60% of the remaining
dataset and tested on the unchanged test set is a clear indication of
the potential of the proposed method in localizing a node in LoRaWAN
networks with acceptable levels of localization accuracies.

6.5. Performance of the proposed approach for different data shuffling seeds

In this section, different training data shuffling seeds were used to
shuffle the training data. Then, experiments were conducted to evaluate
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how they impact the localization performance of the proposed method.
In machine learning, shuffling is performed to change the order of how
the individual samples appear in the dataset. For a machine learning
algorithm to be robust, its performance is not expected to change
significantly when it is subjected to different ordering of the sample

elements in the same dataset. In order to reproduce a particular order
of data elements, the same seed value is used as a base number when
generating random numbers. The training data was shuffled with 1,
2, 3, 5, 10, 14, 16, 22, 42, 64, 128, and 512 random seeds before
splitting into training, validation, and test sets. Because the dataset was
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Table 3

Localization performance of the proposed
method in terms of mean errors (m) on
different training data shuffling seeds.

Data shuffling Localization
seeds performance
1 293.79
2 293.35
3 294.35
5 294.38
10 294.37
14 293.33
16 293.81
22 293.79
42 292.04
64 292.41
128 294.36
512 294.04

randomly shuffled using different seeds, the contents of the training,
validation, and test sets for each of the settings will differ, impacting
the final localization performance, which is evidenced in Table 3, which
shows how the proposed method performs in terms of mean errors
(m) for each shuffling seed. It is noted that shuffling seeds 42 and 64
give slightly better results compared to the rest of the shuffling seeds.
However, despite the different shuffling seeds, the proposed method
still produced consistent results, proving its robustness.

6.6. Performance comparison of the proposed approach with related works

In this section, the localization performance of the proposed method
is compared with related works proposed in [11,26,27], and [28],
which were evaluated using the same dataset as the proposed method.
The metrics used to evaluate these related works vary from one work
to another. Mean localization error, R?> score, and validation time
were adopted in [11] while mean and median errors were adopted
in [27,28]. In [26], only mean localization error was reported.

In order to have a fair comparison of the localization performance
of the proposed method with the related works, apart from using
the same dataset, the experimental environment, experimental set-
tings, and procedures ought to be matched with each of the works
compared. However, fulfilling this condition is not always possible.
For instance, none of these related works have made source codes
related to their experiments publicly available; as a result, it was
difficult to reproduce their results. The difficulty in reproducing the
results of these works is also due to the fact that key experimental
settings and procedures from these works are either missing or not
clear enough. For instance, the Haversine formula is predominantly
adopted in computing the equivalent distance between two points on
the earth’s surface in fingerprinting-based localization approaches in
Sigfox and LoRaWAN networks that use GPS coordinates as ground
truth references [1,37,39,54]; however, this information is missing in
some of the works whose localization performances are compared with
the proposed method. Because of these reasons and the fact that the
end goal of all these related methods is to improve the localization
performance using the same dataset, the best this work could do is just
to provide performance comparison with regard to localization accu-
racies reported. Table 4 summarizes the experimental settings of the
related works whose performances were compared with the proposed
method. To allow other researchers to compare the performance of
their methods with the proposed method in future, the source codes
for this work will be made available in a GitHub repository accessed
via https://github.com/lutakamale/CNN-SE.

The configuration of the proposed method, whose results were used
for comparison, adopted a Powed data representation scheme, using
training data shuffled with 42 seeds with training data, validation
data, and test data extracted using a ratio of a 0.7/0.15/0.15 (the
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dominantly used ratio by the related works). In order to obtain a more
general localization performance of the proposed method, the localiza-
tion results were evaluated by repeatedly randomizing the splitting of
data into three subsets. In each instance the subsets represented the
training, validation and test sets. In the first randomized experiment, a
localization performance of 148.06 m and 292.04 m median and mean
localization errors, respectively, were observed on the test set. In the
second randomized experiment a localization performance of 148.86 m
and 288.82 m median and mean localization errors, respectively, was
observed. Finally, in the third randomized experiment, a localization
performance of 145.72 m and 293.62 m median and mean localization
errors, respectively, was observed. In each experiment, the obtained R*
score was 0.93. Therefore, on average, the proposed method achieved
a localization accuracy of 147.55 m and 291.51 m median and mean
localization errors, respectively, on the test set and an R? score of 0.93.
The training procedure for each randomized experiment consisted of
728,614 trainable parameters, lasting approximately 306.34 s through
150 iterations. Table 5 shows the comparison of localization perfor-
mance of the proposed method with related works in the literature.
Fig. 8 illustrates the mapping of the test set’s true latitude and longitude
coordinate pairs and the estimated latitude and longitude coordinate
pairs for the first randomized experiment.

The proposed method outperformed the best performing RF method
among ten implemented methods in [11] in terms of mean error and R*
score; outperformed the KNN-RF method reported in [26], MLP method
reported in [27] and a hybrid method that used K-means and Weighted
Kernel Regression proposed in [28], in terms of mean localization error.
The variation in median errors, i.e., 57 m, 158.48, and 147.55 m
obtained in [27,28], and the proposed method, respectively, is due
to variation in the number of outliers present in the error lists of
the three methods. However, since the mean and median errors of
the proposed method are closer to each other than the mean and
median errors from the other two methods, the distribution of errors
computed by the proposed method is less skewed compared to the
distribution of errors of the other methods. Research works proposed
in [26,27] require more computation time and memory space due to
the use of training data containing fused RSSI and TDoA values, unlike
the proposed method, which used only RSSI values and the SF. The
methods proposed in [11,28] are likely to require less computation
time and memory space compared to the proposed method due to
a PCA that was performed on the training data in [11] to remain
with 95% of the variance, and the use of only 27 gateways in [28]
as a result of the removal of gateways with less than 1% visibility.
The satisfactory localization performance of the proposed method is
attributable to the use of convolutional neural networks, which are
very powerful in learning local dependencies from the structured data
as well as the squeeze and excitation blocks to improve channel-wise
interdependencies; as a result, the regressor was able to infer the
location of a node with relatively high accuracy.

The superior localization results, particularly in terms of mean
localization error of the proposed method when compared to the re-
lated works and the robustness and effectiveness demonstrated by it in
sections 6.2 through 6.5 of this paper, where different strategies were
taken to evaluate its performance, gives a clear proof of its potential to
be deployed in real work scenarios. The 728,614 total trainable param-
eters and execution time of 306.34 s further indicate that the proposed
method is relatively inexpensive regarding computation complexity.

7. Conclusion

This work proposed a deep learning-based fingerprinting localiza-
tion method in LoRaWAN networks using CNNs with SE blocks. The sys-
tem design, including CNN-SE fingerprinting-based system architecture,
is presented along with four data representation schemes commonly
used to improve localization performance. A series of experiments to
validate the performance and robustness of the proposed method are
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Table 4
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Experimental settings of the related works whose performances were compared with the proposed method.

Research Python libraries Experimental Localization Ground truth Distance formula
work used environment parameters references
[11] Only Scikit-Learn is Virtual machine RSSI Latitudes and Haversine®
mentioned with 32 GB Longitudes
RAM memory
and 10 CPU
cores
[26] Only Scikit-Learn is Not mentioned RSSI and Latitudes and Not mentioned
mentioned TDoA Longitudes
[27] Only Scikit-Learn is Not mentioned Differential Latitudes and Not mentioned
mentioned RSSI and Longitudes
TDoA
[28] Not mentioned Not mentioned RSSI Latitudes and Not mentioned
Longitudes
Proposed Keras+Scikit- Google Colab RSSI and SF Latitudes and Haversine
method Learn+TensorFlow using a 32 GB Longitudes
RAM Core i7
LG computer
2 The Haversine distance is not explicitly mentioned in [11], however, it is described in the first author’s PhD thesis [57].
Table 5
Localization performance of the proposed method compared to related works trained on the same dataset.
Research work Scheme Mean localization Median localization R? Score
error (m) error (m)
[11] Random Forest 340 Not reported 0.91
[26] KkNN-RFR 332.63 Not reported Not reported
[27] MLP 310 57 Not reported
[28] K-means + Weighted 346 158.48 Not Reported
Kernel Regression
Proposed method CNN + SE 291.51 147.55 0.93
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Fig. 8. Mapping of the true latitude and longitude coordinate pairs of the test set and the

conducted. Experimental results proved the proposed method’s effec-
tiveness and robustness in localizing a node in LoRaWAN networks. The
proposed method achieved satisfactory localization results even with a
significant reduction in PCA variances and the size of the dataset used
to train the proposed method. The overall best localization performance
of 284.57 m in terms of mean errors on the test area was achieved using
a Powed data representation scheme with training data, validation data
and test data extracted using a 0.85/0.1/0.05 ratio. Future work will
jointly leverage RSSI and nanosecond precise timestamps fingerprints
to localize a node in LoRaWAN networks.
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