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Abstract
Aims: Remote-	sensing	approaches	could	be	beneficial	for	monitoring	and	compiling	
essential	biodiversity	data	because	they	are	cost-	effective	and	allow	for	coverage	of	
large areas over a short period. This study investigated the relationship between mul-
tispectral	 remote-	sensing	data	 from	Landsat	8	and	Sentinel-	2	and	species	 richness	
and diversity in mountainous and protected grasslands.
Locations: Golden	Gate	Highlands	National	Park,	Free	State,	South	Africa.
Methods: In- situ data of plant species composition and cover from 142 plots with 
16 relevés each were distributed across the study site and used to calculate species 
richness and Shannon–Wiener species diversity index (species diversity). We used a 
machine-	learning	random	forest	algorithm	to	optimize	the	prediction	of	species	rich-
ness and diversity. The algorithm was used to identify the optimal spectral bands and 
vegetation indices for estimating species richness and diversity. Subsequently, the 
selected bands and vegetation indices were used to estimate species richness through 
random forest regression.
Results: This	research	found	weak	relationships	between	remote-	sensing	vegetation	
indices and the diversity metrics, but significant relationships were found between 
some	spectral	bands	and	diversity	metrics.	Moreover,	using	machine-	learning	random	
forest, the multispectral data sets exhibited strong predictive powers. In this investi-
gation,	near-	infrared	(NIR)	seemed	to	be	the	most	selected	band	for	both	sensors	to	
explain species diversity in mountainous grasslands.
Main conclusions: This finding further ascertains the efficiency of optimizing high 
spatial resolution spectral information to estimate plant species richness and diversity. 
This	research	shows	that	NIR,	Soil-	Adjusted	Vegetation	Index	(SAVI)	and	Enhanced	
Vegetation	Index	(EVI)	are	the	most	adequate	for	predicting	species	richness	and	di-
versity	 in	mountainous	grasslands	with	relatively	good	accuracies.	Plant	phenology	
and the choice of sensor affect the relationship between spectral information and 
species diversity variables.
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1  |  INTRODUC TION

Biodiversity	is	essential	for	maintaining	ecosystem	functioning	and	
services	and	supporting	human	well-	being	(Oliver	et	al.,	2015).	Plant	
diversity in grassland ecosystems contributes to multiple ecosys-
tem services at local and landscape scales, making conservation ef-
forts	within	and	among	ecological	communities	imperative	(Hautier	
et al., 2018).	 However,	 monitoring	 biodiversity	 at	 various	 scales	
is	 a	 common	 conservation	 challenge	 in	 protected	 areas	 (Ferreira	
et al., 2011). Different approaches to monitoring vegetation, that 
is, in- situ	species	and	remote-	sensing	approaches,	are	complex	with	
pros and cons; hence, a hybrid or coupling of procedures is neces-
sary (Lausch et al., 2018).	Remote-	sensing	approaches	could	be	ben-
eficial for monitoring essential biodiversity variables because they 
are	cost-	effective	and	allow	for	coverage	of	large	areas	over	a	short	
period in contrast to in- situ methods (Lausch et al., 2018). Consistent 
vegetation monitoring forms the basis of wildlife conservation, 
which is essential as environmental changes are initially observed in 
the	vegetation	(Brown	et	al.,	2013).

Evidence of biodiversity loss and ecosystem functioning is com-
pelling, but the issue remains contentious (Cardinale et al., 2012).	As	
a significant conservation issue, biodiversity loss has received var-
ied scientific reporting and views worldwide (Cardinale et al., 2018). 
For	example,	a	recent	synthesis	of	time-	series	data	suggests	species	
richness is decreasing in some locations and increasing in others 
but not changing on average (Cardinale et al., 2018).	A	wide	range	
of ecological viewpoints regarding biodiversity loss exist, but few 
empirical	 tests	 exist	 (Naeem	 et	 al.,	 1995). Cardinale et al. (2018) 
argue that the lack of scientific evidence unequivocally supporting 
biodiversity	 loss	 is	 mainly	 attributable	 to	 (1)	 low-	quality	 of	 data,	
and (2) lack of spatial representation and failure to account for the 
main drivers, especially biological invasion (Cardinale et al., 2018). 
Quantifying and predicting biodiversity's spatial and temporal dis-
tribution has become increasingly important, especially given global 
change (Oliver et al., 2015).

Plant	 species	 richness	 and	 diversity	 are	 key	 ecosystem	 indica-
tors because these diversity metrics can explicitly observe ecosys-
tem health (Symstad & Jonas, 2011). They also describe ecosystem 
health, stability, and resilience and can be used for monitoring plant 
species (Lausch et al., 2018),	especially	in	conservation	areas.	Hence,	
the	Group	of	Earth	Biodiversity	Observation	Network	identifies	tax-
onomic	 diversity	 as	 one	 of	 the	 vital	 biodiversity	 variables	 (Pereira	
et al., 2013).	Remote-	sensing	techniques	could	measure	vegetation	
characteristics that are suitable for discriminating species turnover 
and floristic composition (Lausch et al., 2018). Determining species 
using remote sensing depends on multiple biological and physical fac-
tors, appropriate data, and modeling algorithms (Richter et al., 2016). 

However,	remote-	sensing	approaches	could	be	beneficial	 for	moni-
toring	essential	biodiversity	variables	because	they	are	cost-	effective	
and allow for coverage of large areas with a quick turnaround time. 
Studies demonstrated an increase in the strength of the relationship 
between species alpha diversity and remotely sensed spectral het-
erogeneity when accounting for species’ relative abundances. This 
improved the capability of local species diversity estimations, espe-
cially while using spectral information in addition to the commonly 
used spectral indices (Rocchini et al., 2007).

Multispectral sensors have limitations on properties such as spe-
cies identification; for example, they are inferior to hyperspectral 
data	 in	 spectral	 information	 (Lyon	&	Huete,	2016).	As	 such,	 alpha	
diversity is commonly predicted and mapped based on the spectral 
variation	hypothesis	 (SVH),	which	starts	with	a	heterogeneity	map	
from a satellite sensor image correlated with field sampling data 
(Rocchini et al., 2007, 2016). In grassland studies, the spectral proper-
ties of grass species may be difficult to detect because of the similar-
ity in the taxa, mainly due to broadband remote sensing's inability to 
identify	slight	differences	in	green	vegetation	(Lyon	&	Huete,	2016). 
Furthermore,	 weak	 and	 moderate	 relationships	 between	 species	
richness,	diversity,	and	spectral	vegetation	indices	(VIs)	are	derived	
from remote sensors (Rocchini et al., 2007). This seemingly univer-
sal	observation	may	be	because	VIs	are	poorly	related	to	structural	
properties.	For	example,	 a	 study	by	 Ingram	et	 al.	 (2005) excluded 
the	Normalized	Difference	Vegetation	 Index	 (NDVI)	 from	the	pre-
dictive analysis because of its weak correlation with species' struc-
tural	features.	However,	the	relationship	between	remotely	sensed	
data	and	species	diversity	is	scale-	dependent	(Rocchini	et	al.,	2007). 
Sentinel-	2	Multispectral	Instrument	(MSI)	has	shown	enormous	po-
tential for vegetation mapping because it is one of the multispectral 
sensors that can acquire images with 13 spectral bands (Torresani 
et al., 2019),	 including	 red-	edge	bands	 (Xulu	et	 al.,	2021). In addi-
tion, its free and open data policy may benefit nature conservation 
in	developing	and	under-	resourced	countries	(Torresani	et	al.,	2019).

Remote sensing has had some success as a tool for predicting 
and detecting species richness and diversity; this success is mainly 
due	to	the	application	of	NDVI.	However,	predicting	species	richness	
and diversity remains a significant application for remote sensing in 
managing biodiversity and ecosystems. Landsat carries two sensors, 
that is, the Operational Land Imager (OLI) and the Thermal Infrared 
Sensor	(TIRS).	Landsat	OLI	measures	the	visible,	near-	infrared	(NIR)	
and	short-	wave	infrared	spectral	information	related	to	plant	prop-
erties,	 especially	 chlorophyll	 (Nagendra	 et	 al.,	 2010). In contrast, 
the	Sentinel-	2	MSI	sensor	may	improve	the	accuracy	of	explaining	
plant	biodiversity	variables	by	 including	red-	edge	bands	that	allow	
for chlorophyll characterization and computation of novel indices for 
biodiversity	mapping	(Puletti	et	al.,	2018).

K E Y W O R D S
biodiversity, conservation, grasslands, machine learning, remote sensing, species distribution 
modeling
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Despite	 the	 availability	 of	 remote-	sensing	 data	 and	 applica-
tions, their use has yet to be widely incorporated by managers 
and researchers working in biodiversity monitoring (Reddy, 2021). 
Many studies have been conducted to map species diversity using 
remote-	sensing	 data	 sets	 and	 study	 designs,	 resulting	 in	 varying	
outcomes	 and	 accuracies	 (Schmidtlein	 and	Fassnacht,	2017). Data 
sets of coarser spatial resolution perform better when estimating 
species diversity than data sets of finer spatial resolution (Gessner 
et al., 2015).	Nevertheless,	increased	spectral	resolution	is	deemed	
beneficial	 for	 improving	 the	 estimation	 of	 species	 diversity	 (Xulu	
et al., 2021);	 however,	 hyperspectral	 remote-	sensing	 data	 are	
cumbersome,	 and	most	 of	 their	 bands	 are	 redundant	 (Vihervaara	
et al., 2017).	 Methodological	 advances	 such	 as	 machine-	learning	
algorithms may present significant opportunities for utilizing multi-
spectral data sets with high accuracies. The accuracy difference be-
tween hyperspectral and multispectral bands could be much higher 
for grass species (Gessner et al., 2015).

The loss of biodiversity is now more prevalent for many bi-
omes across the globe due to overexploitation and land use trans-
formations; thus, monitoring and modeling biodiversity on a local 
scale via remote sensing can aid in abating this crisis (Cardinale 
et al., 2018). Monitoring patterns of species diversity over time 

is	essential	for	decision-	making	in	conservation,	especially	in	the	
context of unprecedented global change. Remote sensing is one 
of	the	most	cost-	effective	approaches	to	identifying	biodiversity	
hotspots and predicting changes in good time. This study aims to 
analyze different satellite sensors to predict species richness and 
diversity.

2  |  METHODS

2.1  |  Study area

The	study	was	conducted	in	the	Golden	Gate	Highlands	National	
Park	 (GGHNP)	 in	 the	 northeastern	 Free	 State	 province,	 South	
Africa	 (Figure 1).	 The	 park	 comprises	 32,758.35 ha	 and	 lies	 in	
the range 28°27′–28°37′ S and 28°33′–28°42′ E. The park is in 
mountainous grasslands at the foothills of the Drakensberg and 
forms part of the mesic highveld grassland with marked varia-
tion in geology, topography, and rainfall. The soil types in the 
park include shallow rocky soils (Glenrosa and Mispah), deep 
drainage	 lines	 (Oakleaf),	well-	developed	sand	soils	 (Hutton	and	
Clovelly), and clayey structured soils (Milkwood and Tambakulu) 

F I G U R E  1 Map	of	the	study	area.
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(SANParks,	 2020). The park is characterized by summer rain-
fall, temperate summers, and cold winters. The rainfall season 
stretches	 from	September	 to	April,	with	a	mean	annual	 rainfall	
ranging	from	800 mm	to	2000 mm.	The	park	lies	between	1892 m	
and	 2829 m	 a.s.l.	 and	 comprises	 the	 following	 subalpine	mesic	
grasslands	 units:	 Eastern	 Free	 State	 sandy	 grasslands	 (Gm	 4),	
Basotho	 montane	 shrubland	 (Gm	 5),	 Lesotho	 highveld	 basalt	
grassland	 (Gd	 8),	 and	 Northern	 Drakensberg	 highveld	 (Gd5)	
(Mucina & Rutherford, 2006). The park is home to multiple ante-
lope species and is used for grazing by domesticated cattle and 
wild animals.

2.2  |  Field data collection

The	land	type	map	of	GGHNP	was	used	as	the	first	stratification.	
Sampling sites of homogenous grass patches were then located in 
a	randomly	stratified	manner.	Thirty-	sic	vegetation	sampling	plots	
(30 m × 30 m)	ranging	between	three	and	five	per	site	(six	sites	with	
five plots and two sites with three plots; Figure 2a) were placed 
randomly	within	the	homogenous	grass	patches.	Sixteen	(1 m × 1 m)	
quadrats were set systematically within each sampling plot at every 
10 m	 along	 four	 parallel	 rows	 (Figure 2). The above data set was 
merged with another data set from a different sampling program 
comprising 12 sites with 106 plots. The latter was collected using a 
100-	step	points	method	from	four	transects	located	within	a	plot	
of	30 m × 30 m,	and	all	 species	were	 recorded	at	every	step	point	
(Figure 2b). The standard data set comprised 142 plots with 13 
sites, seven of which were the same and six different. The distribu-
tion	of	sampling	plots	across	the	land	types	in	GGHNP	is	given	in	
Figure 3.

The taxonomic composition and cover of the vegetation were 
used to derive species richness and diversity per plot. The values 

from each plot were averaged to attain mean species richness per 
site (Table 1). Species richness and diversity were computed using 
the statistical packages vegan and plyr in R studio, which employed 
the diversity and an applied function for species diversity and rich-
ness, respectively (Oksanen, 2017). Species diversity was calculated 
using the Shannon–Wiener Index (Equation 1), where pi is the pro-
portion of the species within the sampling units. Species richness 
was determined by adding all species from each quadrat and averag-
ing by the number of quadrats in each plot to obtain the average plot 
value (Oksanen, 2017):

2.3  |  Remote- sensing data collection

Satellite	 images	 from	Sentinel-	2	and	Landsat	8	data	 sets	were	ex-
tracted and processed from the JavaScript code editor Google Earth 
Engine	 (GEE).	 All	 images	 in	 this	 research	 were	 nearly	 cloud-	free.	
The mean spectral land surface reflectance value of images was fil-
tered using monthly dates from January to March and the average 
of January to March to assess phenology's effects on species diver-
sity's	 predictiveness.	 From	 the	 extracted	 spectral	 images	 of	 both	
sensors,	 vegetation	 indices	 [NDVI,	 Soil-	Adjusted	Vegetation	 Index	
(SAVI),	 Simple	 Ratio	 (ST),	 and	 Enhanced	Vegetation	 Index	 (EVI)	 in	
Equations 1–4] were calculated within GEE.

(1)H’ = −
∑

pi
∗ ln pi .

(2)NDVI = (NIR − R)∕ (NIR + R),

(3)SAVI =
[

(NIR−R)∕(NIR+R+L)
]∗

(1 + L),

(4)SR = NIR∕Red,

(5)EVI = G∗
[

(NIR − R)∕
(

NIR + RED
∗
R − C2

∗
B + L

)]

.

F I G U R E  2 (a)	Quadrat	and	(b)	step-	point-	based	vegetation	plot	design.
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F I G U R E  3 Correlation	coefficients	between	species	richness	(SR)	and	diversity	(SW)	and	vegetation	were	calculated	from	all	possible	
combinations	of	Sentinel-	2	images	in	January	(top	left),	February	(top	right),	March	(bottom	left),	and	January–March	(bottom	right)	(crossed-	
out correlation mean the relationship is not significant)

TA B L E  1 Descriptive	statistics	of	average	species	richness	and	diversity	(H′) in the study area per plot.

Number of 
samples Minimum Maximum Median Mean Variance

Standard 
deviation

Coefficient of 
variance

Species richness 142.00 3.00 17.00 9.00 8.97 12.11 3.48 0.39

Species diversity (H′) 142.00 0.64 2.45 1.63 1.63 0.16 0.40 0.25

 1654109x, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/avsc.12778 by South A

frican M
edical R

esearch, W
iley O

nline L
ibrary on [13/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 11  |    
Applied Vegetation Science

MASHIANE et al.

All	the	spectral	images	and	indices	were	imported	into	RStudio,	
and	the	GPS	coordinates	of	each	sampling	plot	were	used	to	obtain	
values. This was achieved using the extract function from the raster 
library in RStudio.

3  |  DATA ANALYSIS

A	correlogram	depicting	Pearson	correlations	between	species	rich-
ness	and	diversity,	S2	MSI	bands,	and	VIs,	including	the	averages	of	
January–March, was computed to show relationships between ex-
planatory	and	response	variables.	Random	forest	(RF)	is	a	machine-	
learning algorithm that improves the regression and classification 
trees by combining a large set of decision trees. In this study, this 
technique was used to select the optimal variables that can be used 
to estimate species richness and diversity. Subsequently, a set of se-
lected	optimal	variables	was	input	into	the	RF	model	to	predict	spe-
cies richness and diversity.

Three	 parameters	were	 used	 in	 the	 RF	model;	 the	 number	 of	
regression trees (ntree) is based on the value of the observations 
called bootstrap sample (500 in this study). The mtry, which refers 
to the number of predictors to be tested at each node, was set at 
the square root of the input variables used in the model, which is 4.

To	validate	the	performance	of	the	RF	regression	model,	the	data	
set was split into 70% for training and 30% for testing, respectively. 
The	training	data	set	was	used	to	develop	an	RF	model	that	could	
estimate the response variables, while the test data set was used 
to	validate	the	final	model.	A	one-	to-	one	relationship	between	the	
observed and predicted species diversity and the richness of test 
and	training	data	was	fitted	for	cross-	validation.	The	coefficient	of	
determination (R2)	and	root-	mean-	squared	error	(RMSE)	were	used	
to assess the predictive performance.

4  |  RESULTS

There was a positive, albeit weak, relationship between species rich-
ness,	Sentinel-	2	bands	(6–12)	and	indices	NDVI	and	SAVI,	while	for	
January species diversity was related to bands 11 and 12 only. In 
February,	none	of	the	Sentinel-	2	bands	and	indices	had	a	relation-
ship with species diversity; however, this relationship was positive 
for species richness. There was no relationship between species 
richness,	 diversity,	 Sentinel-	2	 bands,	 and	 vegetation	 indices	 for	
March and the average of January to March (Figure 3).

The variables of interest, that is species richness and diversity, 
exhibited a positive, albeit moderate (ranging R = 0.2–0.3)	relation-
ship with all Landsat 8 OLI bands for January. This relationship fur-
ther	weakened	in	February	(R = 0.1–0.2)	and	March,	where	the	red	
band	 (Band	4)	was	 the	only	 band	 relating	 to	 the	 species	 diversity	
for the former month. The relationship between species diversity, 
richness, Landsat 8 bands, and indices strengthened again when 
monthly	band	averages	were	used.	Notably,	the	Landsat	8-	derived	
indices were separate from the variables of interest (Figure 4).

4.1  |  Predicting species richness and diversity

The selected variables needed for optimal species richness and di-
versity prediction had notably low R2 and high RMSE. The significant 
Landsat 8 variables (Table 2) optimally explaining species richness 
were	 EVI	 for	 January	 (RMSE = 3.621,	 R2 = 0.044)	 and	 February	
(RMSE = 3.493,	 R2 = 0.080),	 and	 NIR	 for	 March	 (RMSE = 4.126,	
R2 = 0.008)	 and	 January–March	 (RMSE = 3.935,	 R2 = 0.006).	
Moreover,	the	selected	Sentinel-	2	variables	explaining	species	rich-
ness	were	SR	for	January	(RMSE = 3.928,	R2 = 0.009),	NIR	for	February	
(RMSE = 3.872,	 R2 = 0.001),	 red-	edge	 for	 March	 (RMSE = 3.711,	
R2 = 0.001),	and	NIR	for	January–March	(RMSE = 3.657,	R2 = 0.014).	
The	 Landsat	 8	 variables	 explaining	 species	 diversity	were	 EVI	 for	
January	and	February,	SAVI	for	March,	and	NIR	for	January–March.	
The	Sentinel-	2	variables	 for	explaining	species	diversity	were	 red-	
edge	1	for	January,	February,	and	January–March,	and	SR	for	March.	
In	January,	the	most	significant	band	selected	was	EVI.

The	RF	model	of	Landsat-	8	variables	explained	87%	of	the	spe-
cies	diversity	in	January,	89%	in	February,	90%	in	March	and	79%	in	
January–March.	For	species	 richness,	 it	explained	90%	 in	January,	
88%	in	February	and	87%	in	March	and	81%	in	January–March.	On	
the other hand, the species richness and diversity variation explained 
by	Sentinel-	2	variables	ranged	between	82%	and	91%	(Table 3). The 
test exhibited similar predictive performance to the training data set 
across the two satellites for most months.

5  |  DISCUSSION

The relationship between species counts and spectral information 
varies	 based	 on	 the	 spatio-	temporal	 dynamics	 of	 the	 area	 under	
study	 (Schmidtlein	 &	 Fassnacht,	 2017). Our study corroborates 
that this relationship weakens with the end of summer. Spectral 
bands are seldom tested individually for their relationship with spe-
cies counts; mainly spectral variability based on band derivatives 
is used (Rocchini et al., 2007;	Schmidtlein	&	Fassnacht,	2017). Our 
study shows that the spatial resolution of a sensor does not lead 
to a positive relationship between spectral information and species 
count variables, nor does it affect the predictive performance; in-
stead, Landsat 8 bands are related better to species richness and 
diversity	than	Sentinel-	2's.	This	may	be	due	to	saturation	issues	as-
sociated with the relatively low radiometric resolution of sensors. 
Notably,	the	vegetation	indices	derived	from	Landsat	8	bands	had	no	
relationship with species richness and diversity contrary to those of 
Sentinel-	2.	Normally,	the	dispersion	measures	of	conventional	veg-
etation indices are used as spectral information to relate to species 
count variables (Rocchini et al., 2010).

The response of species richness and diversity to ecological driv-
ers often reflects diverse outcomes, depending on external factors in 
an ecosystem and the measuring methods (Symstad & Jonas, 2011). 
However,	for	these	diversity	metrics	to	be	ideal,	grassland	indicator	
estimation methods ought to be improved and augmented (Symstad 
& Jonas, 2011).	 Machine-	learning	 algorithms	 allow	 for	 exploring	

 1654109x, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/avsc.12778 by South A

frican M
edical R

esearch, W
iley O

nline L
ibrary on [13/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7 of 11
Applied Vegetation Science

MASHIANE et al.

automated environmental monitoring using these diversity metrics 
and	remote-	sensing	data.	Our	research	used	the	RF	approach	using	
species richness and diversity plot measurements corresponding 
to	remote-	sensing	bands	of	Landsat	8,	Sentinel-	2,	and	VIs	derived	
therefrom.	The	RF	features	selection	of	selected	EVI,	NIR,	and	SAVI	
as	optimal	remote-	sensing	variables,	explaining	species	richness	and	
diversity. This is not surprising given the moderate predictive per-
formance	of	RF	machine-	learning	algorithms	on	data	sets	with	plant	
species	richness	(Adjorlolo	&	Botha,	2015).	Furthermore,	the	spec-
tral band selected in our study was consistent with the findings of 

other	research	where	NIR	explained	41%	of	the	variation	in	species	
richness (Rocchini et al., 2007).

The	 RF	 model	 in	 this	 study	 managed	 to	 predict	 species	 rich-
ness and diversity with relatively high accuracies. This shows that 
using different model techniques can improve the predictive power 
of	 satellite	 remote-	sensing	 (SRS)	 variables	 (Rocchini	 et	 al.,	 2007). 
Machine-	learning	SRS	models	 are	essential	 for	 species	monitoring	
and aiding conversation in protected areas because of their cost 
effectiveness and present novel approaches to identifying biodi-
versity hotspots and predicting changes (Rocchini et al., 2016). This 

F I G U R E  4 Correlation	coefficients	between	species	richness	(SR)	and	diversity	(SW)	and	vegetation	were	calculated	from	all	possible	
combinations	of	Landsat	8	images	in	January	(a),	February	(b),	March	(c),	and	January–March	(d)	(a	crossed-	out	correlation	mean	the	
relationship is not significant).
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research	 shows	 that	machine-	learning	algorithms	can	 improve	our	
predictions of plant alpha diversity compared to the commonly used 
SVH,	providing	an	alternative	for	species	mapping	(Appendices	S1–
S4).	Moreover,	 the	study	shows	 that	 the	machine-	learning	models	
for biodiversity mapping may not require satellite sensors with high 
spatial and spectral resolution.

A	wide	 range	of	 relationships	 between	 satellite-	based	VIs	 and	
vegetation characteristics have been established, with low to 

moderate	predictive	performance	(Haboudane,	2004). Our research 
corroborates	studies	that	propose	using	VIs	in	addition	to	spectral	
bands to improve the predictiveness of species diversity metrics 
(Rocchini et al., 2016).	This	is	mainly	because	when	used	alone,	VIs	
yield poor predictive performance and correlations despite the en-
hanced spatial resolution of a satellite sensor; hence, our study elu-
cidates the use of machine learning and relevant spectral bands, and 
VIs	 improve	the	estimation	of	species	richness	and	diversity.	Even	

TA B L E  2 Optimal	Landsat	8	and	Sentinel-	2	variables	explaining	species	richness	and	diversity.

Species richness Species diversity

Selected bands RMSE R2 MAE Month RMSE R2 MAE

Landsat 8

January Jan

NIR 3.386 0.04008 3.063 NIR 0.4485 0.005913 0.3631

ST 3.631 0.04269 3.015 SR 0.4367 0.001187 0.3547

EVI 3.621 0.04362 3.019* EVI 0.4281 0.008509 0.349*

February Feb

NIR 3.462 0.001955 3.228 NIR 0.4735 0.07716 0.3788

SAVI 3.511 0.053272 2.949 SR 0.4666 0.06849 0.3768

EVI 3.493 0.080437 2.859* 0.4632 0.06849 0.3753*

Mar Mar

NIR 4.126 0.008531 3.456* NIR 0.465 0.03137 0.3872

SAVI 4.109 0.027952 3.445 SR 0.4521 0.0136 0.3735*

EVI 4.087 0.028821 3.424 SAVI 0.458 0.03173 0.3782

Jan- Mar Jan- Mar

NIR 3.935 0.006241 3.287* NIR 0.4244 0.0192 0.3519*

SR 4.002 0.006201 3.445 SR 0.4343 0.01147 0.3563

NDVI 4.01 0.011824 3.457 SAVI 0.4274 0.01579 0.3543

Sentinel- 2

January January

Red-	edge	1 3.928 0.009438 3.34 Red-	edge	1 0.4366 0.000819 0.3656*

Red-	edge	4 3.936 0.026493 3.369 Red-	edge	4 0.447 0.00168 0.3679

SR 3.873 0.010987 3.319* SR 0.4404 0.0000055 0.3645

February February

Red-	edge	1 3.872 0.001696 3.251* Red-	edge	1 0.4411 0.0000271 0.3464*

Red-	edge	4 3.968 0.02039 3.374 Red-	edge	4 0.4504 0.0010034 0.3587

SR 3.983 0.0293 3.43 SR 0.4428 0.0002043 0.3515

March March

Red-	edge	1 3.733 0.001088 3.137 Red-	edge	1 0.4303 0.007374 0.3534

Red-	edge	4 3.711 0.001685 3.074* Red-	edge	4 0.4286 0.006517 0.3502

SWIR 3.77 0.000864 3.135 SR 0.4231 0.011342 0.3438*

Jan- Mar Jan- Mar

Red-	edge	1 3.657 0.014519 3.076* Red-	edge	1 0.4325 0.0028 0.3593*

Red-	edge	4 3.677 0.003288 3.079 Red-	edge	4 0.4392 0.00000309 0.3671

SR 3.76 0.001014 3.146 SR 0.4366 0.000513 0.3631

Abbreviations:	EVI,	Enhanced	Vegetation	Index;	MAE,	Mean	Absolute	Error;	NDVI,	Normalized	Difference	Vegetation	Index;	NIR,	near-	infrared;	
RMSE,	root-	mean-	squared	error;	SAVI,	Soil-	Adjusted	Vegetation	Index;	ST,	Simple	Ratio;	SWIR,	Shortwave	Infrared.
*, p < 0.05.
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so,	 the	 differences	 in	 predictive	 accuracy	 between	 the	 Sentinel-	2	
and Landsat 8 sensors was not substantial; this is not surprising since 
the two sensors are not too distinct spectrally and spatially. This 
finding aligns with studies that postulate multispectral sensors with 
relatively moderate to high spatial resolution could be good candi-
dates for biodiversity mapping (Rocchini et al., 2016).

The	 relationship	 between	 spectral	 bands,	 VIs,	 and	 species	 di-
versity indices somewhat depends on the species diversity metric 
(Oldeland et al., 2010; Rocchini et al., 2016).	 However,	 our	 study	
demonstrated little to no effect in using different diversity metrics; 
opposing studies suggesting that using the Shannon–Wiener index im-
proves	the	predictive	performance	by	three-	fold	compared	to	species	
richness (Oldeland et al., 2010; Rocchini et al., 2016).	Nonetheless,	the	
prediction accuracy was highest in both January (richness) and March 
(diversity)	for	Landsat	and	March	(richness	and	diversity	for	Sentinel-	2).	
The estimation accuracies increased with deteriorating phenology for 
Sentinel-	2,	rendering	it	beneficial	for	mapping	grass	species	diversity	
in senescence. This is because of its strategically positioned spectral 
bands,	especially	the	inclusion	of	red-	edge	bands,	making	it	helpful	in	
studying vegetation characteristics (Thenkabail et al., 2004).

• This research explored satellite remote sensing as a primary tool 
for	identifying	biodiversity	hotspots	in	South	Africa's	mountainous	
grasslands	and	predicting	changes.	The	RF	remote-	sensing	model	
predicted species richness and diversity with relatively high accu-
racy. These models present an opportunity for plant species mon-
itoring using remote sensing, which has always been associated 
with many challenges concerning species diversity monitoring 
(Rocchini et al., 2016).	Remote	sensing	is	a	cost-	effective	and	less	
labor-	intensive	 tool	 for	biodiversity	management,	and	 its	devel-
opment is imperative for monitoring the inevitable consequences 

of	 global	 environmental	 change.	 Previously,	 species	 richness	 at	
local	 scales	 was	 studied	 using	 SVHs.	 However,	 the	 RF	 models	
in this study provide better estimates of plant species richness 
than	the	proposed	SVH	(Rocchini	et	al.,	2007, 2018). In contrast 
to	SVH,	the	RF	predictive	models	do	not	require	remote-	sensing	
sensors	with	high	spatial	and	spectral	resolution.	SVH	starts	with	
a heterogeneity map correlated with field sampling data for esti-
mation models.

6  |  CONCLUSION AND 
RECOMMENDATIONS

Determining	 species	 to	 establish	 relationships	 between	 remote-	
sensing data and species may be difficult because of subtle differ-
ences in spectral signature measures among species. The type of 
sensor	and	modeling	algorithms	has	always	limited	remote-	sensing	
approaches; however, it is demonstrated in this research that ad-
vancement in technology could enable species quantification and 
monitoring	efficiently.	NIR,	the	selected	spectral	band	for	predicting	
species richness and diversity, remains the ideal band for vegeta-
tion monitoring using remote sensing. This selection also augments 
NIR	as	the	spectral	band	that	allows	species	discrimination	related	
to species traits, especially chlorophyll, which can also be measured 
using	 NIR-	based	 vegetation	 indices	 and,	 despite	 having	 relatively	
low spatial and spectral resolution, Landsat 8 bands yielded impres-
sive	modeling	accuracy	virtually	comparable	to	those	of	Sentinel-	2.	
For	future	research,	we	suggest	testing	remote-	sensing	images	with	
very high spectral and spatial resolution and special uncrewed aerial 
vehicles for species diversity mapping and incorporating terrain in 

TA B L E  3 Random	forest	regression	for	predicted	species	richness,	diversity,	and	remote-	sensing	data	sets.

Species richness Species diversity

Landsat 8 Sentinel- 2-  MSI Landsat 8 Sentinel- 2- MSI

Training Test Training Test Training Test Training Test

Number	of	plots 99 43 99 43 99 43 99 43

January

R2 0.90 0.88 0.90 0.80 0.87 0.86 0.85 0.86

RMSE 1.477 1.558 1.614 1.78 0.182 0.197 0.201 0.201

February

R2 0.88 0.87 0.84 0.92 0.89 0.90 0.89 0.89

RMSE 1.626 1.722 0.178 1.646 0.189 0.178 0.152 0.161

March

R2 0.87 0.88 0.91 0.91 0.90 0.88 0.91 0.91

RMSE 1.704 1.871 1.544 1.539 0.186 0.209 0.167 0.175

January–March

R2 0.81 0.88 0.88 0.85 0.79 0.85 0.82 0.8343

RMSE 1.712 2.008 1.788 1.746 0.203 0.219 0.195 0.188

Abbreviations:	MSI;	RMSE,	root-	mean-	squared	error.
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the	geospatial	models,	especially	in	areas	such	as	GGHNP	with	com-
plex mountainous terrain.
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