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Abstract
Aims: Remote-sensing approaches could be beneficial for monitoring and compiling 
essential biodiversity data because they are cost-effective and allow for coverage of 
large areas over a short period. This study investigated the relationship between mul-
tispectral remote-sensing data from Landsat 8 and Sentinel-2 and species richness 
and diversity in mountainous and protected grasslands.
Locations: Golden Gate Highlands National Park, Free State, South Africa.
Methods: In-situ data of plant species composition and cover from 142 plots with 
16 relevés each were distributed across the study site and used to calculate species 
richness and Shannon–Wiener species diversity index (species diversity). We used a 
machine-learning random forest algorithm to optimize the prediction of species rich-
ness and diversity. The algorithm was used to identify the optimal spectral bands and 
vegetation indices for estimating species richness and diversity. Subsequently, the 
selected bands and vegetation indices were used to estimate species richness through 
random forest regression.
Results: This research found weak relationships between remote-sensing vegetation 
indices and the diversity metrics, but significant relationships were found between 
some spectral bands and diversity metrics. Moreover, using machine-learning random 
forest, the multispectral data sets exhibited strong predictive powers. In this investi-
gation, near-infrared (NIR) seemed to be the most selected band for both sensors to 
explain species diversity in mountainous grasslands.
Main conclusions: This finding further ascertains the efficiency of optimizing high 
spatial resolution spectral information to estimate plant species richness and diversity. 
This research shows that NIR, Soil-Adjusted Vegetation Index (SAVI) and Enhanced 
Vegetation Index (EVI) are the most adequate for predicting species richness and di-
versity in mountainous grasslands with relatively good accuracies. Plant phenology 
and the choice of sensor affect the relationship between spectral information and 
species diversity variables.
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1  |  INTRODUC TION

Biodiversity is essential for maintaining ecosystem functioning and 
services and supporting human well-being (Oliver et al., 2015). Plant 
diversity in grassland ecosystems contributes to multiple ecosys-
tem services at local and landscape scales, making conservation ef-
forts within and among ecological communities imperative (Hautier 
et  al.,  2018). However, monitoring biodiversity at various scales 
is a common conservation challenge in protected areas (Ferreira 
et  al.,  2011). Different approaches to monitoring vegetation, that 
is, in-situ species and remote-sensing approaches, are complex with 
pros and cons; hence, a hybrid or coupling of procedures is neces-
sary (Lausch et al., 2018). Remote-sensing approaches could be ben-
eficial for monitoring essential biodiversity variables because they 
are cost-effective and allow for coverage of large areas over a short 
period in contrast to in-situ methods (Lausch et al., 2018). Consistent 
vegetation monitoring forms the basis of wildlife conservation, 
which is essential as environmental changes are initially observed in 
the vegetation (Brown et al., 2013).

Evidence of biodiversity loss and ecosystem functioning is com-
pelling, but the issue remains contentious (Cardinale et al., 2012). As 
a significant conservation issue, biodiversity loss has received var-
ied scientific reporting and views worldwide (Cardinale et al., 2018). 
For example, a recent synthesis of time-series data suggests species 
richness is decreasing in some locations and increasing in others 
but not changing on average (Cardinale et al., 2018). A wide range 
of ecological viewpoints regarding biodiversity loss exist, but few 
empirical tests exist (Naeem et  al.,  1995). Cardinale et  al.  (2018) 
argue that the lack of scientific evidence unequivocally supporting 
biodiversity loss is mainly attributable to (1) low-quality of data, 
and (2) lack of spatial representation and failure to account for the 
main drivers, especially biological invasion (Cardinale et al., 2018). 
Quantifying and predicting biodiversity's spatial and temporal dis-
tribution has become increasingly important, especially given global 
change (Oliver et al., 2015).

Plant species richness and diversity are key ecosystem indica-
tors because these diversity metrics can explicitly observe ecosys-
tem health (Symstad & Jonas, 2011). They also describe ecosystem 
health, stability, and resilience and can be used for monitoring plant 
species (Lausch et al., 2018), especially in conservation areas. Hence, 
the Group of Earth Biodiversity Observation Network identifies tax-
onomic diversity as one of the vital biodiversity variables (Pereira 
et al., 2013). Remote-sensing techniques could measure vegetation 
characteristics that are suitable for discriminating species turnover 
and floristic composition (Lausch et al., 2018). Determining species 
using remote sensing depends on multiple biological and physical fac-
tors, appropriate data, and modeling algorithms (Richter et al., 2016). 

However, remote-sensing approaches could be beneficial for moni-
toring essential biodiversity variables because they are cost-effective 
and allow for coverage of large areas with a quick turnaround time. 
Studies demonstrated an increase in the strength of the relationship 
between species alpha diversity and remotely sensed spectral het-
erogeneity when accounting for species’ relative abundances. This 
improved the capability of local species diversity estimations, espe-
cially while using spectral information in addition to the commonly 
used spectral indices (Rocchini et al., 2007).

Multispectral sensors have limitations on properties such as spe-
cies identification; for example, they are inferior to hyperspectral 
data in spectral information (Lyon & Huete, 2016). As such, alpha 
diversity is commonly predicted and mapped based on the spectral 
variation hypothesis (SVH), which starts with a heterogeneity map 
from a satellite sensor image correlated with field sampling data 
(Rocchini et al., 2007, 2016). In grassland studies, the spectral proper-
ties of grass species may be difficult to detect because of the similar-
ity in the taxa, mainly due to broadband remote sensing's inability to 
identify slight differences in green vegetation (Lyon & Huete, 2016). 
Furthermore, weak and moderate relationships between species 
richness, diversity, and spectral vegetation indices (VIs) are derived 
from remote sensors (Rocchini et al., 2007). This seemingly univer-
sal observation may be because VIs are poorly related to structural 
properties. For example, a study by Ingram et  al.  (2005) excluded 
the Normalized Difference Vegetation Index (NDVI) from the pre-
dictive analysis because of its weak correlation with species' struc-
tural features. However, the relationship between remotely sensed 
data and species diversity is scale-dependent (Rocchini et al., 2007). 
Sentinel-2 Multispectral Instrument (MSI) has shown enormous po-
tential for vegetation mapping because it is one of the multispectral 
sensors that can acquire images with 13 spectral bands (Torresani 
et  al., 2019), including red-edge bands (Xulu et  al., 2021). In addi-
tion, its free and open data policy may benefit nature conservation 
in developing and under-resourced countries (Torresani et al., 2019).

Remote sensing has had some success as a tool for predicting 
and detecting species richness and diversity; this success is mainly 
due to the application of NDVI. However, predicting species richness 
and diversity remains a significant application for remote sensing in 
managing biodiversity and ecosystems. Landsat carries two sensors, 
that is, the Operational Land Imager (OLI) and the Thermal Infrared 
Sensor (TIRS). Landsat OLI measures the visible, near-infrared (NIR) 
and short-wave infrared spectral information related to plant prop-
erties, especially chlorophyll (Nagendra et  al.,  2010). In contrast, 
the Sentinel-2 MSI sensor may improve the accuracy of explaining 
plant biodiversity variables by including red-edge bands that allow 
for chlorophyll characterization and computation of novel indices for 
biodiversity mapping (Puletti et al., 2018).

K E Y W O R D S
biodiversity, conservation, grasslands, machine learning, remote sensing, species distribution 
modeling
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Despite the availability of remote-sensing data and applica-
tions, their use has yet to be widely incorporated by managers 
and researchers working in biodiversity monitoring (Reddy, 2021). 
Many studies have been conducted to map species diversity using 
remote-sensing data sets and study designs, resulting in varying 
outcomes and accuracies (Schmidtlein and Fassnacht, 2017). Data 
sets of coarser spatial resolution perform better when estimating 
species diversity than data sets of finer spatial resolution (Gessner 
et al., 2015). Nevertheless, increased spectral resolution is deemed 
beneficial for improving the estimation of species diversity (Xulu 
et  al.,  2021); however, hyperspectral remote-sensing data are 
cumbersome, and most of their bands are redundant (Vihervaara 
et  al.,  2017). Methodological advances such as machine-learning 
algorithms may present significant opportunities for utilizing multi-
spectral data sets with high accuracies. The accuracy difference be-
tween hyperspectral and multispectral bands could be much higher 
for grass species (Gessner et al., 2015).

The loss of biodiversity is now more prevalent for many bi-
omes across the globe due to overexploitation and land use trans-
formations; thus, monitoring and modeling biodiversity on a local 
scale via remote sensing can aid in abating this crisis (Cardinale 
et  al.,  2018). Monitoring patterns of species diversity over time 

is essential for decision-making in conservation, especially in the 
context of unprecedented global change. Remote sensing is one 
of the most cost-effective approaches to identifying biodiversity 
hotspots and predicting changes in good time. This study aims to 
analyze different satellite sensors to predict species richness and 
diversity.

2  |  METHODS

2.1  |  Study area

The study was conducted in the Golden Gate Highlands National 
Park (GGHNP) in the northeastern Free State province, South 
Africa (Figure  1). The park comprises 32,758.35 ha and lies in 
the range 28°27′–28°37′ S and 28°33′–28°42′ E. The park is in 
mountainous grasslands at the foothills of the Drakensberg and 
forms part of the mesic highveld grassland with marked varia-
tion in geology, topography, and rainfall. The soil types in the 
park include shallow rocky soils (Glenrosa and Mispah), deep 
drainage lines (Oakleaf), well-developed sand soils (Hutton and 
Clovelly), and clayey structured soils (Milkwood and Tambakulu) 

F I G U R E  1 Map of the study area.
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(SANParks,  2020). The park is characterized by summer rain-
fall, temperate summers, and cold winters. The rainfall season 
stretches from September to April, with a mean annual rainfall 
ranging from 800 mm to 2000 mm. The park lies between 1892 m 
and 2829 m a.s.l. and comprises the following subalpine mesic 
grasslands units: Eastern Free State sandy grasslands (Gm 4), 
Basotho montane shrubland (Gm 5), Lesotho highveld basalt 
grassland (Gd 8), and Northern Drakensberg highveld (Gd5) 
(Mucina & Rutherford, 2006). The park is home to multiple ante-
lope species and is used for grazing by domesticated cattle and 
wild animals.

2.2  |  Field data collection

The land type map of GGHNP was used as the first stratification. 
Sampling sites of homogenous grass patches were then located in 
a randomly stratified manner. Thirty-sic vegetation sampling plots 
(30 m × 30 m) ranging between three and five per site (six sites with 
five plots and two sites with three plots; Figure  2a) were placed 
randomly within the homogenous grass patches. Sixteen (1 m × 1 m) 
quadrats were set systematically within each sampling plot at every 
10 m along four parallel rows (Figure  2). The above data set was 
merged with another data set from a different sampling program 
comprising 12 sites with 106 plots. The latter was collected using a 
100-step points method from four transects located within a plot 
of 30 m × 30 m, and all species were recorded at every step point 
(Figure  2b). The standard data set comprised 142 plots with 13 
sites, seven of which were the same and six different. The distribu-
tion of sampling plots across the land types in GGHNP is given in 
Figure 3.

The taxonomic composition and cover of the vegetation were 
used to derive species richness and diversity per plot. The values 

from each plot were averaged to attain mean species richness per 
site (Table 1). Species richness and diversity were computed using 
the statistical packages vegan and plyr in R studio, which employed 
the diversity and an applied function for species diversity and rich-
ness, respectively (Oksanen, 2017). Species diversity was calculated 
using the Shannon–Wiener Index (Equation 1), where pi is the pro-
portion of the species within the sampling units. Species richness 
was determined by adding all species from each quadrat and averag-
ing by the number of quadrats in each plot to obtain the average plot 
value (Oksanen, 2017):

2.3  |  Remote-sensing data collection

Satellite images from Sentinel-2 and Landsat 8 data sets were ex-
tracted and processed from the JavaScript code editor Google Earth 
Engine (GEE). All images in this research were nearly cloud-free. 
The mean spectral land surface reflectance value of images was fil-
tered using monthly dates from January to March and the average 
of January to March to assess phenology's effects on species diver-
sity's predictiveness. From the extracted spectral images of both 
sensors, vegetation indices [NDVI, Soil-Adjusted Vegetation Index 
(SAVI), Simple Ratio (ST), and Enhanced Vegetation Index (EVI) in 
Equations 1–4] were calculated within GEE.

(1)H’ = −
∑

pi
∗ ln pi .

(2)NDVI = (NIR − R)∕ (NIR + R),

(3)SAVI =
[

(NIR−R)∕(NIR+R+L)
]∗

(1 + L),

(4)SR = NIR∕Red,

(5)EVI = G∗
[

(NIR − R)∕
(

NIR + RED
∗
R − C2

∗
B + L

)]

.

F I G U R E  2 (a) Quadrat and (b) step-point-based vegetation plot design.
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F I G U R E  3 Correlation coefficients between species richness (SR) and diversity (SW) and vegetation were calculated from all possible 
combinations of Sentinel-2 images in January (top left), February (top right), March (bottom left), and January–March (bottom right) (crossed-
out correlation mean the relationship is not significant)

TA B L E  1 Descriptive statistics of average species richness and diversity (H′) in the study area per plot.

Number of 
samples Minimum Maximum Median Mean Variance

Standard 
deviation

Coefficient of 
variance

Species richness 142.00 3.00 17.00 9.00 8.97 12.11 3.48 0.39

Species diversity (H′) 142.00 0.64 2.45 1.63 1.63 0.16 0.40 0.25
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All the spectral images and indices were imported into RStudio, 
and the GPS coordinates of each sampling plot were used to obtain 
values. This was achieved using the extract function from the raster 
library in RStudio.

3  |  DATA ANALYSIS

A correlogram depicting Pearson correlations between species rich-
ness and diversity, S2 MSI bands, and VIs, including the averages of 
January–March, was computed to show relationships between ex-
planatory and response variables. Random forest (RF) is a machine-
learning algorithm that improves the regression and classification 
trees by combining a large set of decision trees. In this study, this 
technique was used to select the optimal variables that can be used 
to estimate species richness and diversity. Subsequently, a set of se-
lected optimal variables was input into the RF model to predict spe-
cies richness and diversity.

Three parameters were used in the RF model; the number of 
regression trees (ntree) is based on the value of the observations 
called bootstrap sample (500 in this study). The mtry, which refers 
to the number of predictors to be tested at each node, was set at 
the square root of the input variables used in the model, which is 4.

To validate the performance of the RF regression model, the data 
set was split into 70% for training and 30% for testing, respectively. 
The training data set was used to develop an RF model that could 
estimate the response variables, while the test data set was used 
to validate the final model. A one-to-one relationship between the 
observed and predicted species diversity and the richness of test 
and training data was fitted for cross-validation. The coefficient of 
determination (R2) and root-mean-squared error (RMSE) were used 
to assess the predictive performance.

4  |  RESULTS

There was a positive, albeit weak, relationship between species rich-
ness, Sentinel-2 bands (6–12) and indices NDVI and SAVI, while for 
January species diversity was related to bands 11 and 12 only. In 
February, none of the Sentinel-2 bands and indices had a relation-
ship with species diversity; however, this relationship was positive 
for species richness. There was no relationship between species 
richness, diversity, Sentinel-2 bands, and vegetation indices for 
March and the average of January to March (Figure 3).

The variables of interest, that is species richness and diversity, 
exhibited a positive, albeit moderate (ranging R = 0.2–0.3) relation-
ship with all Landsat 8 OLI bands for January. This relationship fur-
ther weakened in February (R = 0.1–0.2) and March, where the red 
band (Band 4) was the only band relating to the species diversity 
for the former month. The relationship between species diversity, 
richness, Landsat 8 bands, and indices strengthened again when 
monthly band averages were used. Notably, the Landsat 8-derived 
indices were separate from the variables of interest (Figure 4).

4.1  |  Predicting species richness and diversity

The selected variables needed for optimal species richness and di-
versity prediction had notably low R2 and high RMSE. The significant 
Landsat 8 variables (Table 2) optimally explaining species richness 
were EVI for January (RMSE = 3.621, R2 = 0.044) and February 
(RMSE = 3.493, R2 = 0.080), and NIR for March (RMSE = 4.126, 
R2 = 0.008) and January–March (RMSE = 3.935, R2 = 0.006). 
Moreover, the selected Sentinel-2 variables explaining species rich-
ness were SR for January (RMSE = 3.928, R2 = 0.009), NIR for February 
(RMSE = 3.872, R2 = 0.001), red-edge for March (RMSE = 3.711, 
R2 = 0.001), and NIR for January–March (RMSE = 3.657, R2 = 0.014). 
The Landsat 8 variables explaining species diversity were EVI for 
January and February, SAVI for March, and NIR for January–March. 
The Sentinel-2 variables for explaining species diversity were red-
edge 1 for January, February, and January–March, and SR for March. 
In January, the most significant band selected was EVI.

The RF model of Landsat-8 variables explained 87% of the spe-
cies diversity in January, 89% in February, 90% in March and 79% in 
January–March. For species richness, it explained 90% in January, 
88% in February and 87% in March and 81% in January–March. On 
the other hand, the species richness and diversity variation explained 
by Sentinel-2 variables ranged between 82% and 91% (Table 3). The 
test exhibited similar predictive performance to the training data set 
across the two satellites for most months.

5  |  DISCUSSION

The relationship between species counts and spectral information 
varies based on the spatio-temporal dynamics of the area under 
study (Schmidtlein & Fassnacht,  2017). Our study corroborates 
that this relationship weakens with the end of summer. Spectral 
bands are seldom tested individually for their relationship with spe-
cies counts; mainly spectral variability based on band derivatives 
is used (Rocchini et al., 2007; Schmidtlein & Fassnacht, 2017). Our 
study shows that the spatial resolution of a sensor does not lead 
to a positive relationship between spectral information and species 
count variables, nor does it affect the predictive performance; in-
stead, Landsat 8 bands are related better to species richness and 
diversity than Sentinel-2's. This may be due to saturation issues as-
sociated with the relatively low radiometric resolution of sensors. 
Notably, the vegetation indices derived from Landsat 8 bands had no 
relationship with species richness and diversity contrary to those of 
Sentinel-2. Normally, the dispersion measures of conventional veg-
etation indices are used as spectral information to relate to species 
count variables (Rocchini et al., 2010).

The response of species richness and diversity to ecological driv-
ers often reflects diverse outcomes, depending on external factors in 
an ecosystem and the measuring methods (Symstad & Jonas, 2011). 
However, for these diversity metrics to be ideal, grassland indicator 
estimation methods ought to be improved and augmented (Symstad 
& Jonas,  2011). Machine-learning algorithms allow for exploring 
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automated environmental monitoring using these diversity metrics 
and remote-sensing data. Our research used the RF approach using 
species richness and diversity plot measurements corresponding 
to remote-sensing bands of Landsat 8, Sentinel-2, and VIs derived 
therefrom. The RF features selection of selected EVI, NIR, and SAVI 
as optimal remote-sensing variables, explaining species richness and 
diversity. This is not surprising given the moderate predictive per-
formance of RF machine-learning algorithms on data sets with plant 
species richness (Adjorlolo & Botha, 2015). Furthermore, the spec-
tral band selected in our study was consistent with the findings of 

other research where NIR explained 41% of the variation in species 
richness (Rocchini et al., 2007).

The RF model in this study managed to predict species rich-
ness and diversity with relatively high accuracies. This shows that 
using different model techniques can improve the predictive power 
of satellite remote-sensing (SRS) variables (Rocchini et  al.,  2007). 
Machine-learning SRS models are essential for species monitoring 
and aiding conversation in protected areas because of their cost 
effectiveness and present novel approaches to identifying biodi-
versity hotspots and predicting changes (Rocchini et al., 2016). This 

F I G U R E  4 Correlation coefficients between species richness (SR) and diversity (SW) and vegetation were calculated from all possible 
combinations of Landsat 8 images in January (a), February (b), March (c), and January–March (d) (a crossed-out correlation mean the 
relationship is not significant).
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research shows that machine-learning algorithms can improve our 
predictions of plant alpha diversity compared to the commonly used 
SVH, providing an alternative for species mapping (Appendices S1–
S4). Moreover, the study shows that the machine-learning models 
for biodiversity mapping may not require satellite sensors with high 
spatial and spectral resolution.

A wide range of relationships between satellite-based VIs and 
vegetation characteristics have been established, with low to 

moderate predictive performance (Haboudane, 2004). Our research 
corroborates studies that propose using VIs in addition to spectral 
bands to improve the predictiveness of species diversity metrics 
(Rocchini et al., 2016). This is mainly because when used alone, VIs 
yield poor predictive performance and correlations despite the en-
hanced spatial resolution of a satellite sensor; hence, our study elu-
cidates the use of machine learning and relevant spectral bands, and 
VIs improve the estimation of species richness and diversity. Even 

TA B L E  2 Optimal Landsat 8 and Sentinel-2 variables explaining species richness and diversity.

Species richness Species diversity

Selected bands RMSE R2 MAE Month RMSE R2 MAE

Landsat 8

January Jan

NIR 3.386 0.04008 3.063 NIR 0.4485 0.005913 0.3631

ST 3.631 0.04269 3.015 SR 0.4367 0.001187 0.3547

EVI 3.621 0.04362 3.019* EVI 0.4281 0.008509 0.349*

February Feb

NIR 3.462 0.001955 3.228 NIR 0.4735 0.07716 0.3788

SAVI 3.511 0.053272 2.949 SR 0.4666 0.06849 0.3768

EVI 3.493 0.080437 2.859* 0.4632 0.06849 0.3753*

Mar Mar

NIR 4.126 0.008531 3.456* NIR 0.465 0.03137 0.3872

SAVI 4.109 0.027952 3.445 SR 0.4521 0.0136 0.3735*

EVI 4.087 0.028821 3.424 SAVI 0.458 0.03173 0.3782

Jan-Mar Jan-Mar

NIR 3.935 0.006241 3.287* NIR 0.4244 0.0192 0.3519*

SR 4.002 0.006201 3.445 SR 0.4343 0.01147 0.3563

NDVI 4.01 0.011824 3.457 SAVI 0.4274 0.01579 0.3543

Sentinel-2

January January

Red-edge 1 3.928 0.009438 3.34 Red-edge 1 0.4366 0.000819 0.3656*

Red-edge 4 3.936 0.026493 3.369 Red-edge 4 0.447 0.00168 0.3679

SR 3.873 0.010987 3.319* SR 0.4404 0.0000055 0.3645

February February

Red-edge 1 3.872 0.001696 3.251* Red-edge 1 0.4411 0.0000271 0.3464*

Red-edge 4 3.968 0.02039 3.374 Red-edge 4 0.4504 0.0010034 0.3587

SR 3.983 0.0293 3.43 SR 0.4428 0.0002043 0.3515

March March

Red-edge 1 3.733 0.001088 3.137 Red-edge 1 0.4303 0.007374 0.3534

Red-edge 4 3.711 0.001685 3.074* Red-edge 4 0.4286 0.006517 0.3502

SWIR 3.77 0.000864 3.135 SR 0.4231 0.011342 0.3438*

Jan-Mar Jan-Mar

Red-edge 1 3.657 0.014519 3.076* Red-edge 1 0.4325 0.0028 0.3593*

Red-edge 4 3.677 0.003288 3.079 Red-edge 4 0.4392 0.00000309 0.3671

SR 3.76 0.001014 3.146 SR 0.4366 0.000513 0.3631

Abbreviations: EVI, Enhanced Vegetation Index; MAE, Mean Absolute Error; NDVI, Normalized Difference Vegetation Index; NIR, near-infrared; 
RMSE, root-mean-squared error; SAVI, Soil-Adjusted Vegetation Index; ST, Simple Ratio; SWIR, Shortwave Infrared.
*, p < 0.05.
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so, the differences in predictive accuracy between the Sentinel-2 
and Landsat 8 sensors was not substantial; this is not surprising since 
the two sensors are not too distinct spectrally and spatially. This 
finding aligns with studies that postulate multispectral sensors with 
relatively moderate to high spatial resolution could be good candi-
dates for biodiversity mapping (Rocchini et al., 2016).

The relationship between spectral bands, VIs, and species di-
versity indices somewhat depends on the species diversity metric 
(Oldeland et  al.,  2010; Rocchini et  al.,  2016). However, our study 
demonstrated little to no effect in using different diversity metrics; 
opposing studies suggesting that using the Shannon–Wiener index im-
proves the predictive performance by three-fold compared to species 
richness (Oldeland et al., 2010; Rocchini et al., 2016). Nonetheless, the 
prediction accuracy was highest in both January (richness) and March 
(diversity) for Landsat and March (richness and diversity for Sentinel-2). 
The estimation accuracies increased with deteriorating phenology for 
Sentinel-2, rendering it beneficial for mapping grass species diversity 
in senescence. This is because of its strategically positioned spectral 
bands, especially the inclusion of red-edge bands, making it helpful in 
studying vegetation characteristics (Thenkabail et al., 2004).

•	 This research explored satellite remote sensing as a primary tool 
for identifying biodiversity hotspots in South Africa's mountainous 
grasslands and predicting changes. The RF remote-sensing model 
predicted species richness and diversity with relatively high accu-
racy. These models present an opportunity for plant species mon-
itoring using remote sensing, which has always been associated 
with many challenges concerning species diversity monitoring 
(Rocchini et al., 2016). Remote sensing is a cost-effective and less 
labor-intensive tool for biodiversity management, and its devel-
opment is imperative for monitoring the inevitable consequences 

of global environmental change. Previously, species richness at 
local scales was studied using SVHs. However, the RF models 
in this study provide better estimates of plant species richness 
than the proposed SVH (Rocchini et al., 2007, 2018). In contrast 
to SVH, the RF predictive models do not require remote-sensing 
sensors with high spatial and spectral resolution. SVH starts with 
a heterogeneity map correlated with field sampling data for esti-
mation models.

6  |  CONCLUSION AND 
RECOMMENDATIONS

Determining species to establish relationships between remote-
sensing data and species may be difficult because of subtle differ-
ences in spectral signature measures among species. The type of 
sensor and modeling algorithms has always limited remote-sensing 
approaches; however, it is demonstrated in this research that ad-
vancement in technology could enable species quantification and 
monitoring efficiently. NIR, the selected spectral band for predicting 
species richness and diversity, remains the ideal band for vegeta-
tion monitoring using remote sensing. This selection also augments 
NIR as the spectral band that allows species discrimination related 
to species traits, especially chlorophyll, which can also be measured 
using NIR-based vegetation indices and, despite having relatively 
low spatial and spectral resolution, Landsat 8 bands yielded impres-
sive modeling accuracy virtually comparable to those of Sentinel-2. 
For future research, we suggest testing remote-sensing images with 
very high spectral and spatial resolution and special uncrewed aerial 
vehicles for species diversity mapping and incorporating terrain in 

TA B L E  3 Random forest regression for predicted species richness, diversity, and remote-sensing data sets.

Species richness Species diversity

Landsat 8 Sentinel-2- MSI Landsat 8 Sentinel-2-MSI

Training Test Training Test Training Test Training Test

Number of plots 99 43 99 43 99 43 99 43

January

R2 0.90 0.88 0.90 0.80 0.87 0.86 0.85 0.86

RMSE 1.477 1.558 1.614 1.78 0.182 0.197 0.201 0.201

February

R2 0.88 0.87 0.84 0.92 0.89 0.90 0.89 0.89

RMSE 1.626 1.722 0.178 1.646 0.189 0.178 0.152 0.161

March

R2 0.87 0.88 0.91 0.91 0.90 0.88 0.91 0.91

RMSE 1.704 1.871 1.544 1.539 0.186 0.209 0.167 0.175

January–March

R2 0.81 0.88 0.88 0.85 0.79 0.85 0.82 0.8343

RMSE 1.712 2.008 1.788 1.746 0.203 0.219 0.195 0.188

Abbreviations: MSI; RMSE, root-mean-squared error.
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the geospatial models, especially in areas such as GGHNP with com-
plex mountainous terrain.
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