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Abstract
Some physical properties of ideal solutions, e.g. the molar volume and the molar refraction, 
vary linearly with composition. Others can be expressed, either as ratios or as products of 
two other properties which vary with composition in this way. It is postulated that the non-
ideal behaviour of real solutions can be adequately modelled by substituting these linear 
functions with higher order Scheffé polynomials. A suite of such models is presented for 
which the parameters are fully determined by knowledge of pure component properties and 
binary behaviour. Their binary data representation ability, and capacity to predict ternary 
properties, was tested using density and refractive index data for the acetic acid–ethanol-
water ternary system as well as fourteen additional ternary data sets. Model performance 
was ranked on the basis of the Akaike Information criterion. With respect to predicting 
ternary density and refractive index behaviour from knowledge of binary data, it was found 
that lower-order models outperformed higher order models.

Keywords Density · Refractive index · Mixture model · Ternary mixture · Liquid

Abbreviation
DWPM3  Double weighted power mean mixture model

1 Introduction

The measurement of liquid composition is important in fields such as quantitative anal-
ysis, chemical processing, organic synthesis, medical diagnostics, and semiconductor 
manufacturing [1]. Increasingly, chemical process control relies on in-line, real-time liq-
uid chemical composition and temperature monitoring and adjustment to ensure optimal 
product yield. The composition of a liquid mixture is encoded in its physical properties, 
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e.g. the density and the refractive index [2]. This makes it possible, in principle, to use 
measurements of these properties to monitor the composition of a liquid solution. For 
example, the metrology of process fluids, via the measurement of the index of refrac-
tion, is a viable and superior means of real-time, in situ quality control in pharmaceuti-
cal manufacturing [3]. For some applications, combining refractive index with a density 
measurement creates a simple yet even more powerful quality control technique. The 
reason is that such determinations are easy to implement and they can be fully auto-
mated [1–4].

Therefore, accurate mixture models are needed that describe the composition depend-
ence of liquid density and refractive index. A recent review [5] considered predictive mod-
els linking the refractive index to the composition of binary liquid mixtures which included 
an alkane as one of the components. In this communication, an attempt is made to extend 
this analysis to a ternary mixture comprising associating compounds. The key findings of 
the previous study [5] underpin the analysis presented in this communication.

2  Theory

The molar volume is defined as the ratio of the molar mass to the density of a component:

where Vi, Mi and ρi are the molar volume, the molar mass and the density of component i at 
the temperature of interest. The ideal solution is a thermodynamic concept. It assumes that 
the interactions between like and unlike molecules are the same and that there is no change 
in volume of the system on mixing. The latter condition implies that the molar volume of 
an ideal solution (V) is a linear combination of the molar volumes (Vi) of the constituents. 
For a ternary mixture, the relationship is

with the mole fractions (xi) of the individual components in the mixture serving as the 
weighting factors. Equation 2 is a very good approximation for real liquid mixtures made 
up of non-associating components. The average molar mass of a mixture is also given by 
such a linear combination. Therefore, if Eq. 2 is valid, the density of a ternary mixture is 
given by:

Note that this mixture model, for the density of an ideal solution, is defined by a 
Padé relationship. In this case it is the ratio of two first order (i.e. linear) polynomials. 
Furthermore, Eq. 3 implies that the mixture density is a weighted harmonic mean over 
the pure component densities with the mass fractions (wi) serving as the weight factors:

The advantage of Eq. 4 is that it can be used to estimate the density of a blend made 
up by combining different mixtures of unknown compositions [6].

The Lorentz–Lorenz parameter (Ni) is defined as follows [7]:

(1)Vi = Mi∕�i

(2)V = V1x1 + V2x2 + V3x3

(3)� =
(

M1x1 +M2x2 +M3x3
)

∕
(

V1x1 + V2x2 + V3x3
)

(4)� =

(

w1

�1

+
w2

�2

+
w3

�3

)−1
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where nDi is the refractive index of component i. The molar refraction (Ri) is the product of 
the molar volume (Vi) and the Lorentz–Lorenz parameter (Ni):

The molar refraction of a pure compound is virtually independent of the temperature [5, 8]. 
This is consistent with the so-called “one third rule”, applicable to hydrocarbons, which states 
that Ri ≈ Mi/3 [8]. In theory, the molar refraction of an ideal solution is also additive over the 
constituent components with weighing on a mole fraction basis. This was confirmed experi-
mentally for many real liquid mixtures [5, 9]. For a ternary mixture, which is behaving like an 
ideal solution, it therefore holds that:

Combining Eqs. 2, 6 and 7 yields the following ideal mixture model for the Lorentz-Lorenz 
parameter:

Equation 8 is also a Padé-type expression. It is equivalent to the Lorentz-Lorenz R-mixing 
rule [5]:

where φi is the volume fraction of component i in the mixture.
The refractive index of the mixture can be calculated from the Lorentz-Lorenz parameter 

by re-arranging Eq. 5:

It is possible to factor Eq. 7 into two components represented by Eq. 8 and Eq. 9. This 
yields an alternative mixture model for the molar refraction of an “ideal solution”:

Equation 11 expresses the molar refraction as a product of two linear polynomials. The first 
is a volume fraction-weighted arithmetic mean over the pure component Ni values and the sec-
ond is a mole fraction-weighted mean over the pure component molar volumes (Vi).

Excess functions are commonly used to model deviations from linear composition depend-
ences. This approach is best illustrated using the molar volume of a binary system as the 
example. First note that one variable suffices to describe the composition of a binary mixture. 
Redlich and Kister [10] proposed the use of z12 = x1 – x2. This definition maps the composition 
range into the finite interval z12 ∈ [− 1, 1]. Next, an “excess function” is defined by subtracting 
the ideal behaviour from the actual function:

The excess function is then fitted to experimental data for binary mixtures using a trun-
cated McLaurin series expansion in the variable z12 according to the following polynomial 
expansion [10]:

(5)Ni =
(

nDi − 1
)

∕
(

n2
Di
+ 2

)

(6)Ri = NiVi

(7)R = R1x1 + R2x2 + R3x3

(8)N =
(

R1x1 + R2x2 + R3x3
)

∕
(

V1x1 + V2x2 + V3x3
)

(9)N = N1�1 + N2�2 + N3�3

(10)nD =
√

(1 + 2N)∕(1 − N)

(11)R =
(

N1�1 + N2�2 + N3�3

)(

V1x1 + V2x2 + V3x3
)

(12)VE = V − V1x1 − V2x2
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This approach apparently works very well when attention is limited to the correlation of 
binary mixture data. It is not straightforward to extend this idea to multicomponent mix-
tures. Many proposals have been made and they were comprehensively reviewed [11, 12]. 
Unfortunately, they are mostly limited to extensions that are valid for ternary mixtures at 
best.

This communication outlines a different approach for dealing with deviations from an 
expected “ideal solution” behaviour. The proposal considers the idea of replacing the linear 
polynomials used in the mixture models by higher order Scheffé K-polynomials. Compared 
to the conventional Scheffé S-polynomials [13], they offer attractive symmetry, compact 
notation and, additionally, they are homogeneous in the composition variables [14]. Fur-
thermore, the maximum eigenvalue for the information matrix for quadratic K-models is 
always smaller than that for the S-polynomials implying that the former are less prone to 
ill-conditioning [15]. The Scheffé K-polynomials are, in essence, mathematically consist-
ent mixture models based on ordinary Taylor polynomials that take the simplex constraint 
into account. For a ternary mixture this amounts to: x1 + x2 + x3 = 1. The present proposal is 
illustrated using ternary mixtures as examples. However, the concept is applicable to mix-
tures containing any number of components. The aim was to develop mixture models that 
are fully capable of correlating highly non-linear composition dependence with a minimum 
number of parameters which, additionally, are fully determinable from binary data alone.

Towards these goals, it is constructive to first consider a mixture model for an “ideal 
solution” that takes the form of a linear blending rule. A good example is the molar refrac-
tion as given by Eq. 7. To account for deviations from this linear “ideal solution” model, 
higher order Scheffé K-polynomials could be considered as they should be able to provide 
better representation of actual experimental data. Lower order K-polynomials may suffice, 
for example, the second order (or quadratic) (K2) Scheffé K-polynomial. For a ternary mix-
ture it takes the form [14, 16]:

where [Rij] is a matrix of binary coefficients and x = (x1, x2, x3) is the vector defining the 
composition of the ternary mixture. Note that, mathematically, the second order Scheffé 
polynomial is equivalent to a quadratic form in the simplex domain. Equation  14 intro-
duces adjustable interaction constants in order to improve the correspondence between 
actual experimental data and model predictions.

The third order (or cubic) (K3) Scheffé K-polynomial is similarly defined [14, 16]:

In the cubic expression of Eq. 15, and in the nth-order polynomials, the adjustable inter-
action parameters Rijk are distinguished by the indicated set of ordered n indices of the 
form ijk…, with i < j < k < … indicating that that particular parameter is multiplied by the 
mole fractions corresponding to the component types i, j, k, … For example, 3R112 is the 
coefficient for the term x2

1
x2 in a third order polynomial. The numerical value in front of 

the adjustable parameter is a binomial coefficient which arises from the number of differ-
ent permutations possible of the indices. For example, there are three different possibilities 
112, 121 and 211 for R112 and therefore there is a “3” in front of this coefficient. In this 

(13)VE∕
(

x1x2
)

= C0 + C1z12 + C2z
2

12
…+ Cnz

n
12

(14)R = K2

([

Rij

]

, x
)

= R11x
2

1
+ R22x

2

2
+ R33x

2

3
+ 2R12x1x2 + 2R13x1x3 + 2R23x2x3

(15)

R = K3([Rijk], x) = R111x
3

1
+ 3R112x

2

1
x2 + 3R112x

2

1
x3 + R222x

3

2
+ 3R122x1x

2

2
+ 3R223x

2

2
x3

+ R333x
3

3
+ 3R133x1x

2

3
+ 3R233x2x

2

3
+ 6R123x1x2x3
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formalism, the number of indices correspond to the order of the polynomial in question and 
all of the Rj = Rjj = Rjjj … represent the physical property value of pure component j.

An issue associated with the cubic and higher Scheffé polynomials, is the appearance 
of ternary and higher order interaction coefficients. In theory, this implies the need to have 
access to ternary or multicomponent data in order to assign values to these parameters. 
From a thermodynamic perspective, the behaviour of multicomponent mixtures is naturally 
affected by the interactions of unlike molecules. A common conjecture, made in chem-
ical engineering, is that only binary interactions between the molecular species need to 
be considered in mixtures [17] [18]. This means that it should in principle be possible to 
assign a value to the ternary constant on the basis of the parameters defining the behaviour 
of the constituent binary mixtures [11]. The double weighted power mean mixture model 
(DWPM3) makes this actually possible [19]. It includes, as a special case, a binary-predic-
tive cubic expression which can be cast in the following form:

This expression is equivalent to Eq. 15 with the link between the coefficients given by 
the general expression [19]:

In this model defined by Eq.  17, the physical properties are encoded entirely in 
terms of the binary parameters rij with Ri = r2

ii
 . Note that in that context, the ter-

nary constant is fully expressed in terms of combinations of the binary coefficients, i.e. 
3R123 = r12r13 + r21r23 + r31r32 . Two polynomials of the same order can only be equal to 
each other if all of the corresponding coefficients are identical. This means that, for each 
separate ternary subsystem present in a mixture, the corresponding ternary coefficient can 
be estimated from the corresponding binary information by performing data reduction 
using the model defined by Eq. 16.

The Scheffé polynomials have a very useful property of forming a nested set of equa-
tions [16]. The overall ternary model is determined by the behaviour of the constituent 
binaries as demanded by Chou [11, 12]. Consider a ternary mixture in which the 1–2 
binary follows the linear blending rule while the data trends for the 1–3 binary are ade-
quately described by a quadratic Scheffé polynomial. If a cubic polynomial is necessary 
for the 2–3 binary, then the overall ternary behaviour is such that a cubic Scheffé K-poly-
nomial must be implemented. The lower order polynomials, which provided adequate cor-
relation performance for the other binaries, are readily converted into cubic forms without 
introducing additional parameters: The second order polynomial is promoted by multiply-
ing it with unity, i.e. with x1 + x3 = 1, and the linear model by multiplying it with the square 
of this sum, i.e. with (x1 + x2)2 = 1. The advantage of the nesting property is that the number 
of adjustable coefficients in the overall model can be kept to a minimum. In this way over-
fitting can be prevented.

Focke and Du Plessis [16] proposed Padé-style rational extensions of Scheffé K-polyno-
mials. They defined Padé approximant-based mixture models in terms of the ratio of two 
homogeneous Scheffé K-polynomials. This idea is conveniently illustrated by considering 
higher order Padé approximants for the Lorentz-Lorenz parameter N. The expression for 
an “ideal” solution is given by Eq. 8. In order to account for nonlinear deviations from this 

(16)
R = K3

([

rij
]

, x
)

= x1
(

r11x1 + r12x2 + r13x3
)2

+ x2
(

r21x1 + r22x2 + r23x3
)2

+ x3
(

r31x1 + r32x2 + r33x3
)2

(17)Rijk =
1

3

(

rijrik + rjirjk + rkirkj
)
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model, the linear expressions in the numerator and denominators of Eq. 8 can be substi-
tuted with higher order Scheffé polynomials. For example, let N be defined by the ratio of a 
cubic Scheffé polynomial to a quadratic one:

In this equation, P3

2
 indicates a Padé approximation corresponding to a cubic K-polyno-

mial in the numerator (as defined by Eq. 16) and a quadratic one in the denominator; [rij] 
represents a set of binary interaction coefficients for the molar refraction; [Vij] represents 
a matrix of binary coefficients for the molar volume, and x is the vector of mole fractions. 
The equation is a binary-predictive expression since the numerator polynomial is defined 
by Eq. 16 for which the ternary constant is defined by the binary interaction coefficients.

A similar stratagem can be used to increase the correlating power for a model that is 
expressed in terms of the product of two polynomials, e.g. the molar refraction R as defined 
by Eq. 11. The highest order considered presently for this property is:

In summary, the present proposal for dealing with deviations from the composition 
behaviour of the physical properties expected for “ideal solution” mixture models, is to 
replace first order polynomials with second or third order Scheffé K-polynomials. This 
introduces adjustable parameters into the models that can be tweaked to improve agree-
ment with actual data trends. On the other hand, there are also special parameter values 
that allow higher forms to be reduced into lower order forms [16].

3  Materials and Methods

All the chemicals were obtained from ACE chemicals, South Africa. According to the sup-
plier, the purity of the acetic acid was 99.7% and that of the anhydrous ethanol was 99.9%. 
Deionized water was purchased from Merck. All chemicals were used as-received without 
further purification.

The refractive index values of the pure components were measured at 25  °C using a 
Mettler Toledo R4 instrument. The calibration of the instrument was checked using dou-
ble distilled and deionized water. The instrument precision was ± 0.0001 and repeatability 
was ± 0.0002 refractive index units. Sample amounts were weighed out into glass bottles, 
sealed and allowed to stand for at least one day before characterization. Pipettes were used 
to place sample amounts into the instrument cell.

Density measurements were performed at 25 °C on an Anton Paar DSA 5000 M density 
and sound velocity meter. The procedure was as follows: The unit was set to the meas-
urement temperature. It was then flushed by injecting approximately 5–10 mL of cleaning 
acetone into the feed entry port using a gas-tight syringe. The built-in pump was switched 
on and the syringe with acetone was removed from the feed entry port. The tubing leading 
from the pump was then connected to the feed entry port. This flushed out the liquid in the 
densitometer using compressed air. The pump was left to run for approximately one minute 
before being switched off and the tubing removed. This process was repeated three times in 
order to clean and remove any impurities in the unit. The U-tube was then checked visually 
to ensure no liquid bubbles remained in the device. Approximately 5–10 mL of the sample 
being measured was injected into the feed entry port via a syringe and thereafter flushed 

(18)N = P3

2

([

rij
]

, x;
[

Vij

]

, x
)

= K3

([

rij
]

, x
)

∕K2

([

Vij

]

, x
)

(19)R = K3
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nij
]

,
)

K3
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vij
]

, x
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out with the pump. This was repeated. Approximately 5–10 mL of the sample being meas-
ured was injected into the feed entry port via a gas tight syringe. The system was then 
allowed to reach thermal equilibrium. When the measurement was complete, the relevant 
readings were recorded. Each injection was measured at least three times to ensure that the 
data was repeatable. The cleaning procedure with acetone was then repeated.

The capacity of the various mixture models to represent experimental information was 
tested using the experimental density and refractive index data, obtained at 25 °C, for the 
highly non-ideal ternary system acetic acid–ethanol-water. This system was chosen because 
all three components are able to form association complexes through hydrogen bonding 
interactions with themselves, as well as with each other. Parameter values were determined 
using least-squares regression. The Akaike information criterion (AIC) [20] was used to 
rank the relative performance of the models. The governing equation is

where n is the number of data points, SSE is the sum of the square errors, and df is the 
degrees of freedom, e.g. the number of parameters that are fitted. To compare models, it is 
only the difference between the AIC values that matters. On taking differences, the units 
cancel out and the result is unitless:

In each case the “ideal solution” expressions, which did not feature any adjustable 
parameters, served as the reference models. Equation 20 makes intuitive sense as it bal-
ances the change in goodness-of-fit, as assessed by the sum-of-squares, with the change in 
the degrees of freedom (due to differences in the number of parameters in the models being 
compared).

Table 1 lists fourteen additional ternary systems for which density and refractive index 
values at 25 °C were published. These data sets were also subjected to analysis in order 
to verify the utility of the proposed mixture models. Table 2 lists the models considered 
for each of the three physical properties investigated, i.e. the density (ρ), the molar refrac-
tion (R), and the Lorentz-Lorenz parameter (N). First, the full data set for each system was 
regressed to test how well the models perform globally in terms of the Akaike informa-
tion criteria. Next, only the binary data were used to fix the model parameters using least 
squares regression. The power to represent the binary data, and additionally to accurately 
predict the ternary results, were then quantified in terms of the ∆AIC measure. For each 
model, the latter were calculated using the SSE values corresponding to the predictions for 
both the binary and the ternary data.

4  Results and Discussion

The utility of the proposed mixture models was first tested using the density and refractive 
index data for the acetic acid–ethanol-water ternary system obtained at a temperature of 
25 °C. Table 3 lists the presently measured density and refractive index data of the pure 
components, the binary and the ternary mixtures. Table  4 provides additional refractive 
index data. The actual data regression analysis was performed on an augmented data set 
which included published results from the sources listed in Table 1. Figure 1 shows plots 
of the full binary data sets considered for data regression for mixture density and refractive 
index.

(20)AIC = n ln (SSE) + 2df

(21)ΔAIC = n ln
(

SSEideal∕SSEmodel

)

+ 2Δdf
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Figure 1a shows that, in the acetic acid–water binary, the density reaches a maximum 
value of ca. 1.065 at an equimolar composition. In the acetic acid–ethanol binary sys-
tem, the density varies almost linearly with mole fraction. In contrast, the density of etha-
nol–water mixtures shows negative deviations from a mole fraction-based linear blending 
rule. Figure 1b shows that, for all three binaries, the refractive index reaches maximum val-
ues at intermediate compositions. Figure 2 shows plots of the experimental molar volumes 
and molar refractions. According to Eq. 2 and Eq. 7, the expectation is that these properties 
should vary linearly with mole fraction. A strong linear correlation is indeed evident. This 
indicates that, to a first approximation, the values for binary mixtures can be estimated 
from pure component properties. Taken as a whole over all the data values considered, the 
maximum absolute deviations from the linear relationships for the molar volume and the 
molar refraction, were just 3.6% and 3.2% respectively. The average absolute deviation was 
1.8% for both properties.

Table 1  List of data sources for density and refractive index for pure components, binary and ternary mix-
tures. All the data were obtained at a measurement temperature of 298.15 K

B: Number of binary data points; T: Number of ternary data points

Component Data References

# 1 2 3 points

0 Acetic acid ethanol water B: 140
T: 8

[21–24]

1 ethyl acetate hexane acetone B: 57
T: 75

[25]

2 dimethyl carbonate methanol toluene B: 34
T: 39

[26]

3 diethyl carbonate methanol toluene B: 34
T: 39

[26]

4 t-butanol toluene methylcyclohexane B: 48
T: 48

[27]

5 dimethyl carbonate methanol cyclohexane B: 29
T: 34

[28]

6 methyl acetate methanol ethanol B: 28
T: 56

[29]

7 methyl acetate methanol CH3CH2C(OH)(CH3)2 B: 52
T: 28

[30]

8 acetone methanol dodecane B: 31
T: 26

[31, 32]

9 acetone methanol nonane B: 32
T: 27

[31, 32]

10 acetone methanol undecane B: 30
T: 27

[31, 32]

11 acetone methanol 2-butanol B: 56
T: 60

[33]

12 acetone methanol decane B: 28
T: 30

[31, 32]

13 acetone methanol 1-butanol B: 58
T: 79

[34]

14 acetone methanol water B: 43
T: 55

[34]
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Figure 2b indicates that the acetic acid–ethanol binary does conform to the mass frac-
tion weighted harmonic mean indicated by Eq. 4. However, the other two binaries show 
significant deviations from this “ideal solution” dependence. Figure  2d reveals that the 
Lorentz-Lorenz relationship of Eq.  9 does not hold at all for any of the three binaries. 
These pronounced deviations from expected “ideal solution” data trends necessitated the 
exploration of more complex mixture models.

Table 5 reports the results obtained for the different mixture models with respect to the 
ΔAIC values, the maximum absolute deviations (MAD) and the average absolute devia-
tions (AAD) between experimental and predicted values. The mixture density (ρ) and the 
Lorentz-Lorenz parameter (N) were correlated using the proposed Padé extensions. The 
molar refraction was correlated using Scheffé polynomials and variations of Eq. 18. Table 5 
also compares the results for data correlation using the full data set with those obtained 
when only the binary data was used. However, in both cases, the reported MAD and AAD 
values reflect the results for the full data set. The best-fit parameter values obtained on fit-
ting the full data as presented in Table 6.

For the mixture density of the acetic acid – ethanol – water ternary, the highest ΔAIC 
values were obtained for the ρ = K3([mij],x)/K2([Vij],x) model. This was the case irre-
spective of whether the full data set or only the binary information was used to fix the 
model parameters. On applying this model to correlate the binary data alone, it was deter-
mined that MAD = 0.500% and AAD = 0.057%. Increasing the order of the denominator 

Table 2  Mixture model expressions for density, molar refractive and the Lorentz-Lorenz parameter

Property # Mixture model expression

Density A
�ideal =

K1([Mi],x)
K1([Vi],x)

=
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K2(
[

Mij
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2
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[
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polynomial increased the number of adjustable parameters by three at a cost of reducing 
ΔAIC and an increase in both MAD and AAD. This deterioration was due to a significantly 
poorer prediction of the ternary density values. In contrast, for the Lorentz-Lorenz param-
eter, the N = K3([mij],x)/K3([vij],x) model with twelve parameters proved best irrespective of 
whether the full data set or just the binary information was used to fix the adjustable model 
parameters. However, for the molar refraction, best performance was also achieved with a 
lower order model. The R = K3([nij],φ)⋅K2([Vij],x) model, with nine adjustable parameters, 
outperformed the R = K2([Nij],φ)⋅K3([Vijk],x) as well as the R = K3([nij],φ)⋅K3([vij],x) model. 
As before, the reason for this was that the latter two models performed worse at predict-
ing ternary data from binary information. The implication is that it is possible for lower 
order Padé-based and polynomial product-based models to be better equipped at predicting 
ternary performance on the basis of binary data than higher order models. Figure 3 shows 
predicted mixture properties plotted against experimental results. In each case, the predic-
tions of the model with the highest ΔAIC is shown. The parameter values for the best-fit 
models are presented in Table 7.

The proposed model approaches were further tested using the other, additional ternary 
systems listed in Table 1. Detailed results on model performance are presented in the Sup-
plementary Material. The magnitude of the Akaike information criterion depends on the 
number of data points. Unfortunately, these differed for the various ternary data sets. This 
complicates global comparisons when attempting to determine which model performs best 
overall for each of the three property values considered. In an attempt to remedy this, it was 

Table 3  Density and refractive 
index data, obtained at 25 °C, for 
the ternary system acetic acid (1) 
– ethanol (2) – water (3)

x1 x2 x3 ρ (g·cm−3) nD

1.0000 0 0 1.0446 1.3700
0.4341 0.5659 0 0.9054 1.3676
0.2037 0.7963 0 0.8421 1.3636
0 1.0000 0.0000 0.7858 1.3593
0 0.5400 0.4600 0.8538 1.3629
0 0.5398 0.4602 0.8529 1.3629
0 0.2811 0.7189 0.9101 1.3595
0 0.1154 0.8846 0.9589 1.3493
0 0.1154 0.8846 0.9577 1.3493
0 0 1.0000 0.9970 1.3325
0.0909 0 0.9091 1.0291 1.3495
0.2306 0 0.7694 1.0529 1.3639
0.2308 0 0.7692 1.0526 1.3638
0.4737 0 0.5263 1.0641 1.3738
0.0641 0.0836 0.8522 0.9870 1.3535
0.4619 0.1511 0.3870 1.0071 1.3723
0.1051 0.5448 0.3501 0.8700 1.3650
0.1114 0.1452 0.7433 0.9731 1.3607
0.3012 0.1965 0.5023 0.9798 1.3691
0.1450 0.3752 0.4797 0.9115 1.3657
0.1771 0.2325 0.5904 0.9553 1.3656
0.1050 0.5454 0.3497 0.8699 1.3649
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decided to use relative Akaike information criteria instead of just considering the actual 
values obtained. For each ternary data set, the ΔAIC obtained for each model was scaled 
using the highest ΔAIC value found. The primary objective was to explore the viability of 
predicting ternary behaviour from knowledge of binary data. Therefore the ΔAIC/ΔAICmax 

Table 4  Additional refractive 
index data obtained at 25 °C 
for the system acetic acid (1) – 
ethanol (2) – water (3)

x1 x2 x3 nD x1 x2 x3 nD

0.0000 0 1.0000 1.3325 0.2922 0.7078 0 1.3653
0.0251 0 0.9749 1.3379 0.3382 0.6618 0 1.3661
0.0508 0 0.9492 1.3437 0.3856 0.6144 0 1.3668
0.0698 0 0.9302 1.3469 0.4841 0.5159 0 1.3683
0.0920 0 0.9080 1.3495 0.5344 0.4656 0 1.3690
0.1051 0 0.8949 1.3510 0.5874 0.4126 0 1.3695
0.1208 0 0.8792 1.3535 0.6493 0.3507 0 1.3700
0.1400 0 0.8600 1.3552 0.6945 0.3055 0 1.3703
0.1508 0 0.8492 1.3569 0.6972 0.3028 0 1.3703
0.1669 0 0.8331 1.3586 0.7544 0.2456 0 1.3706
0.1973 0 0.8027 1.3613 0.8125 0.1875 0 1.3707
0.2000 0 0.8000 1.3615 0.8500 0.1500 0 1.3708
0.2004 0 0.7996 1.3610 0.9000 0.1000 0 1.3706
0.2500 0 0.7500 1.3651 0.9493 0.0507 0 1.3703
0.2684 0 0.7316 1.3663 1.0000 0.0000 0 1.3698
0.3006 0 0.6994 1.3676 1.3605 0.1119 0.1457 0.7423
0.3102 0 0.6898 1.3685 1.3689 0.3016 0.1968 0.5016
0.3578 0 0.6422 1.3707 1.3656 0.1451 0.3753 0.4796
0.3986 0 0.6014 1.372 1.3654 0.1779 0.2327 0.5894
0.4498 0 0.5502 1.3733 1.3492 0.0615 0.0397 0.8988
0.4732 0 0.5268 1.3738 1.3738 0.5277 0.0765 0.3958
0.5003 0 0.4997 1.3740 1.3638 0.0522 0.6043 0.3435
0.5441 0 0.4559 1.3749 1.3489 0.0305 0.0775 0.8920
0.5895 0 0.4105 1.3751 1.3731 0.6020 0.1746 0.2234
0.6500 0 0.3500 1.3755 1.3642 0.1174 0.6877 0.1948
0.6508 0 0.3492 1.3755 1.3723 0.4634 0.1508 0.3858
0.7004 0 0.2996 1.3754 1.3436 0.0283 0.0366 0.9350
0.7486 0 0.2514 1.3751 1.3742 0.6814 0.0892 0.2294
0.7987 0 0.2013 1.3746 1.3630 0.0584 0.7487 0.1929
0.7995 0 0.2005 1.3746 1.3649 0.1670 0.6660 0.1670
0.8479 0 0.1521 1.3738 1.3650 0.1674 0.6654 0.1672
0.8927 0 0.1073 1.3729 1.3657 0.2515 0.4990 0.2495
0.9484 0 0.0516 1.3715 1.3648 0.1042 0.5423 0.3535
1.0000 0 0.0000 1.3698 1.3612 0.1505 0.0979 0.7516
0.0000 1.0000 0 1.3593 1.3677 0.2718 0.1189 0.6092
0.0501 0.9499 0 1.3605 1.3638 0.0871 0.3368 0.5761
0.1196 0.8804 0 1.3619 1.3601 0.0748 0.1917 0.7336
0.1609 0.8391 0 1.3627 1.3695 0.3334 0.2907 0.3759
0.2041 0.7959 0 1.3636 1.3670 0.2169 0.4210 0.3621
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were calculated using the results obtained for the case where the model parameters were 
fixed on the basis of binary information. The results are presented in Table 7 in the form 
of ΔAIC/ΔAICmax values averaged per model over all fifteen data. Interestingly, in the 

Fig.1  The variation of a the density, and b refractive index with composition for the binary mixtures as 
measured at 25 °C. Experimental values are plotted as triangles, circles, and lozenges. Open symbols repre-
sent literature data while filled symbols represent present measurements

Fig. 2  The variation of a the molar volume (V); b the inverse of the density (1/ρ); c the molar refraction 
(R), and d the Lorentz-Lorenz parameter (N) with composition for the binary mixtures as measured at 
25 °C. The dotted lines in (a) indicate the prediction for an ideal solution. Experimental values are plotted 
as triangles, circles, and lozenges. Open symbols represent literature data while filled symbols represent 
present measurements. The solid lines shown in the other Figures shows the predictions from the best-fit 
models mentioned in Fig. 3 and listed in Table 5
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Supplementary Information, evidence is presented that models with more parameters in 
some cases perform worse at predicting ternary property values than the “ideal solution” 
relationships. It is clear from Table 7 that, at least for the data sets explored presently, that 
there exist mixture models that consistently outperform all others when the objective is to 
predict ternary property values using only the binary data to fix model parameters. The 
most effective mixture models, in that context, were found to be:

Table 5  Model performance statistics for the ternary system acetic acid (1) – ethanol (2) – water (3)

Mixture model No. of Full data Binary predictive

parameters ∆AIC MAD
(%)

AAD
(%)

∆AIC MAD
(%)

AAD
(%)

Density (ρ)
 K1([Mi],x)/K1([Vi],x) (Ideal) None 0 3.462 1.718 0 3.462 1.718
 K2([Mij],x)/K1([Vi],x) 3 536 0.743 0.270 504 0.797 0.273
 K2([Mij],x)/K2([Vij],x) 6 813 0.560 0.088 528 1.801 0.120
 K3([mij],x)/K2([Vij],x) 9 931 0.321 0.061 858 0.500 0.057
 K3([mij],x)/K3([vij],x) 12 926 0.327 0.060 794 0.679 0.060

Lorentz-Lorenz parameter (N)
 K1([Ri],x)/K1([Vi],x) (Ideal) None 0 1.029 0.532 0 1.029 0.532
 K2([Rij],x)/K1([Vi],x) 3 833 0.198 0.053 667 0.254 0.054
 K2([Rij],x)/K2([Vij],x) 6 1032 0.163 0.030 825 0.201 0.032
 K3([rij],x)/K2([Vij],x) 9 1216 0.070 0.019 679 0.285 0.038
 K3([rij],x)/K3([vij],x) 12 1256 0.077 0.016 1025 0.063 0.017

Molar refraction (R)
 K1([Ri],x) (Ideal) None 0 3.226 1.794 0 3.226 1.794
 K2([Rij],x) 3 514 0.603 0.191 468 0.587 0.190
 K3([Rijk],x) 6 536 0.570 0.168 498 0.570 0.168
 K2([Nij],�)⋅K2([Vi],x) 3 809 0.292 0.053 605 0.507 0.073
 K3([nij],�)⋅K2([Vij],x) 9 806 0.292 0.053 749 0.292 0.052
 K2([Nij],�)⋅K3([vij],x) 9 639 0.324 0.107 689 0.389 0.064
 K3([nij],�)⋅K3([vij],x) 12 810 0.311 0.049 705 0.312 0.057

Table 6  Model coefficients 
for the ΔAIC-based best-fit 
mixture models for the density 
(ρ), molar refraction (R) and 
Lorentz-Lorenz parameter (N) 
properties for the system acetic 
acid (1)-ethanol (2)-water (3) at 
25 °C

ρ = K3([mij],x)/K2([Vij],x) R = K2([Nij],�)⋅ 
K2([Vi],x)

N = K2([Rij],x)/ 
K2([Vij],x)

m11 = 7.749 m33 = 4.244 N12 = 0.2134 R12 = 10.95
m12 = 5.202 m32 = 2.690 N13 = 0.2178 R13 = 9.23
m13 = 8.213 m31 = 4.541 N23 = 0.2197 R23 = 12.99
m22 = 6.787 V12 = 65.28 V12 = 61.78 V12 = 48.17
m21 = 10.148 V13 = 40.12 V13 = 39.99 V13 = 39.22
m23 = 6.310 V23 = 25.52 V23 = 39.44 V23 = 57.55
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Fig. 3  Plots of predicted vs. experimental values for a density; b molar refraction, and c the refractive index 
(via the Lorentz-Lorenz parameter N). In each case, the model parameters were determined using the binary 
data alone. The open symbols represent published data while the filled symbols represent present measure-
ments

Table 7  Mean relative Akaike 
information criteria (ΔAIC/
ΔAICmax) for the models tested 
for density (ρ), molar refraction 
(R) and Lorentz-Lorenz 
parameter (N)

The values for the best performing model for each property is high-
lighted in bold
The values for each ternary system were expressed as fractions of the 
larges ΔAIC value and averaged over the fifteen different data sets. 
Only the binary data were used to fix the model parameters.

R ρ N

Model mean Std. dev, mean Std. dev, mean Std. dev
B 0.954 0.056 0.831 0.167 0.810 0.153
C 0.994 0.011 0.672 0.399 0.862 0.103
D 0.326 0.118 0.705 0.433 0.707 0.415
E 0.199 0.330 0.567 0.864 0.650 0.542
F 0.301 0.150
G 0.388 0.958
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5  Conclusions

Published density and refractive index data, obtained at 25 °C, for the ternary system 
acetic acid–ethanol-water was augmented with additional measurements. This data set 
was used to test a suite of novel mixture models designed to predict multicomponent 
behaviour form knowledge of pure component properties and binary information. The 
proposed models were constructed using quadratic and/or cubic Scheffé K-polynomials 
as such, as products or as ratio’s (i.e. as Padé approximants). Based on the Akaike infor-
mation criterion, the maximum absolute deviation and the mean absolute deviation of 
predictions from actual values, the following models were found to best represent the 
experimental data for a set of fifteen ternary data sets:

Density Ratio of a quadratic Scheffé K-polynomial in molar mass to a linear poly-
nomial in molar volume. Lorentz-Lorenz parameter (N) as a transformation of the 
refractive index: Ratio of two quadratic Scheffé K-polynomials in molar volume with in 
molar refraction as numerator and molar volume as denominator polynomials. Molar 
refraction A cubic polynomial in molar volume defined by the expression: 

In this special cubic polynomial, the ternary constant is expressed in terms of binary 
parameters. The proposed models represent an alternative to the conventional excess 
property approach of correlating experimental mixture property data.

Supplementary Information The online version contains supplementary material available at https:// doi. 
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