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Bacteriophages or phages are viruses that infect bacteria and are increasingly used to24
control bacterial infections. We develop a reaction–diffusion model coupling the inter- AQ: Pl

approve this
edit
globally.

25
active dynamic of phages and bacteria with an epidemiological bacterial-borne disease26
model. For the submodel without phage absorption, the basic reproduction number R027
is computed. The disease-free equilibrium (DFE) is shown to be globally asymptotically28
stable whenever R0 is less than one, while a unique globally asymptotically endemic29
equilibrium is proven whenever R0 exceeds one. In the presence of phage absorption,30
the above stated classical condition based on R0, as the average number of secondary31
human infections produced by susceptible/lysogen bacteria during their entire lifespan,32
is no longer sufficient to guarantee the global stability of the DFE. We thus derive an33
additional threshold N0, which is the average offspring number of lysogen bacteria pro-34
duced by one infected human during the phage–bacteria interactions, and prove that the35
DFE is globally asymptotically stable whenever both R0 and N0 are under unity, and36
infections persist uniformly whenever R0 is greater than one. Finally, the discrete coun-37
terpart of the continuous partial differential equation model is derived by constructing a38
nonstandard finite difference scheme which is dynamically consistent. This consistency is39
shown by constructing suitable discrete Lyapunov functionals thanks to which the global40
stability results for the continuous model are replicated. This scheme is implemented in41
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MatLab platform and used to assess the impact of spatial distribution of phages, on the1
dynamic of bacterial infections.2

Keywords: Bacterial disease; diffusion; NSFD; phage; absorption; global stability.3
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1. Introduction5

Bacteriophages are among the most common and diverse viruses in the biosphere6

that are found wherever bacteria exist. When they infect the bacteria, some of7

these viruses exhibit two life cycles, namely, the so-called lytic and lysogenic cycles.8

While within the lytic life cycle, bacteria cells infected by phages are broken (i.e.9

lysed) and destroyed after immediate replication of the virions, the lysogenic life10

cycle does not result in immediate lysing of the host cells. Hence, the name “tem-11

perate phages” for the phages undergoing the lysogenic cycle. As the lysogenic cycle12

allows the host cell to continue to survive and reproduce, the virus called prophage13

in this case is replicated in all cell’s offsprings. Sometime, the most worrying fact of14

interaction between phages and bacteria is that during phage infection, the resulted15

prophage may provide benefits to host bacterium by adding new functions of the16

bacterial genome. For instance, the conversion of harmless strains Vibrio cholerae17

by bacteriophages may cause virulent cholera epidemics [3, 4]. In this regard, math-18

ematical modeling in biology/ecology can be a useful tool to gain more insight into19

the phage–bacteria interactions and their impacts on the spread of bacterial-borne20

diseases.21

The spread of bacterial-borne diseases such as cholera is affected by various22

spatial heterogeneity factors including position, water resource, movement of human23

beings. The dispersal of phages and bacteria is also used as central role that affects24

the spatial spreading of diseases. Several mathematical studies have contributed25

to the understanding of the spatial dynamics of bacterial infections [9, 22, 23, 25,26

28, 29]. While a large number of the works focused on the diffusion of humans27

and bacteria, little effort has been devoted to the impact of spatial distribution28

of phages and the influence of phage–bacteria infection on the spread of bacterial29

infections.30

In this work, we contribute to fill this gap. We propose a system of reaction–31

diffusion partial differential equations (PDEs) that model the interactive dynamics32

of phages and bacteria and their influence on bacterial-borne disease, by consid-33

ering the phage absorption and the diffusion of phages and humans. In doing so,34

we have extended our ordinary differential equation models [15, 16] on phage–35

bacteria interactions. We explicitly compute the basic reproduction number R0 of36

the reaction–diffusion model using the method described in [24].37

In order to put more emphasis on the impact of phage absorption and phage–38

bacteria interactions on the model dynamics, we proceed in two steps. First, we39

study the model without phage absorption by setting the rate of phage infection to
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zero. For this submodel, suitable Lyapunov functionals are constructed to establish1

the global stability of the spatially homogeneous steady solutions. It is precisely2

shown that the disease-free equilibrium (DFE), E0, is globally asymptotically stable3

whenever R0 ≤ 1, whereas there exists a unique globally asymptotically stable4

endemic equilibrium, E∗, if R0 > 1. Second, we consider the full system with5

positive phage absorption rate. We prove that the condition R0 ≤ 1 is no longer6

sufficient to eliminate the disease. We derive an additional threshold N0, construct7

suitable Lyapunov functionals and show that the DFE is globally asymptotically8

stable whenever R0 ≤ 1 and N0 ≤ 1. Moreover, it is proven that, whenever R0 > 1,9

all the subpopulations are uniformly persistent.10

Since the continuous model cannot be solved by analytical techniques, we11

develop a nonstandard finite difference (NSFD) scheme by carefully using Mick-12

ens’s rules [11, 12]. Our NSFD scheme is shown to be dynamically consistent with13

the continuous system in the sense that it preserves the positivity, boundedness of14

the solutions of the continuous model, as well as the global stability of the equilibria.15

The rest of this paper is organized as follows. Section 2 is devoted to the model16

derivation. The well-posedness and the computation of the basic reproduction num-17

ber are derived in Sec. 3. Theoretical analysis of models is done in Sec. 4. Section 518

deals with the mathematical analysis of the discretized system and numerical sim-19

ulations, a conclusion completes the paper in Sec. 6.20

2. Model Description21

We propose a multi-host reaction–diffusion model, which couples the interactive22

dynamics of bacteria and phages with an epidemiological bacterial-borne disease in23

humans. The proposed model is specific in that phages and bacteria interact in a24

predator–prey relationship in such a manner that the phage absorption potential25

by bacteria is explicitly taken into account.26

2.1. An interactive/ecological model of phages and bacteria with27

diffusion28

When constructing the model, for simplicity, we assume that when phages, with29

density P ≡ P (x, t) at location x and time t, infect the bacterium population, the30

density of the latter splits into two classes, namely, susceptible or uninfected bac-31

teria (not yet infected by phage), B ≡ B(x, t), and infected bacteria J ≡ J(x, t).32

Susceptible bacteria are free-living agents capable of self-multiplication in the envi-33

ronment at the constant rate r. Following [27], we look at the environment as a34

transition of the disease (i.e. the pathogen growth rate is always less than its decay35

rate μb). We recall that in the interactive dynamics of populations, a functional36

response refers to the change in the density of prey attack per predator in unit37

time. For populations interacting in the predator–prey relationship, Holling func-38

tions of type I, II and III are commonly used as functional responses [18]. Given
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the distinction we make in our model between the phage attack rate and the decay1

rate due to attachment, it is appropriate, as suggested by Smith in [20], to consider2

in this case a more general functional response of the form3

h(B,P ) = εBf(P ), (2.1)

where ε is the phage absorption rate, and the function f , the phage attack rate, is4

defined by5

f(P ) =
P

Fm(cP )
. (2.2)

In (2.2), c = ε/e and 1/e represent the injection time and the time between binding6

of phage to host bacteria and subsequent injection of genetic material into host,7

respectively. The integer m denotes the number of binding sites for phage per host8

(bacterium) and9

Fm(P ) = 1 +
m∑
l=1

l∏
i=1

(
P

i+ P

)
. (2.3)

We refer the interested reader to [20] for more details on the justifications and10

construction of the functional response h. Note that in practice, the loss of phages11

may be significant during phage–bacteria interactions. For example, if we assume12

that a phage does not detect the status (uninfected or infected) of the host cell to13

which it binds, then one should not ignore the loss phages due to wasted attacks14

on already infected hosts [20]. We take into account the fact that a host cell has a15

multiplicity of potential phage binding sites on its surface, more than one of which16

may be simultaneously bounded by phage. Thus, the rate of phages loss due to17

attachment can be described by the expression18

−ε(B + J)P. (2.4)

Moreover, μp denotes the natural phage decay rate. We assume that the spatial19

displacement of bacteria and phages is modeled by the diffusion operator DbΔ,20

where Db is the diffusion coefficient of bacteria and phages and Δ is the Laplace21

operator. As explained earlier, the lysogenic life cycle allows the infected bacterial22

host cell to continue to survive and reproduce, while at the same time the infecting23

phage is reproduced in all of the cell’s offsprings. Therefore, we need to incorporate24

the bacterial cell multiplication, the size of which is denoted by φ. In the course25

of this division, some environmental conditions (the effect of UV radiations, the26

presence of certain chemicals) can lead to the release of prophage causing prolifera-27

tion of new phages. This mechanism from which lysogen bacteria switch from a the28

lysogenic life cycle to the lytic life cycle is called the prophage induction and we29

denote by γ the rate at which such induction occurs. Putting all together, the inter-30

active reaction–diffusion dynamics of phages and bacteria is given by the following31
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system:1 ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂B(x, t)
∂t

= rB − μbB − εBf(P ) +DbΔB, x ∈ Ω, t > 0,

∂J(x, t)
∂t

= φεBf(P ) − (μb + γ)J +DbΔJ, x ∈ Ω, t > 0,

∂P (x, t)
∂t

= θγJ − ε(B + J)P − μpP +DbΔP, x ∈ Ω, t > 0.

(2.5)

2.2. A bacteria-borne epidemiological model with bacteria–phages2

interactions3

We denote by Ω ⊂ R
n, n ∈ N, the spatial habitat where the human population4

lives and uses the water from nearby aquatic reservoirs. We shall focus our model5

on cholera. However, the model can be readily applied to all bacterial- and water-6

borne diseases that threaten humans beings living in surrounding water sources7

contaminated by bacterial pathogens able to interact with specific phages.8

Cholera is an infectious disease which causes watery diarrhea, and can lead9

to dehydration and even death if untreated. It is caused by eating food or drink-10

ing water contaminated with a bacterium called V. cholerae. The two ecological11

serogroups (V. cholerae O1 and V. cholerae O139) have the ability to colonize the12

hosts small intestine. Vibrio cholerae can survive in some aquatic environment for13

more than three months up to two years living in association with zooplankton,14

phytoplankton and the aquatic organism such as bacteriophages [30].15

Let S(x, t) and I(x, t) be the density of susceptible and infected humans at16

location x and time t, respectively. The total human population at time t ≥ 0 at17

location x is then N(x, t) = S(x, t) + I(x, t). All new born humans are recruited18

in the susceptible class at the constant rate Λ. Human individuals die naturally at19

rate μh, and by disease-induced death at rate d. They recover at rate δ. The sus-20

ceptible human population acquires an infection by indirect infection (contact with21

environment). Vibriophages (phages that infect V. cholerae) can convert their bac-22

terial host from nonpathogenic strain to pathogenic strain through a process called23

phage conversion, by providing the host with phage-encoded virulence genes. For24

instance, toxigenic V. cholerae isolates carry the ctxAB genes encoded by lysogenic25

phage.26

On the one hand, the ingestion of infected bacteria causes disease at rate βαJ ,27

where β is the ingestion/consumption rate of bacteria from the environment. The28

constant rate α is the probability that the consumption of infected bacteria leads29

to human infection. On the other hand, when the susceptible bacteria are ingested30

from the environment and reach the small intestine within the human body, complex31

biological interactions, chemical reactions and genetic transduction take place that32

lead to human cholera [26]. The ingestion of susceptible bacteria can cause infection33

at rate βρB, where ρ is the probability that the consumption of susceptible bacteria34

by temperate phage in the small intestine will lead to the disease in humans. The35
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overall force infection is then given by the following Holling type II functional1

response:2

λ(B, J) = β
αJ + ρB

αJ + ρB +H
, (2.6)

where H is the half-saturation bacteria density. Infected humans contribute to the3

infection of the environment by shedding susceptible and infected bacteria through4

feces or vomiting. Therefore, the shedding rate of susceptible bacteria (B) and5

infected bacteria (J) are ω and η, respectively. We assume that D is the diffusion6

coefficient of susceptible (S) and infected (I) humans. Based on the above descrip-7

tion and assumptions, the following reaction–diffusion model for bacterial infections8

is given:9 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(x, t)
∂t

= Λ − λ(B, J)S − μhS + δI +DΔS, x ∈ Ω, t > 0,

∂I(x, t)
∂t

= λ(B, J)S − (μh + d+ δ)I +DΔI, x ∈ Ω, t > 0,

∂B(x, t)
∂t

= ωI + rB − μbB − εBf(P ) +DbΔB, x ∈ Ω, t > 0,

∂J(x, t)
∂t

= ηI + φεBf(P ) − (μb + γ)J +DbΔJ, x ∈ Ω, t > 0,

∂P (x, t)
∂t

= θγJ − ε(B + J)P − μpP +DbΔP, x ∈ Ω, t > 0.

(2.7)

The system is appended with the following initial conditions through functions of10

the space variable x assumed to continuous:11

S(x, 0) = s(x), I(x, 0) = i(x), B(x, 0) = b(x), J(x, 0) = j(x), P (x, 0) = p(x),

Finally, we consider the Neumann boundary conditions12

∂S

∂z
=
∂I

∂z
=
∂B

∂z
=
∂J

∂z
=
∂P

∂z
= 0, x ∈ ∂Ω, t > 0,

where ∂/∂z denotes the differentiation along the outward normal z to the boundary,13

∂Ω, of the domain Ω assumed to be smooth. These conditions show that across the14

boundary, no external input and output is imposed from outside on these popula-15

tions. This is not a severe limitation in the sense that the displacement of popula-16

tions can be controlled during an epidemic situation, and that bacteria and phages17

can be assumed to live and evolve in water pond.18

3. Basic Properties of the Full Model19

In this section, we derive the global well-posedness and the threshold dynamics of20

model (2.7). We therefore assume that Ω ⊂ R
n is a bounded open set with smooth21

enough boundary ∂Ω.22

2250123-6
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We adopt the following notations: u(x, t) = (S(x, t), I(x, t), B(x, t), J(x, t),1

P (x; t)); the initial condition is u(x, 0) = (s(x), i(x), b(x), j(x), p(x)), X = C(Ω,R5)2

is the Banach space of continuous vector-valued functions from Ω into R
n, equipped3

with the usual supremum norm || . ||X ; X+ = C(Ω,R5
+) so that (X,X+) is a4

strongly ordered space. We further assume that5

γ1(t), γ2(t), γ3(t), γ4(t), γ5(t) : C(Ω,R) → C(Ω,R),

are the C0-semigroups with infinitesimal generators the operatorsDΔS−μh,DΔI−6

(μh + d + δ), DbΔB − (μb − r), DbΔJ − (μb + γ) and DbΔP − μp, respectively,7

subject to Neumann boundary conditions [17]. Clearly, ∀ϕ ∈ C(Ω,R), we have8

γ1(t)ϕ(x) = e−μht

∫
Ω

Φ(x, t, s)ϕ(s)ds, γ2(t)ϕ(x) = e−(μh+d+δ)t

×
∫

Ω

Φ(x, t, s)ϕ(s)ds,

γ3(t)ϕ(x) = e−(μb−r)t
∫

Ω

Ψ(x, t, s)ϕ(s)ds, γ4(t)ϕ(x) = e−(μb+γ)t

×
∫

Ω

Ψ(x, t, s)ϕ(s)ds,

γ5(t)ϕ(x) = e−μP t

∫
Ω

Ψ(x, t, s)ϕ(s)ds, t > 0,

where Φ and Ψ are Green functions associated with the operators DΔ and DbΔ9

subject to Neumann boundary condition, respectively. Thanks to [8, Corollary 4],10

Γ(t) = (γ1(t), γ2(t), γ3(t), γ4(t), γ5(t)) : C(Ω,R5) → C(Ω,R5) is a compact and11

strongly positive semigroup.12

From [19, Corollary 7.3.2], it is obvious that for all x0 ∈ X+, the system (2.7)13

admits a unique mild solution u(x, t) defined on the interval [0, τ), with τ = τ(x0),14

which is nonnegative for all t ∈ [0, τ).15

The following result establishes the global well-posedness result for (2.7).16

Theorem 3.1. For any ϕ ∈ X+, system (2.7) admits a unique solution u(t, x, ϕ)17

defined on [0,∞) × Ω, and every solution semiflow ϕt : X+ → X+ is bounded.18

Proof. Following the tangent condition for parabolic equations [19], solutions cor-19

responding to nonnegative initial conditions are nonnegative. Adding the first and20

the second equations of (2.7) yields21

∂S(x, t) + ∂I(x, t)
∂t

= DΔ(S(x, t) + I(x, t)) + Λ − (μh + d)I(x, t) − μhS(x, t)

≤ DΔ(S(x, t) + I(x, t)) + Λ − μh(S(x, t) + I(x, t)).

2250123-7
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By the comparison principle for parabolic equations [7], S(x, t) and I(x, t) are1

uniformly bounded.2

Multiplying the third equation by θ, and add it to the fourth and proceed as3

above, we have4

∂ (φB(x, t) + J(x, t))
∂t

= (φω + η)I(x, t) +DbΔ(φB(x, t) + J(x, t))

− (μb − r)φB(x, t) − (μb + γ)J(x, t)

≤ (φω + η)I(x, t) +DbΔ(φB(x, t) + J(x, t))

− (μb − r)(φB(x, t) + J(x, t)).

Next, using the boundedness of I(x, t), and once more the comparison principle5

for parabolic equations we obtain also that B(x, t), J(x, t) are uniformly bounded.6

From the last equation of system (2.7), we proceed similarly to show that P (x, t)7

is uniformly bounded. Consequently, the solution Z(., t, ϕ) of system (2.7) exists8

globally on [0,∞).9

Moreover, the comparison principle yields10

lim sup
t→+∞

(S(x, t) + I(x, t)) ≤ Λ
μh
, uniformly, ∀x ∈ Ω.

Thus, for sufficiently χ > 0, there exists t0 such that ∀t > t011

S(., t) ≤ Λ
μh

(1 + χ) and I(., t) ≤ Λ
μh

(1 + χ), ∀ t > t0.

Hence, S(x, t) and I(x, t) are ultimately bounded. Similarly, there exists t1 > t012

such that ∀t > t113

φB(., t) + I(., t) ≤ (ωφ+ η)Λ
μh(μb − r)

(1 + χ) and

P (., t) ≤ θγ(φω + η)Λ
μh(μb − r)μP

(1 + χ), ∀ t > t1, t1 > t0.

Thus, the positive orbits of a bounded subset of X+ are bounded and this achieved14

the proof.15

Now we compute for model (2.7) the basic reproduction number, R0, defined as16

the average number of secondary human infections produced by susceptible or lyso-17

gen bacteria in their entire lifespan. This threshold quantity will serve to study the18

asymptotic behavior of the system. The DFE of model (2.7) is E0 = (S0, 0, 0, 0, 0)19

with S0 = Λ/μh. We compute the basic reproduction number using the technique20

presented in [24]. To achieve this, let us consider the following subsystem that

2250123-8
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reduced to infected compartments:1 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂I

∂t
= λ(B, J)S − (μh + d+ δ)I +DΔI, x ∈ Ω, t > 0,

∂B

∂t
= ωI + rB − μbB − εBf(P ) +DbΔB, x ∈ Ω, t > 0,

∂J

∂t
= ηI + φεBf(P ) − (μb + γ)J +DbΔJ, x ∈ Ω, t > 0,

∂P (x, t)
∂t

= θγJ − ε(B + J)P − μpP +DbΔP, x ∈ Ω, t > 0

∂I

∂z
=
∂B

∂z
=
∂P

∂z
=
∂J

∂z
= 0, x ∈ ∂Ω, t > 0,

I(x, 0) = i(x), B(x, 0) = b(x), J(x, 0) = j(x), P (x, 0) = p(x), x ∈ Ω.

(3.1)

Let ς(t) be the solution semigroup of (3.1), and X0(x) = (i(x), b(x), j(x), p(x))T2

the initial distribution of the subpopulations. The distribution of new infection at3

time t is given by ς(t)X0(x). Define4

F (x) ≡ F =

⎛⎜⎜⎜⎜⎝
0 βρS0/H βαS0/H 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎠,
and5

V (x) ≡ V =

⎛⎜⎜⎜⎜⎝
(μh + d+ δ) 0 0 0

−ω (μb − r) 0 0

−η 0 (μb + γ) 0

0 0 −θγ μp

⎞⎟⎟⎟⎟⎠,
representing the matrices of appearance of new infections and transitions, respec-6

tively. Since (2.7) is a reaction–diffusion epidemic model with spatially homogeneous7

parameters and appended with the Neumann boundary condition, with diffusion8

coefficients not depending on the space variable, it follows from [24, Theorem 3.5]9

that the basic reproduction number is given by10

R0 = r(FV −1), (3.2)

the explicit expression of which is11

R0 =
βωρS0

H(μb − r)(μh + d+ δ)
+

βηαS0

H(μb + γ)(μh + d+ δ)
. (3.3)

2250123-9
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4. Asymptotic Analysis of the Model1

We now focus on the asymptotic behavior of the solutions of (2.7). We point out2

that our main goal is to study the impact of phage–bacteria interactions on the3

diffusive dynamic of an epidemiological bacteria-borne disease. We proceed in two4

steps. First, we neglect the phage absorption rate by setting ε = 0. The dynamic of5

resulted model is completely driven by the threshold R0. Second, we prove for the6

full model that R0 may not be sufficient for the disease elimination.7

4.1. The submodel without phage absorption8

Pointing out that the interactions between phages and bacteria interactions can also9

take place in the small intestine of the infected humans, we assume that even when10

ε = 0, the presence of infected bacteria can be justified by their shedding [15, 26]11

in the environment by infected humans. The resulted subsystem is the following:12 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(x, t)
∂t

= Λ − λ(B, J)S − μhS + δI +DΔS, x ∈ Ω, t > 0,

∂I(x, t)
∂t

= λ(B, J)S − (μh + d+ δ)I +DΔI, x ∈ Ω, t > 0,

∂B(x, t)
∂t

= ωI + rB − μbB +DbΔB, x ∈ Ω, t > 0,

∂J(x, t)
∂t

= ηI − (μb + γ)J +DbΔJ, x ∈ Ω, t > 0,

∂P (x, t)
∂t

= θγJ − μpP +DbΔP, x ∈ Ω, t > 0

S(x, 0)= s(x), I(x, 0)= i(x), B(x, 0)= b(x),

J(x, 0)= j(x), P (x, 0) = p(x),

∂S

∂z
=
∂I

∂z
=
∂B

∂z
=
∂J

∂z
=
∂P

∂z
= 0, x ∈ Ω, t > 0.

(4.1)

Note that the DFE of (4.1) is the same as that of the full model and is given by13

E0 = (S0, 0, 0, 0, 0). The following theorem gives the global stability of E0 of the14

model (4.1).15

Theorem 4.1. If R0 ≤ 1, the DFE is globally asymptotically stable in Ω.16

Proof. The global stability of the constant steady-state solutionE0 of the reaction–17

diffusion system (4.1) subject to Neumann boundary conditions is based on the18

construction of a Lyapunov functional for the involved PDEs and the application19

of LaSalle Invariance Principle. Inspired by [6, 23, 25, 29], we choose the following20
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Lyapunov functional candidate:1

L(x, t) =
∫

Ω

L0(x, t)dx, (4.2)

with2

L0(x, t) = S(x, t) − S0 − S0 ln
(
S(x, t)
S0

)
+ I(x, t)

+
βρS0

H(μb − r)
B(x, t) +

βαS0

H(μb + γ)
J(x, t). (4.3)

Dropping the argument (x, t) for notational simplicity, we have3

∂L0

∂t
=
(

1 − S0

S

)
∂S

∂t
+
∂I

∂t
+

βρS0

H(μb − r)
∂B

∂t
+

βαS0

H(μb + γ)
∂J

∂t

=
(

1 − S0

S

)
(DΔS + Λ − λ(B, J)S − μhS + δI) + (DΔJ + λ(B, J)S

− (μh + d+ δ)I) +
βρS0

H(μb − r)
(DbΔB + ωI − (μb − r)B) +

βαS0

H(μb + γ)

× (DbΔJ + ηI − (μb + γ)J)

= −μh
S

(S0 − S)2 +D

(
1 − S0

S

)
ΔS + λ(B, J)S +

S − S0

S
δI

− (μh + d+ δ)I +DΔI +
βωρS0

H(μb − r)
I − βρS0

H
B

+
βρS0

H(μb − r)
BbΔB +

βηαS0

H(μb + γ)
I − βαS0

H
J +

βαS0

H(μb + γ)
DbΔJ.

Using, λ(B, J)S0 ≤ βα(S0/H)J+β(ρS0/H)B, some simple algebraic manipulations4

lead us to5

∂L0

∂t
≤ −μh

S
(S0 − S)2 +D

(
1 − S0

S

)
ΔS + I

(
βωρS0

H(μb − r)
+

βηαS0

H(μb + γ)

− (μh + d+ δ)

)
+DΔI +

βρS0

H(μb − r)
DbΔB +

βαS0

H(μb + γ)
DbΔJ

≤ −μh
S

(S0 − S)2 +D

(
1 − S0

S

)
ΔS + I(μh + d+ δ) (R0 − 1) +DΔI

+
βρS0

H(μb − r)
DbΔB +

βαS0

H(μb + γ)
DbΔJ.
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Moreover, using the boundary conditions, it is straightforward that1 ∫
Ω

ΔSdx =
∫

Ω

ΔIdx =
∫

Ω

ΔbBdx =
∫

Ω

ΔbJdx = 0,
∫

Ω

ΔS
S
dx =

∫
Ω

|ΔS|2
S2

dx ≥ 0.

Putting all together, we have2

dL(x, t)
dt

=
∫

Ω

∂L0(x, t)
∂t

dx ≤
∫

Ω

(
−μh
S

(S0 − S)2 + I(μh + d+ δ)(R0 − 1)
)
dx ≤ 0.

Finally, it is easy to prove that the largest invariant set contained in Ω such that3

dL(x, t)/dt = 0 is {E0}. Therefore, the application of LaSalle’s Invariance Principle4

shows that the DFE is globally asymptotically stable in Ω.5

Theorem 4.2. The following statements hold whenever R0 > 1:6

(i) The system (4.1) has a unique endemic equilibrium E∗.7

(ii) The unique endemic equilibrium of (4.1) is globally asymptotically stable in Ω8

for δ = 0.9

Proof. (i) Let E∗ = (S∗, I∗, B∗, J∗, P ∗) be any endemic equilibrium of the10

model (4.1). Then11 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ∗ = β
(αJ∗ + ρB∗)

αJ∗ + ρB∗ +H
,

Λ − λ∗S∗ − μhS
∗ + δI∗ = 0,

λ∗S∗ − (μh + d+ δ)I∗ = 0,

ωI∗ − (μb − r)B∗ = 0,

ηI∗ − (μb + γ)J∗ = 0,

θγJ∗ − μpP
∗ = 0.

(4.4)

From the third equation of (4.4)12

I∗ =
λ∗S∗

μh + d+ δ
. (4.5)

Plugging (4.5) in the second equation of (4.4) yields13

S∗ =
Λ(μh + d+ δ)

λ∗(μh + d) + μh(μh + d+ δ)
. (4.6)

Inserting (4.5) into (4.4) yields14

I∗ =
Λλ∗

λ∗(μh + d) + μh(μh + d+ δ)
. (4.7)

From the fourth equation of (4.4)15

B∗ =
ωI∗

μb − r
,
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and using (4.7) yields1

B∗ =
ωΛλ∗

(μb − r)(λ∗(μh + d) + μh(μh + d+ δ))
. (4.8)

By the same way, from the fifth equation of (4.4)2

J∗ =
ηΛλ∗

(μb + γ)(λ∗(μh + d) + μh(μh + d+ δ))
. (4.9)

Now using the explicit expression of λ∗, one has the following:3

λ∗ =
[βρω(μb + γ) + βηα(μb − r)]Λλ∗

(μb + γ)(μb − r)(λ∗(μh + d) + μh(μh + d+ δ))
.

Since we are interested in the positive values of λ∗, some algebraic computations4

give5

λ∗ =
Hμh(μh + d+ δ)(μb + γ)(μb − r)(R0 − 1)

Λ[αη(μb − r) + ρω(μb + γ)] +H(μb + γ)(μb − r)(μh + d)
. (4.10)

Plugging λ∗ in the expressions of S∗, I∗, B∗ J∗ and P ∗ and setting6

K1 = Hμh(μb − r)(μb + γ)(μh + d)(R0 − 1) +
μh
Λ
K2,

with7

K2 = Λ[Λ(αη(μb − r) + ρω(μb + γ)) +H(μb + γ)(μb − r)(μh + d)],

takes us to8 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ =
K2

K1
, I∗ = ΛH(μb − r)(μb + γ)μh(μh + d+ δ)

(R0 − 1)
K1

,

B∗ = ΛH(μb + γ)μh(μh + d+ δ)
(R0 − 1)
K1

,

J∗ = ΛH(μb − r)μh(μh + d+ δ)
(R0 − 1)
K1

,

P ∗ = θγΛH(μb − r)μh(μh + d+ δ)
(R0 − 1)
μpK1

.

(4.11)

One can remark that one has for R0 = 1, S∗ = S0, I∗ = 0, B∗ = 0, J∗ = 0, P ∗ = 0,9

so that we recover the DFE.10

(ii) For the global stability of the endemic equilibrium E∗, let’s choose the11

following Lyapunov functional candidate:12

U(x, t) =
∫

Ω

L∗
0(x, t)dx, (4.12)
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with1

L∗
0(x, t) = S(x, t) − S∗ − S∗ ln

(
S(x, t)
S∗

)
+ I(x, t) − I∗ − I∗ ln

(
I(x, t)
I∗

)

+
βρB∗S∗

(ρB∗ + αJ∗ +H)ωI∗

(
B(x, t) −B∗ −B∗ ln

(
B(x, t)
B∗

))
+

βαJ∗S∗

(ρB∗ + αJ∗ +H)ηI∗

(
J(x, t) − J∗ − J∗ ln

(
J(x, t)
J∗

))
.

∂L∗
0

∂t
=
(

1 − S∗

S

)
∂S

∂t
+
(

1 − I∗

I

)
∂I

∂t
+

βρB∗S∗

(ρB∗ + αJ∗ +H)ωI∗

(
1 − B∗

B

)
∂B

∂t

+
βαJ∗S∗

(ρB∗ + αJ∗ +H)ηI∗

(
1 − J∗

J

)
∂J

∂t

=
(

1 − S∗

S

)
(Λ − λS − μhS +DΔS) +

(
1 − I∗

I

)
(λS − (μh + d)I +DΔI)

+
βρB∗S∗

(ρB∗ + αJ∗ +H)ωI∗

(
1 − B∗

B

)
(ωI − (μb − r)B +DbΔB)

+
βαJ∗S∗

(ρB∗ + αJ∗ +H)ηI∗

(
1 − J∗

J

)
(ηI − (μb + γ)J +DbΔJ).

At the endemic equilibrium E∗, one has2

(μh + d) = λ∗S∗, (μb − r) = ωI∗/B∗, (μb + γ) = ηI∗/J∗.

Thus3

∂L∗
0

∂t
=
(

1 − S∗

S

)
(Λ − λS − μhS +DΔS) +

(
1 − I∗

I

)(
λS − λ∗S∗

I∗
I +DΔI

)
+

βρB∗S∗

(ρB∗ + αJ∗ +H)ωI∗

(
1 − B∗

B

)(
ωI − ωI∗

B∗ B +DbΔB
)

+
βαJ∗S∗

(ρB∗ + αJ∗ +H)ηI∗

(
1 − J∗

J

)(
ηI − ηI∗

J∗ J +DbΔJ
)
.

Expanding and grouping like terms of this last expression give4

∂L∗
0

∂t
= −μh

S
(S − S∗)2 + λ1(B∗, J∗)S∗

×
(

3 − S∗

S
+

λ1(B, J)
λ1(B∗, J∗)

− λ1(B, J)SI∗

λ1(B∗, J∗)S∗I
− B∗I
BI∗

− B

B∗

)
+ λ2(J∗, B∗)S∗

×
(
3 − S∗

S
+

λ2(J,B)
λ2(J∗, B∗)

− λ2(J,B)SI∗

λ2(J∗, B∗)S∗I
− J∗I
JI∗

− J

J∗

)
+D

(
1 − S∗

S

)
ΔS

2250123-14



Page Proof

November 16, 2022 17:14 WSPC S1793-5245 242-IJB
2250123

On a diffusive bacteriophage dynamical model for bacterial infections

+D

(
1 − I∗

I

)
ΔI +Db

λ1(B∗, J∗)S∗

ωI∗

(
1 − B∗

B

)
ΔB

+Db
λ2(J∗, B∗)S∗

ηI∗

(
1 − J∗

J

)
ΔJ,

wherein λ1(B, J) = βρB/(ρB + αJ + H), λ2(J,B) = βαJ/(ρB + αJ + H) are1

increasing functions of B and J , respectively. For more investigations, let’s set2

h(x) = x− 1 − lnx, x > 0, h(x) ≥ 0, ∀x > 0.

Therefore, the derivative of U along the solutions of system (2.7), can be bounded3

above as follows:4

dU
dt

=
∫

Ω

∂L∗
0

∂t
dx ≤ −μh

S
(S − S∗)2 − λ1(B∗, J∗)S∗

(
h

(
S∗

S

)

+ h

(
λ1(B, J)SI∗

λ1(B∗, J∗)S∗I

)
+ h

(
B∗I
BI∗

)
+ h

(
B

B∗

)
− h

(
λ1(B, J)
λ1(B∗, J∗)

))

−λ2(J∗, B∗)S∗
(
h

(
S∗

S

)
+ h

(
λ2(J,B)SI∗

λ2(J∗, B∗)S∗I

)
+ h

(
J∗I
JI∗

)
+ h

(
J

J∗

)
− h

(
λ2(J,B)
λ2(J∗, B∗)

))
.

Furthermore, since λ1(B, J) is an increasing function of B, we have5

h

(
λ1(B, J)
λ1(B∗, J∗)

)
− h

(
B

B∗

)
=

λ1(B, J)
λ1(B∗, J∗)

− B

B∗ + ln
(

Bλ1(B, J)
B∗λ1(B∗, J∗)

)
≤ λ1(B, J)
λ1(B∗, J∗)

− B

B∗ +
Bλ1(B, J)

B∗λ1(B∗, J∗)
− 1

=
(

λ1(B, J)
λ1(B∗, J∗)

− B

B∗

)(
1 − λ1(B∗)

λ1(B)

)
=
λ1(B, J)(B∗ −B) (λ1(B, J) − λ1(B∗, J∗))

λ2
1(B∗)B∗

− B (λ1(B, J) − λ1(B∗, J∗))2

λ2
1(B∗, J∗)B∗

≤ 0.

Similarly, remembering that λ2(J,B) is an increasing function of J , we obtain6

h

(
λ2(J,B)
λ2(J∗, B∗)

)
− h

(
J

J∗

)
≤ 0.

Up to now, we proven that dU/dt ≤ 0. Moreover, the largest invariant set contained7

in Ω such that dU/dt = 0 is {E∗}, and the application of LaSalle’s Invariance8

Principle proves that the E∗ of the PDE (4.1) is globally asymptotically stable9

in Ω.10
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4.2. The full model with positive absorption rate1

4.2.1. Stability of DFE2

In the presence of phage absorption (ε > 0) the DFE is preserved. Its local stability3

is given by the following proposition.4

Proposition 4.3. Whenever R0 < 1, the DFE of the PDE (2.7) is locally asymp-5

totically stable.6

Proof. Let 0 = μ0 < μ1 < μi < μi+1, i = 1, 2, . . . , be the eigenvalues of −Δ on Ω7

with homogeneous Neumann boundary condition, E(μi) the space of eigenfunctions8

corresponding to μi and {ϕij : j = 1, 2, . . . ,dim(E(μi))} an orthogonal basis of9

E(μi)). Then X = (C1(Ω))5 can be decomposed as10

X =
∞⊕
i=1

Xi, Xij =
dimE(μi)⊕

i=1

Xij ,

where Xij = {cϕij : c ∈ (R)3}.11

Linearizing the system at E0 gives ∂Z(x, t)/∂t = diag(D,D,Db, Db)ΔZ(x, t) +12

J(E0)Z(x, t), where Z(x, t) = (S(x, t), I(x, t), B(x, t), J(x, t), P (x, t)), and13

J(E0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−μh δ −βρS0/H −βαS0/H 0

0 −(μh + d+ δ) βρS0/H βαS0/H 0

0 ω −(μb − r) 0 0

0 η 0 −(μb + γ) 0

0 0 0 θγ −μP

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The characteristic polynomial at E0 is (x+ μh + μiD)(x + μp + μiDb)P (x) with14

P (x) = (x+ μh + d+ δ + μiD)(x + μb − r + μiDb)(x+ μb + γ + μiDb)

− βρωS0

H
(x+ μb + γ + μiDb) − βαηS0

H
(x+ μb − r + μiDb).

The expansion of P (x) yields P (x) = x3 + a2x
2 + a1x+ a0, where15 ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a2 = (μh + d+ δ + μiD + μb − r + μiDb + μb + γ + μiDb),

a1 = (μh + d+ δ + μiD)(μb − r + μiDb)

+ (μh + d+ δ + μiD)(μb + γ + μiDb)

+ (μb + γ + μiDb)(μb − r + μiDb) − βωρS0/H − βαηS0/H,

a0 = (μh + d+ δ + μiD)(μb − r + μiDb)(μb + γ + μiDb)(1 −R),

(4.13)
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with1

R =
βρωS0

H(μh + d+ δ + μiD)(μb − r + μiDb)

+
βαηS0

H(μh + d+ δ + μiD)(μb + γ + μiDb)

≤ R0.

Clearly, a0 ≥ (μh + d + δ + μiD)(μb − r + μiDb)(μb + γ + μiDb)(1 − R0) ≥ 0.2

Moreover3

a1a2 − a0 = a0 + (μh + d+ δ + μiD)2(μb − r + μiDb)

×
(

1 − βρωS0

(μh + d+ δ + μiD)(μb − r + μiDb)

)
+ (μh + d+ δ + μiD)2(μb + γ + μiDb)

×
(

1 − βαηS0

(μh + d+ δμiD)(μb + γ + μiDb)

)
+ (μh + d+ δ + μiD)[(μb − r + μiDb)2 + (μb + γ + μiDb)2

+ (μb + γ + μiDb)(μb − r + μiDb)] + (μb + γ + μiDb)2(μb − r + μiDb)

≥ a0 + (μh + d+ δ + μiD)2 [(μb − r + μiD) + (μb + γ + μiDb)] (1 −R)

+ (μh + d+ δ + μiD)[(μb − r + μiDb)2 + (μb + γ + μiDb)2

+ (μb + γ + μiDb)(μb − r + μi)] + (μb + γ + μiDb)2(μb − r + μiDb)

≥ a0 + (μh + d+ δ + μiD)2 [(μb − r + μiD) + (μb + γ + μiDb)] (1 −R0)

+ (μh + d+ δ + μiD)[(μb − r + μiDb)2 + (μb + γ + μiDb)2

+ (μb + γ + μiDb)(μb − r + μi)]

+ (μb + γ + μiDb)2(μb − r + μiDb) > 0.

Hence, the DFE of system (2.7) is locally asymptotically stable.4

We now focus on the global asymptotic stability (GAS) of DFE which is needed5

for the possible elimination of the disease. We point out that our model couples6

and epidemiological model with an ecological model, and one should notice that the7

corresponding reproduction number R0 does not depend on the parameters describ-8

ing the phage–bacteria interactions. Moreover, one should mention that under the9

influence of those interactions, the density of susceptible bacteria decreases. while10

that of the infected bacteria increases. Consequently, for the possible control of the11

epidemic, another threshold is needed. The existence of the latter threshold denoted12

by N0, is actually expected because the infected human individuals contribute to13

the growth of bacteria. The threshold quantity N0 should actually be the average14
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offspring number of lysogen bacteria produced, by one infected human during the1

phage–bacteria interactions [16].2

N0 =
βαφωS0

H(μb + γ)(μh + d+ δ)
+

βηαS0

H(μb + γ)(μh + d+ δ)
. (4.14)

The global stability the DFE is then summarized in the following theorem.3

Theorem 4.4. The DFE is globally asymptotically stable whenever4

max{R0,N0} ≤ 1.5

Proof. The proof of this theorem is done in two steps.6

Step 1: max{R0,N0} = R0.7

We choose the following Lyapunov functional candidate:8

V =
∫

Ω

L1dx with L1 = S − S0 − S0 ln
(
S

S0

)
+ I +

βρS0

H(μb − r)
B +

βαS0

H(μb + γ)
J, (4.15)

∂L1

∂t
=
(

1 − S0

S

)
∂S

∂t
+
∂I

∂t
+

βρS0

H(μb − r)
∂B

∂t
+

βαS0

H(μb + γ)
∂J

∂t

=
(

1 − S0

S

)
(DΔS + Λ − λ(B, J)S − μhS + δI) + (DΔJ + λ(B, J)S

− (μh + d+ δ)I) +
βρS0

H(μb − r)
(DbΔB + ωI − (μb − r)B − εBf(P ))

+
βαS0

H(μb + γ)
(DbΔJ + ηI + φεBf(P ) − (μb + γ)J)

= −μh
S

(S0 − S)2 +D

(
1 − S0

S

)
ΔS + λ(B, J)S +

S − S0

S
δI

− (μh + d+ δ)I +DΔI +
βωρS0

H(μb − r)
I − βρS0

H
B − βρS0

H(μb − r)
εBf(P )

+
βρS0

H(μb − r)
BbΔB +

βηαS0

H(μb + γ)
I +

βφαS0

H(μb + γ)
εBf(P )

− βαS0

H
J +

βαS0

H(μb + γ)
DbΔJ.

Clearly, λ(B, J)S0 ≤ βα(S0/H)J+β(ρS0/H)B. After grouping like terms, one has9

∂L1

∂t
≤ −μh

S
(S0 − S)2 +D

(
1 − S0

S

)
ΔS

+ I

(
βωρS0

H(μb − r)
+

βηαS0

H(μb + γ)
− (μh + d+ δ)

)
+ εBf(P )
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×
(

βφαS0

H(μb + γ)
− βρS0

H(μb − r)

)
+DΔI +

βρS0

H(μb − r)
DbΔB

+
βαS0

H(μb + γ)
DbΔJ.

Remark that1 (
βφαS0

H(μb + γ)
− βρS0

H(μb − r)

)
=

(μh + d+ δ)
ω

(N0 −R0),

that is2

∂L1

∂t
= −μh

S
(S0 − S)2 +D

(
1 − S0

S

)
ΔS + I(μh + d+ δ)(R0 − 1)

+
(μh + d+ δ)

ω
εBf(P )(N0 −R0) +DΔI +

βρS0

H(μb − r)
DbΔB

+
βαS0

H(μb + γ)
DbΔJ,

this implies that3

dV
dt

=
∫

Ω

∂L1

∂t
dx ≤ −μh

S
(S0 − S)2 + I(μh + d+ δ)(R0 − 1)

+
(μh + d+ δ)

ω
εBf(P )(N0 −R0) ≤ 0.

Step 2: max{R0,N0} = N0.4

We choose the following Lyapunov functional in this case:5

W =
∫

Ω

L2dx with L2 = S − S0 − S0 ln
(
S

S0

)
+ I +

φ(μh + d+ δ)
ωφ+ η

B

+
(μh + d+ δ)
ωφ+ η

J,

∂L2

∂t
=
(

1 − S0

S

)
∂S

∂t
+
∂I

∂t
+
φ(μh + d+ δ)

ωφ+ η

∂B

∂t
+

(μh + d+ δ)
ωφ+ η

∂J

∂t

=
(

1 − S0

S

)
(DΔS + Λ − λ(B, J)S − μhS + δI) + (DΔJ + λ(B, J)S

− (μh + d+ δ)I) +
φ(μh + d+ δ)

ωφ+ η
(DbΔB + ωI − (μb − r)B − εBf(P ))

+
(μh + d+ δ)
ωφ+ η

(DbΔJ + ηI + φεBf(P ) − (μb + γ)J). (4.16)
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Using again the inequalities λ(B, J)S0 ≤ βα(S0/H)J + β(ρS0/H)B and grouping1

like terms, ∂L2/∂t becomes2

∂L2

∂t
≤ −μh

S
(S0 − S)2 +D

(
1 − S0

S

)
ΔS + J

1
φω + η

×
(
βαS0φω

H
+
βαS0η

H
− (μb + γ)(μh + d+ δ)

)
+DΔI +B

1
φω + η

(
βρS0φω

H
+
βηαS0

H
− φ(μb − r)(μh + d+ δ)

)
+
φ(μh + d+ δ)

ωφ+ η
DbΔB +

(μh + d+ δ)
ωφ+ η

DbΔJ

= J
(μb + γ)(μh + d+ δ)

φω + η

×
(

βαS0φω

H(μb + γ)(μh + d+ δ)
+

βαS0η

H(μb + γ)(μh + d+ δ)
− 1
)

+B
φ(μb − r)(μh + d+ δ)

φω + η

×
(

βρS0ω

H(μb − r)(μh + d+ δ)
+

βηαS0

Hφ(μb − r)(μh + d+ δ)
− 1
)

+
φ(μh + d+ δ)

ωφ+ η
DbΔB +

(μh + d+ δ)
ωφ+ η

DbΔJ

+DΔI +D

(
1 − S0

S

)
ΔS − μh

S
(S0 − S)2.

Knowing that R0 ≤ N0 implies that 1/φ(μb − r) ≤ 1/(μb + γ), we have3

∂L2

∂t
≤ J

(μb + γ)(μh + d+ δ)
φω + η

×
(

βαS0φω

H(μb + γ)(μh + d+ δ)
+

βαS0η

H(μb + γ)(μh + d+ δ)
− 1
)

+B
φ(μb − r)(μh + d+ δ)

φω + η

×
(

βρS0ω

H(μb − r)(μh + d+ δ)
+

βηαS0

H(μb + γ)(μh + d+ δ)
− 1
)

+
φ(μh + d+ δ)

ωφ+ η
DbΔB +

(μh + d+ δ)
ωφ+ η

DbΔJ
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+DΔI +D

(
1 − S0

S

)
ΔS − μh

S
(S0 − S)2

= −μh
S

(S0 − S)2 + J
(μb + γ)(μh + d+ δ)

φω + η
(N0 − 1)

+B
φ(μb − r)(μh + d+ δ)

φω + η
(R0 − 1)

+
φ(μh + d+ δ)

ωφ+ η
DbΔB +

(μh + d+ δ)
ωφ+ η

DbΔJ

+DΔI +D

(
1 − S0

S

)
ΔS.

Then1

dW
dt

≤ −μh
S

(S0 − S)2 + J
(μb + γ)(μh + d+ δ)

φω + η
(N0 − 1)

+B
φ(μb − r)(μh + d+ δ)

φω + η
(R0 − 1) ≤ 0. (4.17)

Thus, from step 1 and step 2 above, it can be easily shown that the largest invariant2

set contained in Ω such that dW/dt = 0 is {E0}, and the application of LaSalle’s3

Invariance Principle proves that the DFE is globally asymptotically stable in Ω.4

5

Due to the complexity of model (2.7), the existence and global stability of the6

endemic equilibrium have not been investigated for ε > 0. Alternatively, in what7

follows, we prove the uniform persistence of the full model in this case.8

4.2.2. Uniform persistence of system (2.7)9

Let’s consider the following linear system obtained by linearizing model (2.7) around10

the DFE:11 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂I(x, t)
∂t

=
βρωS0

H
B +

βαηS0

H
J

− (μh + d+ δ)I +DΔI, x ∈ Ω, t > 0,

∂B(x, t)
∂t

= ωI − (μb − r)B +DbΔB, x ∈ Ω, t > 0,

∂J(x, t)
∂t

= ηI − (μb + γ)J +DbΔJ, x ∈ Ω, t > 0,

∂I

∂z
=
∂B

∂z
=
∂J

∂z
= 0, x ∈ ∂Ω, t > 0.

(4.18)
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Assuming that (4.18) has a solution of the form I(x, t) = eνtγ2(x), B(x, t) =1

eνtγ3(x) and J(x, t) = eνtγ4(x), leads us to the following eigenvalue problem:2 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νγ2(x) =
βρωS0

H
γ3(x) +

βαηS0

H
γ4(x)

− (μh + d+ δ)γ2(x) +DΔγ2(x), x ∈ Ω,

νγ3(x) = ωγ2(x) − (μb − r)γ3(x) +DbΔγ3(x), x ∈ Ω,

νγ4(x) = ηγ2(x) − (μb + γ)γ4(x) +DbΔγ4(x), x ∈ Ω,

∂γ2

∂z
=
∂γ3

∂z
=
∂γ4

∂z
= 0, x ∈ ∂Ω.

(4.19)

The proofs of the following lemmas can be readily adapted from their analogs in [24].3

Lemma 4.5. The problem (4.19) has a principal eigenvalue ν0 with a positive4

eigenfunction and ν0 has the same sign as R0 − 1.5

Lemma 4.6. Let Z(., t, ϕ) be a solution of the model (2.7) with initial condition6

Z(., t, ϕ) = ϕ ∈ X
+, one has7

(i) ∀ϕ ∈ X
+, we have S(x, t, ϕ) > 0, ∀x ∈ Ω, t > 0 and there is a constant τ such8

that9

lim inf
t→∞ ≥ τ, uniformly for x ∈ Ω,

(ii) if there exists t1 > 0 such that I(., t, ϕ) 
= 0 or B(., t, ϕ) 
= 0 or J(., t, ϕ) 
= 0,10

then I(x, t, ϕ) > 0, B(x, t, ϕ) > 0 and J(x, t, ϕ) > 0, x ∈ Ω, t > t1.11

The following theorem allows us to use R0 as a threshold index for disease12

persistence.13

Theorem 4.7. Whenever R0 > 1, there exists ζ > 0 such that for all ϕ ∈ X
+,14

with ϕ2 
= 0 or ϕ3 
= 0, or ϕ4 
= 0, one has15

lim inf
t→∞ S(x, t, ϕ) ≥ ζ, lim inf

t→∞ I(x, t, ϕ) ≥ ζ, lim inf
t→∞ B(x, t, ϕ) ≥ ζ,

lim inf
t→∞ J(x, t, ϕ) ≥ ζ, lim inf

t→∞ P (x, t, ϕ) ≥ ζ,

uniformly for x ∈ Ω, where Z(x, t, ϕ) is a solution of the system (2.7) with initial16

condition Z(., 0, ϕ) = ϕ ∈ X
+.17
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Proof. If R0 > 1, then ν0 > 0. For any π ∈ (0, π∗), π∗ sufficiently small, let ν0(π)1

the principal eigenvalue of the following eigenvalue problem:2 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νγ2(x) =
βρω(S0 − π)

H
γ3(x) +

βαη(S0 − π)
H

γ4(x) − (μh + d+ δ)γ2(x)

+DΔγ2(x), x ∈ Ω,

νγ3(x) = ωγ2(x) − (μb − r)γ3(x) +DbΔγ3(x), x ∈ Ω,

νγ4(x) = ηγ2(x) − (μb + γ)γ4(x) +DbΔγ4(x), x ∈ Ω,

∂γ2

∂z
=
∂γ3

∂z
=
∂γ4

∂z
= 0, x ∈ ∂Ω.

One has, limπ→0 ν(π) = ν0, one can fix π0 ∈ (0, π∗) such that ν(π) > 0. Let3

W = {ϕ ∈ X
+ : ϕ3 
= 0, ϕ4 
= 0, ϕ4 
= 0},

and4

∂W = {ϕ ∈ X
+ : ϕ2 ≡ 0, ϕ3 ≡ 0, ϕ4 ≡ 0}.

W is a positive invariant set for the solution semiflow φ(t). Define5

M∂ = {ϕ ∈ ∂W : φ(t)ϕ ∈ ∂W, t ≥ 0}.

Let ω(ϕ) be the omega set of the orbit of φ(t) through ϕ ∈ X
+. For a φ ∈ M∂ ,6

we have φ(t)ϕ ∈ ∂W, ∀t > 0. Thus, I(., t, ϕ) ≡ 0, B(., t, ϕ) ≡ 0 and J(., t, ϕ) ≡ 07

∀t > 0. From the first equation of (2.7), one has8 ⎧⎪⎪⎨⎪⎪⎩
∂S(x, t)
∂t

= Λ − μhS +DΔS, x ∈ Ω, t > 0,

∂S

∂z
= 0, x ∈ ∂Ω, t > 0.

Using the theory of asymptotically semiflow [21], limt→∞ S(., t, ϕ) = S0 uniformly9

for x ∈ Ω, and ω(ϕ) = E0, ϕ ∈ M∂ .10

Now we show that11

lim sup
t→+∞

||φ(t)ϕ − E0|| ≥ π0.

Suppose by contradiction that lim supt→+∞||φ(t)ϕ0 − E0|| ≤ π0, ϕ0 ∈ W. Then12

there exists t∗ > 0 such that13

S0 − π0 < S(x, t, ϕ0) < S0 + π0, I(x, t, ϕ0) < π0, B(x, t, ϕ0) < π0,

J(x, t, ϕ0) < π0, t ≥ t∗.
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We know that I(x, t, ϕ0), B(x, t, ϕ0) and J(x, t, ϕ0) satisfy1 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂I(x, t)
∂t

≥ βρω(S0 − π0)
H

B +
βαη(S0 − π0)

H
J

− (μh + d+ δ)I +DΔI, x ∈ Ω, t > t∗,

∂B(x, t)
∂t

≥ ωI − (μb − r)B +DbΔB, x ∈ Ω, t > t∗,

∂J(x, t)
∂t

≥ ηI − (μb + γ)J +DbΔJ, x ∈ Ω, t > t∗,

∂I

∂z
=
∂B

∂z
=
∂J

∂z
= 0, x ∈ ∂Ω.

Let ψν0(π0) = (ψ2ν0(π0) , ψ3ν0(π0) , ψ4ν0(π0)) be the positive eigenfunction associated2

with ν0(π0). Thus, the following linear system:3 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1(x, t)
∂t

=
βρω(S0 − π0)

H
u2 +

βαη(S0 − π0)
H

u3

− (μh + d+ δ)u1 +DΔu1, x ∈ Ω, t > t∗,

∂u2(x, t)
∂t

= ωu1 − (μb − r)u2 +DbΔu2, x ∈ Ω, t > t∗,

∂u3(x, t)
∂t

= ηu1 − (μb + γ)u3 +DbΔu3, x ∈ Ω, t > t∗,

∂u1

∂z
=
∂u2

∂z
=
∂u3

∂z
= 0, x ∈ ∂Ω,

has a solution u(x, t) = expν0(π0)t ψλ0(π0)(x), since I(x, t, ϕ0) > 0, B(x, t, ϕ0) > 0,4

J(x, t, ϕ0) > 0, x ∈ Ω and t > 0; there exists σ > 0 such that5

(I(x, t, ϕ0), B(x, t, ϕ0), J(x, t, ϕ0)) ≥ σ expν0(π0)t ψλ0(π0)(x), x ∈ Ω, t > 0.

Since λ0(π0) > 0 then6

lim
t→∞(I(x, t, ϕ0), B(x, t, ϕ0), J(x, t, ϕ0)) = ∞.

This is a contradiction since the variables I, B, J are bounded.7

Next, define the continuous function q : X
+ → [0,∞) by8

q(ϕ) = min
{

min
x∈Ω

ϕ3(x),min
x∈Ω

ϕ4(x)
}
, ∀ϕ ∈ X

+.

We have q−1(0,∞) ⊆ W and q is a generalized distance function for the semiflow9

φ(t) : X
+ → X

+. Any forward orbit of φ(t) in M∂ converges to E0. The above10

claims imply that E0 is isolated in X
+ and W

s ∩ W = ∅, where W
s is the stable11

set of E0. It is clear that there is no cycle in M∂ from E0 to E0. We conclude that12

there exists ζ > 0 such that13

min
ψ∈ω(ϕ)

q(ψ) > ζ, ∀ϕ ∈ W.
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Choose ζ small enough such that lim inft→+∞S(., t, ϕ) ≥ ζ uniformly for x ∈ Ω.1

We proceed by the same way to show that lim inft→+∞ P (., t, ϕ) ≥ ζ uniformly for2

x ∈ Ω and this achieves the proof.3

5. NSFD Scheme and Numerical Simulations4

5.1. NSFD of models (2.7)5

Already, in the deterministic space-independent model investigated in [15, 16], the6

system of ordinary differential equations could not completely be solved by ana-7

lytic techniques. With now the addition of more realism through the incorporation8

of diffusive terms in space, the complete analytical solution of the resulting sys-9

tem of reaction–diffusion PDEs becomes more challenging. Consequently, numerical10

simulations are of fundamental importance in gaining some useful insight on the11

solution of the continuous differential equation model. We consider Mickens’ NSFD12

method, which has shown great potential in producing schemes that are dynam-13

ically consistent with the continuous model [10–13]. We assume that the spatial14

domain in the bounded interval Ω = [a, b] and we discretize the region [a, b]× [0,∞)15

through the mesh points (xn, tk), n = 0, . . . ,M , k ∈ N, where xn = a + nΔx and16

tk = kΔt, Δx = (b − a)/M and Δt being the space and time step sizes, respec-17

tively, for a given integer M > 0. Following Mickens’ rules, we propose the NSFD18

scheme below that generate the sequence (Skn, I
k
n , B

k
n, J

k
n , P

k
n ) of approximate solu-19

tion (S(x, t), I(x, t), B(x, t), J(x, t), P (x, t)) at the point (x, t) = (xn, tk) for the20

model (5.1) in which we assume throughout this section that the cholera immunity21

is livelong, i.e. δ = 0.22 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk+1
n − Skn

Δt
= Λ − λ(Bkn, J

k
n)Sk+1

n − μhS
k+1
n +D

Sk+1
n+1 − 2Sk+1

n + Sk+1
n−1

(Δx)2
,

Ik+1
n − Ikn

Δt
= λ(Bkn, J

k
n)Sk+1

n − (μh + d)Ik+1
n +D

Ik+1
n+1 − 2Ik+1

n + Ik+1
n−1

(Δx)2
,

Bk+1
n −Bkn

Δt
= ωIk+1

n + rBk+1
n − μbB

k+1
n − εBk+1

n f(P kn )

+Db

Bk+1
n+1 − 2Bk+1

n +Bk+1
n−1

(Δx)2
,

Jk+1
n − Jkn

Δt
= ηIk+1

n + φεBk+1
n f(P kn ) − (μb + γ)Jk+1

n

+Db

Jk+1
n+1 − 2Jk+1

n + Jk+1
n−1

(Δx)2
,

P k+1
n − P kn

Δt
= θγJk+1

n − ε(Bk+1
n + Jk+1

n )P kn − μpP
k+1
n

+Db

P k+1
n+1 − 2P k+1

n + P k+1
n−1

(Δx)2
.

(5.1)
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In (5.1), the discrete force of infection is given by1

λ(Bkn, J
k
n) = β

αJkn + ρBkn
αJkn + ρBkn +H

. (5.2)

The discrete model is completed by the initial conditions2

S0
n = s(xn), I0

n = i(xn), B0
n = b(xn), J0

n = j(xn), P 0
n = p(xn), (5.3)

as well as extra grid points x−1 := a−Δx and xM+1 = b+ Δx, at which boundary3

conditions of the continuous model lead to the following:4

Sk−1 = Sk0 , SkM+1 = SkM , Ik−1 = Ik0 , IkM+1 = IkM , (5.4)

Jk−1 = Jk0 , JkM+1 = JkM , P k−1 = P k0 , P kM+1 = P kM . (5.5)

Note that system (5.1) is indeed a NSFD scheme as per the formal definition in [1]5

(see also [5]): the nonlinear terms6

λ(B, J)S, Bf(P ) and (B + J)P,

are approximated in a nonlocal way, that is, by functions of several points of the7

mesh.8

Before going forward with the qualitative analysis of the NSFD scheme (5.1), we9

state upfront that this scheme has first-order accuracy in Δt and second-order accu-10

racy in Δx. To show this, we compute T (Δx,Δt), the local truncation error of the11

NSFD scheme (5.1) defined as the amount by which the solution (S, I,B, J, P ) of the12

continuous model (2.7) fails to satisfy the discrete model when (Skn, I
k
n, B

k
n, J

k
n , P

k
n )13

is replaced with (S(xn, tk), I(xn, tk), B(xn, tk), J(xn, tk), P (xn, tk)). For instance,14

in the interior of (a, b) × (0,∞), the component T S(Δx,Δt) of T (Δx,Δt) for the15

finite difference equation of the susceptible-dependent variable is given by16

T S(Δx,Δt) =
S(xn, tk+1) − S(xn, tk)

Δt
− Λ + [λ(B(xn, tk), J(xn, tk)) + μh]S

× (xn, tk+1) −D
S(xn+1, tk+1) − 2S(xn, tk+1) + S(xn−1, tk+1)

(Δx)2
.

Assuming that the solution S(x, t) is sufficiently differentiable and has bounded17

partial derivatives, performing Taylor expansion of S(x, t) about the point (xn, tk)18

and using the fact that the function (S,B, J) satisfies the first equation in (2.7)19

at the point (xn, tk), we obtain (see, for instance, [14] for details of these Taylor20

expansions applied to the θ-method for parabolic equations, with θ = 1)21

T S(Δx,Δt) = O[Δt+ (Δx)2].
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Other components T I , TB, T J and TP of the local truncation error are dealt with in1

a similar manner. We now investigate the dynamics that the NSFD scheme inherits2

from the continuous model.3

Theorem 5.1. The NSFD scheme (5.1)–(5.5) is dynamically consistent with4

respect to the positive and boundedness properties of the solution of the continu-5

ous model (2.7), irrespective of the sizes of the step sizes Δt > 0 and Δx > 0.6

Proof. The first finite difference equation in (5.1) corresponds to a system of M+17

algebraic equations for the unknown vector Sk+1 = (Sk+1
0 , . . . , Sk+1

M )T8

AkSk+1 = Sk + Δt(Λ, . . . ,Λ)T , (5.6)

where the entries of the tridiagonal matrix9

Ak =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak0 a 0 · · · 0 0 0

a ak1 a · · · 0 0 0

0 a ak2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · akM−2 a 0

0 0 0 · · · a akM−1 a

0 0 0 · · · 0 a akM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

are given by10

a = −DΔt/(Δx)2,

ak0 = 1 +DΔt/(Δx)2 + Δt(λ(Bk0 , J
k
0 ) + μh),

aki = 1 + 2DΔt/(Δx)2 + Δt(λ(Bki , J
k
i ) + μh), for i = 1, . . . ,M − 1,

akM = 1 +DΔt/(Δx)2 + Δt(λ(BkM , J
k
M ) + μh).

Hence, Ak is a strictly diagonally dominant matrix which, in view of the decompo-11

sition Ak = D−B where D = diag(Ak) ≥ 0 and B ≥ 0, is a nonsingular M -matrix12

(see [2]). Thus, (Ak)−1 ≥ 0 and Sk+1 = (Ak)−1(Sk + Δt(Λ, . . . ,Λ)T ) ≥ 0 whenever13

Sk ≥ 0. Similarly, Ik+1
n ≥ 0, Bk+1

n ≥ 0, Jk+1
n ≥ 0 and P k+1

n ≥ 0 because each14

corresponding finite difference equation in (5.1) is a system of M + 1 algebraic15

equations of the form (5.6) whose involved matrix is strictly diagonally dominant,16

with positive diagonal and nonpositive off-diagonal, thus making it a nonsingular17

M -matrix, as sketched below. For the second equation of (5.1)18

AIk+1 = Ik + ΔtT k+1,
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where1

T k+1 = (λ(Bk0 , J
k
0 )Sk+1

0 , λ(Bk1 , J
k
1 )Sk+1

1 , . . . , λ(BkM , J
k
M )Sk+1

M )T ,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 0 · · · 0 0 0

a2 a3 a2 · · · 0 0 0

0 a2 a3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · a3 a2 0

0 0 0 · · · a2 a3 a2

0 0 0 · · · 0 a2 a1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and2

a1 = 1 +DΔt/(Δx)2 + Δt(μh + d), a2 = −DΔt/(Δx)2,

a3 = 1 + 2DΔt/(Δx)2 + Δt(μh + d).

For the third equation of (5.1)3

CkBk+1 = Bk + ωΔtIk+1,

where4

Ck =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ck0 c 0 · · · 0 0 0

c ck1 c · · · 0 0 0

0 c ck2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ckM−2 c 0

0 0 0 · · · c ckM−1 c

0 0 0 · · · 0 c ckM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

c = −DbΔt/(Δx)2,

ck0 = 1 +DbΔt/(Δx)2 + Δt(εf(P k0 ) + μb − r),

cki = 1 + 2DbΔt/(Δx)2 + Δt(εf(P ki ) + μb − r), for i = 1, . . . ,M − 1,

ckM = 1 +DbΔt/(Δx)2 + Δt(εf(P kM ) + μb − r).

For the fourth equation of (5.1)5

KJk+1 = Jk + Δt(ηIk+1 + Lk+1),
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where1

Lk+1 = (φεBk+1
0 f(P k0 ), φεBk+1

1 f(P k1 ), . . . , φεBk+1
M f(P kM ))T ,

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 d2 0 · · · 0 0 0

d2 d3 d2 · · · 0 0 0

0 d2 d3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · d3 d2 0

0 0 0 · · · d2 d3 d2

0 0 0 · · · 0 d2 d1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

d1 = 1 +DbΔt/(Δx)2 + Δt(μb + γ), d2 = −DbΔt/(Δx)2,

d3 = 1 + 2DbΔt/(Δx)2 + Δt(μb + γ).

For the fifth equation of (5.1)2

EkP k+1 = P k + θγJk+1,

where3

Ek =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ek0 e 0 · · · 0 0 0

e ek1 e · · · 0 0 0

0 e ek2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ekM−2 e 0

0 0 0 · · · e ekM−1 e

0 0 0 · · · 0 e ekM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

e = −DbΔt/(Δx)2,

ek0 = 1 +DbΔt/(Δx)2 + Δt(ε(Bk0 + Jk0 ) + μp),

cki = 1 + 2DbΔt/(Δx)2 + Δt(ε(Bki + Jki ) + μp), for i = 1, . . . ,M − 1,

ekM = 1 +DbΔt/(Δx)2 + Δt(ε(BkM + JkM ) + μp).

Regarding the boundedness of the solutions of (5.1), this is a straightforward con-4

sequence of the discrete Gronwall inequality. Indeed, setting5

Nk =
M∑
n=0

(Skn + Ikn), (5.7)
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adding the first two equations of (5.1) and using the boundary conditions (5.4) and1

(5.5) implies2

Nk+1 ≤ Λ(M + 1)Δt
1 + μhΔt

+
Nk

1 + μhΔt
,

from which it follows by the discrete Gronwall inequality that3

Nk ≤ Λ(M + 1)
μh

(
1 − 1

(1 + μhΔt)k

)
+

N0

(1 + μhΔt)k
. (5.8)

Thus4

Nk ≤ Λ
μh

(M + 1) if N0 ≤ Λ
μh

(M + 1).

Next, setting5

Dk =
M∑
n=0

(φBkn + Jkn),

and using the third and the fourth equations of (5.1) in which
∑M
n=0 I

k+1
n ≤ Λ

μh
(M+6

1), we obtain7

Dk+1 ≤ (φω + η)Λ(M + 1)Δt
1 + μΔt

+
Dk

1 + μΔt
,

where μ = min(φ(μb − r), (μb + γ)). Therefore, Gronwall discrete inequality yields8

Dk ≤ (φω + η)Λ(M + 1)
μμh

(
1 − 1

(1 + μΔt)k

)
+

D0

(1 + μΔt)k
. (5.9)

Hence9

Dk ≤ (φω + η)Λ(M + 1)
μμh

if D0 ≤ (φω + η)Λ(M + 1)
μμh

.

By setting P k =
∑M
n=0 P

k+1
n , it follows in a similar manner from the fifth equation10

of (5.1) that11

P k ≤ θγ(φω + η)Λ(M + 1)
μpμμh

(
1 − 1

(1 + μpΔt)k

)
+

P 0

(1 + μpΔt)k
, (5.10)

so that12

P k ≤ θγ(φω + η)Λ(M + 1)
μpμμh

if P 0 ≤ θγ(φω + η)Λ(M + 1)
μpμμh

.

Finally, if N0 > Λ
μh

(M + 1) or D0 > (φω+η)Λ(M+1)
μμh

or P 0 > θγ(φω+η)Λ(M+1)
μpμμh

, it13

follows from (5.8), (5.9) and (5.10) that14

lim sup
k→+∞

Nk ≤ Λ
μh

(M + 1), lim sup
k→+∞

Dk ≤ (φω + η)Λ(M + 1)
μμh

and

lim sup
k→+∞

P k ≤ θγ(φω + η)Λ(M + 1)
μpμμh

.
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Thus, the solutions of the system (5.1) with nonnegative initial conditions such that1

N0 ≤ Λ
μh

(M + 1), D0 ≤ (φω + η)Λ(M + 1)
μμh

and P 0 ≤ θγ(φω + η)Λ(M + 1)
μpμμh

,

are nonnegative and remain in this region, which is attractive.2

Another important feature of the continuous model that the NSFD scheme3

preserves is the disease-free fixed point and the endemic fixed point, which are4

exactly its disease-free and the endemic equilibrium points. Their global stability5

is given in the next result.6

Theorem 5.2. For the system (5.1)–(5.5) with Δt > 0 and Δx > 07

(i) the disease-free fixed point is globally stable whenever max{R0,N0} ≤ 1.8

(ii) the endemic fixed point is globally stable if R0 > 1 and ε = 0.9

Proof. (i) We propose the discrete Lyapunov functional candidate that reads as10

follows:11

Lk =
M∑
n=0

1
Δt

{
Skn − S0 − S0 ln

(
Skn
S0

)
+ Ikn + b(1 + cΔt)Bkn + d(1 + eΔt)Jkn

}
,

(5.11)

where b, c, d, e are positive constant to be determined shortly.12

Lk+1 − Lk ≤
M∑
n=0

1
Δt

{(
1 − S0

Sk+1
n

)(
Sk+1
n − Skn

)
+ (Ik+1

n − Ikn)

+ b(1 + cΔt)(Bk+1
n −Bkn)

}
+

M∑
n=0

1
Δt

d(1 + eΔt)
(
Jk+1
n − Jkn

)

=
M∑
n=0

1
Δt

{(
1 − S0

Sk+1
n

)(
Λ − λ(Bkn, J

k
n)Sk+1

n − μhS
k+1
n

+D
Sk+1
n+1 − 2Sk+1

n + Sk+1
n−1

(Δx)2

)}
+

M∑
n=0

1
Δt

×
{
λ
(
Bkn, J

k
n

)
Sk+1
n − (μh + d)Ik+1

n +D
Ik+1
n+1 − 2Ik+1

n + Ik+1
n−1

(Δx)2

}

+
M∑
n=0

1
Δt

b(1 + cΔt)

{
ωIk+1

n + rBk+1
n − μbB

k+1
n − εBk+1

n f(P kn )

+Db

Bk+1
n+1 − 2Bk+1

n +Bk+1
n−1

(Δx)2

}
+

M∑
n=0

1
Δt

d(1 + eΔt)
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×
{
ηIk+1
n + φεBk+1

n f(P kn ) − (μb + γ)Jk+1
n

+Db

Jk+1
n+1 − 2Jk+1

n + Jk+1
n−1

(Δx)2

}
.

Using the inequality λ(Bkn, J
k
n) ≤ (βρ/H)Bkn + (βα/H)Jkn and grouping like terms,1

one has2

Lk+1 − Lk =
M∑
n=0

{
− μh

Sk+1
n

(Sk+1
n − S0)2 +

βρS0

H
Bkn +

βαS0

H
Jkn

+ Ik+1
n (bω + dη − (μh + d))

}
+ Πk

+
M∑
n=0

{εBk+1
n f(P kn )(dφ− b) − b(μb − r)Bk+1

n − d(μb + γ)Jk+1
n

+ bc(Bk+1
n −Bkn)} +

M∑
n=0

{ed(Jk+1
n − Jkn)}

with3

Πk =
M∑
n=0

1
(Δx)2

{
D(Sk+1

n+1 − 2Sk+1
n + Sk+1

n−1) + S0D

(
2 − Sk+1

n+1

Sk+1
n

+
Sk+1
n−1

Sk+1
n

)

+D(Ik+1
n+1 − 2Ik+1

n + Ik+1
n−1)

}
+

M∑
n=0

1
(Δx)2

×{Db(Bk+1
n+1 − 2Bk+1

n +Bk+1
n−1) +Db(Jk+1

n+1 − 2Jk+1
n + Jk+1

n−1)}

≤
M∑
n=0

1
(Δx)2

{D(Sk+1
M+1 − Sk+1

M + Sk+1
−1 − Sk+1

0 )

+D(Ik+1
M+1 − Ik+1

M + Ik+1
−1 − Ik+1

0 )} +
M∑
n=0

1
(Δx)2

×{Db(Bk+1
M+1 −Bk+1

M + Bk+1
−1 −Bk+1

0 )

+Db(Jk+1
M+1 − Jk+1

M + Jk+1
−1 − Jk+1

0 )}
= 0.
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Lk+1 − Lk becomes1

Lk+1 − Lk ≤
M∑
n=0

{
− μh

Sk+1
n

(Sk+1
n − S0)2 +

βρS0

H
Bkn +

βαS0

H
Jkn

+ Ik+1
n (bω + dη − (μh + d))

}
+

M∑
n=0

{
εBk+1

n f(P kn )(dφ − b)

− b(μb − r)Bk+1
n − d(μb + γ)Jk+1

n + bc(Bk+1
n −Bkn)

}

+
M∑
n=0

{ed(Jk+1
n − Jkn)}

=
M∑
n=0

{
− μh

Sk+1
n

(Sk+1
n − S0)2 + Ik+1

n (bω + dη − (μh + d))

+ εBk+1
n f(P kn )(dφ− b)

}
+

M∑
n=0

{
Bkn

(
βρS0

H
− bc

)
+ Jkn

(
βαS0

H
− ed

)

+Bk+1
n (bc− b(μb − r))

}
+

M∑
n=0

{Jk+1
n (ed− b(μb + γ))}.

For the case max{R0,N0} = R0, let’s choose b, c, d, e as follows:2

b = βρS0/H(μb − r), c = (μb − r), d = βαS0/H(μb + γ), e = (μb + γ).

Then3

Lk+1 − Lk ≤
M∑
n=0

{
− μh

Sk+1
n

(Sk+1
n − S0)2 + (μh + d)Ik+1

n (R0 − 1)

+
μh + d+ δ

ω
εBk+1

n f(P kn )(N0 −R0)

}
. (5.12)

For the case max{R0,N0} = N0, we choose b = φ(μh + d)/(φω + η), c = (μb − r),4

d = (μh + d)/(φω + η), e = (μb + γ)5

Lk+1 − Lk ≤
M∑
n=0

{
− μh

Sk+1
n

(
Sk+1
n − S0

)2
+ Jk+1

n

(μb + γ)(μh + d)
φω + η

(N0 − 1)
}
(5.13)

+
M∑
n=0

{
Bk+1
n

φ(μb − r)(μh + d)
φω + η

(R0 − 1)
}
. (5.14)
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Using (5.12) and (5.13) proves that Lk+1 − Lk ≤ 0. Hence, the sequence {Lk} is1

decreasing and bounded. Thus there exists, a positive function L̃ such that2

lim
t→+∞Lk = L̃.

Thus3

lim
k→+∞

Skn = S0, lim
k→+∞

Ikn = 0, lim
k→+∞

Bkn = 0, lim
k→+∞

Jkn = 0, lim
k→+∞

P kn = 0.

(ii) For the global stability, we use the following discrete Lyapunov functional can-4

didate:5

Lk =
M∑
n=0

1
Δt

{
Skn − S∗ − S∗ ln

(
Skn
S∗

)
+ Ikn − I∗ − I∗ ln

(
Ikn
I∗

)}

+
M∑
n=0

1
Δt

{
βαB∗S∗

(ρB∗ + αJ∗ +H)ωI∗
(1 + (μb − r)Δt)

(
Bkn −B∗ −B∗ ln

(
Bkn
B∗

))}

+
M∑
n=0

1
Δt

{
βαJ∗S∗

(ρB∗ + αJ∗ +H)ηI∗
(1 + (μb + γ)Δt)

(
Jkn − J∗ − J∗ ln

(
Jkn
J∗

))}
.

Some direct computations yield6

Lk+1 − Lk ≤
M∑
n=0

{(
1 − S∗

Sk+1

)(
μhS

∗ − μhS
k+1
n

)
+
(

1 − S∗

Sk+1

)

× (λ(B∗, J∗)S∗ − λ(Bkn, J
k
n)Sk+1

n )

}

+
M∑
n=0

{(
1 − I∗

Ik+1
n

)
λ
(
Bkn, J

k
n

)
Sk+1
n −

(
1 − I∗

Ik+1
n

)

×λ(B∗, J∗)S∗

I∗
Ik+1
n

}
+

M∑
n=0

(
1 − B∗

Bk+1
n

)
βρB∗S∗Ik+1

n

(ρB∗ + αJ∗ +H)I∗

+
M∑
n=0

{
−
(

1 − B∗

Bk+1
n

)
βρB∗S∗Ik+1

n

(ρB∗ + αJ∗ +H)
Bk+1
n

B∗

+
(

1 − J∗

Jk+1
n

)
βαJ∗Ik+1

n

(ρB∗ + αJ∗ +H)I∗

}

+
M∑
n=0

{
−
(

1 − J∗

Jk+1
n

)
βρB∗

(ρB∗ + αJ∗ +H)
Jk+1
n

J∗

}
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+
M∑
n=0

{
βαJ∗

(ρB∗ + αJ∗ +H)

(
Jk+1
n

J∗ − Jkn
J∗ − ln

(
Jkn
Jk+1
n

))}

+
M∑
n=0

{
βαJ∗Ik+1

n

(ρB∗ + αJ∗ +H)

(
Bk+1
n

B∗ − Bkn
B∗ − ln

(
Bkn
Bk+1
n

))}
.

Recall the following functions:1

λ1(B) =
βρB

ρB + αJ +H
, λ2(J) =

βαJ

ρB + αJ +H
,

and define the function2

h(x) = x− 1 − lnx.

Then one has3

Lk+1 − Lk ≤
M∑
n=0

{
− μh

Sk+1
n

(
Sk+1
n − S∗)2}

−
M∑
n=0

{
βρB∗

(ρB∗ + αJ∗ +H)

(
h

(
S∗

Sk+1
n

)
+ h

(
λ1

(
Bkn
)
Sk+1
n I∗

λ1(B∗)S∗Ik+1
n

)

+ h

(
B∗Ik+1

n

Bk+1
n I∗

))}
+

M∑
n=0

(
h

(
Bk+1
n

B∗

)
− h

(
λ1

(
Bkn
)

λ1(B∗)

))

−
M∑
n=0

{
βαJ∗

(ρB∗ + αJ∗ +H)

(
h

(
S∗

Sk+1
n

)
+ h

(
λ2

(
Jkn
)
Sk+1
n I∗

λ2 (J∗)S∗Ik+1
n

)

+ h

(
J∗Ik+1

n

Jk+1
n I∗

))}
+

M∑
n=0

(
h

(
Jk+1
n

J∗

)
− h

(
λ2

(
Jkn
)

λ2(J∗)

))
≤ 0.

Thus, {Lk} is a nonincreasing sequence, there exists, L such that4

lim
k→

Lk = L.

and5

lim
k→+∞

Skn = S∗, lim
k→+∞

Ikn = I∗, lim
k→+∞

Bkn = B∗, lim
k→+∞

Jkn = J∗,

lim
k→+∞

P kn = P ∗.

5.2. Numerical illustration of theoretical results6

Here, we simulate the model to support our theoretical results and assess the role7

the diffusion on the spatiotemporal evolution of the bacterial infections. We choose8

m = 3. This last choice is not a strong limitation because Fm(P ) depends rather9

weakly on m and F3(P ) is a good approximation of F100(P ) on 0 < m < 5 [20].10
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Just for illustration purposes, we assume that the spatial domain is the segment1

Ω = [0, 100] and choose the space step size Δx = 0.75, and the time step size2

Δt = 0.5. To numerically illustrate the stability of equilibria of PDE model (2.7),3

we select three sets of model’s parameters as follows.4

(i) We take ε = 0.71, and other parameters such that R0 = 0.1097 < 1 and5

N0 = 0.1049 < 1. This is used to support numerically Theorem 4.4 about the6

GAS of the DFE E0 = (5000, 0, 0, 0, 0) as displayed in Fig. 1.7

Fig. 1. Global stability of the DFE of the model with absorption rate ε = 0.71 > 0 and snap-
shots of the solution at different instants when the solution diffuses in the space: Initial condi-
tions (s(x), i(x), b(x), j(x), p(x)) = (100, 1000, 4 × 104, 4 × 105, 106), R0 = 0.1097 < 1 and N0 =
0.1049 < 1.
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(ii) For ε = 0, we choose a set of parameters such that R0 = 2.16 > 1.1

This case numerically illustrates Theorem 4.2, that is the equilibrium E∗ =2

(5000, 4000, 4×104, 6.5×105, 6×108) is globally asymptotically stable as shown3

in Fig. 2.4

(iii) To support the uniform persistence, we take ε = 0.71, and select other param-5

eters such that R0 = 5.027 > 1, the uniform persistence is illustrated in Fig. 3.6

Fig. 2. Global stability of the endemic equilibrium E∗ of the model without absorption rate
(ε = 0), and snapshots of the solution at different instants when the solution diffuses in the space:
Initial conditions (s(x), i(x), b(x), j(x), p(x)) = (103, 103, 4 × 104, 4 × 105, 108), R0 = 2.16 > 1.
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Fig. 3. Uniform persistence of the full model, ε = 0.71, and snapshots of the solution at different
instants when the solution diffuses in the space: Initial conditions (s(x), i(x), b(x), j(x), p(x)) =
(104, 4 × 102, 0.5 × 104, 4 × 105, 109). The parameters are chosen such that R0 = 5.027 > 1.

5.3. Impacts of spatial distribution of phages, bacteria and1

humans2

To carry out the influence of the diffusion on the system, we fix the values of3

the coefficients D and Db. In Figs. 1 and 4–6, the time evolution of solutions is4

illustrated for different values of the diffusion coefficients for humans, phages and5

bacteria (assuming that phages and bacteria diffuse similarly).6
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Fig. 4. Time evolution of the solutions with increasing values of D, Db showing the spatially
homogeneous convergence of the system to its endemic equilibrium E∗ (R0 = 2.16 > 1).

Fig. 5. Time evolution of the solutions with set values of D, Db showing the spatially homoge-
neous persistence of the model (R0 = 5.027 > 1).
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Fig. 6. Time evolution of the solutions showing the impact of spatial distribution of phages,
bacteria and humans.

6. Conclusion and Perspectives1

In this work, we have modeled and analyzed the impact of spatial evolution2

of phages and bacteria on a continuous reaction–diffusion bacteria-borne disease3

model. Precisely, we have developed a continuous model and its discrete NSFD4

counterpart.5

(I) We’ve first proposed a reaction–diffusion model to assess the impact of spa-6

tial aspect of phage–bacteria infection on the indirectly transmitted bacterial7

infections. The introduction of the diffusion coefficients is motivated by the8

human host movement, phage–bacteria movement in the environment, the9

dispersal of phages and bacteria, the water resource and position. We explic-10

itly computed the basic reproduction number R0 and use it as the threshold11

stability of the existent equilibria. We split the system into two subsystem:12

(i) We first analyze the model without phage absorption. On the one hand,13

using the techniques by Lyapunov and LaSalle, we have shown that the14

DFE is globally asymptotically stable whenever R0 ≤ 1. On the other15

hand, we proved that there exists a unique globally asymptotically stable16

endemic equilibrium E∗ whenever R0 > 1.17

(ii) Second, we have considered the full model (with positive phage absorption18

rate). The threshold R0 have been used as the threshold index of this19

model. Indeed, whenever R0 ≤ 1 the DFE is locally asymptotically stable,20

and is unstable for R0 > 1 and the system is shown to be uniformly21

persistent. Here, the condition R0 ≤ 1 is not sufficient to achieve the22

possible elimination of disease (i.e. the GAS of the DFE is no longer23
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achieved under the sole condition of R0 ≤ 1). However, we derive another1

threshold N0, and proved using the Lyapunov–LaSalle’s techniques that2

the DFE is GAS if R0 ≤ 1 and N0 ≤ 1.3

(II) After proposing a NSFD scheme, we’ve derived the discrete counterpart of4

the continuous model. The results show that the discretized scheme pre-5

serves the main properties of solutions for the original continuous model,6

including positivity, ultimate boundedness, equilibria and their global sta-7

bility.8

(III) The discrete model was further used to illustrate all the theoretical results9

of the continuous model with regard to GAS and uniform persistence.10

(IV) In order to support theoretical results, discrete model has been simulated.11

From a set of diffusion rate, we illustrated the impact of diffusion on the12

asymptotic behavior of the bacterial infections dynamic’s. Figures 4–6,13

specially illustrate the spatial convergence to constant equilibria. Indeed,14

increasing values of diffusion parameter’s reduces significantly the range15

of equilibria.16

Taking into account the spatial movement of phages and bacteria, our reaction–17

diffusion epidemic model predicts that the classical requirement consisting to bring18

the basic reproduction number under unity is not sufficient to control bacterial19

infections. This has been shown by deriving a second threshold needed for the20

global stability of the constant equilibrium DFE. From the epidemiological point21

of view, both thresholds should be dropped under unity in order to eliminate the22

disease.23

The work done so far in this paper is far from being complete. It offers many24

possibilities for further investigations which include the following:25

(1) The proof of the global stability of the endemic equilibrium for any model26

whenever R0 > 1 and δ > 0.27

(2) An in-depth study of the full model with positive phage attack rate (ε > 0)28

though very difficult an era of exciting mathematical problem to tackle in the29

near future.30

(3) Analyze of the model with space-dependent diffusion coefficients and/or disease31

transmission parameters.32

(4) The existence of traveling waves solutions is also one of the hot topics we are33

still investigating.34

(5) The incorporation of periodic time-dependent model parameters due to the35

seasonality of outbreaks.36
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