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A B S T R A C T   

The most important objective of this research-work is to investigate the impacts of velocity-slip boundary con
ditions and shape factor of solid nanoparticles on the hydrodynamic behavior of the nonlinear problem of MHD 
Jeffery–Hamel hybrid nanofluid flow where the mixture H2O − C2H6O2 (50% − 50%) was utilized as a base fluid. 
Using appropriate velocity transformations, the basic partial differential equations arising from mathematical 
modeling are transformed into non-linear ordinary differential equations. Afterwards, the determined nonlinear 
equation was numerically solved utilizing Runge-Kutta-Fehlberg 4th–5th order approach featuring shooting 
technique and analytically with the help of Duan–Rach Approach (DRA). The impact of active factors like 
Reynolds number, channel half-angle, Hartman number, base fluids nature, hybrid nanoparticles, velocity-slip 
boundary conditions, shape and Geometry of solid nanoparticles on hybrid nanofluid velocity and skin fric
tion coefficient are visualized and investigated. The minimal local skin friction is found to be obtainable with the 
nanoparticles of Platelet form and second-order slip model where a reduction of 70% is gained compared to the 
local skin friction coefficient with spherical nanoparticles when the Hartmann number is higher. Results obtained 
also reveal that a higher reduction of 69% in local skin friction coefficient intensity is observed for both hybrid 
phase (Al2O3 − Cu) and mixture base fluid (H2O − C2H6O2) with second-order slip boundary condition model 
when Knudsen number Kn = 0,08. A comparison was made between the results obtained from this investigation 
in particular cases and the results obtained via the HAM-based Mathematica package for validation. Also, the 
obtained analytical DRA data are compared with numerical RKF45 data and the ones represented in the liter
ature. The comparison revealed that the results match perfectly which justifies applicability, validity, and the 
higher exactness of the adopted Duan-Rach approach.   

1. Introduction 

Hydromagnetics or Magneto-Hydrodynamics (M.H.D.) is highly 
known as a branch of science that focuses on electrically conducting 
fluids dynamics. MHD has different industrial applications like accel
erometers, cooling systems designs with liquid metals, crystal growth, 
flow meters and MHD power production. The first use of M.H.D. term is 
given by Hannes Alfven [1]. In recent years, several studies have been 

implemented by different scholars to acquire knowledge about the 
impact of magnetic field on heat transfer and fluid flow through several 
geometrical configurations. For example, Zhao et al. [2] studied 
analytically by employing the method of variables separation the mag
netohydrodynamic (MHD) incompressible generalized Maxwell fluids 
flow under the effect of alternating current electric field through a two- 
dimensional rectangular micropump. They showed the influence of the 
electrical oscillating Reynolds number Re, the dimensionless relaxation 
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time De and the Hartmann number Ha on the velocity evolution. The 
results agreed with available literature and experimental data. 

Satya Narayana et al. [3] investigated the impact of heat and mass 
transfer on MHD oscillatory flow in an asymmetric wavy channel with 
chemical reaction and heat source. They observed that the increase of 
heat transport in oscillatory flow is more pronounced than that occurs in 
ordinary conduction. Shafiq and Sindhu [4] interested on the effect of 
both electric and magnetic fields in their contribution focusing on the 
unsteady boundary layer flow of an incompressible Williamson fluid 
over a permeable radiative stretched surface. They visualized velocity 
and temperature evolutions graphically and examined the skin friction 
coefficient and local Nusselt number numerically. Muhammad et al. [5] 
treated the time-dependent squeezing flow of magnetohydrodynamic 
(MHD) Jeffrey fluid between two parallel walls where the lower one is 
stretched. Fluid is electrically conducted in the presence of a variable 
magnetic field. Through series and numerical solutions obtained, they 
found an excellent agreement. Unsteady MHD fluid flow in a rotational 
frame of reference was considered by Salman et al. [6]. The analytical 
solution to the studied problem was constructed using Fourier transform 
method. They explored the flow behaviour under the effect of magnetic 
and rotational parameters, and it is found that the analytical results are 
in good accuracy when compared with those obtained numerically. 
Kezzar et al. [7] studied analytically with the help of differential 
transform method the nonlinear problems of hydromagnetic nanofluid 
flow and heat transfer through converging–diverging channels. They 
demonstrated that the augment of Hartmann number makes disappear 
the reversal flow for both convergent-divergent channels, and the 
presence of nanoparticles within water base fluid has a direct relation
ship with Nusselt number enhancement. Ijaz Khan et al. [8] conducted a 
numerical simulation dealing with the entropy generation effectiveness 
in magnetohydrodynamic flow of viscous fluid by permeable rotating 
disk. They explored the effect of several characteristics of interest like 
magnetic and slip parameters, thermal and solutal buoyancy variables, 
Prandtl number, temperature difference parameter, radiative param
eter, dimensionless reaction rate, activation energy factors, heat gen
eration/absorption factor and Schmidt number on the behaviour of 
concentration, velocity and thermal fields. Ramadevi et al. [8] delivered 
an interesting numerical investigation of two-dimensional magnetohy
drodynamic mixed convective flow of micropolar fluid past a stretching 
surface employing modified Fourier’s heat flux model. They investi
gated the friction factor, couple stress and mass and thermal transport 
rates under the influence of flow relevant variables. The study done by 
Gherieb et al. [9] investigates the hydromagnetic boundary layer Fal
kner–Skan flow over a flat plate numerically using the Runge–Kutta 
method featuring shooting technique and analytically via a new modi
fied analytical technique called improved generalized Adomian 
decomposition method (improved-GDM). They demonstrated that the 
increase of magnetic field intensity leads to an increase in fluid velocity, 
and consequently the backflow is prevented for both accelerated and 
decelerated Falkner-Skan flow. Merabet Ayeche et al. [10] investigated 
the two-dimensional time-dependent laminar hydromagnetic boundary- 
layer flow of a bio-magnetic fluid over a wedge using a micropolar fluid 
model with convective boundary conditions and taking into account the 
action of a transversely magnetic field. They interested in the effect of 
the wedge angle parameter β, unsteadiness parameter K, Reynolds 
number Re, induced magnetic field h and magnetic field parameter M on 
the behaviour of dimensionless velocity, temperature and micro- 
rotation of the bio-magnetic flow throughout the boundary layer. 
Mahabaleshwar et al. [11] studied the heat transfer characteristics of 
magnetohydrodynamic axisymmetric flow of Casson fluid analytically 
over a nonlinear permeable shrinking/stretching surface. They depict 
the effect of several physical quantities like the magnetic field, Casson 
parameter, mass transpiration, radiation, and Prandtl number on the 
evolution of the fluid velocity, temperature and skin friction coefficient. 
Sneha et al [12] in their investigation studied two-dimensional hydro
magnetic steady incompressible Marangoni nano boundary layer flow 

and heat transfer characteristics. They found that the axial velocity is 
affected by the viscoelastic constraint, magnetic field, and suction/in
jection parameters. Also, results obtained reveal that the Marangoni 
convection enhances the heat transfer rate; however, it diminishes with 
the application of magnetic energy. 

Nowadays, it is well known that the heat transfer improvement in 
engineering systems is limited by the low base fluid thermal conduc
tivity. In fact, a lower thermal conductivity can be considered as a major 
problem and consequently affects the reliability of engineering compo
nents like heat exchangers and electronic devices. To overcome this 
disadvantage, a novel category of fluids with excellent thermal charac
teristics is therefore of paramount importance to address the techno
logical and industrial requirements. Choi [13] discovered a new 
nanotechnology-based fluid for heat transfer known as nanofluid (NF) 
in 1990 that is obtained by dispersing nano-sized solid particles (less 
than 100 nm) like Cu, Ag, TiO2 and CuO in a conventional base liquid. In 
fact, regarding the dispersed solid nanoparticles higher thermal con
ductivities, NF is highly considered as one of superior class of solid
–liquid suspensions. After that, NFs have gained much attention and 
experimentally and numerically investigated by different scholars 
[14–24]. Belazreg et al. [25] also studied the latent of the latent heat 
thermal energy storage of copper nanoparticles and rubitherm (RT27) 
phase transition material considering four distinct stepped fin surfaces 
with the aim of capturing the variations of thermal entropy, temperature 
distribution, frictional entropy and liquid fraction in such system. This 
investigation uses the enthalpy-porosity technique to simulate the gov
erning equation arising from mathematical modeling numerically. Vai
dya et al. [26], in an interesting contribution, have used the Casson 
model to study the peristaltic blood flow of copper nanoparticles over an 
overlapping stenotic artery. Using stenosis approximations, they exam
ined stream function, wall shear stress, Nusselt number, and flow 
resistance distribution. This investigation found that the temperature 
distribution increases with the rise in heat source parameter values. 

Recently, several researchers have employed hybrid nanofluid (HNF) 
in the continuation of NF research. This new kind of nanofluid is engi
neered by combining a base fluid with a composite form or mixture of 
dissimilar suspended nanoparticles [27]. The idea of using HNFs is to 
further enhancement of heat transfer due to their higher thermophysical 
properties. The flow and heat transfer process of HNF have attracted 
researcher’s community and intensively investigated. Experimentally, 
the study implemented by Esfe et al. [28] mainly concentrated on the 
impact of nanoparticle volume fraction (VF) on dynamic viscosity and 
thermal conductivity of Ag–MgO/water HNF. The presented correla
tions for the mentioned properties showed a good agreement with 
experimental data. Moreover, heat transfer properties and pressure drop 
of a HNF mixture containing alumina nanoparticles (Al2O3) and multi- 
walled carbon nanotubes (MWCNTs) were experimentally investigated 
by Huang et al. [29] in a chevron corrugated-plate heat exchanger. 
Obtained findings reveal that the HNF mixture heat transfer coefficient 
is slightly higher than that of the water and Al2O3/water nanofluid; 
however, the HNF mixture pressure drop is slightly higher than that of 
water and smaller than that of the Al2O3/water nanofluid. Mehrali et al. 
[30] experimentally analyzed the rate of entropy generation and char
acteristics of heat transfer of hybrid graphene-magnetite nanofluids 
under hydromagnetic forced laminar flow. They showed that the ther
mal conductivity of the considered HNF shows an enhancement of 11% 
and the total entropy generation rate was decremented by up to 41% in 
comparison with distilled water. By numerical means, studies were 
concentrated on heat and HNF flow analysis in several geometries. Heat 
transfer and hydro-magnetic flow of HNF in a rotating system among 
two surfaces under the effect of thermal radiation and Joule heating 
were investigated by Chamkha et al. [31]. This investigation revealed 
that the Nusselt number appears as an increasing function of radiation 
and injection parameters, as well as VF of the HNF. Waini et al. [32] 
numerically analyzed heat transfer and steady flow of Cu-Al2O3/water 
HNF past a permeable moving surface using bvp4c function with the 
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help of Matlab software. It is reported that the HNF heat transfer rate is 
more than the value that observed for regular nanofluid. Muhammad 
et al. [33] addressed a comparative study of HNF (MWCNTs + Cu +
Water), nanofluid (MWCNTs + Water) and base fluid (Water). The ob
tained nonlinear coupled ordinary differential equation are solved with 
the aid of the fourth order Runge Kutta method (bvp4c) featuring the 
shooting technique. Animasaun et al. [34] explored the hybrid nanofluid 
flow on impermeable stagnant and moveable walls experiencing vari
able temperature. Through the conducted numerical analysis they found 
that minimal velocity was obtained in the case of stagnant impermeable 
surface; however, the minimal temperature was occured when the 
impermeable surface is moving. On the other hand, the minimal local 
skin friction coefficient was gained when the volume of used nano
particles is sufficiently large in the case of hybrid nanofluid flow over a 
stagnant impermeable wall. The study undertaken by Saranya et al. [35] 
focuses on analyzing the quartic type homogeneous-heterogeneous re
actions in ternary-hybrid nanofluid flow over the surface of a stationary/ 
moving flat plate. This investigation also uses the Tiwari-Das model for 
nano-liquid to explore the flow-thermal behaviour of the hybrid 
nanofluid. 

It is well established that the celebrated flow driven by a line source 
at the the rigid plates intersection, which is known as Jeffery-Hamel 
flow, is of paramount importance due to its wide real practical appli
cations like flow through rivers, reducers, nozzles and diffusers. The 
nonlinear governing equation, initially given by Jeffery [36] and inde
pendently by Hamel [37], was extensively treated by several re
searchers. For example, Rosenhead [38] gives a complete mathematical 
solution of the Jeffery-Hamel problem in both divergent and convergent 
flows. Solution obtained is expressed in terms of elliptic functions and 
different mathematically possible kinds of flow were explored. Fraenkel 
[39] for his part solved the Jeffery-Hamel equation in the case of laminar 
flow in channels in symmetrical geometry with marginally curved walls. 
In this investigation, the symmetric fluid velocity obtained is mainly 
dependent on two non-dimensional parameters which are the wedge 
semi-angle □; and the Reynolds number, R =Q/2v, based on the volume 
flux, Q. On the other hand, in terms of the zeros number of the solution, 
Fraenkel classified different zones of the (α, R)-plane. Thereafter, Mill
saps and Pohlhausen [40] extended the classical Jeffery-Hamel flow to 
heat transfer problem. They give exact and numerical solutions for the 
thermal distributions in the case of steady laminar flow of a viscous 
incompressible fluid through convergent-divergent channels. According 
to the literature, many studies also deal with Jeffery-Hamel flow hy
drodynamic stability. In fact, Eagles [41] interested on the stability 
question in divergent channel by resolving numerically the well known 
Orr-Sommerfeld problem. Neutral stability curves were determined in 

the (k, R)-planes (in which R refers to the basic flow Reynolds number 
and k denotes the disturbance wave-number), and fairly low critical 
Reynolds numbers were observed. Sobey and Drazin [42] used experi
mental, numerical and analytical approaches to investigate some bi
furcations and instabilities of two-dimensional channel flows. They 
examined Jeffery–Hamel flows and found interesting new findings about 
the such flows stability. Hamadiche et al. [43] interested on the Jeffery- 
Hamel flow temporal stability. They calculated the critical Reynolds 
numbers on the basis of the volume flux and axial velocity. Uribe et al. 
[44] also investigated the linear and temporal stability of some Jeffery- 
Hamel flows by using the Galerkin method. They found that the 
considered flows are unstable for Reynolds numbers near zero. 
Following previously published contributions on Jeffery-Hamel flow, 
Jotkar and Govindarajan [45] made a parallel-flow approximation for 
testing its non-modal stability in condition of low angles of convergence 
and divergence. They demonstrate that non-modal growth is signifi
cantly sensitive to the convergence/divergence angle in cases of high 
Reynolds numbers. Al-Nimr et al. [46] investigated the classical Jeffery- 
Hamel flow utilizing both first and second-order velocity-slip models. 
This investigation examines the impact of Knudsen number (Kn) on the 
velocity of fluid, slip magnitude at the wall, and skin friction coefficient 
(SFC). 

According to the literature, the slip flow was investigated for various 
flow configurations. In fact, many researchers were interested on fluid 
flow behaviour and heat transfer evolution taking into account the 
velocity-slip boundary conditions at the wall. In a pioneering work 
employing direct numerical approach of the linear Boltzmann equation, 
Wu [47] employed an effectiveness second-order slip model that well 
agreed with the result obtained by Fukui and Kaneko [48]. In another 
interesting research-work, Zhu et al. [49] addressed the impacts of the 
second-order velocity slip and temperature jump boundary conditions 
on the magnetohydrodynamic (MHD) flow and heat transfer in the 
presence of solid nanoparticles. More recently, Martins Obalalu et al. 
[50] by using the Chebyshev collocation Method investigated numeri
cally the effect of variable electrical conductivity on non-Darcian Casson 
nanofluid flow and heat transfer considering both first and second-order 
slip conditions. Al Jaloud et al. [51] also studied the thermal impact of 
bioconvection flow of cross nanofluid taking into account the second 
order slip condition and activation energy. They found that the nano
fluid velocity decreases with interaction of first order slip parameter. 

During last decades, a large number of analytical techniques, like 
homotopy method [52,53], variational iteration approach [54] and 
Adomian decomposition approach [55], were developed and success
fully employed to solve ordinary and partial nonlinear differential 
equations. Adomian’s decomposition approach was first discovered by 

Fig. 1. Physical model for MHD Jeffery–Hamel HNF flow.  
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Georges Adomian in the 1980 s; it is considered as one of interesting 
techniques which gives analytical approximations and provides the so
lution as an infinite series with elegantly computable terms that can be 
easily determined. Thereafter, various modifications of the Adomian 
Decomposition Method (ADM) have been proposed in an attempt to 
enhance the efficiency of the original method. The Duan Rach Approach 
(DRA) [56] is considered as one of reliable modified version of the 
Adomian decomposition method which was principally employed for 
solving a large class of nonlinear boundary value problems [57–63]. In 
fact, this modified analytical technique will allow determining an ac
curate solution without using numerical methods to evaluate the un
determined coefficients and in consequence the final solution does not 
contain undetermined coefficients. 

This study aims at modeling and simulating the dynamic behaviour 
of magneto-hydrodynamic HNF flow between nonparallel plane walls by 
considering the impact of velocity-slip boundary conditions. The ob
tained nonlinear ordinary differential equation governing the consid
ered problem was treated numerically via Runge-Kutta-Fehlberg 
technique featuring shooting technique and analytically with the help of 
a new modified technique of computation called Duan-Rach Approach. 
In this investigation, we are mainly interested to the effect of different 
physical parameters of interest like Reynolds number Re, Hartmann 
number Ha, channel half-angle α, nanoparticles VF φ and velocity-slip 
boundary conditions models on SFC and velocity distribution for both 
diverging and converging flows. On the other hand, a comparative study 
was undertaken with the aim of showing accuracy and effectiveness of 
the adopted Duan-Rach Approach. 

2. Governing equations 

This investigation considers the steady magneto-hydrodynamic HNF 
flow via converging/diverging channels. As displayed in Fig. 1, a purely 
radial motion, i.e., for velocity components was assumed that can be 
written as:V = V(r, θ),Vθ = 0 and VZ = 0. In addition, this study con
cerns the impacts of solid hybrid nanoparticles, magnetic field and both 
the first- and second-order slip models on the hydrodynamic behaviour 
of the considered HNF flow. 

The equations for continuity and momentum in cylindrical co
ordinates (r, θ, z) can be written as follows: 

1
r

∂
∂r

(rVr)+
1
r

∂Vθ

∂θ
+

∂Vz

∂z
= 0 (1)  

Vr
∂Vr

∂r
= −

1
ρhnf

∂p
∂r

+ νhnf

[
∂2Vr

∂r2 +
1
r

∂Vr

∂r
+

1
r2

∂2Vr

∂θ2 −
Vr

r2

]

−
σhnf

ρhnf r2

(
B2Vr

)
(2)  

0 = −
1

ρhnf

∂p
r∂θ

+
2νhnf

r2
∂Vr

∂θ
(3) 

The channel centerline boundary condition can be expressed as 
follows: 

Atθ = 0→Vr =
Vmax

r
and∂Vr/∂θ = 0 (4) 

The wall velocity-slip boundary condition is as follows: 

Vr = Vslip (5) 

The quantities νhnf , ρhnf and σhnf are the kinematic viscosity, density 
and electrical conductivity of the HNF, 

The HNF properties are expressed as follows 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νhnf =
μhnf

ρhnf

μhnf =
μf

(1 − φ1)
2.5
(1 − φ2)

2.5

ρhnf = ρf

(

(1 − φ2)

(

(1 − φ1) + φ1
ρp1

ρf

)

+ φ2.
ρp2

ρf

)

σhnf

σf
= 1 +

3(m − 1)(
σp1

σf
− 1)φ1

(σp1

σf
+ 2

)

− (m − 1)φ1(
σp1

σf
− 1)

+

3(m − 1)(
σp2

σf
− 1)φ2

(σp2

σf
+ 2

)

− (m − 1)φ2(
σp2

σf
− 1)

(6)  

where m is the shape factor of the considered solid nanoparticles. 
Table 1 depicts different particles shapes such as sphere, brick, cylinder 
and platelet. 

Based on the continuity equation (Eq. (1), it can be written: 

Vr = f (θ)/r (7) 

By employment of the following similarity transformation [19]: 

F(θ) =
f (θ)
fmax

(8)  

where: η = θ
α with:. − 1 ≤ η ≤ + 1 

and removing pressure terms between Eqs. (2) and (3), we obtain the 
following dimensionless form: 

F″′ + 4α2F′+ 2Reα(1 − φ1)
2.5
(1 − φ2)

2.5[A1FF′− A2Haα2F′] = 0 (9) 

The first order wall slip boundary condition in partial differential 
form is given as follows: 

f ( ± α) = −
2 − σv

σv
λ
(

∂Vr

∂θ

)

θ=∓α
(10)  

where: 
σv: Tangential momentum accommodation coefficient (TMAC). 
λ: Mean free path. 
∂Vr
∂θ : Velocity gradient normal to the azimuthal direction. 
Using the Taylor series expansion of Vr about the wall, the second 

order terms slip boundary condition is thus 

f ( ± α) = −
2 − σv

σv
[λ
(

∂Vr

∂θ

)

θ=∓α
+ λ2

(
∂2Vr

∂θ2

)

θ=∓α
] (11) 

Table 1 
Solid nanoparticles shape factor.  

Nanoparticles type Shape Shape factor 

Sphere m = 3 

brick m = 3.7 

Cylinder m = 4.9 

Platelet m = 5.7  
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Using Eq. (7) and considering η = θ
α, the velocity gradient ∂Vr

∂θ can be 
expressed as: 

∂Vr

∂θ
=

1
rαF′(η) (12) 

In terms of F(η), the boundary conditions are: 

At the channel centerline (η = 0)→F(0) = 1andF′(0) = 0 (13) 

At the channel body (η = ∓1), the velocity-slip boundary conditions 
(10) and (11), taking into account Eq. (12), are expressed as follows 
[46].  

• For the first-order slip model 

F( ± 1 ) = −
2 − σv

σv
Kn F′( ± 1 ) (14)    

• For the second order slip model 

F( ± 1) = −
2 − σv

σv

[

KnF′( ± 1 )+
Kn2

2
F″( ± 1 )

]

(15)  

where Kn is the Knudsen number which is a very important dimen
sionless quantity that allows characterizing the boundary conditions of a 
fluid flow. This number is defined as the ratio of the molecular mean free 
path length to a representative physical length scale and is defined as 
follows 

Kn =
λ
rα (16) 

The local Reynolds, Re, and Hartmann, Ha, numbers given by Eq. (9) 
can be expressed by the following formulas: 

Re =
rVmaxα

ν =
fmax.α

ν

{
Vmax > 0,α > 0Divergentchannel

Vmax < 0, α < 0Convergentchannel (17)  

where fmax refers to the channel centerline velocity, and, α is the channel 
half-angle. 

Ha =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σf r2B2

0

μf

√

(18) 

From Eq. (9), the quantities A1 and A2 are as follows 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 =

(

(1 − φ2)

(

(1 − φ1) + φ1
ρp1

ρf

)

+ φ2.
ρp2

ρf

)

A2 = 1 +

3(m − 1)(
σp1

σf
− 1)φ1

(σp1

σf
+ 2

)

− (m − 1)φ1(
σp1

σf
− 1)

+

3(m − 1)(
σp2

σf
− 1)φ2

(σp2

σf
+ 2

)

− (m − 1)φ2(
σp2

σf
− 1)

(19) 

Table 2 displays the thermophysical properties of the pure 
(H2O − C2H6O2) base fluid and solid nanoparticles (Cu and Al2O3). 

The SFC Cf on the basis of the wall shear stress. This definition of the 
quantity is as follows: 

Cf =
τw

ρ.f 2
max

(20) 

In which wall shear stress is denoted as 

τw = μhnf (
1
r
.
∂u
∂θ
)

⃒
⃒
⃒
⃒

θ=α
(21) 

By applying Eq. (21) in Eq. (20), and employment of the quantities 
(8) and (10), the SFC is expressed as: 

C*
f = r2.C∴

f
=

1
Re
.

1
(1 − φ1)

2.5
(1 − φ2)

2.5

.
1

(
(1 − φ2)

(
(1 − φ1) + φ1

ρp1

ρf

)
+ φ2.

ρp2

ρf

).F′
(1) (22) 

In simulation, it is worth to note that the behavior of SFC is mainly 
represented by the evolution of the quantity F′(1). 

3. Basic concept of DRA method 

Consider the following third-order nonlinear differential equation: 

Ly = Ny+ g (23) 

Subject to the Dirichlet boundary conditions 

y(x1) = α0, y′(x1) = α1, y(x2) = α2, x1 ∕= x2 (24) 

L is an easily invertible linear operator, N is a nonlinear operator and 
g is the system input. 

Now, considering L− 1 as an inverse operator that represents an n-fold 
integration. 

In fact, applying L− 1 to both sides of Eq. (23) yields: 

L− 1Ly = L− 1g+L− 1[N + R]y (25) 

We take the inverse linear differential operator L− 1 as 

L− 1 =

∫η

x0

∫η

x1

∫η

β

dηdηdη (26)  

where β is a prescribed value in the specified interval. Then we have: 

L− 1Ly = y(x) − y(x0) − y′(x1).(x − x0) −
1
2
.y″(β).[(x − x1)

2
− (x0 − x1)

2
]

(27) 

Operating with the inverse operator L− 1 on both sides of Eq. (25) 
yields: 

L− 1[Ny+ g] = y(x) − y(x0) − y′(x1).(x − x0) −
1
2
.y″(β).[(x − x1)

2
− (x0 − x1)

2
]

(28) 

We differentiate Eq. (27), then let x = x2 and solve for y″(β), hence, 

y″(β) =
y′(x2) − y′(x1)

x2 − x1
−

1
x2 − x1

∫ x2

x1

∫ x

β
[Ny+ g]dxdx (29) 

Substituting Eq. (29) into Eq. (28) gives 

y(x) = y(x0) − y′(x1).(x − x0)+
1
2
[
(x − x1)

2

− (x0 − x1)
2 ] y′(x2) − y′(x1)

x2 − x1

+L− 1g −
1
2

[
(x − x1)

2
− (x0 − x1)

2 ]

x2 − x1

∫ x2

x1

∫ x

β
gdxdx

−
1
2

[
(x − x1)

2
− (x0 − x1)

2 ]

x2 − x1

∫ x2

x1

∫ x

β
Nydxdx+ L− 1Ny

(30) 

From Eq. (30), we notice that the three boundary values y(x0), y′(x1)

Table 2 
Thermo-physical properties of mixture base fluid and nanoparticles.  

Physical properties ρ(Kg/m3) σ(Kg/m3)

C2H6O2 − H2O 1063.8 9.75 × 10− 4 

Cu 1800 2.09 × 104 

Al2O3 5060 6.30 × 107  
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and y′(x2) are included and consequently the undetermined coefficient 
was replaced. Thereafter, the series solution and the nonlinearity are 
given as follows: 

u(x) =
∑∞

m=0
um(x) (31)  

Nu(x) =
∑∞

m=0
Am(x) (32)  

where: 
Am(u0(x), u1(x),⋯.., um(x)) are the Adomian polynomials. 
According to the Duan Rach approach, the solution components are 

determined by the following recursion scheme: 

y0 = y(x0) − y′(x1).(x − x0)+
1
2
[
(x − x1)

2
− (x0 − x1)

2 ] y′(x2) − y′(x1)

x2 − x1

+L− 1g −
1
2

[
(x − x1)

2
− (x0 − x1)

2 ]

x2 − x1

∫ x2

x1

∫ x

β
gdxdx

(33)  

ym+1 = L− 1Am −
1
2

[
(x − x1)

2
− (x0 − x1)

2 ]

x2 − x1

∫ x2

x1

∫ x

β
Amdxdx (34)  

4. Employment Of DRA method 

In this study, the nonlinear differential equation (Eq. (9) under the 
boundary conditions (10), (11) and (12) have been solved analytically 
using the modified Duan-Rach-Adomian decomposition method. 

According to DRA algorithm [56], Eq. (9) can be written as: 

L F″′ = − 4α2F′ − 2Reα(1 − φ1)
2.5
(1 − φ2)

2.5[A1FF′+A2Haα2F′] (35)  

where the differential operator L and the inverse operator L
− 1 are 

given respectively by 

L =
d3

dη3  

L− 1
f (□) =

∫η

0

∫η

0

∫η

0

(□)dηdηdη 

Operating with L − 1 on Eq. (20) and applying the boundary condi
tions on it, we get 

F(η) − F(0) − ηF′(0) −
η2

2
F″(0) = − L− 1Rf (η)− L− 1Nf (η) (36)  

where Rf and Nf are introduced as 

⎧
⎪⎪⎨

⎪⎪⎩

Rf = (1 − φ1)
2.5
.(1 − φ2)

2.5A2α2(4 − Ha)
dF(η)

dη

Nf = 2Reα(1 − φ1)
2.5
.(1 − φ2)

2.5A1F(η) dF(η)
dη

(37) 

By putting η = 1 in Eq. (14), we obtain:  

• For the first-order slip model 

F″(0) = 2
(

−
2 − σv

σv
KnF′(1 ) − 1+L1

− 1Rf (η)+L1
− 1Nf (η)

)

(38)    

• For the second order slip model 

F″(0) = 2
(

−
2 − σv

σv

[

KnF′(1 ) +
Kn2

2
F″(1 )

]

− 1+ L1
− 1Rf (η)+L1

− 1Nf (η)
)

(39)  

where 

L− 1
1 (□) =

∫1

0

∫η

0

∫η

0

(□)dηdηdη (40) 

Substituting Eq. (16) into Eq. (14) yields.  

• For the first-order slip model     

• For the second order slip model   

where the first component of solution, F0(η), is as follows:  

• For the first-order slip model 

F0(η) = 1 − η2 −
2 − σv

σv
KnF′(1 )η2 (43)    

• For the second order slip model 

F0(η) = 1 − η2 −
2 − σv

σv

[

KnF′(1 )+
Kn2

2
F″(1 )

]

η2 (44) 

Finally, the first few components of the solution determined through 
DRA algorithm are expressed as follows: 

F(η) = 1 − η2 +

(

−
2 − σv

σv
KnF′(1 )η2 + η2L1

− 1Rf (η)+η2L1
− 1Nf (η)

)

− L− 1Rf (η)− L− 1Nf (η) (41)   

F(η) = 1 − η2 +

(

−
2 − σv

σv

[

KnF′(1 ) +
Kn2

2
F″(1 )

]

η2 + η2L1
− 1Rf (η)+η2L1

− 1Nf (η)
)

− L− 1Rf (η)− L− 1Nf (η) (42)   
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Fig. 2. F(η) for different values of Reynolds number for both slip models in divergent/convergent channel when α = ±3◦

,φcu = φAl2O3
= 2%, σv = 0.4, Kn =

0.05andHa = 0. 
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Fig. 3. F(η) for different values of opening angle parameter for both slip models in divergent/convergent channel when. Ha = 0,φcu = φAl2O3
= 2.%,σv = 0.6,Kn =

0.07andRe = 75 
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Fig. 4. F(η) for different values of Hartmann number for both slip models in divergent/convergent channel when. α = ±3◦

,φcu = φAl2O3
= 2.%, σv = 0.6,Kn =

0.04andRe = 220 
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Fig. 5. F(η) for different values of Knudsen number for both slip models in divergent/convergent channel when α = ±3◦

, φcu = φAl2O3
= 2.%, σv = 0.6, Kn =

0.04andRe = 220. 
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Fig. 6. F(η) for different values of nanoparticle VF for both slip models in convergent channel when α = − 3◦

,Ha = 0, σv = 0.2,Kn = 0.06etRe = 240.  

Fig. 7. F(η) for different values of nanoparticle VF for the first-order slip model in divergent channel when. α = + 3◦

,Ha = 0, σv = 0.2,Kn = 0.06etRe = 240  
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Fig. 8. F(η) for different values of nanoparticle VF for the second order slip model in divergent channel when. α = + 3◦

,Ha = 0,σv = 0.2,Kn = 0.06etRe = 240  

Fig. 9. F(1) for different values of Hartmann number for both slip models in convergent channel when. α = − 3◦

,φcu = φAl2O3
= 1.%,σv = 0.2,Kn = 0.06andRe =

240 
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Fig. 10. F(1) for different values of Hartmann number for both slip models in divergent channel when. α = + 3◦

,φcu = φAl2O3
= 1.%,σv = 0.2,Kn = 0.06andRe =

240 

Table 3 
F(η) for different values of nanoparticles shape factor in divergent/convergent channel for both slip models when. α =±3◦

,Ha = 1000,φcu = φAl2O3
= 2%,Kn = 0.04,

σv = 0.6andRe = 220    

η 1stOrder Slip 2ndOrder Slip 1stOrder Slip 2ndOrder Slip 1stOrder Slip 2ndOrder Slip 1stOrder Slip 2ndOrder Slip 

Convergent channel  0.00  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  
0.25  0.99218  0.99241  0.99230  0.99252  0.99248  0.99270  0.992640  0.992860  
0.50  0.95307  0.95441  0.95361  0.95496  0.95449  0.95582  0.955222  0.956553  
0.75  0.80687  0.81231  0.80824  0.8137  0.81045  0.81592  0.812299  0.817784  
1.00  0.30892  0.32694  0.30999  0.32815  0.31170  0.33011  0.313155  0.331767 

Divergent channel  0.00  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  
0.25  0.81083  0.81048  0.81384  0.81351  0.81868  0.81837  0.822737  0.822444  
0.50  0.43385  0.43271  0.44127  0.44018  0.45322  0.45221  0.463274  0.462324  
0.75  0.13883  0.13661  0.14666  0.14453  0.15932  0.15734  0.170015  0.168158  
1.00  0.01442  0.01036  0.01734  0.01345  0.02209  0.01845  0.026121  0.022706  

F1(η) = −
1
12

α2(− 1 + δ)η2(− 4 + HaA2(1 − φ1)
2.5
(1 − φ2)

2.5
)

+
1
12

α2(− 1 + δ)η4(− 4 + HaA2(1 − φ1)
2.5
(1 − φ2)

2.5
)

+
1

30
Reα(− 1 + δ)(4 + δ)η2A1(1 − φ1)

2.5
(1 − φ2)

2.5

−
1
15

Reα(− 1 + δ)(
5η4

2
+

1
2
(− 1 + δ)η6)A1(1 − φ1)

2.5
(1 − φ2)

2.5

(45)   
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Fig. 11. SFC for different values of Hartmann number and shape factors for both slip models in divergent channel when. α = 3◦

,φcu = φAl2O3
= 2%,σv = 0.2,Kn =

0.06etRe = 240 

Fig. 12. SFC for different values of nanoparticle VF φCu for both slip models in divergent channel when α = 3◦

,Ha = 0,φAl2O3
= 2.5%,σv = 0.2,Kn = 0.06 et Re =

240. 
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Fig. 13. SFC for different values of nanoparticle VF φAl2O3 
for both slip models in divergent channel when α = 3◦

,Ha = 0,φCu = 2.5%,σv = 0.2,Kn = 0.06 et Re =

240. 

Fig. 14. SFC for different values of Knudsen number and nature of nanoparticles for both slip models in divergent channel when. α = 3◦

,Ha = 0,φcu = φAl2O3
= 2%,

σv = 0.2andRe = 220 
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Fig. 15. SFC for different values of Knudsen number and nature of base fluid for both slip models in divergent channel when α = 3◦

,Ha = 0,φcu = φAl2O3
= 2%,

σv = 0.2andRe = 220. 

F2(η) =
1
30

α3(− 1 + δ)η4(ReA1((− 1.33 + 0.66η2 − 0.0714η4

+δ(− 0.33 + 0.071η4))(1. − 1.φ1)
2.5
(1. − 1.φ2)

2.5
+ Ha(0.33 − 0.16η2

+0.017η4 + δ(0.083 − 0.017η4))A2(1. − 1.φ1)
5.
(1. − 1.φ2)

5.
) + α(− 3.33

+1.33η2 + Ha(1.66 − 0.66η2)A2(1. − 1.φ1)
2.5
(1. − 1.φ2)

2.5
+ Ha2(− 0.20

+0.083η2)A2
2(1. − 1.φ1)

5.
(1. − 1.φ2)

5.
)) −

1
30

α3(− 1 + δ)η2(− 1.99α

+(Re(− 0.73 − 0.26δ)A1 + 0.99HaαA2)(1. − 1.φ1)
2.5
(1. − 1.φ2)

2.5

+HaA2(Re(0.18 + 0.06δ)A1 − 0.124HaαA2)(1. − 1.φ1)
5.
(1. − 1.φ2)

5.
)

−
1
15

Reα2(− 1 + δ)η4A1(1 − φ1)
2.5
(α(0.83 − 0.66η2 + 0.33δη2 + 0.17η4 − 0.17δη4 + Ha(− 0.20

+(0.16 − 0.08δ)η2 + (− 0.04 + 0.044δ)η4)A2(1. − 1.φ1)
2.5
(1. − 1.φ2)

2.5
) + Re(0.33 − 0.3η2 + 0.1η4 − 0.011η6 + δ2(0.03η2 − 0.011η6) + δ(0.08

+0.1η2 − 0.1η4 + 0.02η6))A1(1. − 1.φ1)
2.5
(1. − 1.φ2)

2.5
)(1 − φ2)

2.5

+
1
15

Reα2(− 1 + δ)η2A1(1 − φ1)
2.5
(α(0.34 + 0.15δ) + (Re(0.12 + 0.09δ + 0.022δ2)A1 + Haα(− 0.08 − 0.03δ)A2)(1. − 1.φ1)

2.5
(1. − 1.φ2)

2.5
)(1 − φ2)

2.5

(46)   

Table 4 
The comparison between DRA results and numerical solution for F(η) in divergent channel for both slip models when.Re = 10,Ha = 5,φcu = φAl2O3

= 1%,Kn = 0.01,
σv = 0.2etα = + 2◦

.

η Numerical RKF-45 DRA Method Error 

0 1 1 0 

The first-order slip model 0.2 0.9642171544996551 0.9642171620393865 7.53× 10− 9 

0.4 0.8578724562523676 0.8578724681953145 1.19× 10− 8 

0.6 0.6837308130254167 0.6837308223408145 9.31× 10− 9 

0.8 0.44561312617128185 0.4456131335620474 7.39× 10− 9 

1 0.1473207704772301 0.14732077791531234 7.43× 10− 9 

The second order slip model η Numerical RKF-45 DRA Method Error 
0 1 1 0 
0.2 0.9642399630606179 0.9642399706004503 7.53× 10− 9 

0.4 0.8579630743085713 0.8579630862498684 1.19× 10− 8 

0.6 0.6839326880956572 0.6839326974119031 9.31× 10− 9 

0.8 0.44596805971584447 0.4459680671055834 7.38× 10− 9 

1 0.14787012343996667 0.14787013087200618 7.43× 10− 9  
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where δ is a constant which mainly depends on the slip model. In fact, 
according to the Eqs. (28) and (29), δ is given by: 

For the first-order slip model: 

δ = −
2 − σv

σv
KnF′( ± 1 ) (47) 

For the first-order slip model: 

δ = −
2 − σv

σv

[

KnF′( ± 1 )+
Kn2

2
F″( ± 1 )

]

(48)  

5. Results and discussions 

This research-work investigates analytically via Duan-Rach modified 
Adomian decomposition method the nonlinear problem of HNF flow be
tween nonparallel plane walls. In fact, a particular attention is dedicated to 

the effects of various physical parameters like solid hybrid nanoparticles, 
magnetic field and both the first- and second-order slip models on the 
hydrodynamic behaviour and skin friction coefficient. This investigation 
also uses numerical Fehlberg-Runge-Kutta solution as a guide to visualize 
the effectiveness of the analytical DRA method adopted. 

5.1. Hydrodynamic behaviour 

Fig. 2 displays the impact of Reynolds number on the HNF velocity 
through divergent/convergent channels for both velocity-slip boundary 
conditions models when α = ±3◦

,φcu = φAl2O3
= 2 %,σv = 0.4,Kn =

0.05 and Ha = 0. From Fig. 2.a, for convergent flow, it is noted a sym
metric HNF velocity profiles against η = 0. Furthermore, an increment in 
the values of Reynolds number induces an increase in the nanofluid 
velocity leading to the flatter profile at the channel centerline and 
consequently a reduction can be occurred in the thickness of momentum 

Table 5 
The comparison between DRA results and numerical solution for F(η) in convergent channel for both slip models when.Re = 10,Ha = 5,φcu = φAl2O3

= 1%,Kn = 0.01,
σv = 0.2etα = − 2◦

.

η Numerical RKF-45 DRA Method Error 

0 0 0 0 

The first-order slip model 0.2 0.9678984546404373 0.9678984564963492 1.85× 10− 9 

0.4 0.8706815599995792 0.8706815555926373 4.40× 10− 9 

0.6 0.7057723949657546 0.705772383390034 1.15× 10− 8 

0.8 0.46943790096568927 0.46943788002441694 2.09× 10− 8 

1 0.15772526992991098 0.15772524112863218 2.88× 10− 8 

The second order slip model η Numerical RKF-45 DRA Method Error 
0 0 0 0 
0.2 0.9679270979799004 0.9679270998398076 1.85× 10− 9 

0.4 0.8707969203040761 0.870796915908161 4.39× 10− 9 

0.6 0.7060345970586877 0.7060345854883355 1.15× 10− 8 

0.8 0.46990938612409383 0.46990938612409383 2.09× 10− 8 

1 0.15846939493860362 0.15846936615061477 2.87× 10− 8  

Fig. 16. Comparison between DRA method and numerical RKF-45 technique for F(η) for both slip models in divergent/convergent when.Re = 222,Ha = 0,φcu =

φAl2O3
= 0%,Kn = 0.07, σv = 0.2etα = ±3◦

.

M. Kezzar et al.                                                                                                                                                                                                                                 



Journal of Magnetism and Magnetic Materials 587 (2023) 171215

18

boundary layer for both velocity-slip boundary conditions considered. In 
this situation, it is clear that the backflow is entirely excluded. From 
Fig. 2.a, it is also seen that the slip velocity at the wall level is higher 
when the Reynolds number augment. In fact, it can be highly stated that 
the slip starts to increase as Reynolds number increase. However, as 
depicted in Fig. 2.b, in the case of diverging channel, we observe that the 
HNF velocity appears as a decreasing function with the increase of 
Reynolds number where the volume flux is concentrated at the level of 
channel centerline with smaller gradients near the walls. In fact, this 
velocity decrease makes increase momentum boundary layer thickness 

for both velocity-slip boundary conditions adopted. From Fig. 2.b, it is 
clear that the slip velocity at the wall is smaller and results obtained 
show that the slip decreases with the augment of Reynolds number. In 
the case of divergent channel, the separation and backflow phenomena 
are highly noticed when the Reynolds number exceeds a certain critical 
value. 

In order to visualize the effect of channel half-angle, α, on the evo
lution of HNF velocity in converging/diverging channels, Fig. 3 is 
generated with the following data:Ha = 0,φcu = φAl2O3

= 2%,σv = 0.6,
Kn = 0.07andRe = 75. In fact, as drawn in Fig. 3, the behaviour of the 

Fig. 17. Comparison between DRA data and results obtained by Al-Nimr et al. [46] for F(η) for both slip models when.Re α = 0.

Fig. 18. Comparison between DRA data and and HAM-based mathematica package BVPh2 for both slip models in convergent channel when. α = − 3◦

, φcu =

φAl2O3
= 1.%, σv = 0.2,Kn = 0.06,Re = 240andHa = 100 
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HNF velocity is depicted to be similar to that observed in Fig. 2 for both 
velocity-slip boundary conditions. In the case of converging channel 
(Fig. 3-a), results obtained reveal that the augment of α makes grow the 
favourable pressure gradient. However, in diverging channel, as depic
ted in Fig. 3-b, it is highly noticed that the rise in the magnitude of α 
promotes the apparition of reversal flow when the adverse pressure 
gradient is large enough. 

Fig. 4 displays the effect of Hartman number, Ha, on the nanofluid 
velocity in convergent-divergent channels when:α = ±3◦

,φcu = φAl2O3
=

2%, σv = 0.6,Kn = 0.04 and Re = 220. HNF velocity profiles resulting 
from first and second-order velocity-slip models appear as an increasing 
function with the augment in the Hartmann number magnitude. In fact, 
this increase reduces the momentum boundary layer thickness. As wit
nessed this figure, it is well clear that the magnetic field has a stabilizing 
effect on the HNF flow behaviour. In fact, the applied magnetic field 
produces a well-known Lorentz force that opposes to the flow direction, 

and therefore the backflow phenomenon is entirely precluded in the 
entire channel. Furthermore, results obtained also show that the 
velocity-slip at the body of channel augments with the increment of 
Hartmann number for both converging and diverging flows. 

Knudsen number influence on the nanofluid velocity through 
converging/diverging channels is displayed in Fig. 5 for both considered 
slip models when α = ±3◦

,φcu = φAl2O3
= 2.%, σv = 0.6,Kn = 0.04 and 

Re = 220. From Fig. 5.a, in the case of convergent channel, it can be 
seen that the slip at the wall increases with the increase of Knudsen 
number, Kn for both considered slip models. In the convergent channel, 
it is highly stated that the backflow phenomenon is entirely vanished. 
On the other hand, as visualized by Fig. 5.b in the case of divergent 
channel, we notice that increasing Kn number makes nanofluid velocity 
to slowly decrease and momentum boundary layer thickness to slowly 
augment. Also, as the Knudsen number increases the thickness of mo
mentum boundary layer decreases for the two considered slip models of 

Fig. 19. Comparison between DRA data and and HAM-based mathematica package BVPh2 for both slip models in divergent channel when. α = + 3◦

, φcu =

φAl2O3
= 1.%, σv = 0.2,Kn = 0.06,Re = 240andHa = 100 
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boundary conditions. Consequently, for large values of Reynolds num
ber Re = 220, it is highly noted that the reversal flow appears for small 
amount of Knudsen number (i.e. Kn = 0.01) and disappear with the rise 
of Knudsen number. 

The influence of nanoparticles VF 
(
φcu + φAl2O3

)
mixture on the HNF 

velocity through convergent/divergent channels is reported in Figs. 6, 7 
and 8 for both velocity-slip models when α = ±3◦

,Ha = 0, σv = 0.2,
Kn = 0.06 and Re = 240. As drawn in Fig. 6 in the case of convergent 
flow, it can be seen for both first and second-order velocity-slip models 
that the nanofluid velocity increases with the rise of nanoparticle VF and 
consequently the backflow phenomenon is precluded. But as illustrated 
in Figs. 7 and 8 for the condition of divergent flow, it is observed that the 
velocity slip at the wall decreases with the increase of nanoparticle VF. 
Also, it is clearly seen that the nanofluid velocity appears as a decre
menting function of the mixture nanoparticle VF and consequently the 
flow separation may occur for both first and second order velocity-slip 
boundary conditions. 

Fig. 9 displays the impact of Hartmann number on the evolution of 
hybrid nanofluid velocity at the level of upper wall of convergent 
channel for both first and second-order velocity-slip boundary condi
tions studied. In fact, we notice a little variation of hybrid nanofluid 
velocity with the rise in the magnitude of Hartmann number for both slip 
conditions. However, as depicted in Fig. 10, in the case of divergent 
channel, we notice that the HNF velocity at the wall rises with the 
augment of Hartmann number which mainly leads to the reversal flow 
disappeared. On the other hand, it is highly recognized that the second- 
order velocity slip condition is very different from the first-order ve
locity slip because two slip parameters can effectively regulate the 
boundary layer development. When comparing the considered velocity- 
slip boundary conditions, as drawn in Figs. 9 and 10, it is clearly note 
that the second order slip model shows higher values of the velocity at 
the upper wall of convergent flow and lesser one at the upper wall of 
divergent channel. Consequently the backflow phenomenon is entirely 
disappeared in such situations. 

Table 3 delineates, for both convergent and divergent flows, the 
variation of HNF velocity under the effect of nanoparticles shape factor, 
m and both velocity-slip models when α = ±3◦

,Ha = 1000,φcu =

φAl2O3
= 2%,Kn = 0.04, σv = 0.6 and Re = 220. Results obtained, show 

the direct relationship between shape factor and nanofluid velocity 
where the HNF velocity is clearly improved with the presence of large 
values of a nanoparticle shape factor in both convergent channel and 
divergent channel. For these cases, it is highly noticed that the velocity 
of the hybrid mixture nanoparticles (Cu-Al2O3) in the cylindrical form 
inserted in the mixture H2O − C2H6O2 base fluid displays higher values 
when compared to the other considered hybrid nanoparticles. 

5.2. Skin friction coefficient 

In this investigation, we are interested on the evolution of SFC at the 
upper walls (i.e. η = + 1). In fact, it is worth to mention that the 
negative values of SCF (F′(1) < 0) mainly indicate that the backflow is 
entirely precluded; however, the positive values reveal that the reversal 
flow appeared. 

Effects of Hartmann number and shape factors on local SFC in 

divergent channel for both slip models are shown in Fig. 11 when α = 3◦

,

φcu = φAl2O3
= 2%,σv = 0.2,Kn = 0.06etRe = 240. As visualized, local 

SFC decreases with the augment of both Hartmann number and shape 
factors, thus signalling the vanishment of backflow phenomenon for 
both considered velocity-slip boundary conditions models. Fig. 11 also 
reveals that the minimal local SFC is obtained in the case of hybrid 
nanofluid with nanoparticles of Platelet form. Also, results obtained 
show that the local SFC is lower with second-order slip model when 
compared to that gained with first-order slip model. In fact, we notice a 
reduction of 43% at Hrtmann number Ha = 200 and a reduction of 50% 
when the Hartmann number is equal to 1200. The comparison of local 
SFC in the case of Platelet form when compared to that of spherical form 
in the case of second-order slip boundary condition demonstrate a low 
reduction of 7,5 % when Ha = 200 and a higher reduction of 70% when 
Ha = 1200. 

The impact of VF of copper nanoparticles (φcu) on local SFC for both 
slip models are drawn in Fig. 12 when α = 3◦

,Ha = 0,φAl2O3
= 2.5%,

σv = 0.2, Kn = 0.06 et Re = 240. In fact, an increase in local SFC is 
observed with gradual increase in nanoparticles VF φcu and conse
quently, the backflow phenomenon is started. On the other hand, as 
displayed in Fig. 13, under the effect of alumina (Al2O3) nanoparticle 
VF, a lower variation of local SFC for both slip models of boundary 
conditions in divergent channel was observed which delay the flow 
separation. Effects of Knudsen number, phase of nanoparticle (Cu/
Al2O3 − Cu) and nature of base fluid (H2O/H2O − C2H6O2) on local SFC 
are shown in Figs. 14 and 15 for both slip models in diverging channel 
when α = 3◦

,Ha = 0,φcu = φAl2O3
= 2%,σv = 0.2andRe = 220. As can 

be seen, we notice a decrease of local SFC with the increase of Knudsen 
number and phase of nanoparticle for the considered velocity-slip 
boundary conditions models. For these cases, it is worth to conclude 
that he reversal flow can be entirely excluded as the magnitude of 
Knudsen number increase. Furthermore, it should also be noted that 
hybrid phase (Al2O3 − Cu) presents lower local SFC than nano-phase 
(Cu). Finally, as drawn in Figs. 14 and 15, we can conclude that the 
same reductions of local SFC intensity was observed when comparing 
second-order slip model with first-order slip model. In fact, the local SFC 
with second-order slip model is reduced by 15,2% when Kn = 0,04 and 
by 69% when Kn = 0,08. 

5.3. Comparison and validation 

As described in Tables 4-5 and Fig. 16, the DRA solution reveals an 
excellent and positive agreement with the Runge-Kutta-Fehlberg (RKF- 
45) solution used as a guide; hence we are confident to use the DRA 
method as the main tool for the computation of the present problem for 
both slip models. For the validity and the effectiveness of the DRA 
technique, a comparison of the present results is made with those re
ported in literature of M. A. Al-Nimr et al. [46]. In fact, results drawn in 
Fig. 17 for both slip models match perfectly, demonstrating the higher 
reliability of the adopted Duan-Rach approach. On the other hand, to 
justify advantageously the higher accuracy of DRA method, a compari
son is also made with results obtained via HAM based Mathematica 
package BVPh2. In fact, it is highly noticed that the data compared are in 
perfect agreement.Fig. 18.Fig. 19.. 

Table 6 
Order of approximation of DRA solution for F″(0) in divergent/convergent channel when. α = ±3◦

,Ha = 0,φcu = φAl2O3
= 2%,Kn = 0.05,σv = 0.4andRe = 100  

Order approximation F″(0) in divergent channel F″(0) in convergent channel 

5 th- order approximation  − 3.7507596372  − 0.5434355318 
7 th- order approximation  − 3.7484222773  − 0.5411937259 
9 th- order approximation  − 3.7488909026  − 0.5410981683 
15 th- order approximation  − 3.7488509679  − 0.5411264397 
21 th- order approximation  − 3.7488583534  − 0.5411326294 
27 th- order approximation  − 3.7488583363  − 0.5411320154 
Numerical  − 3.7488583369  − 0.5411320119  
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Finally, as exhibited in Table 6, it is highly noticed for both con
verging–diverging channels, when α = ±3◦

,Ha = 0,φcu = φAl2O3
= 2%,

Kn = 0.05, σv = 0.4andRe = 100 that the accuracy of DRA solution 
augment with the augment of order of solution approximation (i.e. at the 
27 th- order of approximation). In fact, it may be concluded that the 
order of solution approximation should be chosen to get better solution 
with less error. 

6. Concluding remarks 

In this study, we have examined the combined effect of hybrid 
nanoparticle and velocity slip Boundary Conditions on the nonlinear 
problem of MHD Jeffery–Hamel flow. The combination of Al2O3 (φ1)

and Cu (φ2) nanoparticles with pure water base fluid and the mixture 
base fluid H2O − C2H6O2 (50% − 50%) is considered. In this investiga
tion, the governing equations based on the mathematical modeling are 
transformed into ordinary differential equations and numerically solved 
by use of Runge-Kutta-Fehlberg 4th–5th order with shooting technique 
and analytically via Duan–Rach Approach (DRA). 

The main key features of the desired problem are as follows.  

• In convergent channel, the hybrid nanofluid velocity F(η) increments 
with an augmentation in Re,α Ha, m,Kn and φAl2O3+Cu for both 
velocity-slip boundary conditions models.  

• In divergent channel, the hybrid nanofluid velocity F(η) increments 
with an augmentation in Ha and m, while it decrements with 
increasing Re, α, φAl2O3+Cu and Kn for both slip models.  

• The Skin friction coefficient Cf decreases with an increase in Ha, m, 
Kn and the φAl2O3 

while it increases with increasing φCu.  
• The minimal local SFC is obtained in the case of hybrid nanofluid 

with nanoparticles of Platelet form.  
• A reduction of 50% in the magnitude of local SFC is obtained with 

second-order slip model when compared to that of first-order slip 
model when the Hartmann number is equal to 1200.  

• In the case of Platelet form nanoparticles and second-order slip 
model, the local SFC shows a higher reduction of 70% compared to 
that obtained with nanoparticles of spherical form when Hartmann 
number Ha = 1200. 

• The hybrid phase (Al2O3 − Cu) presents lower Skin friction coeffi
cient to that obtained for the nano-phase (Cu).  

• The mixture base fluid (H2O − C2H6O2) predicts lower Skin friction 
coefficient Cf than base fluid (H2O).  

• Higher reduction of 69% in local SFC intensity was observed for both 
hybrid phase (Al2O3 − Cu) and mixture base fluid (H2O − C2H6O2)

with second-order slip boundary conditions when Knudsen number 
Kn = 0,08.  

• It was noticed via comparisons and test of convergence that the DRA 
method is significantly reliable and robust. 
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